
Timing and Codes of Conduct

Juan I. Block∗

Washington University in St. Louis

November, 2013

Abstract

In games where players can imperfectly observe an opponent’s intentions, the time at

which intentions can be discovered may have a significant impact on the equilibrium

outcome set. When players infer intentions at the outset, I show that a folk theorem

for finite horizon games holds, whereas if agents glean intentions afterwards the timing

leads to different effects depending on the structure of the game. I identify two classes

of games with antipodal results concerning the timing. In finitely repeated games

with discounting, the folk theorem continues to apply regardless of the time at which

intentions are observed, and whether the observation is synchronous or asynchronous.

By contrast, the equilibrium outcome is unique in exit games, where players end the

game endogenously.
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1 Introduction

In economic environments where agents have the ability to infer intentions, the time at

which intentions can be discovered may have a substantial impact on the set of outcomes

that can arise in equilibrium. When intentions can be inferred at the outset, a folk theorem

for finite horizon games holds; however, when intentions are discovered later on the timing

has different effects depending on environmental details. This paper identifies two classes of

games with diametrically opposite results regarding such timing. In finitely repeated games,

the folk theorem continues to hold even if players observe intentions in the last period of the

game. In exit games, on the other hand, there exists a unique equilibrium outcome.

Many important situations in economics have agents capable of recognizing intentions.

For example, in industrial espionage an entry firm would spy on the incumbent’s response

to market entries before expanding business to a new market (e.g., Airbus and Boeing de-

veloping the jumbo jet, Caruana and Einav (2008)). Likewise, in military conflicts armies

spend resources to anticipate the enemy’s battlefield plan (e.g., Solan and Yariv (2004) and

Matsui (1989)). Another example is the Chairman of the Federal Reserve giving a public

speech about a policy to be implemented and consumers predicting its time consistency.

Recognition techniques are also present in online pricing strategies; by way of illustration,

click stream pricing displays a price for the product depending on consumers’ browsing his-

tory (e.g., Peters (2013)). Similarly when a security agency employs ex-ante verifications,

such as random audits on passengers or internal audits in firms, it is attempting to recognize

intentions. These situations are captured by self-referential games.

Standard models of intention recognition typically suppose that strategies can be revealed

in the pre-play phase. Yet, in practice, agents partially observe intentions during the game

such as Airbus forecasting Boeing’s reaction to entries in the big jet segment after developing

the A380 superjumbo. Likewise, in monetary policy consumers may adjust predictions about

the annual speech in the third quarter. In click stream pricing, for instance, the seller may

price a complimentary product based on consumer’s choice up to the checkout stage. In

contrast to all previous analyses, the model I propose extends self-referential games to address

the realistic feature that agents might infer others’ plans in the course of the interaction.

From the self-referential perspective, the ability to infer intentions is conceptually the

result of conforming to a rule of behavior that might be too costly to change so that individ-

uals are committed to this rule. In this context, lying is not fully costless (i.e. cheap talk,

Crawford (2003)) in the sense that agents must imitate others’ behavior to send the same

signals as them. Moreover, agents may imperfectly identify opponents’ rules of behavior

because past play is observable, allowing for understanding intentions at some stage of the

game. Alternatively, elements of strategies might exhibit themselves via communication or

involuntary gestures. Such a situation could be Frank’s (1987) example in which a sincere in-
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dividual may blush whenever he lies. Consequently, blushing can be interpreted as evidence

of potential dishonest behavior. As mentioned, there are costs associated with mimicking

behavior, for instance, manipulating information or faking. In business, planning a feint

would be costly because concealing the true state of a product’s development might require

continued investing in dead-end products.

Building on Block and Levine (2012), I model the self-referential game as an extension of a

base game. The base game is a multistage game with observed actions in which players know

the actions chosen at all previous stages and may move simultaneously in each stage, whereby

strategies depend on public histories. Coupling with this game, the self-referential framework

endows players with an upfront private signal at some stage. Accordingly, an extended

strategy is defined by public and private histories. The self-referential game is played in two

stages. At the first stage, players simultaneously choose a code of conduct which commits

the player to an extended strategy, and specifies one for each of his opponents. Privately

observed signals are drawn from an exogenous probability distribution that is determined

by the code of conduct profile. This probability distribution is meant to capture both the

idea that intentions are imperfectly observable and that codes of conduct might recognize

one another. In the second stage, each agent employs the extended strategy according to his

code of conduct.

In this model, players choose strategies that are indirectly conditioned on other players’ as

extended strategies consider the private signal which in turn depends on all players’ choices—

this is the self-referential property. These conditional commitment devices typically lead to

the infinite-regress problem. Within this context, it means that a strategy depends on

other player’s strategy that is conditioned by the first strategy, and this inductive argument

continues ad infinitum. Although such circularities are overcome because players triangulate

this dependence through private signals, and the likelihood of these signals is determined

by an exogenous probability distribution. As a matter of interpretation, codes of conduct

should be thought of as social norms, to the extent that they provide a well-defined notion

of agreement. Motivated by the vast evidence on reciprocal behavior, self-referential models

focus on information structures that allow players to distinguish whether there is agreement.

As in the benchmark used in the literature, suppose that agents infer intentions only in the

pre-play phase, thereby allowing them to punish any kind of intentions. It is shown that for

any subgame perfect equilibrium of an infinite horizon game, there exists a Nash equilibrium

of the self-referential truncation that coincides with such a subgame perfect equilibrium.

The key to construct equilibria is the probability of distinguishing whether rivals agree on

the code of conduct. One implication of this result is that as the horizon grows long, the

probability of detecting deviations approaches zero for any equilibrium strategy.

The main contribution of this paper is to identify two classes of games with starkly
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opposite predictions depending on the time at which intentions can be discovered. To begin

with, I study finitely repeated games with discounting where the ability to observe intentions

in the last round of the game suffices to prove a version of the folk theorem. Its proof

hinges on patient players whose behavior is sensitive to changes in endpoint payoffs and

on deviations that are likely to be detected. Under some regularity assumptions findings

suggest that the sooner agents recognize intentions, the lower is the required probability of

detecting deviations from the code of conduct in equilibrium.

Exit games, by contrast, is a class of games in which the equilibrium outcome set is

immune to the possibility of inferring intentions later on. From this collection of games,

I first consider splitting games where every player is able to terminate the game in each

period, and the game also ends exogenously in the last round if none of them has exited. In

this context, the equilibrium set with outcomes where everyone exits in the first period is

rendered unique by intentions that can be discovered after the first stage. This is because the

stakes in the beginning offset expected payoffs in any self-referential equilibrium exhibiting

late exit profiles. Nonetheless, exit is delayed arbitrarily when intentions are inferred at the

outset.

Another subclass of exit games is preemption games, where just one player—that may be

active for many consecutive stages—can exit in each stage. When intentions are discovered

in the next to the last active period, I show that there is a unique equilibrium outcome where

the first mover exits immediately. The reason is that, although agents prefer to exit at late

stages, leaving in the first active period entails enough payoffs without being punished. Yet,

equilibria exhibiting delayed exit could be constructed as long as the player ending the game

glean a rival’s intentions one active period preceding exit, allowing him to punish deviations.

Thus, players find it optimal to end the game conditional on the targeted exit profile.

The model extends to allow for asynchronous intention recognition, that is, players receive

information about one another’s code of conduct at different stages. In finitely repeated

games, I find that a folk theorem applies since agents use signals in the last round of the game

that help coordinate punishments and rewards. On the other hand, in splitting games the

unique equilibrium outcome has all players exiting in the first period because sustaining exit

profiles after that requires initial-period signals for all players. Finally, in preemption games

there exists a unique equilibrium outcome under late signals; nevertheless, equilibria with

exit profiles at late stages can be sustained as players alternate active periods complementing

the asynchronous, but early, timing of signals.

1.1 Related Literature

Self-referential games were introduced by Levine and Pesendorfer (2007) in the context of an

evolutionary model where players are pairwise matched to play a symmetric game. In their
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setting imitation of strategies is more likely than innovation, and identification of behavior

prior to play is possible. They show that strategies that emerge in the long run are those that

reward opponents that are likely to play similarly and punish opponents that are likely to

behave differently. The self-referential framework was extended to multi-players asymmetric

games by defining codes of conduct in Block and Levine (2012), who prove a folk theorem

for repeated games with private monitoring. The key difference is that these models assume

that behavior recognition occurs in the beginning of the game, while here it also happens

during the game.

Codes of conduct have similar characteristics to conditional commitment devices. The

self-referential framework is closely related to that of Tennenholtz (2004) and Kalai, Kalai,

Lehrer, and Samet (2010).1 In both papers, agents choose a commitment device that con-

ditions on other players’ commitment device. While they assume that these devices are

perfectly observable, I analyze behavior that is conditioned by noisy information; although

I also consider underlying games with complete information. See Peters and Szentes (2012)

and Forges (2013) for the extension of Kalai et al. (2010)’s model to Bayesian games, and

Peters and Troncoso-Valverde (2013) for a folk theorem in competing mechanism games in

which agents employ this kind of devices.

This paper contributes to the literature that studies the possibility of observing strate-

gies before the actual play of the game. For instance, Matsui (1989) considers two-player

infinitely repeated games in which players may observe opponents’ metagame strategy with

small probability before the game starts, allowing revision of strategies. He shows that any

subgame perfect equilibrium payoff vector is Pareto efficient. In contrast, in this paper infor-

mation about rivals’ code of conduct is imperfect and the class of games is much broader. In

two-player normal form games, Solan and Yariv (2004) examine espionage games where one

player can pay for a signal which delivers information about the other player’s strategy. The

main result says that the set of espionage equilibria coincides with the set of non-degenerate

semi-correlated equilibrium distributions. While the espionage game is sequential and has

only one-side spy, in my approach players simultaneously choose codes of conduct and receive

a private signal with no explicit cost.

More recently, Kamada and Kandori (2011) study revision games in which the opportu-

nity to revise actions arrive stochastically, and prepared actions are mutually observable and

implemented at a predetermined time. They find that the subgame perfect equilibrium set

widens, while Calcagno, Kamada, Lovo, and Sugaya (2013) show that revision games narrow

1Tennenholtz (2004) develop a setting where players submit programs which take as input the other
players’ program and play on their behalf. A program equilibrium is constructed by programs that give an
outcome action if they are syntactically identical and punish otherwise. Although, he did not describe the
set of programs. At a more general level, Kalai et al. (2010) characterize the conditional commitment devices
space. In self-referential games, this space is assumed to be common and very general.
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down the set of equilibrium payoffs in common and opposing interest games. In the present

model, strategies are imperfectly observable via signals with deterministic arrival time.

All these papers have information about strategies releasing at the outset, whereas I

characterize how the size of the equilibrium outcome set gets determined by the time at

which intentions are inferred.

The rest of the paper is organized as follows. In Section 2, I present the framework of

the base and the self-referential game, and the information technology. Section 3 studies

self-referential games in which recognition occurs only in advance. In section 4, I analyze

finitely repeated games and characterize the equilibrium set in terms of the timing of signals.

In Section 5, I examine exit games showing the implications of the timing on equilibrium

behavior. Section 6 extends the analysis to asynchronous signals, contrasting asynchronicity

results in each class of games with the equilibrium predictions obtained in the original setting.

I conclude in Section 7. The Appendix collects the proofs.

2 The Model

I next outline the general framework. In section 2.1 I describe multistage games with observed

actions. Section 2.2 presents the self-referential game, extending the setting in Block and

Levine (2012) and allowing players to learn about opponents’ intentions in the course of play.

2.1 Setup and Notation

I concentrate on multistage games with observed actions as defined in Fudenberg and Tirole

(1991).2 There are a set of players I with cardinality |I| = N and T + 1 stages.3

Let h0 = ∅ be the initial public history and Ai(h
0) 3 a0

i be the finite actions set available

for player i at stage 0. The public history of play until stage t is defined recursively as a

sequence of action profiles denoted by ht = (a0, a1, . . . , at−1) whose length is l(ht). Player i

chooses an action ati from his finite actions set Ai(h
t) at stage t with profile at ∈ A(ht), and

{a} stands for the no-decision action. I write H t for the set of all stage t public histories

and H :=
⋃∞
t=0H

t for the set of all public histories. Let Z be the set of terminal histories

where hT+1 is finite if T <∞, otherwise it is infinite, h∞.

A (behavioral) strategy for player i is a map σi : H → ∆Ai(h
t) where each ∆Ai(h

t) is

endowed with the standard topology, and Sti := ∆Ai(h
t) for notational convenience. Let

2This class of games is also known as multistage games with almost perfect information and perfect recall.
Multistage games were generalized to multistage situations by Greenberg, Monderer, and Shitovitz (1996).
Their framework applies to a broader class of social environments and allows for analysis to cases where, for
example, the strategies tuples are not Cartesian product of the players’ strategy sets.

3For finite set X, let ∆(X) be the set of probability distributions on X. For list of sets X1, . . . , XN , I
write X := ×iXi with typical element x ∈ X, and X−i := ×j 6=iXj with element x−i.
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∆A(ht) be the space of independent strategy profiles equipped with the product topology.

The set Σi denotes pure strategies, and profiles are Σ with typical element σp. Write Ξi for

behavioral strategies with profile Ξ.

The reward function for player i is gi : H → R where he receives payoff gi(h
t) following

history ht at stage t−1 that is discounted to stage t−2 by discount factor δi ∈ (0, 1]. Denote

by A∞ the set of possible outcomes with generic element a∞. Specifically, the outcome path

induced by σp is denoted by a∞(σp). Player i’s payoffs as a function of pure strategy profile,

ui : Σ→ R, is

ui(σp) =
∞∑
t=0

δtigi(a
t(σp)).

I extend the domain of rewards to behavior strategies profile σ in the standard way denoting

them by ui(σ). Finally, let Γ stand for the multistage game with observed actions.

2.2 The Self-Referential Game

In the self-referential game, the set of players is also I. Every player i observes a signal yi

only in the beginning of stage τi, that belongs to the finite set Yi with |Yi| ≥ 2.4 The stage

τi is deterministic and commonly known.

Let H t
i be the set of all stage t private histories of player i with element hti. It follows

that H t
i = ∅ for all stages t < τi, and H t

i ⊂ Yi for all stages t ≥ τi. Let Hi :=
⋃∞
t=0H

t
i

denote the set of all private histories, and if Y i ⊂ Yi then H
t

i ⊂ Y i is accordingly defined.

An extended strategy for player i is a map si from public and private histories to actions,

si : H ×Hi → Sti . Let s ∈ S be a profile of extended strategies.5

The strategy of player i in the self-referential game, ri, is called a code of conduct which

is an |I| × 1 vector whose jth element corresponds to what player i assigns to player j’s

choice of extended strategies. Specifically, for any i and all j 6= i the code of conduct ri is

a choice of |I| number of extended strategies, rij : H × Hj → Stj . I also refer to codes of

conduct as self-referential strategies. Each player i is endowed with the common space of

codes of conduct R0 given by

R0 :=
{
ri | rij ∈ Stj

H×Hjand ∀i, j ∈ I,∀ht ∈ H,∀htj ∈ Hj, r
i
j(h

t, htj) ∈ Stj
}
,

where Stj
H×Hj is the set of functions with domain H ×Hj and range Stj . Note well that the

code of conduct ri commits player i to an extended strategy and players participate in the

4The signal yi parameterizes the information about intentions accumulated up to stage τi. The idea is
that players accrue pieces of information during the game, and at some point they make use of them to
evaluate adversaries’ intentions.

5To avoid measure theoretic considerations, I assume that the set of strategies for player i, Si is finite.
Observe that finite mixed strategies are permitted, for example, rolling a finite n-dimensional dice.
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self-referential game even if they pay no attention to signals.6 A code of conduct vector is

denoted by r ∈ R.

For each code of conduct profile r ∈ R, let π(·|r) be the probability distribution over

signal profiles Y . I define the intention monitoring structure as the collection of probability

distributions over private signal profiles {π(·|r) ∈ ∆(Y ) : r ∈ R}. For each r, πi(·|r) denotes

the marginal distribution of π(·|r) over Yi, that is, the probability that player i receives signal

yi under the code of conduct profile r. We say an intention monitoring structure (Y, π) is

stage-t timing if signal profile y ∈ Y is observed in the beginning of stage t, i.e. τi = t for

all i.

Player i’s expected payoffs in the self-referential game Ui : R→ R are

Ui(r) =
∑
y∈Y

ui(r
1
1(h, h1(y1)), . . . , rNN (h, hN(yN)))π(y|r).

Let G(Γ) = {Γ, Y, π, R} represent the self-referential game. A vector of codes of conduct r∗

is a Nash equilibrium of the self-referential game (or self-referential equilibrium) if for all

players i ∈ I and codes of conduct ri ∈ R0, Ui(r
∗) ≥ Ui(r

i, r∗−i).

The self-referential game G takes place in two stages. It starts with players choosing

simultaneously code of conduct, ri ∈ R0. Then each player i chooses rii(h
t, hti) ∈ Sti for

histories ht ∈ H, hti ∈ Hi, and observes private signal yi ∈ Yi in the beginning of stage τi.

Finally, the detection technology allows players to discern whether rivals adhere to the

same code of conduct (as in Block and Levine (2012)) and it plays an important role in

developing the results in this paper. Specifically, we say that the self-referential game η-λ

permits detection if for two constants η, λ ∈ [0, 1], for all players i there exist some player

j 6= i and a subset of private signals Y j ⊂ Yj such that for all code of conduct profiles r ∈ R,

any signal yj ∈ Y j and each code of conduct r̃i 6= ri, it follows that πj(yj|r̃i, r−i)−πj(yj|r) ≥ η

and πj(yj|r) ≤ λ.

In words, the lower bound η describes the minimum probability of detecting deviations

from some code of conduct profile r, associating such deviations to signals in the set Y i.

Although, players also observe this type of signals even if everyone follows the profile r

leading us to interpret constant λ as the upper bound of the false positive probability. This

technology suggests that agents use simplified categorization of intentions, aiming a specific

behavior while bundling all deviations into a single class.7 Note also that it gives the identity

6Kalai et al. (2010) and Forges (2013) define voluntary commitment devices so they allow the possibility
of “not committing,” while here players are committed to codes of conduct.

7One interpretation is that codes of conduct might be so complex that agents bundle intentions of op-
ponents’ behavior into analogy classes. These simplifications resembles Jehiel’s (2005) analogy-based expec-
tation equilibrium in which players partition histories into analogy classes and best-respond to beliefs that
opponents’ behavior is constant within each analogy class.
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of the deviator but not the magnitude of the deviation.

3 Pre-Game Signals

In this section, I establish a connection between the equilibrium set in the infinite-horizon

game and the set of self-referential equilibria in the finite-horizon version of the game. More

precisely, I show that the set of outcomes that may arise in self-referential equilibrium of the

finite horizon approximation of the infinite horizon game is equal to the set of equilibrium in

the original game as long as players observe signals in the pre-play phase. A classic example

is the infinitely repeated prisoner’s dilemma game with patient enough players. Going from

the plethora of equilibria in the infinite horizon game to the unique equilibrium of the finitely

repeated game produces a discontinuity.

Let Γ∞ be an infinite horizon multistage game with observed actions described in Section

2. Consider any finite stage τ, let Γτ represent the same game with time horizon truncated at

τ. To approximate this game with its finite truncation we require players to be passive after

stage τ by choosing the no-decision action a thereafter.8 Of particular interest are games

in which future payoffs are not relevant. Formally, an infinite horizon game Γ∞ is said to

be continuous at infinity (Fudenberg and Levine (1983)) if for any ε > 0 there exists some

k <∞ such that

|ui(σ)− ui(σ̂)| < ε if σk = σ̂k for all i ∈ I and all σ, σ̂ ∈ Ξ.

Examples of such games are repeated games with discounting and any finite horizon game.

The set of games that fails continuity at infinity includes, for instance, repeated games with

limit-average payoffs and alternating-offer bargaining games with no discounting.

The result of this section holds for all multistage games with observed actions that are

continuous at infinity, and it says that we can reconstruct any subgame perfect equilibrium

of the infinite horizon game in its self-referential finite truncation if players are likely to

detect disagreement on codes of conduct in the beginning of the game.

Theorem 1. For |I| = 2. Let Γ∞ be continuous at infinity. Suppose that the self-referential

game satisfies η-λ permit detection with λ = 0, and τi = 0 for all i. For any subgame perfect

equilibrium σ̂ in Γ∞ and τ-truncation Γτ, there exist a probability of detection ητ > 0 and

a profile of codes of conduct rτ such that for all η ∈ [ητ, 1] in the self-referential equilibrium

rii = σ̂i,τ for all hi /∈ H i, i ∈ I. Moreover, the probability of detection ητ → 0 as τ→∞.

See Appendix A.1 for the proof.

8Apply the truncation of length k on σ to obtain the partial strategy σk for some k ∈ Z from σ ∈ Ξ.
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The literature on the connection between infinite and finite horizon games has focused on

perfect ε equilibria of the finite truncation Γτ.9 In contrast, Theorem 1 presents a relationship

between the perfect equilibrium set of Γ∞ and the exact equilibria of the self-referential game

built on the truncation of the original game G(Γτ). We may interpret Theorem 1 as a lower

hemi-continuity result, that is, exact equilibria of the self-referential game approach the limit

point. A result of Fudenberg and Levine (1983, Theorem 3.3) guarantees that a subgame-

perfect equilibrium in finite-action game exists.

Agents can only distinguish imperfectly whether opponents choose the same self-referential

strategy because of η, λ detection technology. Consequently, a natural construction of self-

referential equilibria uses grim trigger strategies, whereby each player rewards others unless

he observes deviations from the code of conduct. The equilibrium code of conduct takes a

simple form: in the case of evidence of agreement, agents play the truncated strategy σ̂τ,

while if signals indicate deviations from the code of conduct then players minmax opponents

forever. On the equilibrium path players do not punish others following the code of conduct

whenever λ = 0, but they do so to deviators. In fact, deviators are unlikely to be punished

when the chance of detection is low. Therefore, there is a threshold level of detection ητ

below which the expected profit from deviation is high relative to the cost of punishment.

When detection probability is above ητ, the cost of punishment dominates and players adhere

to this code of conduct.

The requirement of a detection probability ητ > 0 is weak because ητ becomes arbitrarily

small as τ → ∞. Consider the equilibrium code of conduct profile rτ constructed above

for a fixed truncation τ, and take a longer horizon. The difference between the gain to

deviation and to adherence determines the critical detection probability ητ. In the long run,

this difference shrinks as the approximation improves (τ→∞) due to continuity at infinity.

Note that the hypothesis of the theorem cannot be strengthen to ητ = 0, namely players

always detect disagreement about codes of conduct.10

4 Finitely Repeated Games

As mentioned, the effect of the timing of signals depends strongly on the underlying game.

It is instructive then to do the analysis within specific classes of games, indeed I consider

9See, for instance, Radner (1981), Fudenberg and Levine (1986), Harris (1985a, 1985b) and Börgers (1989,
1991). A profile of strategies σ̂ is an ε Nash equilibrium if ∀i, σi, ε ≥ 0, ui(σ̂) ≥ ui(σi, σ̂−i)− ε. A strategy
σ̂ is a perfect ε-equilibrium if ∀i, h, σi, ui(σ̂h) ≥ ui(σ

h
i , σ̂

h
−i) − ε. The latter was defined as ex ante perfect

ε equilibrium by Mailath, Postlewaite, and Samuelson (2005). They consider contemporaneous perfect ε
equilibrium that evaluates best responses at the time of the deviation. For finite games and small epsilon,
these two notions of equilibria coincide.

10The interpretation that the probability of detection goes to zero (η → 0) is that signals become decreas-
ingly informative about deviations from a profile r, as long as λ = 0.
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two starkly opposite ones respecting the effect of the timing on the equilibrium outcome set.

In this section, I study finitely repeated games with discounting where a folk theorem-like

for one-shot games holds, getting approximately any feasible and individually rational payoff

vector. In addition, I show a few different versions of a folk theorem for discounted repeated

games even if intentions are observable in the last round of the game.

4.1 The Stage Game

Let Γ be the stage game. Each player i ∈ I has a finite actions set Ai with |Ai| ≥ 2, and the

profile of actions is a ∈ A. Reward functions are gi : A → R. I write αi for mixed actions

for each player i with αi ∈ ∆(Ai), and I extend payoffs to mixed strategies in the standard

manner Eα(gi(a)) = gi(α). For each player i, I denote by vi the (mixed strategies) minmax

payoff of player i in the stage game as

vi := min
α−i∈∆(A−i)

max
ai∈Ai

gi(ai, α−i).

Then take action α−i ∈ ∆(A−i) such that

vi := max
ai∈Ai

gi(ai, α−i),

where α−i is the action profile that gives the minmax payoff to player i. Let

U := {(v1, . . . , vN) : ∃a ∈ A,∀i, gi(a) = vi} ,
V := co(U),

V ∗ := int ({(v1, . . . , vN) ∈ V : ∀i ∈ I, vi > vi}) .

V is the set of feasible payoff vectors and V ∗ is the set of feasible and strictly individually

rational payoff vectors.11 Players have access to a public randomization device which gen-

erates a public signal ωt ∈ [0, 1] uniformly distributed and independent across periods at

the start of each period t, i.e. (ωt)t∈N is an i.i.d. sequence. Thus, they may condition their

actions on these signals.

The next result states that the set of self-referential equilibria payoffs approximately

coincides with the set of feasible and strictly individually rational payoffs of the one-shot

game Γ, if some conditions on the self-referential information structure are satisfied.

Theorem 2. Let |I| = 2. Assume that the self-referential game η-λ permits detection with

τi = 0 for all i. For every feasible and strictly individually rational payoff vector v ∈ V ∗

11co denotes the convex-hull operator and int(X) stands for the topological interior of a set X.
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in the stage game Γ, there exist η0 > 0 and λ0 such that for all η ≥ η0, λ ≤ λ0 there is a

self-referential equilibrium profile r where player i’s expected payoff is approximately vi for

each i.

The proof may be found in Appendix A.2 along with the rest of the proofs corresponding

to the results in this section.12

This is an approximate one-shot folk theorem due to the noisiness of signals. In particular,

to establish a self-referential equilibrium with expected payoffs v, I show that we can only get

close to v, but not arbitrarily close, when there are on-equilibrium punishments (λ > 0), and

we must find a critical (small enough) λ0 for supporting this equilibrium. It follows that the

lower the λ, the closer are expected payoffs to v. Moreover, the threshold η0 is determined

by the condition that a player must not gain from deviating by choosing an alternative

code of conduct. These two thresholds reflect a trade-off for players between the benefit

from adhering to the code of conduct and thus the potential cost of either punishing some

innocent opponent or being punished, and the benefit from deviating, thereby obtaining the

immediate payoff and avoiding carrying out the punishment.

By having players submitting programs, Tennenholtz (2004) shows a similar result; how-

ever, programs use independent mixed strategies of the stage game Γ so it falls short of

efficiency payoffs in some cases. A complete folk theorem is proved by Kalai et al. (2010). In

their setting, players observe the choice of conditional commitment devices and use jointly

controlled lotteries (a la Aumann and Maschler (1995)) to overcome the necessity of ran-

domizing over feasible payoffs. Different from that paper, here agents can choose mixed

strategies and use the public correlation device allowing us to dispense of controlled lotteries

to obtain efficient payoffs. Unlike the complete folk theorem of Kalai et al. (2010), Theorem

2 is approximate since recognition is correct only probabilistically on the equilibrium path.

4.2 The Repeated Game

This subsection focuses on N -player discounted, finitely repeated games with perfect moni-

toring. Stages are referred to as periods. The finitely repeated game ΓT is the T -fold repe-

tition of the stage game Γ. In each period t players simultaneously choose actions ai ∈ Ai,
and after period T the game ends. Let At := A0×· · ·×At−1 be the t-fold Cartesian product

of A, and by perfect monitoring the set of t-length public histories is H t = At. A behavior

strategy for player i is a map σi : H → ∆(Ai). I omit public signals ω on the description

of public history for conciseness.13 Players discount future with common discount factor

12This result is the extension of Block and Levine (2012, Theorem 5.1) to imperfect identification of codes
of conduct, and it is the non-evolutionary asymmetric version of Levine and Pesendorfer’s (2007) result.

13In this case public history at period t would be ht = (a0, . . . , at−1, ω0, . . . , ωt) and strategies would be
measurable functions with respect to both past actions and the random variable ω.
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δ ∈ (0, 1). Given any strategy profile σp ∈ Σ, a path of play is induced (at)t≤T . Thus, the

normalized payoffs for player i, ui : Σ→ R can be written as

ui(σp) =
1− δ

1− δT+1

T∑
t=0

δtgi(a
t(σp)).

Finitely repeated games exhibit the so-called unraveling property—that is, players have in-

centive to choose a profitable action in the last period so any strategy other than repetition

of a static Nash equilibrium unravels from the end to the beginning of the game. Roughly

speaking, since the game ends after the final stage there is no room for retaliation. Within

this class, agents’ play is sensitive to the endpoint of the game. This leads us to conclude

that last-period signals might be sufficient for the self-referential equilibrium set to span

above the strictly individually rational payoff.

Next, I will show the main result of this section: A self-referential folk theorem for finitely

repeated games with discounting.

Theorem 3. For |I| = 2. Consider a self-referential game that η-λ permits detection such

that for any t ≤ T , τi = t for all i. For all v ∈ V ∗ and for any T -fold repetition of the stage

game ΓT , there exist a discount factor δ < 1 and parameters ητ > 0 and λτ such that for

each δ ∈ (δ, 1), η ∈ [ητ , 1] and λ ∈ [0, λτ ] there is a self-referential equilibrium profile of codes

of conduct rT so that player i’s expected payoff is approximately vi for all i.

This theorem places no restrictions on the timing of signals. In other words, to construct

a self-referential equilibrium that sustains approximately any v ∈ V ∗ players may receive

information about opponents’ code of conduct in any period of the game, even in period T .

The reason why this result is indifferent to the timing can be seen from the proof. Below, I

outline a sketch of the argument.

The first step is to find a threshold δ, above which players find profitable deviations

in the last round of the game for the case without self-referentiality. Then, consider a

code of conduct such that grim-trigger strategies are used. Since there are on-equilibrium

punishments (λ > 0), players would punish last-period deviations in period T , ensuring the

lowest possible costs when these are triggered. Given these incentives, when signals arrive

before the final stage players cannot infer opponents’ realisation because this information

will be used at the end. Next, the equilibrium code of conduct pins down the cutoffs ητ and

λτ that are determined by last-period behavior. This equilibrium code of conduct reinforces

the fact that players’ behavior is sensitive to payoff perturbations in the endpoint, thereby

forgoing the unraveling logic discussed above.

Two features are worth noting in contrast to existing folk theorems for finitely repeated

games. First, this result holds for any finite time horizon T and we do not need to find
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a sufficiently high threshold T ∗. Second, it does not require multiple Nash equilibria of

the stage game Γ to construct reward and punishment phases. These two conditions are

necessary for the proof, for example, in Benôıt and Krishna (1985) and Friedman (1985).14

Unlike these papers, the equilibrium payoff vector cannot be arbitrarily close to v ∈ V ∗, in

fact, it hinges on the equilibrium thresholds ητ and λτ .

The next corollary to Theorem 3 computes the approximation to payoff vector v ∈ V ∗ in

the self-referential game.

Corollary 1. Consider the self-referential equilibrium code of conduct profile rT in Theorem

3. All players i have expected payoffs given by

Ui(r
T ) = vi −

(1− δ)δT

1− δT+1
C := vi − ε(δ,T )C,

where the constant C depends on the stage-game payoffs and the parameter λ.

In words, the self-referential equilibrium payoff Ui(r
T ) is a perturbation of the targeted

payoff vi. This perturbation depends not only on the time horizon of the game T and

level of patience δ, but also on rewards and punishments in the last round of the game

captured by C. The first component is on the equilibrium punishments (λ ≥ 0). When

these punishments are rare, λ is small, the expected payoff is close to vi. The intuition is

that adherence to code of conduct is “visible” among players which implies that the agent is

unlikely to be punished if he follows rT . Observe that agents dish out a relatively less costly

on the equilibrium punishment whenever deviations are punished at the end of the game.

The second component is ε(δ,T ). For fixed discount factor δ, as we take longer horizon of the

finite game, the expected payoffs get closer to vi, i.e. as T → ∞, it follows that ε(δ,T ) → 0

and Ui → vi. Despite the improvement on the approximation to payoff vector v ∈ V ∗, the

probability of detection η does not approach zero (η 6→ 0) in the asymptotic limit of the

time horizon T →∞.

Remark The result extends to time average payoffs. One interpretation is that it is contin-

uous in the discount factor δ, that is, as δ → 1 the equilibrium payoff vector in G(Γ) remains

close to V ∗.

The result in Section 3 suggests that we may require a lower probability of detection if

players acquire information in early periods of the game. To be consistent with Theorem

1, let us assume that λ = 0.15 Indeed, I will show that any v ∈ V ∗ is attainable in the

14For the extension to mixed strategies, Gossner (1995) uses sufficiently long horizon to build reward
schemes. See also Smith (1995), Neyman (1999), and Miyahara and Sekiguchi (2013).

15Within this class of games it is easy to see that when punishments are triggered on the equilibrium path
and close to the beginning of the game, the actual punishment for deviating from the code of conduct is still
severe.
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self-referential game if private signals are observed earlier than the last round of the game,

and that the threshold on probability of detection is smaller than the one found in Theorem

3.

Proposition 1. Let |I| = 2. Suppose the self-referential game η-λ permits detection such

that for all i, τi = T − k where k ∈ N, k > 1 and λ = 0. For any v ∈ V ∗ and any ΓT , there

exist δ < 1 and ηT−k > 0 such that for all δ ∈ (δ, 1), η ∈ [ηT−k, 1] every player i can obtain

vi in the self-referential equilibrium r̆T , and ηT−k ≤ ηT .

The detection probability threshold ηT−k is relaxed relative to the threshold ηT found

in Theorem 3 because players punish deviators in early periods without doing so on the

equilibrium path. In the self-referential equilibrium, players adhere to a code of conduct

profile r̆T that prescribes the minmaxing strategy in period T − k whenever signals point to

deviations, making punishments to such deviation more severe. Observe that threshold ηT−k

is independent of the time horizon T . As long as private signals arrive k periods before the

final round T , it is possible to construct these equilibria.

One might be interested in how early signals affect the approximation to payoffs in V ∗.

The actual computation of approximated payoff vector to v is presented in the following

corollary.

Corollary 2. Let r̆T be the self-referential equilibrium profile from Proposition 1. The ap-

proximate expected payoff of each player i is given by

Ui(r̆
T ) ≈ vi −

(1− δ)δT−k

1− δT+1
C := vi − ε′δ,T−kC.

This is a corollary to Proposition 1. The reason why the constant C adds to the per-

turbation of the expected payoffs is the same as in Corollary 1. Regarding the component

ε′(δ,T−k) observe that for a fixed time horizon T the sooner punishments are triggered, the

larger would be the perturbation of expected payoffs. However, holding period k fixed, in

the limit, as T →∞ the perturbation vanishes as in Theorem 3.

The findings of Theorem 1 and Proposition 1 can be combined to compute the speed of

convergence of ηT . Recall that Theorem 1 says that ηT → 0 as T → ∞, thus, when signals

arrive in the beginning of the game, the critical value of the detection probability under the

equilibrium code of conduct profile converges to zero as the length of the truncation grows

sufficiently large. Consequently I use the expression for ηT found in Proposition 1 and the

corollary below follows this proposition.16

Corollary 3. Consider stage-0 timing intention monitoring structure τi = 0 , the probability

of detection ηT > 0 converges to zero at rate δ as T →∞. That is, ηT is O(δT ).

16If we consider average payoffs, ηT is O(T−1).
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Proof. By Proposition 1, we restrict attention to the highest probability of detection ηT > 0

which is

max
i∈I

ηi,T =
δT (gi(ai, a

∗
j)− gi(a∗))

gi(αj, αi)− gi(ai, αi) + δT (gi(ai, a∗j)− gi(a∗))
.

For fixed δ > δ, this goes to 0 at rate δ as T →∞.

In summary the earlier players can detect deviations, the smaller the required probability

of detection η that sustains the self-referential equilibrium but the more perturbed these

payoffs would be.

5 Exit Games

Going further in the analysis of the signal timing, I explore a second class of games that

represent situations where signals at the outset make a world of difference to the equilibrium

outcome set but are redundant at later stages. In this section, I examine exit games.17 The

main feature of these games is that some player i can terminate the game at any stage t.

After presenting a general framework, findings are developed by focusing on two subclasses:

splitting and preemption games.

As shown in the previous section, signals have a considerable impact on equilibrium

outcomes in finitely repeated games, regardless of the stage at which they arrive. In splitting

games, on the other hand, equilibrium behavior is affected only if there are initial-period

signals. More precisely, I show that there exists a unique equilibrium outcome when players

cannot recognize an opponent’s intentions in the beginning of the game, whereas if the

recognition technology is available from the start of the game, we can arbitrarily delay when

the game ends.

Preemption games lie between these two classes of games. Similarly as for finitely re-

peated games, results suggest that the set of equilibrium outcomes will be increased even

though the intention monitoring happens relatively late in the game. As is the case for

splitting games, the self-referential equilibrium that induces exit at early stages requires

recognition possibilities ahead of these stages.

The General Framework

In the general environment, there is a set of players I := {1, . . . , N}, and these players are

involved for finitely T stages. Recall that public histories are defined recursively because

players observe all previous interactions. Each player i accesses a finite actions set which

is a bipartition, i.e. Ai(h
t) := {Fi(ht) ∪ Ei(ht)} for all ht ∈ H, i ∈ I. The subset Fi(ht)

17These games are similar to simple timing games, see Fudenberg and Tirole (1991, Section 4.5).
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represents the set of forward actions while not guaranteeing that the game continues are

necessary for moving to the next stage. The other component, Ei(ht), represents the set

of exit actions; in contrast to forward actions, these actions are sufficient to end the game.

Put differently, the game ends if there is only one player choosing exit actions. To lighten

notation, let Fi(ht) = F ti and Ei(ht) = E ti . By definition, the sets of forward and exit actions

are disjoint, i.e. E ti ∩F ti = ∅. Idle players are allowed, that is, we may posit a player chooses

action a.

Whenever all active player i’s choose forward actions at stage t, f ti ∈ F ti , the game

continues to the next stage t + 1. Formally for any history ht and any player i, Ai(h
t) 6= ∅

if akj /∈ Ekj for all k ≤ t− 1 and all active players j. On the other hand, if any active player

i plays an exit action eti ∈ E ti for any ht ∈ H, it causes the game to end regardless of the

actions played by all the other players j.

The last common feature is related to reward mappings, i’s payoff functions gi : H → R.

Until the game ends, each player receive no payoffs. Formally, gi(h
t) = 0 for all histories

ht ∈ H such that aki /∈ Eki for all i ∈ I, k ≤ t− 1. In addition, once the game ends no further

rewards are received. That is, if some player j chooses etj at stage t, then gi(h
k) = 0 for all

k > t, any ht and all players i. If all players continue until and including the last stage T ,

the game ends and the players’ payoffs are zero. This is just a normalization, but all results

are unchanged without it.

5.1 Splitting Games

The previous section established the general framework of exit games, including the structure

of payoffs and the actions set. This subsection studies the first subclass of exit games which

are defined as splitting games. These games capture situations in which agents take their

surplus share that are conditioned on others, and they pay a positive cost to divide the surplus

whenever other agents decide to take their portions. Henceforth, players have incentives to

anticipate their rivals because this guarantees the surplus share without incurring the cost.

Alternative, it could be interpreted as a partnership with exit (e.g., Chassang (2010)).

In this setup, stages are referred to as time periods. Players discount future payoffs

using the constant discount factor δi ∈ (0, 1) and none of them are idle. Reward functions

gi : H → R for all players i are additively separable in surplus share and costs. These are

represented by

gi(a
t) = wi(a

t)− ci(at), ∀at ∈ A(ht),

where the benefit function wi(a
t) ≥ 0 has present value at any period t whereas the cost

function ci(a
t) ≥ 0 has period-t value. Players receive a share of this surplus wi(a

t) depending

on his action and on opponents’. Similarly, each player incurs a cost of ci(a
t) by taking his
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share.

In particular, these preferences are characterized by the next set of assumptions. For all

i ∈ I, ht ∈ H, f ti ∈ F ti , f t−i ∈ F t−i, eti ∈ E ti , and et−i ∈ E t−i we have:

S.1 wi(e
t
i, ·) = wi > 0 with constant wi, and wi(f

t
i , ·) = 0;

S.2 ci(e
t
i, e

t
−i) = ci > 0 where ci is constant, otherwise ci(·) = 0.

In words, condition S.1 ensures that players would prefer to exit the game before his

opponents rather than play a forward action. The constant wi should be thought of as

a steady state surplus. Condition S.2 in turn establishes that if all players decide to exit

the game simultaneously in period t, they will pay a cost equal to the constant cost ci

discounted by δi their time preference parameter, that is, δtici. For each of the complement

action profiles players pay nothing, ci = 0. Think of the constant ci as the cost of reaching

agreement, deciding and proposing a voting rule to share the surplus, or as a one-time version

of the transaction cost considered by Anderlini and Felli (2001). Together assumptions S.1

and S.2 imply that terminating the game late is a cooperative action.

The next theorem should be interpreted as an impossibility result. It says that if players

comprehend cues about opponents’ code of conduct in any period but period t = 0, there is,

in fact, one self-referential equilibrium outcome in which every player immediately exits.

Theorem 4. Consider |I| = 2 and any splitting game Γ. Suppose that the self-referential

game η-λ permits detection with τi ≥ 1 for any i. Then for any η, λ there exists a unique self-

referential equilibrium outcome in which all profiles of codes of conduct rT have all players i

choosing rii(h
0, h0

i ) = e0
i for some exit action e0

i ∈ E0
i and all h0

i ∈ Hi.

The proof is included in Appendix A.3.18

The first point to make is that η-λ detection, players’ ability to understand their adver-

saries’ choice of strategies is irrelevant to this result. The driving force is precisely the timing

of intention monitoring structure τi.

Here is a rough outline of the proof. Under assumption S.1 that players obtain their

surplus fraction only if they choose an exit action, in any self-referential equilibrium they

must simultaneously terminate the game. Consider now a profile of codes of conduct r′

that prescribes exit in some period t′ > 0. Against such profile, any player may choose an

alternative code of conduct unilaterally exiting in period 0, thereby taking wi without paying

ci, this is the optimal deviation because adherence to r′ approximately gives an expected

payoff of wi − δt
′
ci. Such deviation is undetectable since information about intentions is

acquired later than the initial period. Moreover, when the deviator exits, terminating the

18The reader may also find all the proofs of the results in this section in Appendix A.3.
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game, opponents cannot punish such behavior by drawing on public history. This argument

also applies to any period t > 0. Thus, I have shown that the self-referential game has a

unique equilibrium in which the players exit in the first period and hence delayed exit is

never reached.

This result leads us to conclude that signals are useless when either the game ends or

signals arrive late. Late, in this sense, is relative to the point at which players wish to

deviate from the code of conduct r. This important, but previously neglected, feature arises

in self-referential games with different timing of informative signals.

As codes of conduct represent social norms, one would expect to see players agree upon

exiting in periods t > 0. In fact, choosing an exit profile in the next period f t+1 Pareto

dominates doing it in the current period f t. A natural question is then, under what conditions

agents will make these kinds of agreement? The following anti-impossibility theorem answers

this question positively.

Theorem 5. Let |I| = 2 and Γ be a splitting game. Suppose the self-referential game η-λ

permits detection with τi = 0 for all i and any period k ≤ T . Then there are ηk > 0 and λk

such that for each η ∈ [ηk, 1], λ ∈ [0, λk] there exists a self-referential equilibrium rk in which

all players i exit the game in period k, rii(h
k, hki ) = eki for all eki ∈ Eki , hki 6∈ H i.

As with the intention monitoring structure τi > 0, there is a self-referential equilibrium

with immediate exit. However, contrary to Theorem 4, every exit profile can take place with

a delay of an arbitrary number of periods. It corresponds to the fact that agents’ ability

to detect intentions of deviation occurs sufficiently in advance, thereby allowing players to

punish deviations discussed above.

To see the intuition behind this result, recall that any r with exit in t ≥ 1 must have the

players simultaneously terminating the game in order to be a self-referential equilibrium. As

a result, the optimal deviation against this code for any player i is to choose e0
i ∈ E0. When

the possibility of detection happens in any period t > 0, these equilibria are unsustainable.

If signals are observed in the first period τi = 0, however, players may receive informative

signals pointing to these kind of deviations. Turning to the construction of the self-referential

equilibrium, consider a code of conduct rk in which players agree to exit in period k. Then, it

uses grim-trigger strategies in which a player chooses forward actions unless there is evidence

of exit in any period t ≤ k. Again as before, given the exit profile ek ∈ Ek, the parameters

ηk and λk are chosen so as to provide each player with the right incentives to adhere to the

code of conduct rk.

One key observation is that the requirement that players receive signals at the outset

τi = 0 is independent of the particular exit profile ek that is aimed to be sustained in rk.

The reason why this holds is that each player finds it optimal to exit in any period preceding

period k, but then the reasoning works backwardly until the first period. Therefore, the
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deviation is characterized by exiting in the beginning regardless of period k. In addition, by

inspecting the proof one may observe that the probability required for the equilibrium code

of conduct decreases with the exit profiles sustained in late periods.

To conclude this subsection, I analyze welfare with respect to the results we have shown

so far. Consider a parameterization of the information structure (Y, π) with τi = 0 for each

i and bounds η, λ such that at least one exit profile et in each period t is implementable by

some code of conduct profile r ∈ R. Furthermore, the reward mappings gi(e
t) = wi−δtci are

monotonically increasing in period t ≥ 0 for all exit profiles et ∈ E t since the discounted cost

function δtci is decreasing in t ≥ 0 and the benefits function wi remains constant as it has

period-0 value. Even though there are multiple self-referential equilibria, by monotonicity

it is possible to have them Pareto-ranked: period-t exit profiles et are Pareto dominated by

period-(t + 1) exit profiles et+1 for any period t. This allows me to compute how much is

lost if signals come late in the game, i.e. τi > 0 for all i.

Players discovering adversaries’ intentions after the game starts have a negative welfare

effect; indeed, such agents obtain the lowest Pareto-ranked payoff. On the other hand,

when the intention monitoring structure (Y, π) is such that players observe signals in the

beginning, i.e. τi = 0, there exist self-referential equilibria where the equilibrium expected

payoff vector is greater than the lower bound of Pareto-ranked payoffs whenever τi ≥ 1.

The next proposition summarises the welfare implications of the results about the timing of

signals in splitting games.

Proposition 2. Suppose that Γ is a splitting game.

(i) If the intention monitoring structure (Y, π) allows τi = t for any t ≥ 1 and all i, then

the unique outcome of any self-referential equilibrium gives the worst Pareto-ranked

payoff vector;

(ii) If the intention monitoring structure (Y, π) satisfies τi = 0 for each i, then for any

period k ≤ T , η ≥ ηk and λ ≤ λk, there exists a self-referential equilibrium with payoff

vector greater than the worst Pareto-ranked payoff vector.

5.2 Preemption Games

The analysis of the previous sections suggest that at one extreme, in finitely repeated games

with discounting, the timing of signals is irrelevant to construct self-referential equilibria,

obtaining a few versions of the folk theorem. At the other extreme, in splitting games, I find

that informative signals must arrive at the outset to have some impact on the equilibrium

outcomes set of the self-referential game. Identifying a class of games that fits between these

two, perhaps, is of particular interest to better understand the timing of signals. In this
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subsection, I examine preemption games. This class captures situations in which players

alternate veto power to terminate the game. For example, the two most influential parties

in the Congress, or a wage-bargaining between a company and a labor union, both may

alternate such veto power. Furthermore, it includes the well-studied centipede game.

The preemption game is typically modeled as follows, it runs from stage t = 0 to the odd

finite stage T . There is a set of two players and each player i does not discount between

stages, i.e. δi = 1. At each stage t, there is only one player i active. The game starts with

player 1 moving and ends with player 2 choosing an action.

Let ι : H \ Z → I be the player function. This function assigns to each nonterminal

history h ∈ H \ Z a player i. I write ι(ht) = i for the case in which player i makes a choice

from Ai(h
t) after history ht in stage t. To make the analysis interesting, there must be a

minimum level of alternation between players. More specifically, there is no terminal history

h ∈ Z in the game where for some stage k ∈ N, for all t < k ι(ht) = 1 and for all t ≥ k

ι(ht) = 2. To track the number of identity changes along the path I define the function

φ : N0 → N0 which is given by

φ(n) :=

{
max l(ht) | ht ∈ H such that

T∑
k=0

1{ι(hk) 6=ι(hk+1)} = n

}
,

where 1{·} denotes the indicator function.19 The function φ simply returns the stage at which

there are exactly n alternations between players. Let n be the maximum number of shifts in

the game. Given any stage k and n number of shifts, I refer to k−n as the stage from which

we observe n number of shifts up to stage k and it is computed as k−n = φ(φ−1(k) − n).

Analogously, I define k+n = φ(φ−1(k)) + n) to be the stage at which n shifts have occurred

after stage k.

The reward mappings gi : H → R are required to fulfill the following conditions. For all

players i, j ∈ I and any pair of stages k, t with k > t

P.1 gi(e
t
i, a) < gi(e

k
i , a) for all eti ∈ E ti , eki ∈ Eki ;

P.2 gi(e
t
i, a) > gi(a, e

k
j ) for all eti ∈ E ti , ekj ∈ Ekj .

The first condition P.1 guarantees that whenever players are active, they prefer to exit the

game at later stages of the game. This implies that if player i is active between stage t and

stage t′, i.e. ι(hk) = i for t ≤ k ≤ t′, then his choice of ending the game in any of these

stages k before stage t′ is strictly dominated by the choice of ending it at stage t′.20

19I write N0 := N ∪ {0}.
20For instance, consider the bargaining between some group of firms and a labor union. In general, the

labor union bargains with no flexibility until the period of mandatory conciliation by law. This idea also
carries through to inter-active period decisions, basically, agents have incentive to terminate the game at
later stages.
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Nevertheless, players face a trade-off between waiting to the active period and terminating

the game in the current active stage determined by condition P.2. Any player prefers to

choose an exit action in the next stage he is active, but in order to reach it he will go

through an inactive stage. The transition between active stages is threatened by having the

opponent exiting the game.

The analysis of preemption games starts by showing that the unique self-referential equi-

librium outcome exhibits player 1 finishing the game at the end of his first active period if

signals arrive in the penultimate active period.

Theorem 6. Let Γ be a preemption game. For any stage k ≥ φ(n), assume that the self-

referential game η-λ permits detection and allows τi ≥ k−1 for any i. Then for any pair of

parameters η, λ there is a unique equilibrium outcome for any code of conduct profile rk such

that rii(h
t, hti) = eti for some eti ∈ E ti and all hti ∈ Hi where t = φ(1) − 1 for player 1 and

t = φ(2)− 1 for player 2.

As in the case of splitting games, signals arriving late play a key role in establishing

this impossibility result, except that now they must arrive after a critical stage that is not

necessarily the first stage. The threshold τi ≥ k−1 (with k ≥ φ(n)) is necessarily greater

than the threshold τi ≥ 1, in Theorem 4 because the critical stage φ(n) is at least three by

the minimum level of alternations assumed, implying that τi ≥ 2. Note that stage k−1 might

be at the very end of the game as is defined by alternations. Thus, if the game lasts for long

horizon T and there are one-period alternations, the critical value k−1 will be T − 1 as the

parameter satisfies φ(n) = T .

To build some intuition for this result, consider without loss k = φ(n) and τi = k−1.

Suppose for a moment that the code of conduct profile stipulates exit in stage, say, k − k′

for some k′ < k. By assumption P.2, the active player in stage k′−1 deviates from this code

of conduct because he can always terminate the game without being detected as informative

signals are observed afterwards. Accordingly, the candidate profile of codes of conduct rk

must have players exiting after stage k−1. Suppose that it requires exit in period k without

loss, noting that player 2 terminates the game. As before, player 1 wishes to exit at stage k−1

by assumption P.2, while player 2 observes informative signals after this profitable deviation.

Player 2 would then find it beneficial to choose an exit action at stage k−2. But player 1’s

response to this behavior would be to exit at stage k−3. Proceeding in this way, it turns out

that with timing of signals τi ≥ k−1, there is a unique self-referential equilibrium. In this

equilibrium, player 1 exits in his first active period terminating the game at stage φ(1)− 1,

whereas player 2 chooses exit actions at the last stage when active φ(1).

In the same sense as in splitting games, the uniqueness of the self-referential equilibrium

outcomes set is independent of the accuracy of signals captured by parameters η and λ.
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Precisely, the timing of signals impedes the construction of equilibria that exhibit delayed

exit.

As discussed above, when τi = k−1 for any stage k ≥ φ(n) there is a unique equilibrium

outcome in which the game terminates in the first active period. In what follows, I explore

under what conditions there also exist equilibria with delayed exit. From the previous result

two insights emerge, first the lower bound on the fixed stage φ(n) does not allow players to

use signals at stage k−1 so as to exit later than such stage. The second insight is that the

timing of signals τi depends only on this lower bound.

The following result characterizes self-referential equilibria in which the game terminates

after the first active period only insofar as signals are observed early in the game.

Theorem 7. Consider a preemption game Γ. For any stage k ≥ φ(2), suppose that the

self-referential game η-λ permits detection and provides τi ≤ k−2 for all i. Then there exist

an ηk > 0, a λk and a code of conduct profile rk such that for all η ∈ [ηk, 1], λ ∈ [0, λk]

in the self-referential equilibrium player i = ι(hk) chooses an exit action at stage k, i.e.

rii(h
k, hki ) = eki for some eki ∈ Eki and any hki /∈ H i.

Condition k ≥ φ(2) is a mild restriction, requiring that the targeted code of conduct

profile is sufficiently rich so that players can punish intentions of exit before stage k. This is

because any stage below this threshold where the game terminates cannot be a self-referential

equilibrium. To see this, suppose that k < φ(2), say player 2 is active and the code of conduct

profile dictates exit there. If that is the case, player 1 wishes to exit in his first active period

by condition P.2, meaning that this is the only equilibrium outcome since player 2 cannot

punish this behavior. Clearly, the same argument applies when player 1 is active.

To illustrate the role of the timing of signals in this result, I briefly describe the proof. Fix

a stage k ≥ φ(2), and suppose that player ι is active. Once again, the constructed codes of

conduct must use grim-trigger strategies because of the detection technology assumed here,

stating exit at stage k. First, consider player j 6= ι. By assumption P.2, he has incentives to

deviate at stage k−1, but not at earlier stages by assumption P.1. Correspondingly, player ι

punishes these intentions, whenever there is evidence of such behavior, at stage k−2 which is

possible as τi ≤ k−2. At the same time, player ι may actually exit in the last stage of his active

period containing stage k motivated by condition P.1; therefore, player j will punish these

intentions of behavior at stage k−1 provided that signals point out deviations. Under the

proposed codes of conduct, the incentives to adhere are aligned through the parameterization

of ηk and λk as before. Observe that there is still an equilibrium in which player 1 concludes

the game in his first active period.

As in splitting games, early informative signals permit one to construct self-referential

equilibria with delayed exit. However, contrary to such class of games, the required stage
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at which agents observe signals need not be the initial stage. In contrast to finitely re-

peated games, where the point at which signals are observed is completely irrelevant, and

splitting games, in which signals must arrive at the outset in order to construct nontrivial

equilibrium, in the present environment the timing of signals depends only on the stage at

which players wish to terminate the game. The difference hinges on the fact that players can

asynchronously terminate the game and they may remain active for more than one stage.

Finally, consider the assumptions in Theorem 7. Because the timing of signals suffices to

construct self-referential equilibrium with exit after the fixed stage k, we obtain the following

result.

Corollary 4. Given stage k, for each stage t ≥ k there is self-referential equilibrium where

player i = ι(ht) plays rii(h
t, hti) = eti for some eti ∈ E ti and each hti /∈ H i.

Proof. This follows by noting that the detection probability ηk from Theorem 7 allows us to

construct a self-referential equilibrium in which both players adhere to the code of conduct

ri that dictates for player j = ι(ht) the strategy rij(h
t, htj) = etj for some etj ∈ E ti and any

htj /∈ H i.

6 Asynchronous Intention Monitoring

So far, I have restricted the analysis to information structures of G(Γ) in which all players

observe signals in the same stage, that is, τi = t′ for all i and any stage t′. In many

applications, however, agents could have heterogenous abilities to recognize others’ rules of

behavior. For instance, an entry firm may have better information about pricing strategies

than the incumbent. Similarly, consider an underlying game in which one player moves in

early stages and therefore the others might observe his behavior acquiring information before

such player. This section studies an information structure of self-referential games that

allows for heterogeneity in the timing at which players receive private signals, maintaining

the assumption that the timing of signals is deterministic and commonly known. To facilitate

the analysis I focus on two-player discounted, finitely repeated games and exit games.

The description of the self-referential game is exactly as in Section 2.2. Although, the

key difference is the intention monitoring structure so I redefine it here. We say an intention

monitoring structure (Y, π) is stage-(t, t′) timing if for two stages t, t′ with t 6= t′, for any

code of conduct profile r ∈ R, τ1 = t and τ2 = t′. This definition says that players 1 and 2

receive signals at stages t and t′, respectively.

To begin with, I analyze finitely repeated games with discounting, continue with splitting

games and conclude with preemption games. In particular, the interest is to compare all

previous results with synchronous signals relative to self-referential games with asynchronous

monitoring information structure.
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6.1 Finitely Repeated Games

In what follows, I will show that all feasible and strictly individually rational payoffs can be

approximated in the self-referential game with asynchronicity as for δ big enough. In fact, the

key qualitative property of self-referential equilibrium in repeated games with synchronicity,

that players can deter deviations regardless of the period in which they observe informative

signals, extends to the case of asynchronicity provided that players are sufficiently patient.

Proposition 3. Suppose that the self-referential game η-λ permits detection and endows

players with τ1, τ2 ≤ T . For any v ∈ V ∗ and ΓT , there exist δ < 1, ηT > 0 and λT such that

if δ ≥ δ, η ≥ ηT and λ ≤ λT then there is a self-referential equilibrium rT where each player

i gets an expected payoffs approximately equal to vi.

The proof is in Appendix A.4.21

Thus, the self-referential folk theorem is independent of asynchronicity. The reason why

asynchronous timing does not affect previous results is that finitely repeated games with

sufficiently patient players are sensitive to the endpoint. In other words, since players are

patient enough they find it optimal to deviate in the last round of the game, implying that for

any asynchronous timing each player has received his private signal by that time, and then

agents simultaneously use this information. The proof follows closely the same structure as

the proof of Theorem 3.

Recall that Theorem 3 points out that players observing signals in period T − k could

punish in such period whenever there is evidence of potential deviations. With asynchronous

signals this logic applies as well. Although, for this profile to be a self-referential equilibrium

the punishment stage must be T −k = max(t, t′). Otherwise, the agent receiving signals late

could make an inference about his opponent’s realisation.

6.2 Splitting Games

In this class of games, the fact that each player can terminate the game in any period,

together with the properties of reward functions, were identified as the reason why initial-

period signals are required to construct self-referential equilibria that exhibit late exit profiles.

Indeed, every player finds it optimal to exit the game in period zero irrespective of the

code of conduct profile, meaning that each player must observe informative signals at the

outset. With asynchronicity, on the other hand, at least one player receives information

about intentions in period t ≥ 1, that in turn cannot punish the other player intending to

exit in the first period. It is clear then that there is no timing so that the self-referential

equilibrium outcomes set is not unique.

21The rest of the proofs related to this section are also in Appendix A.4.
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Proposition 4. Consider any splitting game Γ. Assume that the self-referential game η-λ

permits detection where any τ1, τ2 ≤ T . Then for all η, λ there exists a unique self-referential

equilibrium outcome where for any r each player i conforms to rii(h
0, h0

i ) = e0
i for all h0

i ∈ Hi

and some e0
i ∈ E0

i .

This result contrasts sharply with the results found in Section 5.2, especially, Theorem 7

that entails conditions such that the construction of equilibrium in which late exit profiles

is possible. As discussed above, in splitting games every player must observe signals at

the outset τi = 0 for a self-referential equilibrium to sustain delayed exit, i.e. et ∈ E t for

all periods t ≥ 1. When there is asynchronicity, such delayed exit profiles are not feasible,

thereby leading to immediate exit. This case is of special interest, because it shows that once

we relax the assumption of synchronous intention monitoring, the consequences in terms of

welfare can be quite severe. The impact of heterogeneity in timing of signals on welfare is

characterized by predicting the worst Pareto-ranked payoff vector as the unique equilibrium

outcome.

6.3 Preemption Games

Now, I conclude the analysis of asynchronous monitoring structure by revisiting preemption

games. Similar to the case of synchronous timing, I find that there exists a unique equilibrium

outcome in which player 1 exits the game in his first active period while under less restrictive

conditions. In particular, only player 2 may receive signals sufficiently late in the course of

play. As already pointed out, on the other hand, the existence of alternation between players

to exit the game, where such decisions depend only on the targeted code of conduct profile,

may help to construct self-referential equilibrium with late exit profiles.

From this discussion, I state the next result which parallels Theorem 6 obtained for

synchronous monitoring structure.

Proposition 5. Suppose that Γ is a preemption game, and for each stage k ≥ φ(n) suppose

that the self-referential game η-λ permits detection and allows τ2 ≥ k−1 and any τ1. Then,

for any pair η, λ there is a unique self-referential equilibrium outcome such that for all r each

player i chooses rii(h
t, hti) = eti for some eti ∈ E t1, all hti /∈ H i, t = φ(1) − 1 for player 1 and

t = φ(2)− 1 for player 2.

The key observation concerns player 2’s timing of signals. If he observes signals in his

last active period (τ2 ≥ k−1), then there is a unique equilibrium outcome in which player

1 leaves the game in the first active period (φ(1) − 1). In contrast to the analogous result

in the synchronous case, this requires only that player 2 receives signals late enough in the

game. The intuition is simple. Suppose that we try to sustain a self-referential equilibrium
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exhibiting exit at any stage k ≥ φ(n). Consider first player 2 who cannot observe any

informative cues about his opponent’s behavior until his last active period. As player 1

benefits from exiting later on (by assumption P.1), he finds it optimal to leave the game

at stage k−1 so that he preempts player 2. Then, player 2 chooses to end the game before

this stage knowing that player 1 will not wait until that period, and because he prefers to

be the one terminating the game rather than player 1 by condition P.2. Consequently, this

logic applies to any stage k ≥ φ(n), therefore, both players will exit in their first active

periods. At the end, player 1 exits terminating the game in the last stage of his first active

period. As was the case when signals arrive late relative to the exit profile, η-λ detection

technology—the precision of information—is completely irrelevant.

As highlighted before, the optimal exit of players is conditioned on the aimed code of

conduct. Thus, one might be interested in knowing whether there exist information struc-

tures (Y, π) allowing agents to adhere to self-referential equilibrium codes of conduct with

delayed exit.

Proposition 6. Pick any stage k ≥ φ(2) in any preemption game Γ with ι(hk) = ι. Assume

that the self-referential game η-λ permits detection with τi ≤ k−1 and τι ≤ k−2 for i 6= ι.

Then, there are ηk > 0 and λ such that for all η ≥ ηk, λ ≤ λk in the self-referential

equilibrium rk player ι chooses rιι(h
k, hkι ) = ekι for some ekι ∈ Ekι and for each hkι /∈ H ι.

This proposition says that given some stage k (for k ≥ φ(2)) if the self-referential game

allows players to observe signals early relative to the stage k, and these signals are sufficiently

informative, then there is a self-referential equilibrium where the game ends at this particular

stage.

The lower bound φ(2) guarantees that both players are able to punish potential deviations

from any code of conduct. Recall that for any stage k < φ(2), none of the stages within

player 2’s first active period could be sustained as a self-referential equilibrium exit profile,

and that there exists a unique equilibrium outcome.

To see why asynchronous signals do not affect the equilibrium outcomes set, resulting in a

unique prediction as in the case of splitting games, consider a code of conduct profile rk with

exit at stage k ≥ φ(2). Suppose that ι ends the game with j 6= ι. By assumption P.1, player

j and player ι find it optimal to exit at stage k−1 and (k+1 − 1), respectively. The timing of

signals satisfies τj ≤ k−1 and τι ≤ k−2, by implication, such deviations are punishable. What

is more important is that because players cannot terminate the game simultaneously—there

are alternations on active periods between players—the proposed codes of conduct could be

a self-referential equilibrium, as long as signals arrive at different time but allow each player

to punish intentions of deviation with accuracy. It remains to find parameters ηk and λk

that balance incentives so that agents prefer to adhere to rk rather than to exit before stage

k.
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A further implication of Proposition 6 is that we can sustain et ∈ E t for t ≥ k in G(Γ)

for some parameters ηt and λt.

Corollary 5. Consider stage k, for any stage t ≥ k there exists a self-referential equilibrium

in which player ι chooses rιι(h
t, htι) = etι for some ekι ∈ Ekι and all hkι /∈ H ι.

7 Concluding Remarks

In this paper, I have developed a model that allows agents to learn about opponents’ inten-

tions not only at the outset, but also in the course of the game. This paper characterizes

how the time at which intentions are inferred shapes the size of the equilibrium outcome

set, which in turn crucially depends on the underlying game. Because of this dependence,

by focusing on games with perfect information the role of the signal timing is clearly iden-

tified. In particular, I provide a characterization, for certain classes of games, in terms of

the relation between the number of equilibria in the infinite horizon game and the number

of equilibria in the finite horizon version of the game.

As in the benchmark recognition technology model, I found a significant impact of pre-

game signals on equilibrium outcomes. In particular, for generic games I established a

connection between infinite horizon equilibria and self-referential equilibria of the finite trun-

cation.

A couple of principles emerge from the families of games studied here. First, sustaining

the proposed code of conduct profile as a self-referential equilibrium hinges on agents’ ability

to anticipate deviations. Of course, the timing of signals must allow players to observe these

signals before the actual deviation, only insofar as observing intentions requires this per

se. More importantly, informative signals may arrive sufficiently in advance for punishment

to be severe, providing agents with incentives to adhere promptly to the code of conduct.

Second, the noisiness of the recognition technology implies that there exist on-equilibrium

punishments that might be very costly to players. Henceforth, even when agents observe

intentions early they might delay punishments to avoid these on-equilibrium costs.

There are three extensions that will be part of future research. Throughout the analysis,

I assumed that the time of arrival is deterministic and commonly known. It would be

interesting to examine what happens when the arrival of signals is stochastic, for example, it

could follow a Bernoulli process. This assumption seems to be natural when a firm, perhaps,

is uncertain whether its opponents have received information about the stage of a developing

product.

The methods developed in this paper can be applied to study other settings, for instance,

repeated games with imperfect public monitoring. In that case, although there might be

a tension between public signals and signals from codes of conduct, these two sources of
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information would complement each other. The decision to trigger punishments may depend

on sufficient statistics based on public history and on the period in which signals arrive.

Finally, I have considered a recognition technology—η-λ permit detection, which captures

the idea of reciprocal behavior—that allows us to construct simple self-referential equilibria

that uses grim-trigger codes of conduct. With a more general information structure (Y, π),

one could allow a richer set of detection possibilities, for instance, codes of conduct that

recognize other codes of conduct as long as they provide the same outcome in the game.
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Appendix A Proofs

A.1 Proof of Theorem 1

Before proving Theorem 1, I need to state some notation that is used in the proof. The

magnitude of payoffs after stage τ could be measured by the greatest variation in payoffs

due to events after stage τ for any player i ∈ I:

ζτ := {sup |ui(σ)− ui(σ̂)| | i ∈ I, σ, σ̂ ∈ Ξ such that στ = σ̂τ} .

The constant ζτ describes how much weight we put on payoffs at the tail of the game.

Continuity at infinity implies that limτ→∞ ζ
τ = 0.22 Lastly, I define the minmax payoff of

player i ∈ I in (mixed strategies) in the τ-truncation Γτ as

ui,τ := min
σ−i,τ|Hτ∈Ξ−i

max
σi,p,τ|Hτ∈Σi

ui(σi,p,τ, σ−i,τ) for histories Hτ ⊂ H,

and I write σ−i,τ to denote the minmax profile against player i, and let σi,p,τ be the best

respond to σ−i,τ by player i. For any σ−i, denote by BRi(σ−i) = argmaxσi∈Ei ui(σi, σ−i) the

set of best responses to σ−i of player i.

To construct the truncation choose an arbitrary strategy σ in the infinite horizon game

Γ∞. In this case it is convenient to work with the strategy σ which is the constant repetition

of the no-decision action a. Then, embed the strategy στ in the truncation version Γτ into

the infinite horizon game Γ∞ by concatenating the strategy στ with the strategy σ. The

strategy στ states the plan of play in all stages up to and including stage τ, and that players

follow σ in subsequent stages t > τ. I will evaluate the limit of the τ truncation of the game

as the truncation grows, τ→∞. Since the action space is finite it is sufficient to work with

the product topology.23

Proof. Suppose that τi = 0 for all players i. Fix any subgame perfect equilibrium σ̂ ∈ Ξ

of the infinite horizon game Γ∞. Suppose we take a τ-truncation of this game, Γτ. If the

22To obtain continuity at infinity it suffices to assume that players discount and rewards are bounded
functions, i.e. there exists some constant C such that maxat |gi(at)| < C for all i ∈ I.

23A sequence {σi,n}n∈N converges to σi in the product topology if and only if σi,n(h) → σi(h) for any
h ∈ H.

31



truncated strategy profile σ̂τ turns out to be an equilibrium of Γτ, then the profile of codes

of conduct r̂τ ∈ R chosen by all players i is r̂ij(h
t, htj) = σ̂tj,τ(h

t) for all j ∈ I, ht ∈ H and

htj ∈ Hj. It follows immediately that it would form a self-referential equilibrium.

On the other hand, suppose that σ̂τ is not an equilibrium of the truncated game Γτ. Let σi,τ

be the optimal deviation of player i from σ̂τ, that is, σi,τ ∈ BRi(σ̂−i,τ). Pick the profile of

codes of conduct r̂τ ∈ R which prescribes for all i, j ∈ I:

r̂ij(h
t, htj) :=

 σ̂tj,τ(h
t) for all ht ∈ H t, htj /∈ H

t

j,

σt−i,τ otherwise.

If all players choose r̂i, player i gets an expected payoff equal to Ui(r̂) = ui(σ̂τ). If not,

suppose that player i’s choice involves some code of conduct r̃i such that r̃ii(h
t, hti) = σti,τ(h

t)

for all yti ∈ Y t
i and for any j 6= i it says r̃ij = r̂ij. Let the highest payoffs associated to r̃i for

player i be W i ≥ Ui(r̃
i, rj), and it is given by

W i = ui(σi,τ, σ̂i,τ) + ητ,i(ui(στ, σ−i,τ)− ui(σi,τ, σ̂i,τ)).

From this, adherence to r̂τ requires that Ui(r̂) ≥ W i, namely, for each player i ∈ I:

ητ,i =
ui(σi,τ, σ̂−i,τ)− ui(σ̂τ)

ui(σi,τ, σ̂−i,τ)− ui(στ, σ−i,τ)
.

We take the maximum of these probabilities of detection, thus, ητ := maxi∈I ητ,i and this

constitutes the lower threshold such that players find it optimal to adhere to code of conduct

profile r̂. Whenever η ≥ ητ the proposed code of conduct profile r̂ is a Nash equilibrium of

the self-referential game defined on the truncated game Γτ.

Finally, for this τ-truncation Γτ we may find an upper bound on the probability of detection

ητ. Recall that σ̂ is a subgame perfect equilibrium of the infinite horizon game Γ∞. Thus,

for any player i we may bound the numerator of the last expression as follows

ui(σi,τ, σ̂−i,τ)− ui(σ̂τ) ≤ ui(σi,τ, σ̂−i,τ)− ui(σ̂τ) + ui(σ̂)− ui(σi, σ̂−i)
≤ 2ζτ (1)

and working similarly on the denominator we find the bound

ui(σi,τ, σ̂−i,τ)− ui(στ, σ−i,τ) ≤ ui(σi,τ, σ̂−i,τ)− ui(στ, σ−i,τ) + ui(σ̂)− ui(σi, σ̂−i)
≤ 2ζτ + ui(σ̂τ)− ui(στ, σ−i,τ) (2)
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Hence, combining expressions (1) and (2) we get

ητ ≤
2ζτ

2ζτ + ui(σ̂τ)− ui(στ, σ−i,τ)

By continuity at infinity for all ε > 0 we can find a sufficiently long τ-truncation τ∗ ∈ N
such that for all τ > τ∗, |ui(σ∞)− ui(σ̂∞)| < ε/2 where στ = σ̂τ, then ητ < ε.

A.2 Proofs for Section 4

Proof of Theorem 2. First, note that timing must be τi = 0 for any i. Then, fix any feasible

and strictly individually rational payoff vector v ∈ V ∗. Suppose that v = g(a∗) for some

profile of actions a∗ ∈ A, and let M := maxa∈A,i∈I gi(a) and m := mina∈A,i∈I gi(a) be the

maximum and minimum possible payoffs for any player i ∈ I.24 For if the profile of actions

a∗ ∈ A is a Nash equilibrium of the stage game, then the code of conduct vector r̂ would

require that all players i ∈ I select r̂i ∈ R0 such that for all i, j ∈ I, r̂ij(h
0, h0

j) = a∗j for all

private histories h0
j ∈ Hj. Notice that the self-referential strategy calls for the static Nash

equilibrium strategy.

Contrary, suppose that the action profile a∗ ∈ A is not a Nash equilibrium of the stage game.

Consider the profile of codes of conduct r̂ ∈ R: For all i, j ∈ I,

r̂ij(h
0, h0

j) :=

 a∗j if h0
j /∈ Hj,

α−i h0
j ∈ Hj.

It remains to show that this profile of codes of conduct r̂ forms a self-referential equilibrium

for a sufficiently high probability of detection ηT . For some profile r ∈ R, let W i(r) be the

lowest expected payoffs for any player i given profile r ∈ R. Suppose that all players adhere

to the profile of codes of conduct r̂, then W i(r̂) is given by the following expression

W i(r̂) = gi(a
∗)+(1−(1−λ)2)(gi(α−j, a

∗
j)−gi(a∗)−(M−m))+πj(yj|r̂)(gi(a∗i , α−i)−gi(a∗)).

Consider instead that player i chooses an alternative code of conduct r̃i ∈ R0, r̃
i 6= r̂i

that says for any private history hti ∈ Hi, player i chooses some action ai ∈ Ai where

ai ∈ argmaxãi∈Ai
gi(ãi, a

∗
j) ≥ gi(a

∗), and for the rest of the players j 6= i it states r̃ij = r̂ij.

Given that j ∈ I \ {i} adhere to the code of conduct r̂, then the highest expected payoff for

24The same proof works for the case of mixed strategies, α.
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player i, denoted by W i(r̃
i) is

W i(r̃
i) = gi(ai, a

∗
j) + (1− (1− λ)2)(gi(ai, a

∗
j)− gi(α−j, a∗j) + (M −m))

+ (πj(yj|r̂) + η)(gi(a
∗
i , α−i)− gi(a∗) + gi(α−j, a

∗
j)− gi(ai, a∗j)).

In order to have any player i adhering to the profile of codes of conduct r̂, it requires that

W i(r̂) ≥ W i(r̃
i), namely, W i(r̂)−W i(r̃

i) ≥ ε for some ε > 0. Then, players find it optimal

to follow the profile of codes of conduct r̂ if the probability of detecting deviations from code

of conduct profile ηi,T satisfies the following condition

ηi,0κ1 ≥ gi(ai, a
∗
j)− gi(a∗) + 2λκ2,

where κ1 = gi(a
∗
i , α−i) − gi(a

∗) + gi(α−j, a
∗
j) − gi(ai, a

∗
j) and κ2 = gi(ai, a

∗
j) + gi(a

∗) −
2gi(α−j, a

∗
j) + 2(M −m). Take the highest probability of detection among players so that

the last condition holds for all players i. Let η0 := maxi∈I ηi,0. Given this probability, we

pin down λ0; for any ε > 0

λ0 :=
1 + gi(a

∗)− gi(ai, a∗j)
2κ2

− ε.

It follows that if the probability of detection is high enough, that is η ≥ η0, and on-equilibrium

punishments are not too costly λ ≤ λ0, then the profile of codes of conduct r̂ is a self-

referential equilibrium.

I will make use of the following piece of notation to prove the next result. Let σh
t

i := {σi |
σki = aki with ati ∈ hk, ∀k ≤ t} be the strategy σi modified in the information sets of player

i preceding ht so that it prescribes the pure actions that induce the history ht, with profile

σh
t

= (σh
t

i , σ
ht

−i). Observe that multistage games with observed actions have unique set of

actions from σh
t

at each of the previous information set. For any history ht ∈ H, let σi,p|ht

denote the continuation strategy prescribed by σi,p after history ht and let σi,p|H t denote

the restriction of σi,p to the subset of histories H t ⊂ H. For strategy profile σp I write σp|ht

and σp|H t, respectively. Likewise for behavioral strategies. Let ui(σp|ht) be the continuation

payoff to player i induced by the strategy profile σp ∈ Σ conditional on ht being reached:

ui(σp|ht) =
∞∑
t′=t

δt
′

i gi(a
t′(σh

t

p ))

Because actions are observed, the strategy profile σh
t

determines a unique history of length
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l(ht) in which we reach ht. Thus payoffs can be written as, for all players i ∈ I

ui(σ
ht) =

t−1∑
t′=0

δt
′

i gi(a
t′(σh

t

)) + δtiui(σ
ht |ht)

Proof of Theorem 3. From Theorem 1, signals are more useful the earlier they arrive. It

is then sufficient to consider τi = T for all i. Start by picking any feasible and strictly

individually rational payoff vector v ∈ V ∗. Again, assume that v = g(a∗) for some profile of

actions a∗ ∈ A.25 First, if the profile of actions a∗ ∈ A is a Nash equilibrium of the stage

game then the profile of codes of conduct r̂ would require that all players i ∈ I select r̂i ∈ R0

such that for all i, j ∈ I, r̂ij(h
t, htj) = a∗j for all histories ht ∈ H, htj ∈ H t

j . It follows r̂ would

be a self-referential equilibrium.

Otherwise, we begin with the construction of the trigger strategy denoted by σ̂i,T . This

strategy is defined as, for all players, i ∈ I

σ̂i,T (ht) :=

{
a∗i if t = 0 or hs = a∗s for 0 ≤ s ≤ t− 1,

α−j otherwise.

Since the profile of strategies σ̂T is not a subgame-perfect equilibrium of the finitely repeated

game ΓT by backward induction argument, there exists at least one profitable one-shot

deviation. It is enough to study the case in which there are two of the kind. We define two

profitable one-shot deviations denoted by σi,T and σ′i,T for each player i ∈ I, any two actions

ai, a
′
i ∈ Ai and public history hT ∈ H:

σi,T (hs) :=

{
σ̂i,T (hs) if hs 6= hT ,

ai if hs = hT ,
and σ′i,T (hs) :=

{
σ̂i,T (hs) if hs 6= hT−1,

a′i if hs = hT−1.

That is, strategies σi,T and σ′i,T have different timing of deviation and potentially different

deviation actions. We pick the threshold discount factor δ ∈ (0, 1) so that for all players

i ∈ I
ui(σi,T , σ̂−i,T ) ≥ ui(σ

′
i,T , σ̂−i,T )

It is sufficient to have δ satisfying

δ =
M −mini∈I vi
mini∈I vi −m

Given δ, each player i ∈ I may only find a profitable one-shot deviation at the final round

of the finitely repeated game ΓT . We may restrict attention to all discount factors δ such

25The same argument applies to mixed strategies.
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that δ ∈ (δ, 1). We write σj,ti for the strategy of player i that is the minmax strategy against

player j ∈ I \ {i} at period t ≥ 0 (constant repetition of the minmax strategy α−j) with

profile σt = (σ−i,ti , σi,t−i). We now proceed to construct the profile of codes of conduct r̂ ∈ R
such that for all i, j ∈ I:

r̂ij(h
t, htj) :=

 σ̂tj,T (ht) if htj /∈ Hj, for all t ≥ 0,

σi,tj (ht) if htj ∈ Hj, for t = T.

We claim that this profile of codes of conduct r̂ forms a self-referential equilibrium for a

sufficiently high probability of detection ηT . Given the choice of δ the optimal deviation

for any player i ∈ I from this profile r̂ is the strategy σi,T we defined above. Observe that

the strategy σi,T only differs from σ̂i after period T − 1. Let ĥT = (a∗0, . . . , a∗T−1) be the

T -length history induced by strategy profile (σi,T , σ̂−i,T ) which in turn is also induced by the

strategy profile σ̂T . For history ĥT if all players adhere to the profile of codes of conduct r̂,

the least expected payoff for any player i ∈ I by adhering is

W i(r̂) =
1− δ

1− δT+1

[
T−1∑
t=0

δtgi(a
t(σ̂ĥ

T

))+δT
(
gi(a

∗)+(1−(1−λ)2)(gi(α−j, a
∗
j)−gi(a∗)−(M−m))

+ πj(yj|r)(gi(a∗i , α−i)− gi(a∗))
)]

Suppose instead that player i chooses the code of conduct r̃i ∈ R0 where he plays r̃ii(h
t, hti) =

σti,T (ht) for any private history hti ∈ H t
i , and r̂ij = r̃ij for all j ∈ I \{i}. Given that j ∈ I \{i}

adhere to the code of conduct r̂T , then the highest expected payoff for player i is

W i(r̃
i, r̂j) =

1− δ
1− δT+1

[
T−1∑
t=0

δtgi(a
t(σĥ

T

i , σ̂ĥ
T

−i )) + δT
(
gi(ai, a

∗
j) + (1− (1− λ)2)(gi(ai, a

∗
j)

− gi(α−j, a∗j) + (M −m)) + (πj(yj|r) + η)(gi(a
∗
i , α−i)− gi(a∗)

+ gi(α−j, a
∗
j)− gi(ai, a∗j))

)]

We now find ηi,T as the minimum probability of detection that the self-referential game must

satisfy to deter player i choosing the code of conduct r̃i, i.e. W i(r̂) ≥ W i(r̃
i, r̂j). Thus,

η̂i,Tκ1 ≥ gi(ai, a
∗
j)− gi(a∗) + 2λκ2

where κ1 = gi(a
∗
i , α−i) − gi(a

∗) + gi(α−j, a
∗
j) − gi(ai, a

∗
j) and κ2 = gi(ai, a

∗
j) + gi(a

∗) −
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2gi(α−j, a
∗
j) + 2(M −m). Set ηT := maxi∈I ηi,T , and to pin down λT , let this bound satisfies

λT :=
1+gi(a

∗)−gi(ai,a∗j )

2κ2
− ε for some ε > 0. By construction, the profile of codes of conduct r̂T

is a self-referential equilibrium. Moreover, the expected payoffs for any player i ∈ I under r̂

is at least

W i(r̂) = vi−
(1− δ)δT

1− δT+1

(
(1−(1−λ)2)(gi(α−j, a

∗
j)−gi(a∗)−(M−m))+η(gi(a

∗
i , α−i)−gi(a∗))

)

Proof of Proposition 1. Fix any v ∈ V ∗, again assume that vi = gi(a
∗) for all i ∈ I for some

a∗ ∈ A. If a∗ ∈ A is an equilibrium the argument follows from using the profile of codes

of conduct that ignores signals, that is, for all players i, j ∈ I the code of conduct says

r̆ij(h
t, htj) = a∗j for any history ht ∈ H, htj ∈ Hj. Otherwise, construct strategies σT and σ̂T

as in the proof Theorem 3 from which we pick δ and consider δ ≥ δ. The proposed profile

of codes of conduct r̆ ∈ R is such that for all players i, j ∈ I and all public histories ht ∈ H

r̆ij(h
t, htj) :=

 σ̂tj,T (ht) if htj /∈ H
t

j, for all t ≥ 0,

σi,tj (ht) if htj ∈ H
t

j, for all t ≥ T − k.

We obtain the probability of detection η̆T by following the proof of Theorem 3. (I omit the

calculation of the probability of detection ηT in the analogous result to Theorem 3 when

λ = 0.) With these probabilities in hand, we show that

η̆T := max
i∈I

η̆i,T =
ui(σ

ĥT−k

i , σ̂ĥ
T−k

−i |ĥT−k)− ui(σ̂ĥ
T−k |ĥT−k)

ui(σĥ
T−k

i , σ̂ĥ
T−k

−i |ĥT−k)− ui(σĥ
T−k

i , σi,ĥ
T−k

−i |ĥT−k)

≤
ui(σ

ĥT−k

i , σ̂ĥ
T−k

−i |ĥT−k)− ui(σ̂ĥ
T−k |ĥT−k))

ui(σĥ
T

i , σ̂ĥ
T

−i |ĥT )− ui(σĥ
T

i , σi,ĥ
T

−i |ĥT )

=
ui(σ

ĥT

i , σ̂ĥ
T

−i |ĥT )− ui(σ̂ĥ
T |ĥT ))

ui(σĥ
T

i , σ̂ĥ
T

−i |ĥT )− ui(σĥ
T

i , σi,ĥ
T

−i |ĥT )
= η̂T,i

≤ max
i∈I

η̂T,i := η̂T

The first inequality follows from the fact that the profile of strategies (σĥ
T−k

i , σ̂ĥ
T−k

−i ) differs

from the profile of strategies (σĥ
T

i , σ̂ĥ
T

−i ) after period T − 1 for a given player i. Moreover,

the punishment profile (σĥ
T−k

i , σi,ĥ
T−k

−i ) triggered in period T − k would be harsher than

punishment profile triggered in the last period (σĥ
T

i , σi,ĥ
T

−i ). The equality after this inequality

follows from the construction in which players find it optimal to deviate in the last period

of the repeated game. Finally, for all players i ∈ I the least expected payoff by adhering to
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r̆ is given by Ui(r̆) = vi.

A.3 Proofs for Section 5

Proof of Theorem 4. First note that for splitting games the best feasible stage-t timing inten-

tion monitoring structure of the self-referential game G(Γ) is τi = 1 for all i, because players

have strong incentives to exit early, and by Proposition 1, earlier signals allows agents to

construct broader codes of conduct as self-referential equilibria. We select the profile of codes

of conduct r̂ ∈ R so that for all players i, j ∈ I

r̂ij(h
t, htj) :=

 stj(h
t, htj) if htj /∈ H

t

j, for all t ≥ 0,

stj(h
t, htj) if htj ∈ H

t

j, for all t ≥ 1.

Fix some period 1 ≤ t̂ ≤ T . For all players i, the strategy si ∈ Si is given by sti(h
t, hti) = f ti

for all t < t̂, ht ∈ H and some forward action f ti ∈ F ti ; and for all t ≥ t̂ sti(h
t, hti) = eti for

some exit action eti ∈ E ti and ht ∈ H. The strategy si ∈ Si is given by s0
i (h

0) = f 0
i for

f 0
i ∈ F0

i , and sti(h
t, hti) = eti for all t ≥ 1, eti ∈ E ti , ht ∈ H. The lowest expected payoff for any

player i ∈ I from adherence to this code of conduct profile gives

W i(r̂) = wi − δt̂ici − (1− (1− λ)2)δt̂ici − πj(yj|r̂)(wi − δt̂ici).

Alternatively, let r̃i be the optimal code of conduct against r̂. By assumptions S.1 and S.2,

this code of conduct calls for immediate deviation in period t̂ − 1. Formally, r̃ii(h
t, hti) = s̃ti

for all histories hti ∈ H t
i and some strategy s̃i ∈ Si with s̃i 6= si. The strategy s̃i unravels as

follows, s̃ti(h
t, hti) = f ti for all t < t̂ − 1, ht ∈ H, hti ∈ H t

i and f ti ∈ F ti ; and s̃ti(h
t, hti) = eti for

any ht ∈ H, hti ∈ H t
i and eti ∈ E ti for all t ≥ t̂− 1. For all players j 6= i, it says r̃ij = r̂ij.

This gives an expected payoff of Ui(r̃
i, r̂j) = wi which is higher than W i(r̂) the lowest

expected payoff under the profile r̂. In fact, if λ = 0, the expected payoff for player i is

Ui(r̂) = wi − δt̂ici. This is for any arbitrary period t̂. Observe that all alternative codes

of conduct will require deviation in the first period of the game. In particular, we are left

only with codes of conduct which ignore signals arriving at any period t ≥ 1. For instance,

pick the profile of codes of conduct r̃ that is characterized by the following behavior: for

all i, j ∈ I, such that r̃ij(h
t, htj) = s̃tj(h

t) for all htj ∈ H t
j , t ≥ 0 and for some s̃i ∈ Si. The

strategy s̃i states that s̃ti(h
t, hti) = eti for all t ≥ 0 with eti ∈ E ti . In equilibrium, each player

gets Ui(r̃) = wi − ci. Any deviation from this profile of codes of conduct gives expected

payoffs of 0. This profile constitutes a self-referential equilibrium with the unique outcome

where all players i exit in period t = 0.

Proof of Theorem 5. From Theorem 4, for any r such that rii()̇ = eti in any period t > 0, each
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player i finds it optimal to choose an alternative code of conduct, playing some exit action

e0
i ∈ E0

i , guaranteeing himself wi irrespective of what his opponents do. This is because

(Y, π) satisfies τi = t for some t > 0 and for all i. However, here (Y, π) provides τi = 0 for

any i. Pick some period k ∈ N with 0 ≤ k ≤ T . Let us focus on the profile of codes of

conduct r̂ ∈ R so that for all players i, j ∈ I

r̂ij(h
t, htj) :=

 stj(h
t, htj) if htj /∈ H

t

j,

stj(h
t, htj) if htj ∈ H

t

j.

In strategy si ∈ Si, player i chooses sti(h
t, hti) = f ti for some f ti ∈ F ti , any ht ∈ H and all

periods t ≤ k − 1; and sti(h
t, hti) = eti for some eti ∈ E ti , history ht ∈ H and all periods t ≥ k.

In addition, the strategy si ∈ Si is described as sti(h
t, hti) = eti for some eti ∈ E ti , ht ∈ H and

all t ≥ 0. The lowest expected payoffs associated to this profile are

W i(r̂) = wi − δki ci + (1− (1− λ)2)δki ci − πj(yj|r̂)(wi − δki ci).

One alternative optimal code of conduct could be r̃i such that r̃ii(h
t, hti) = s̃ti(h

t, hti) for all

hti ∈ H t
i , some strategy s̃i ∈ Si, and r̃ij = r̂ij for all j 6= i. Here, the strategy s̃i ∈ Si requires

s̃ti(h
t, hti) = f ti for some f ti ∈ F ti , ht ∈ H and all t < k − 1; and s̃ti(h

t, hti) = eti for some

eti ∈ E ti , ht ∈ H and all t ≥ k − 1. Thus, it gives an expected payoff of at most W i for player

i.

W i(r̃
i) = wi − (πj(yj|r̂) + η)(wi − δki ci).

Thus, for ε > 0 we must have W i(r̂) ≥ W i(r̃
i) + ε. Working in the same line as in the proof

of Theorem 4, we find the required probability of detection ηk := maxi∈I ηi,k to sustain this

profile of codes of conduct r̂ where each ηi,k is given by ηi,k = δki ci(1−λ)2/(wi− δki ci). Then,

take λk such that it satisfies (1− λk)2δci ≤ (wi − δci)(1− ε) for some ε > 0.

Proof of Theorem 6. It is sufficient to take stage k = φ(n). Note that player 2 makes a

choice at this stage, i.e. ι(hk) = 2. Suppose that players adhere to the code-of-profile profile

r ∈ R, where for players i prescribes

rij(h
t, htj) :=

 stj(h
t, htj) if htj /∈ H

t

j,

stj(h
t, htj) otherwise.

where for player 1, the strategy s1 ∈ S1 requires st1(ht, ht1) = f t1 for all t ≥ 0, and the strategy

s1 ∈ S1 is given by st1(ht, ht1) = f t1 for all t < k−1 and st1(ht, ht1) = et1 for all t ≥ k−1. On the

other hand, for player 2 his strategy s2 = s2 with s2, s2 ∈ S2 says that st2(ht, ht2) = f t2 for all

0 ≤ t < T , and sT2 (hT , hT2 ) = eT2 . It is clear that player 2 finds it optimal to adhere to this
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code of conduct, it is the highest possible payoff. However, player 2 will detect deviations

from the equilibrium code of conduct while he is inactive at stage k−1—that is, ι(hk−1) = 2.

Player 1 could deviate from this code at stage k−1 and get g1(e
k−1

1 , a). By adhering to the

code of conduct, player 1 obtains g1(a, eT2 ). By assumption S.2, player 1 finds it optimal

not to adhere. The same argument goes through any stage k < φ(n). If that it is the case,

consider a profile r where for some stage t player ι(ht) chooses an exit action etι(ht) and fkι(ht)
for any k 6= t, moreover, player j 6= ι(ht) plays fkj for all k. But again player j would be

better off by exiting at stage t−1, i.e. gj(e
t−1

j , a) > gj(a, e
t
ι(ht)). This implies players exit

whenever they are active and that the code of conduct profile r ∈ R such that all players i

choose exit actions, i.e. rii(h
t, hti) = eti for all eti ∈ E ti , hti /∈ H

t

i, h
t ∈ H where t = φ(1)− 1 for

player 1, and t = φ(1) for player 2 is the unique self-referential equilibrium.

Proof of Theorem 7. Pick any stage k ∈ N such that k ≥ φ(2) and in which the game ends

will end in equilibrium. It suffices to check the case τi = k−2 for each i. Suppose that the

code of conduct profile r̂ ∈ R where all players i choose according to

rij(h
t, htj) :=

 stj(h
t, htj) if htj /∈ H

t

j,

stj(h
t, htj) otherwise.

Let ι = ι(hk) be the active player that ends the game at stage k. Player ι’s strategies satisfy

for all stages t < k, stι(h
t, htι) = f tι for all public histories ht ∈ H, private histories htι /∈ H ι,

and forward actions f tι ∈ F tι ; and for all stages such that t ≥ k it requires stι(h
t, htι) = etι for

all ht ∈ H, htι /∈ H ι and exit actions etι ∈ E tι . For the punishment strategy stι, for all stages

t < k−2 − 1 it would be stι(h
t, htι) = f tι for all ht ∈ H, htι ∈ H ι and f tι ∈ F tι ; and for all

t ≥ k−2 − 1 it says stι(h
t, htι) = etι for all ht ∈ H, htι ∈ H ι and etι ∈ E tι . On the other hand,

for inactive player i 6= ι(hk) at stage k, her strategy is as follows. For all stages t ≥ 0, the

strategy si requires sti(h
t, hti) = f ti for all ht ∈ H, hti /∈ H i and f ti ∈ F ti . The punishment

strategy sti says that for all stages t < k−1 − 1 we have that sti(h
t, hti) = f ti for all ht ∈ H,

hti ∈ H i and f ti ∈ F ti ; and for all t ≥ k−1 − 1 it must be the case that sti(h
t, htj) = etj for all

ht ∈ H, hti ∈ H
t

i and eji ∈ E ti .
Next, we find a sufficiently high probability of detection. To do so, the optimal alternative

code of conduct for player ι is the following. For player i, r̃ιi(h
t, hti) = r̂ιi and r̃ιι(h

t, htι) = sι

where sι ∈ Sι is as follows, for all ht ∈ H and htι ∈ Hι, for any t ≤ k, s̃ιι(h
t, htι) = f tι for

f tι ∈ F tι ; and for all t ≥ k+1 − 1, s̃ιι(h
t, htι) = etι for etι ∈ E tι . The lowest expected payoffs by

adhering to r̂ for player ι is

W ι(r̂) = gι(e
k
ι , a) + (1− (1− λ)2)(gι(e

k−1
ι , a)− gι(ekι , a)) + πi(yi|r̂)(gι(a, e

k−1

i )− gι(ekι , a))
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If r̃ι is chosen instead,

W ι(r̃
ι) = gι(e

k+1−1
ι , a)− (πi(yi|r̂) + η)(gι(e

k+1−1
ι , a)− gι(a, ek−1

i ))

For ι, it means that ηι,k satisfies W ι(r̂)−W ι(r̃
ι) ≥ 0

gι(e
k
ι , a) + (1− (1− λ)2)(gι(e

k−1
ι , a)− gι(ekι , a)) + πi(yi|r̂)(gι(a, e

k−1

i )− gι(ekι , a))

− gι(ek+1−1
ι , a) + (πi(yi|r̂) + ηι,k)(gι(e

k+1−1
ι , a)− gι(a, ek−1

i )) ≥ 0

Then, λι,k, for any ε > 0 is given by

gι(e
k+1−1
ι , a)−gι(ekι , a)−(1−(1−λ)2)(gι(e

k−1
ι , a)−gι(ekι , a))−πi(yi|r̂)(gι(a, e

k−1

i )−gι(ek+1−1
ι , a))

≤ ((1− ε) + πi(yi|r̂))(gι(ek+1−1
ι , a)− gι(a, ek−1

i ))

The optimal code of conduct for player i, in this case, is r̃ii(h
t, hti) = s̃ti with for all t < k−1,

s̃ti(h
t, hti) = f ti , for any ht ∈ H, hti ∈ H t

i and f ti ∈ F ti ; and for all t ≥ k−1, s̃ti(h
t, hti) = eti for

ht ∈ H, hti ∈ H t
i and eti ∈ E ti . For player i, W i(r̂)−W i(r̃

i) ≥ 0

ηi,k(gi(e
k
i , a)− gi(ek−1

i , a)) = gi(a, e
k−2
ι )− gi(eki , a)− (1− (1− λ)2)(gi(e

k−1

i , a)− gi(eki , a))

Thus, λi,k must satisfy for ε > 0

gi(a, e
k−2
ι )− gi(eki , a)− (1− (1− λ)2)(gi(e

k−1

i , a)− gi(eki , a)) ≤ (1− ε)(gi(eki , a)− gi(ek−1

i , a))

Taking both ηk := maxi ηi,k and λk := maxi λi,k, the profile r̂ forms a self-referential equilib-

rium.

A.4 Proofs for Section 6

Proof of Proposition 3. Fix any τ1, τ2 ≤ T where by asynchronicity τ1 6= τ2. Let v ∈ V ∗.

Assume vi = gi(a
∗) for a∗ ∈ A. If a∗ ∈ A is a Nash equilibrium of Γ, then the code of conduct

for all i, j, the code of conduct r̂ij(h
t, htj) = a∗j for all ht ∈ H, htj ∈ Hj forms a self-referential

equilibrium for any η, λ. Otherwise, focus on δ > δ such that players only deviate in T . Then

we can mimic the the proof approach used for Theorem 3, it follows r is a self-referential

equilibrium here as well.

Proof of Proposition 4. Suppose that τ1, τ2 ≤ T , τ1 6= τ2 and say τ1 < τ2 provided by (Y, π).26

Pick some k ∈ N, 0 < k ≤ T such that k ≥ τ1, τ2. Observe that if k ≤ τ1, since the game

26The argument is invariant to permutation.

41



ends in period k, player 2 receives her signal too late to materialise any punishment. Let ri

be the code of conduct ∀i, j

rij(h
t, htj) :=

 stj(h
t, htj) if htj /∈ H

t

j, for all t ≥ 0,

stj(h
t, htj) if htj ∈ H

t

j, for all t ≥ 0.

By triggering punishments in period τ2 none of the players can infer opponent’s yi. Let

si ∈ Si be for all periods t ≤ k, si(h
t, hti) = f ti for all ht ∈ H, hti /∈ H i and f ti ∈ F ti , and

for all t ≥ k we have si(h
t, hti) = eti for any ht ∈ H, hti /∈ H i and eti ∈ E ti . For si ∈ Si,

for all t < τ2, si(h
t, hti) = f ti for ht ∈ H, hti ∈ H i and f ti ∈ F ti , and for all t ≥ τ2 it says

si(h
t, hti) = eti for ht ∈ H, hti ∈ H i and eti ∈ E ti . Then, the lower bound in expected payoffs

is given by

W i(r) = wi − δki ci − (1− (1− λ)2)δki ci − πj(yj|r)(wi − δki ci).

The punishment under this timing must occur in period τ2 so that player 2 does not infer

player 1 receive a signal in Y1 \ Y 1 if he continues playing. For player 1, it is clear that the

alternative code of conduct r̃1 stating that r̃1
1 = s1 where s1(ht, ht1) = et1 for all ht ∈ H,

ht1 ∈ H1, t ≥ τ1 and et1 ∈ E t1, and for his opponent r̃1
2 = r1

2 gives higher payoffs as it delivers

a payoff of w1. Moreover, player 2 finds it optimal to choose the alternative code of conduct

r̂2 where r̂2
2 = s2 where s2(ht, ht2) = et2 for all ht ∈ H, ht2 ∈ H2, t ≥ τ1 − 1 and et2 ∈ E t2, and

for t < τ1 − 1 simply s2(ht, ht2) = f t2, for all ht ∈ H, ht2 ∈ H2 and f t2 ∈ F t2. Finally for player

1 it requires r̂2
1 = r2

1. This gives a payoff of w2. For both players is optimal to not adhere

to ri. Moreover, the same logic applies to any timing even for the case τ1 = 0 and τ2 = 1.

Suppose that we aim to have an exit profile after period 1 (or even in period 1). Player 1

can always exit in period t = 0 taking his surplus w1 without paying the cost because player

2 receives her signal about player 1’s intentions to exit when this actually already happened

while the game ended so no punishment is possible. By choosing the code of conduct ri such

that rij = sj with sj(h
,htj) = etj for all t, ht ∈ H, htj ∈ H t

j and any etj ∈ E tj . It follows that the

only equilibrium outcome in the self-referential game exhibits all players exiting in period

t = 0.

Proof of Proposition 5. Suppose without loss of generality that k = φ(n). Recall that the

timing is such that τ2 = k−1. Pick τ1, say, τ1 = t′ with 0 ≤ t′ ≤ k−2. Then we aim to

construct a code of conduct featuring exit at stage k. To do this, consider

rij(h
t, htj) :=

 stj(h
t, htj) if htj /∈ H

t

j, for all t,

stj(h
t, htj) if htj ∈ H

t

j, for all t.

The code of conduct states for player 2, thus, r2
2 = s2 for s2 ∈ S2 where for all t ≥ k,
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s2(ht, ht2) = f t2 for all ht ∈ H, ht2 ∈ H2, and f t2 ∈ F t2, while for t ≥ k it requires s2(ht, ht2) = et2
for all ht ∈ H, ht2 ∈ H2, and et2 ∈ E t2. In addition, s2 = s2. On the other hand, for player

1 it says for all t ≥ 0, s1(ht, ht1) = f t1 for all ht ∈ H, ht1 /∈ H1, and f t1 ∈ F t1, whereas for

any t ≤ k−1, s1(ht, ht1) = f t1, for all ht ∈ H, ht1 ∈ H1, and f t1 ∈ F t1; and for t ≥ k−1,

s1(ht, ht1) = et1, for all ht ∈ H, ht1 ∈ H1, and et1 ∈ E t1.

Again, player 2 has no incentives to deviate by condition P.1 and P.2 on reward mappings.

It remains to check player 1. Consider the optimal deviation to this code of conduct r,

denoted by r̃1 such that r̃1
2 = r1

2. For player 1, r̃1
1 = s̃1 so that for all t ≤ φ(n) − 1, this

strategy is s̃1(ht, ht1) = f t1, for all ht ∈ H, ht1 ∈ H1, and f t1 ∈ F t1. For all t ≥ φ(n) − 1,

s̃1(ht, ht1) = et1, for all ht ∈ H, ht1 ∈ H1, and et1 ∈ E t1. This gives a lower bound of at least

g1(e
φ(n)−1
1 , a) > g1(a, ek2) by condition (ii). Trying to sustain exit actions before will imply

that player 2 is not able to observe signals sufficiently in advance. This argument can be

applied to any other exit profile. Henceforth, the unique equilibrium outcome is player 1

leaving the game at stage φ(1)− 1, and player 2 exiting at φ(n).

Proof of Proposition 6. First, the requirement k ≥ φ(2) ensures that both players have a

incentive to continue beyond their first active period, determined by condition P.2 on reward

mappings. Pick a stage k ∈ N such that φ(2) ≤ k ≤ T . We aim to construct a code

of conduct where player ι(hk) exits the game in stage k as he is active. For notational

convenience, write ι(hk) = ι. Recall that τι ≤ k−2 and τi ≤ k−1. The proposed code of

conduct is ri requires for all i, j

rij(h
t, htj) :=

 stj(h
t, htj) if htj /∈ H

t

j,

stj(h
t, htj) otherwise.

Therefore, the strategy for player ι is for all t < k, stι(h
t, htι) = f tι for all ht ∈ H, htι /∈ H ι,

and f tι ∈ F tι ; and for all t ≥ k, stι(h
t, htι) = etι for all ht ∈ H, htι /∈ H ι, and etι ∈ E tι . Further,

the punishment strategy is such that for all t < k−2, stι(h
t, htι) = f tι for all ht ∈ H, htι ∈ H ι,

and f tι ∈ F tι , moreover, for all t ≥ k−2, stι(h
t, htι) = etι for all ht ∈ H, htι ∈ H ι, and etι ∈ E tι .

It remains to state the strategies for player i with i 6= ι. For player i, for each t < k,

sti(h
t, hti) = f ti for all ht ∈ H, hti /∈ H i, and f ti ∈ F ti ; and for all t ≥ k, sti(h

t, hti) = eti for all

ht ∈ H, hti /∈ H i, and eti ∈ E ti . Similar to player ι but with different timing the punishment

strategy is characterized by: for all t < k−1, sti(h
t, hti) = f ti for all ht ∈ H, hti ∈ H i, and

f ti ∈ F ti , moreover, for all t ≥ k−1, sti(h
t, hti) = eti for all ht ∈ H, hti ∈ H i, and eti ∈ E ti .

By parameterizing ηk and λk as in Theorem 7, the proposed code of conduct profile forms a

self-referential equilibrium.
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