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1. Introduction

Let Ω be the set of states. For any t ∈ N consider finite partition Πt on Ω such that Πt+1 be weakly
finer than Πt. Let Ft be the algebra of events generated by Πt and let ∆(Ω) be the set of probability
measures on Ω. P ∈ ∆(Ω) will be called a belief. One aspect of Bayesian theory is that information will
never be thrown away. A Bayesian agent updates her beliefs using all her information. Can a contingent
plan which only depends on the most recent piece of information be rationalized even if it is not a
sufficient statistic for the entire history? As it will be shown in this paper, the answer is yes.

Another property of Bayesian theory is that posterior beliefs converge almost surely to truth.1 How
about Bayesian behavior? How does action choice of a Bayesian agent changes as t increases and
information becomes more precise? Does her choice asymptotically converge as her beliefs converge?
The example in next section will show that the answer is: Not necessarily so.

Then the main question of this paper is: What asymptotic properties should a Bayesian contingent
plan have? We argue that neither asymptotically converging nor depending on all the information
are necessary. The goal of present work is to show there are no such intrinsic asymptotic properties.
Any contingent plan which satisfies a consistency property, which is an obvious revealed-preference
implication of the sure-thing principle together with assuming positive probability of observing any finite
initial sequence of observations, and will be defined later, can be rationalized.

The decision problem that we have in mind is a one-shot decision making. When we talk about
a particular point of time, the only relevant factor is the finite amount of information that has been
observed up to that point. At any point of time, contingent plan specifies the action that agent would
choose given the finite amount of information observed up to that point.

2. Example: a chaotic contingent plan

Let state space be Ω = {1, 2}N and action set be A = {0, 1, 2}. We show a typical element in Ω by
ω = (ω1, ω2, ...). Define ωt = (ω1, ω2, ..., ωt) to be finite sequence of observations from date 1 to date
t. Each state has a unique representation in the graph shown in figure 1.
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Figure 1. There is a 1-1 relation between Ω and representateions on this graph. For
example ω8 = (1, 2, 2, 1, 1, 1, 2, 1)

Consider contingent plan β(ωt) =
∑

t′≤t ωt′ (mod 3). Let β(∅) = 0. Figure 2 represents actions

suggested by this contingent plan. This contingent plan has the property that, at every ω and t, β(ωt),
β(ωt ∗ {1}) and β(ωt ∗ {2}) are distinct values from one another. Therefore, for any ω, chosen actions
never settle down.
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Figure 2. Suggested actions by β

Intuitively, such a contingent plan seems not to reflect Bayesian decision making. Nevertheless, it will
be shown here that it can be rationalized for some state dependent utility function and some probability
measure over state space. But before we prove this claim, we need some definitions.

Let B∗(ωt) be the cylinder set defined as

B∗(ωt) = {ζ ∈ Ω|ζt = ωt}. (1)
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Define Ψ to be the set of states that after some finite time zigzag forever

Ψ = {ω ∈ Ω|∃t ∈ N ∀t′ ≥ t ωt′ 6= ωt′+1} (2)

and define τ : Ω→ N be such that for ω ∈ Ψ it indicates the initiation of zigzagging

τ(ω) = min{t|∀t′ > t ωt′ 6= ωt′+1}. (3)

Observe that given some t > 0 and given some ω there exists only one state in Ψ consistent with ωt

for which τ is equal to t. Let set C(ψ) be such that for ψ ∈ Ψ, it consists of the two actions that are
picked by β at time τ(ψ) and later:

C(ψ) = {β(ωτ(ω)), β(ωτ(ω)+1)} = {
∑
t≤τ(ω)

ωt (mod 3),
∑

t≤τ(ω)+1

ωt (mod 3)}. (4)

Define Ψ̂(ωt) to be the set of states in Ψ with the same initial t signals as ω that begin to zigzag at t
or before it:

Ψ̂(ωt) = {ψ ∈ Ψ ∩ B∗(ωt)|τ(ψ) ≤ t}. (5)

Now we show that for any t and any ω, ⋂
η∈Ψ̂(ωt)

C(ζ) = {β(ωt)}. (6)

First consider ∅. Ψ̂(∅) = {(1, 2, 1, 2, . . . ), (2, 1, 2, 1, . . . )}. Considering that C((1, 2, 1, 2, . . . )) = {0, 1}
and C((2, 1, 2, 1, . . . )) = {2, 0} we can see that (6) is satisfied at ∅. Now consider some t > 0 and

some ω. Ψ̂(ωt) has two elements one which starts zigzagging at t, lets call it ζ and the other at t− 1
or earlier, lets call it ξ. Then C(ζ) = {β(ωt), β(ωt+1)} and C(ξ) = {β(ωt), β(ωt−1)}. Therefore (6) is
satisfied.
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Figure 3. τ(ω) = 7, C(ω) = {0, 1}, τ(ω′) = 8, C(ω′) = {0, 2}

Now pick δ ∈ (0, 1
2) and let κ = 1

1−2δ Consider function

P ({ω}) = κδτ(ω)1Ψ(ω). (7)
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Because of
∑

ψ∈Ψ P (ψ) =
∑

t≥0 κδ
t · 2t = 1, this function defines a countably additive probability

measure on Ω.2 Since δ < 1
2 , δt > δt+1

1−δ so

min{P ({ψ})|ψ ∈ Ψ̂t(ω)} = κδt > κ
δt+1

1− δ
= P (Ψ ∩B∗(ωt) \ Ψ̂t(ω)). (8)

Consider state dependent utility function which for ψ ∈ Ψ satisfies

u(a, ψ) = 1C(ψ)(a). (9)

When the probability measure and utility function are defined in this way, expected net gain from
any deviation from β is negative. To see this, note that regarding (6), β(ωt) is the only action which

attains maximum state dependent utility for all the states in Ψ̂t(ω). Therefore the loss of deviation

is at least as large as min{P (ψ) · u(β(ωt), ψ)|ψ ∈ Ψ̂t(ω)} = min{P (ψ)|ψ ∈ Ψ̂t(ω)}. Maximum

expected gain is when β(ωt) attains minimum state dependent utility for all states outside Ψ̂t(ω) while
deviation action attains maximum state dependent utility for all these states.Therefore the expected gain
is at most equal to

∑
ψ∈Ψ∩B∗(ωt)\Ψ̂t(ω) P (ψ){u(a, ψ) − u(β(ωt), ψ)} =

∑
ψ∈Ψ∩B∗(ωt)\Ψ̂t(ω) P (ψ) =

P (Ψ ∩ B∗(ωt) \ Ψ̂t(ω)). But (8) shows that expected loss is strictly greater that expected gain and
therefore expected net gain is negative. Thus β is the unique maximizing contingent plan for our choice
of state dependent utility function and probability measure.

3. Observation sequences and contingent plan

Let A be finite set of actions and X be finite set of signals. Define the set of finite observation
sequences, X∗ =

⋃
t∈NXt. We show a typical element of X∗ by ~x. Let ∅ denote the null sequence and

let ~x � ~y denote that ~y is an extension of ~x and let ~x ≺ ~y denote that ~y is a proper extension of ~x. If
~x = (x1, . . . , xn), then for 1 ≤ t ≤ n, ~xt denotes xt. An immediate extension of ~x ∈ X∗ is ~x followed
by a single observation. Let ~x ∗ y denote the immediate extension of ~x by y. Function α : X∗ → A is
called a contingent plan.

The usual representation of observations in terms of measurable functions is adopted here. A mea-
surable space (Ω,B) is constructed from X by taking Ω = XN+ and projection functions Xt(ω) = ωt,
and by taking B to be the smallest σ-algebra with which all of the projection functions Xt are
measurable. Bt ⊆ B is the σ-algebra generated by X1, . . . , Xt. In particular, every cylender set
B∗(~x) = {ω|∀t ≤ λ(~x) Xt(ω) = ~xt} is measurable with respect to B and to Bt for ~x ∈ Xt′ t′ ≤ t.
Let ~x � ω denote that ωt = ~x.

4. Consistent contingent plans

Define contingent plan α to be consistent at ~x iff

∀a ∈ A \ { α(~x)} ∃y ∈ X α(~x ∗ y) 6= a. (10)

Consistency is an obvious revealed-preference implication of the sure-thing principle formulated by
Savage [1954]3 together with the assumption of positive probability for any initial finite sequence of
observations. Therefore, a Bayesian agent must be consistent. If there is a finite bound on the length
of observation sequences, then the converse is true: a finite contingent plan that is consistent at every
node must be Bayes for some u and P . Green and Park [1996] prove this fact, in the course of proving
theorem 1 in that paper. (Antecedent investigations of the relationship between being consistent and

2The factor 2t in the sum of probabilities reflects there being 2t sequences of length t, each of which corresponds to an
element of Ψ that is assigned probability κδt.

3In the formal theory introduced by Savage, which has been adopted by most subsequent researchers, acts are defined
entities. Despite that difference from the present theory (in which A is a primitive of the theory), clear parallels can be
drawn.
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being Bayes include Weller [1978], Hammond [1988], and Epstein and Breton [1993].) They also state
an infinite-horizon result However, the theorem, which concerns infinite-horizon plans, is false. (Its proof
contains an invalid assertion that an a.s. convergent martingale also converges in L1.)

Proposition 6 in the present paper, to be stated and proved below, is a sound weakening of Green
and Park’s theorem 1. The proof of this proposition generalize the preceding example. In the first step
we define Ψ a subset of Ω which has three properties. Firstly, it is countable. Secondly, for any finite
sequence of observations, there exists some ψ ∈ Ψ which is not in contradiction with observations. And
lastly, for any ψ ∈ Ψ, we can define an index τ(ψ) and a set of actions C(ψ, τ(ψ)) such that α(ψt) be
the unique element in common in C(ψ, τ(ψ)) for any ψ ∈ Ψ consistent with observations and with an
index smaller or equal to t. Consistency condition is used in lemma 1. Lemma 1 to lemma 4 are used
in defining Ψ and proving these properties.

In the next step of proof, we show that mentioned properties of Ψ, enable us to choose a bounded
state dependent utility function (defined in terms of C) and a probability measure (defined in terms of
τ) with full support on Ψ such that β is the unique expected utility maximizing contingent plan. Note
that, since every finite sequence of observations is an initial sequence at some state in Ψ, every finite
initial sequence has positive probability of being observed.

5. Step 1: Defining Ψ ⊆ Ω

Define
C(ω, t) = { α(ωt+n)|n ∈ N+} (11)

and
D(a, ωt) = {ψ ∈ Ω|ωt ≺ ψ, a 6= C(ψ, t)} . (12)

Lemma 1. If α is consistent and a 6= α(ωt), then D(a, ωt) 6= ∅.

Proof. A recursive construction, using consistency at each stage n > 0, establishes that there is a
sequence ~x0, ~x1, . . . such that ~x0 = ωt and, for every n ∈ N, a 6= α(~xn) and ~xn+1 is an immediate
proper extension of ~xn. Then, defining ωt = x ⇐⇒ ∃n ~xnt = x produces an element of Ω that satisfies
the lemma. �

The next lemma follows immediately from lemma 1

Lemma 2. If α is consistent, then there exists a function d : A×X∗ → Ω∪{∅} such that, for every ~x,

d(α(~x), ~x) = ∅ and ∀a 6=α(~x) d(a, ~x) ∈ D(a, ~x) . (13)

Define Ψ ⊆ Ω by
Ψ = {d(α(~x), ~x) | a 6= α(~x)} (14)

Define τ : Ω→ N such that for any ψ ∈ Ψ it satisfies

τ(ψ) = min{ t ∈ N|for some a 6= α(ψt), a /∈ C(ψt)}. (15)

Define Ψ̂(ωt) ⊆ B∗(ωt) ∩Ψ by

Ψ̂(ωt) = {ψ ∈ Ψ ∩B∗(ωt)|τ(ψ) ≤ t}. (16)

Note that equivalently we can restate Ψ̂(ωt) as

Ψ̂(ωt) =
⋃
t′≤t

⋃
a6=α(ωt′ )

{ d(a, ωt
′
)}. (17)

therefore Ψ̂(ωt) is finite.

Lemma 3. Ψ is countable.
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Proof. Ψ is a subset of the range of a function with a countable domain therefore it is countable. �

Lemma 4. ⋂
ψ∈Ψ̂(ωt)

C(ψ, τ(ψ)) = α(ωt) (18)

Proof. Please note that
∀ψ ∈ Ψ̂(ωt) α(ωt) ∈ C(ψ, τ(ψ)) (19)

and ⋂
{ψ∈Ψ̂(ωt)|τ(ψ)=t}

C(ψ, τ(ψ)) = α(ωt). (20)

Result immediately follows from the above two equations. �

6. Step 2: Probability Measure and Utility Function

Since Ψ is countable and every Ψ̂(ωt) is nonempty and finite, there exists a countably additive
probability measure P such that

P (Ψ) = 1, (21)

∀ψ∈Ψ P ({ψ}) > 0 (22)

and ∑
ζ∈Ψ∩B∗(ωt)\Ψ̂(ωt)

P ({ζ}) = δ × min
Ψ̂(ωt)

{P ({ω})} > 0 (23)

for some δ ∈ (0, 1). Note that conditions (22) entails that every finite sequence of initial observations
has positive probability. Define bounded utility function

u(a, ω) =

{
1 if a ∈ C(ψ, τ(ψ)) and ω ∈ Ψ
0 otherwise.

(24)

Lemma 5. If P and u satisfy conditions (22) and (24), and a 6= α(ω, t), then

U(a, ω, t) < U(α(ωt), ω, t) . (25)

where U is derived from u according to

U(a, ω, t) =

∫
B∗(ωt) u(a, ψ) dP (ψ)

B∗(ωt)
(26)

Proof. An upper bound for the maximum gain of deviating from α(ωt) is∑
ζ∈Ψ∩B∗(ωt)\Ψ̂(ωt)

P ({ζ})× 1 = δ × min
ζ∈Ψ̂(ωt)

{P ({ζ})} (27)

Where the equality follows from (23). With regard to lemma 4, a lower bound for minimum loss of
deviating from α(ωt) is

min
ζ∈Ψ̂(ωt)

{P ({ζ})} × 1. (28)

By comparing the above two equations we can see that the maximum gain is strictly smaller than
the minimum loss. �

The following proposition follows immediately from lemma 5.

Proposition 6. If α is consistent, then there is a probability measure that assigns positive probability
to any possible finite sequence of observations and a bounded utility function such that with respect to
that probability measure, α is the unique optimal contingent plan.
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