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Abstract

In a persuasion problem, an informed agent uses restricted evi-
dence disclosure to communicate with the principal who chooses an
outcome. In this paper, we focus on the e�ect of introducing cheap
talk and we show how it can be bene�cial for the principal. With-
out cheap talk, Sher [2011] shows that assuming the principal's utility
function is a concave transformation of the agent's utility function, nei-
ther randomization nor commitment over the outcome are necessary.
We show that with cheap talk, randomization remains unnecessary if
the principal's action space is continuous, but is generally needed if
it is discrete. In that case, there exists an optimal solution such that
every randomization involves only two actions. However, commitment
is necessary in both cases if the restriction on evidence disclosure de-
creases the principal's maximal expected payo�.

Keywords: Cheap talk; Certi�able information; Evidence disclosure;
Determinism; Commitment.

1 Introduction

In a persuasion problem, an agent wishes to in�uence a principal who has
to implement an outcome. The agent privately knows the state of the world,
also called his type, and has hard evidence about it. Any certi�ed message
that proves a non trivial statement is considered hard evidence. Formally,
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a piece of evidence is a message proving that the agent belongs to a certain
subset of types, as opposed to a cheap talk message which is by de�nition
available to all types. The principal ignores the state of the world which is
relevant to her decision, but she can interact with the agent before imple-
menting an action. We assume that in the course of a complete interaction
only one piece of evidence can be presented. We can interpret this assumption
as a time constraint for the principal who can only check a limited amount
of evidence before taking an action.

To illustrate this setting, we consider the example of a hiring process.
The agent is the applicant who knows his skill level and therefore what kind
of jobs he is suited for. The principal is the employer who ignores if the
candidate is quali�ed to take the job he is applying for, so she interviews
him before taking a decision. However, the employer cannot possibly check
all aspects of the applicant's pro�le.

Persuasion games usually involve hard evidence disclosure as the only
form of communication. The goal of this paper is to study the e�ect of incor-
porating cheap talk into these models. We consider the same environment
as Sher [2011], where the agent preferences are identical across types. This
property makes cheap talk absolutely uninformative if used alone. However,
it turns out to be an e�ective tool for improving the principal's payo� when
combined with hard evidence disclosure.

By applying a result of Bull and Watson [2007], who study the intro-
duction of hard evidence in mechanism design models, we show that the
canonical persuasion game has the following simple structure: a three-stage
communication game where (i) the agent announces his type, (ii) the prin-
cipal asks him to show a speci�c piece of evidence, (iii) he shows a piece of
evidence, followed by an implementation stage such that if the agent shows
the requested piece of evidence, an outcome that depends on the announced
type is implemented, otherwise a punishment action is implemented. The
main di�erence between this game and the ones studied in Glazer and Ru-
binstein [2006] and Sher [2011] is that the agent and the principal exchange
cheap talk messages before hard evidence is presented.

Having identi�ed the canonical game form, we establish the necessary and
su�cient conditions for the implementation of any outcome function which
are expressed as conditions on the values of certain linear programs. The
parameters of these linear programs depend on the outcome function, the
utility function of the agent and the hard evidence structure.
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Sher [2011] studies the no-cheap-talk persuasion game and shows that
under a concavity assumption, namely that the principal's utility function
is a type-dependent concave transformation of the agent's utility function,
the principal needs neither commitment over the implementation stage nor
randomization of outcome, for both continuous and discrete action spaces.
These results are in fact generalizations of the �ndings of Glazer and Rubin-
stein [2006] who considered only binary action spaces, for which the concavity
assumption is always satis�ed.

In this paper, we address these two properties in persuasion games with
cheap talk. We show that under the concavity assumption stated above,
there exists an optimal deterministic outcome function if the action space is
continuous. On the contrary, if it is discrete, we show that such an optimal
function does not exist in general. However, there exists an optimal solution
such that the support of every outcome contains at most two actions. In
addition, these actions are adjacent according to the agent's preferences. In
short, randomization is not needed when the action space is continuous and
is generally necessary when the action space is discrete, but we still can �nd
a simple form optimal outcome function. We then study the issue of com-
mitment for these deterministic and simple form solutions. It turns out that
unlike the no-cheap-talk model, these solutions cannot be implemented with
credibility if the principal's maximal expected payo� is strictly decreased by
the restriction on evidence disclosure. In other words, the principal needs
in that case to commit to the implementation rule in order to enforce these
solutions. We also show that when the �rst-best is unique, its credible im-
plementation is equivalent to its implementation without cheap talk.

In section 2, we present the game and show that it is canonical. In sec-
tion 3 we establish the necessary and su�cient conditions for an outcome
function to be implementable. Then, in section 4, we study the determinism
and commitment issues under the concavity assumption. Finally, in section 5
we study the hiring process example.
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2 The model

2.1 The environment

We consider a setting with two players: a principal and an agent. There
is a �nite set of agent types Θ. The agent knows his type θ but the principal
knows only the probability distribution of types µ ∈ ∆(Θ). There is a �nite
set of hard evidence E. An agent of type θ has access only to the evidence
in the subset Eθ ⊆ E. We assume that there exists at least two types with
di�erent evidence sets. This is what di�erentiates hard evidence from cheap
talk messages: while it is possible for everybody to claim having a skill, only
people who actually master it can back up their statement, through a test
for example.

There is a set of actions A available to the principal. An interaction
between the agent and the principal has two phases. The �rst is the commu-
nication game which can involve several rounds of cheap talk communication
and one round of hard evidence disclosure. The second is the implementa-
tion stage in which the principal enforces one action from the set A. The
di�erence between this setting and the one studied in Sher [2011] is that the
communication game can involve cheap talk as well.

The agent has a utility function u : A → R which is independent of his
type. Let a0 denote an action such that u(a0) = mina∈A u(a) whenever the
minimum exists1. Throughout the paper, a0 will be called the punishment
action and the value of u(a0) will be set to 0 w.l.o.g. The principal has a
utility function v : Θ × A → R which not only depends on the action she
chooses to implement, but also on the type of the agent.

An outcome function g : Θ→ ∆(A) is a mapping from types to lotteries
over actions. The function g is called deterministic if for every type θ, the
outcome g(θ) is simply an action in A.

In line with the models of Glazer and Rubinstein [2004], Glazer and Ru-
binstein [2006] and Bull and Watson [2007], we assume that in one interaction
between the principal and the agent, only one piece of evidence can be pro-
duced2. This aspect of the model can be interpreted as a time constraint:

1It is implicitly assumed that the minimum exists in all the results stated in this paper.
But essentially, the results still hold with minor modi�cations. See Appendix for a study
of the case where the in�mum is not attained.

2This is essentially without loss of generality because if we want to model a limitation to
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the principal has to take a decision in limited time so that she can check the
agent's claim only partially.

2.2 The game

In this section, we introduce the game of persuasion. The timing of the
communication game is as follows:

• Stage 1 : The agent reports his type.

• Stage 2 : The principal asks the agent for a particular piece of evidence.

• Stage 3 : The agent shows a piece of evidence to the principal.

In stage 1, the agent makes a cheap talk claim by reporting a type θ ∈ Θ.
The principal then asks for a piece of evidence e. Her strategy at stage 2,
is represented by σ : Θ → ∆(E) where σ(θ, e) is the probability of asking
for evidence e given that the agent announced type θ. In stage 3, the agent
shows a piece of evidence e′, either the requested e or a di�erent one.

At the end of the communication game, the principal has to implement
an outcome. We focus on implementation rules such that if the agent shows
the requested piece of evidence (i.e. e′ = e) an outcome g(θ) which depends
only on the reported type θ is implemented, otherwise (i.e. e′ 6= e) the pun-
ishment action a0 is implemented. Throughout the paper, Gg denotes the
game described above, along with this implementation rule.

As we show in the last part of this section, the game Gg is canonical
in the sense that we can restrict attention to it when studying the imple-
mentability of a given outcome function g : Θ → ∆(A). Furthermore, this
implementation is achieved with truthful reporting in the �rst stage of the
communication game and requires the principal's commitment. In section 4.2
we address the credibility issue where g is considered implementable with
credibility if it is the outcome of a Perfect Bayesian Equilibrium (PBE) of
a persuasion game where the implementation rule takes a general form, i.e.
the outcome depends on the whole path of the communication game. This
general game form will be referred to as G throughout the paper.

N pieces of evidence instead of one, we would have to replace Eθ by {S ⊆ Eθ s.t. |S| ≤ N}.
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Proposition 1. If g is implemented using a general communication game
and a general implementation rule, then it is also implemented in Gg with
truthful reporting in stage 1.

Proof. See Appendix.

The argument of this proof is split in two steps. First, we note that our
framework is a special case of the one studied in Bull and Watson [2007].
Applying their general results, we can already narrow the scope of attention
considerably. A general communication game is an extensive form game with
three types of nodes :

• Message nodes : one player (principal or agent) sends a message to the
other;

• Evidentiary nodes : the agent has to present evidence;

• Terminal nodes : the principal implements an outcome;

such that along every path in the game tree, there is exactly one eviden-
tiary node. This restriction corresponds to the limited evidence disclosure
constraint. Bull and Watson [2007] show that if an outcome function is im-
plementable using such a general game then it is also implementable using
a three-stage communication game with truthful reporting in stage 1. The
timing of the game is as follows:

• Stage 1 : the agent reports his type to the principal.

• Stage 2 : the principal sends a message to the agent.

• Stage 3 : the agent presents a piece of evidence.

The structure of this game is similar to that of our communication game
except that instead of directly asking for evidence, the message of stage 2
identi�es an information set for the agent in the original extensive form game,
more speci�cally, the one where he has to present evidence.

In the second step, we use the fact that, in our framework, there is only
one agent whose preferences are the same across types in order to show that
we can restrict attention even further and focus only on the game Gg for the
implementation of a given outcome function g.
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3 Implementable outcome functions

In this section, we characterize implementable functions and strategies
that implement them. Proposition 1 allows us to focus on simple three-stage
games instead of general game forms : the implementation of an outcome
function g can be studied within the game Gg and the problem boils down
to �nding a strategy σ that allows it. The following lemma characterizes
such strategies:

Lemma 1. σ implements g in Gg with truthful reporting if and only if

∀θ, σθθ = 1

∀θ, θ′ σθ′θ ≤
u(g(θ′))

u(g(θ))

where σθ′θ =
∑

e∈Eθ′
σ(θ, e) is the probability for an agent of type θ′ to suc-

cessfully persuade the principal that he is of type θ.

Proof. See Appendix.

The �rst set of conditions says that the principal asks only for documents
that an agent of the announced type can show. This guarantees that if the
agent reports truthfully then the principal will certainly implement the right
outcome. The second set of conditions are in fact the incentive compatibility
constraints of the agent, which ensure that he reports his type truthfully in
the �rst stage. Actually, truthful reporting in stage 1 is necessary to im-
plement the outcome function in this game, and these conditions make sure
that the agent has incentive to tell the truth and that the principal does not
make the mistake of asking an agent who reported his true type for evidence
he cannot present, which in turn, would induce punishment erroneously.

Using Lemma 1 we can determine the necessary and su�cient conditions
for an outcome function g to be implementable. We focus on the strategies
satisfying the �rst set of conditions, i.e. strategies such that the support of
σ(θ, ·) is contained in Eθ for all types θ, and we study the existence of an
incentive compatible strategy among them. Consider an indexing of types
in Θ from 1 to n : Θ = {θ1, . . . , θn}. Let qk be the size of the evidence set
of type θk: qk = card(Eθk). Eθk may then be written as Eθk = {e1

k, . . . , e
qj
k }.

The vector σ(θk, e)|e∈Eθk describes a point Mk in Rqk . Using this de�nition,
the second set of conditions of Lemma 1 can be interpreted as linear inequal-
ities satis�ed by the coordinates of the Mk's for k ∈ {1, . . . , n}. From this
formulation, we can derive the following result about the implementability
of an outcome function g:
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Proposition 2. An outcome function g is implementable if and only if for
all k ∈ {1, . . . , n}, the following linear program Pk has a value greater than
or equal to 1:

Max c · x
s.t. Ax ≤ b

x ≥ 0,

where x, c ∈ Rqk , b ∈ Rn and A a matrix n × qk. ∀l ∈ {1, . . . , qk}, ∀j ∈
{1, . . . , n}, cl = 1, bj =

u(g(θj))

u(g(θk))
and Ajl = 1{elk∈Eθj }

.

Proof. From Lemma 1, we know that g is implementable if and only if there
exists a strategy σ such that

∀k, σkk = 1

∀k, ∀j, σjk ≤
u(g(θj))

u(g(θk))

For a given k ∈ {1, . . . , n}, let x ∈ Rqk denote the vector σ(θk, e)|e∈Eθk ,
i.e. xl = σ(θk, e

l
k). The condition σkk = 1 is then equivalent to the condition∑

l∈{1,...,qk} xl = c · x = 1, where c ∈ Rqk and ∀l, cl = 1. Consider the matrix

A such that, ∀l ∈ {1, . . . , qk}, ∀j ∈ {1, . . . , n}, Ajl = 1{elk∈Eθj }
. We can then

write σjk = (Ax)j for every j. By de�ning the vector b ∈ Rn such that

bj =
u(g(θj))

u(g(θk))
, we conclude that the set of conditions on σjk for j ∈ {1, . . . , n}

is equivalent to Ax ≤ b. So far, we have shown that g is implementable if and
only if for every k there exists a vector x ∈ Rqk , with positive coordinates,
such that

c · x = 1

Ax ≤ b

If such a vector exists, then the value of Pk is at least 1. Conversely, if x∗

is the solution of Pk, with v = c · x∗ greater than 1, then the vector x = 1
v
x∗

satis�es the conditions above.

The implementability of an outcome function is therefore equivalent to
conditions on the values of n linear programs. Each one of these conditions
can actually be interpreted3 as a condition on the value of some zero-sum

3I thank Rida Laraki for suggesting this interpretation. It follows from the minmax
theorem of Von Neumann and the duality property of linear programming. A proof is
given in the appendix.
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game: Pk has a value greater than 1 if and only if the following zero-sum
game Γk has a value smaller than 1:

• Player 1 (Fictitious): chooses a type j in {1, . . . , n}.

• Player 2 (The principal): chooses a document elk among {e1
k, . . . , e

qk
k }.

• If elk ∈ Eθj then player 1 gets u(g(θk))
u(g(θj))

= 1
bj
, otherwise he gets 0.

This condition on the value of Γk is equivalent to saying that the principal
has a strategy such that an agent of type other than θk has no incentive to
announce θk in the �rst stage. The interesting feature of this interpretation
is that the strategy σ∗, such that for all k, σ∗(θk, ·) is the optimal strategy of
player 2 in Γk, is a strategy that implements g (provided that the conditions
on values are satis�ed).

In the remainder of this section, we focus on implementation in pure
strategies. A strategy σ is called pure if for every type θ, there exists a piece
of evidence eθ that is requested with certainty if type θ is announced in stage
1, i.e. σ(θ, eθ) = 1. Pure strategies are particularly interesting because they
are easy to implement and to commit to.

De�nition 1. An outcome function g is implementable in pure strategies if
there exists a pure strategy that implements it in Gg.

The fact that a pure strategy maps one piece of evidence with certainty
to every type makes it possible to reduce the communication game to a single
stage as in the models of Glazer and Rubinstein [2006] and Sher [2011]. Con-
sider an outcome function g and a pure strategy σ that implements it in Gg.
In the three-stage communication game, if the agent announces a type θ then
the principal asks him for eθ with certainty, and if he shows eθ the outcome
g(θ) is implemented, otherwise the outcome a0 is implemented. It becomes
clear then that if we remove the �rst two stages of the communication game,
we can still implement the same outcome function g: let the agent present
a piece of evidence e, if e = eθ for some type θ in Θ then the principal im-
plements g(θ), otherwise she implements a0. This game has the same timing
as the game studied in Sher [2011]: a no-cheap-talk communication game
followed by an implementation stage. This means that if an outcome func-
tion is implementable in pure strategies then it can be implemented without
cheap talk.
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Notice that if an agent wants to get the outcome g(θ) for some θ in Θ,
he just has to possess evidence eθ. Therefore if the agent strictly prefers g(θ)
to g(θ′), then the incentive compatibility constraint for type θ′ implies that
his evidence set Eθ′ does not contain eθ. This property is formalized in the
following de�nition:

De�nition 2. An outcome function g is evidence compatible if for every type
θ there exists a piece of evidence eθ in Eθ such that:

∀θ′, if u(g(θ′)) < u(g(θ)) then eθ /∈ Eθ′ .
The evidence compatibility of an outcome function g means that every

type θ has one piece of evidence that distinguishes it from all the types with
worse outcomes than g(θ). The previous analysis shows that if an outcome
function is implementable in pure strategies then it is evidence compatible.

We conclude the section with the following equivalence result:

Proposition 3. Let g be an outcome function. The three following state-
ments are equivalent:

(i) g is implementable in pure strategies.

(ii) g is evidence compatible.

(iii) g is implementable without cheap talk.

Proof. See Appendix.

4 Optimal outcome functions

The outcome function g is optimal if it maximizes the principal's ex-
pected payo�

∑
θ∈Θ µ(θ)v(g(θ), θ) among the set of implementable outcome

functions F , namely the functions that satisfy the conditions of Proposi-
tion 2. The set of evidence compatible functions Fc is a subset of F . As
stated in Proposition 3, Fc coincides with the set of functions that are im-
plementable without cheap talk, i.e. using a one-stage communication game
where the agent has to simply present a piece of evidence. Sher [2011] studies
this particular game form and proves the existence of a deterministic out-
come function under the assumption that the principal's utility function is a
type-dependent concave transformation of the agent's utility function. Fur-
thermore, he shows that such optimal functions are credible. In this section,
we study these two aspects when the communication game takes its general
form, i.e. when the optimal solution is to be found in F instead of the subset
Fc.
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4.1 Determinism

The determinism result of Sher [2011] holds whether the principal's ac-
tions space A is continuous or discrete. However, in the general framework
we consider in this paper, there is a di�erence between these two settings.
First, we show that the result still holds for a continuous action space.

Proposition 4. If the three following conditions are satis�ed:

• The actions space is A = [0, 1].

• The agent's utility function u is continuous.

• For all θ, there exists a concave function cθ such that v(θ, ·) = cθ(u(·))4.

then there exists an optimal deterministic outcome function5.

Proof. Consider an outcome function g. For a given type θ, the outcome
g(θ) is a distribution over actions. Let Eg(θ)(u) be the expected utility of
an agent under the lottery g(θ). Because u is continuous over the connected
space A, there exists an action ĝ(θ) ∈ A such that.

u(ĝ(θ)) = Eg(θ)(u)

This de�nes a deterministic outcome function ĝ. If g is implementable then,
using the strategy σ that implements it, we can also implement ĝ (because
the agent's expected utilities are identical for both outcome functions and
therefore σ satis�es the incentive compatibility constraints for ĝ as well).
Now we will compare the principal's utilities under g and ĝ when she faces
an agent of type θ.

Eg(θ)(v(θ, ·)) = Eg(θ)(cθ(u))

≤ cθ(Eg(θ)(u)) (concavity of cθ)

≤ cθ(u(ĝ(θ))) = v(θ, ĝ(θ)).

The principal is therefore (weakly) better o� not randomizing over actions.
The conclusion follows.

4See Appendix for a counterexample when this concavity condition does not hold.
5The result holds for any connected action space A provided that for every θ, the

maximum of cθ over u(A) is attained. This condition simply guarantees the existence of
optimal solutions.
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As we can see in the proof above, the fact that A is connected plays
an essential role in the argument. In fact, we can easily �nd an example
where the actions space is discrete and there is no optimal deterministic
outcome function. But as we can see in the following proposition, although
randomization is needed, we can still �nd an optimal solution of a simple
form.

Proposition 5. If the two following conditions are satis�ed:

• The actions space is discrete A = {a0, a1, a2, . . . , am}.

• For all θ, there exists a concave function cθ such that v(θ, ·) = cθ(u(·)).
then there exists an optimal outcome function g such that for every type θ,
the outcome g(θ) is either an action or a lottery over two adjacent actions
(when the elements of A are ordered according to the agent's preferences)6.

Proof. See Appendix.

The main idea behind this result is that a level of utility for the agent can
be achieved through many lotteries and that the choice of a speci�c lottery
among them does not a�ect his incentives. The principal, on the other hand,
prefers the lottery that involves at most the closest two actions to that level
of agent's utility because of the concavity assumption.

In conclusion, the determinism result can be extended to the general
persuasion game form, with a slight modi�cation in the case of a discrete
actions space. But it turns out that the credibility result does not hold
and that in general commitment is necessary to the implementation of the
optimal solution.

Example 1. Consider a setting with three types Θ = {θ1, θ2, θ3} such that
evidence sets are:

Eθ1 = {e1}
Eθ2 = {e2}
Eθ3 = {e1, e2}

Assume that there are three actions A = {0, 1, 3}. Let the agent's utility
function be u(a) = a for all a in A, and the principal's utility function be
given by the following table:

6The result holds also for any discrete action space A with in�nitely many elements,
provided that for every θ, the maximum of cθ over u(A) is attained.
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v(θ, a) 0 1 3
θ1 0 1 0
θ2 0 1 0
θ3 0 1 3

Notice that the concavity assumption is satis�ed. The best deterministic
outcome function in this case is one such that type θ3 receives the action 3
along with one of the other two types, while the remaining type receives the
outcome 1. The utility of the principal for such a function is V = 4. This
function is not optimal though. The optimal solution assigns action 3 to type
θ3 and the same randomized outcome to types θ1 and θ2 such that action 1
has a probability 3

4
and action 3 has a probability 1

4
. The optimal payo� of

the principal is V = 9
2
. This function involves randomization over at most

two adjacent actions as described in Proposition 5 and gives a strictly higher
payo� than the deterministic ones.

4.2 Credibility

Sher [2011] shows that under the concavity assumption all deterministic
optimal outcome functions, which are guaranteed to exist when cheap talk
is not allowed, are implementable with credibility. As de�ned in section 2.2,
credible implementation is achieved through a Perfect Bayesian Equilibrium
(PBE) in the game G. In this section, we show that the introduction of
cheap talk into the communication game increases the principal's payo� at
the cost of commitment in general.

De�nition 3. An outcome function g is weakly evidence compatible if

∀θ, ∀θ′, if u(g(θ′)) < u(g(θ)) then Eθ 6⊂ Eθ′ .

Remark 1. Notice that if an outcome function is evidence compatible then
it is weakly evidence compatible. The converse assertion holds if and only if
the evidence structure satis�es normality7, i.e. if and only if for every type
there exists a maximal piece of evidence for every type :

∀θ, ∃eθ ∈ Eθ s.t. ∀θ′, if eθ ∈ Eθ′ then Eθ ⊂ Eθ′ .

It is easy to check that if normality is satis�ed then the weak evidence
compatibility implies evidence compatibility. If normality does not hold then

7This condition is called normality by Bull and Watson [2007]. It has also been called
the full reports condition by Lipman and Seppi [1995] and the minimal closure condition
by Forges and Koessler [2005].
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there exists a type θ̃ such that for every piece of evidence e in Eθ̃, there exists
a type θ for which e ∈ Eθ and Eθ̃ 6⊂ Eθ. Consider two actions a and a such
that u(a) < u(a) and let g be the outcome function de�ned by:

∀θ s.t. Eθ̃ 6⊂ Eθ, g(θ) = a

∀θ s.t. Eθ̃ ⊂ Eθ, g(θ) = a

First, notice that g is weakly evidence compatible. Then using the con-
sequence of non-normality stated above, we can easily show that g is not
evidence compatible. This concludes the proof of the equivalence.

Let Fw denote the set of weakly evidence compatible outcome functions.
Lemma 1 implies that all implementable outcome functions are weakly evi-
dence compatible, i.e. F ⊂ Fw. The optimization problem of the principal
is:

(P ) max
f∈F

E(v(θ, f(θ)))

Let Pw be the optimization problem where outcome functions are only
required to be weakly evidence compatible:

(Pw) max
f∈Fw

E(v(θ, f(θ)))

Proposition 6. Under the assumptions of Proposition 4 (resp. Proposi-
tion 5) and the additional two following conditions:

• The punishment action is never optimal : ∀θ, 0 /∈ arg maxt cθ(t).

• The value of problem (P ) is strictly lower than the value of problem
(Pw).

The optimal solutions of P described in Proposition 4 (resp. Proposi-
tion 5) are not implementable with credibility.

Proof. See Appendix.

Note that the problem Pw is equivalent to the problem where the evi-
dence disclosure is unrestricted, i.e. where the agent of type θ can present
as many pieces of evidence as he wants up to the whole set Eθ. In fact,
the elements of Fw are exactly the evidence compatible outcome functions
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in the context of unrestricted evidence disclosure which makes them imple-
mentable (by Proposition 3). Furthermore, functions outside the set Fw are
not implementable in this setting neither because they violate the incentive
compatibility constraints for at least one type.

In other words, Proposition 6 states that if the evidence disclosure re-
striction decreases the principal's maximal expected payo� then the simple
form optimal solutions which are guaranteed to exist under the assumptions
of Propositions 4 and 5 cannot be implemented without commitment. This
means that introducing cheap talk in this case improves the principal's wel-
fare but requires her commitment. A trade-o� is thereby created between
optimality and credibility.

De�nition 4. An outcome function g is �rst-best if

∀θ, g(θ) ∈ arg max
a∈A

v(θ, a).

If a �rst-best outcome function is weakly evidence compatible then it
is clearly a solution of the problem Pw. The following proposition gives a
necessary and su�cient condition for the �rst-best to be implementable with
credibility when it is unique.

Proposition 7. Assume that there exists a unique �rst-best outcome function
g∗. Then g∗ is implementable with credibility if and only if it is evidence
compatible.

Proof. Consider the unique �rst-best outcome function g∗. Let σ be a strat-
egy that implements g∗ with credibility. Consider a type θ. Let e ∈ Eθ and
θ = min{u(g∗(θ′)) | e ∈ Eθ′} with u(g∗(θ)) < u(g∗(θ)). If σ(θ, e) > 0, then an
agent of type θ has a positive probability of getting u(g∗(θ)) if he deviates. If
he gets caught, he can always show e, which guarantees at minimum u(g∗(θ))
(because of credibility o� equilibrium path). Therefore, the incentive com-
patibility constraint is violated for type θ. This means that if σ implements
g∗ with credibility, then σ(θ, e) = 0 for all evidence e that a lower type has.
As a consequence each type has to possess a piece of evidence that no lower
type can present, which is exactly the evidence compatibility requirement.

Conversely, if g∗ is evidence compatible, then the following strategy is
credible and implements the �rst-best: when evidence e is produced, choose
action g∗(θ) such that u(g∗(θ)) = minθ|e∈Eθ u(g∗(θ)).
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By combining this result with Proposition 3 we see that if a unique �rst-
best is not implementable without cheap talk, then it cannot be implemented
with credibility. This is a good illustration of the trade-o� between optimality
and credibility when cheap talk is introduced: if we do not use cheap talk
then the second-best outcome function is credible (see Sher [2011]), but if
we allow the use of cheap talk, the principal gets her �rst-best at the cost of
credibility.

Example 2. Consider a setting with �ve types Θ = {θ1, . . . , θ5} such that
the evidence sets are:

Eθ1 = Eθ2 = {e}
Eθ3 = Eθ4 = {e}
Eθ5 = {e, e}

Let the actions space be A = [0, 1] and the agent's utility function be
u(a) = a. Assume that for every type θi the principal's utility function
v(θi, ·) is strictly concave and that there exist �ve ordered actions 0 < a1 <
a2 < . . . < a5 such that:

∀i, arg max
a∈A

v(θi, a) = {ai}

The assumptions of Proposition 4 are satis�ed which guarantees the exis-
tence of an optimal deterministic solution. Note that any implementable out-
come function g has to satisfy the conditions g(θ1) = g(θ2) and g(θ3) = g(θ4).
The optimization program (P ) (restricted to deterministic functions) can be
written as follows:

max [µ(θ1)v(θ1, a12) + µ(θ2)v(θ2, a12)] + [µ(θ3)v(θ3, a34) + µ(θ4)v(θ4, a34)] + µ(θ5)v(θ5, a5)

s.t. a5 ≤ a12 + a34

If we relax the constraint, we obtain the problem (Pw) which is equiv-
alent to three independent maximization problems with concave objective
functions, and the solution is given by (a∗12, a

∗
34, a

∗
5) such that:

a1 ≤ a∗12 ≤ a2 < a3 ≤ a∗34 ≤ a4 < a5 = a∗5

If a∗12 + a∗34 < a∗5, Proposition 6 implies that the deterministic solution
of (P ) is not implementable with credibility. Assume a5 ≤ a1 + a3 which
ensures that the solution of (Pw) is also the solution of (P ). Now, consider
the following mechanism:
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• Stage 1: the agent announces his type.

• Stage 2:

� if θ1 or θ2 is announced ask for e.

� if θ3 or θ4 is announced ask for e.

� if θ5 is announced, ask for e with probability σ and for e with
probability 1− σ.

• Stage 3:

� If the requested piece of evidence is presented implement a∗12 for
types θ1 and θ2, a

∗
34 for types θ3 and θ4, and a

∗
5 = a5 for type θ5.

� otherwise implement a1 (resp. a3) if the agent wrongfully pre-
sented e (resp. e).

This mechanism implements the optimal deterministic outcome function
if and only if there exists σ ∈ [0, 1] such that:

σa∗5 + (1− σ)a1 ≤ a∗12

(1− σ)a∗5 + σa3 ≤ a∗34

We can simplify the system to �nd that the existence of such σ is equiv-
alent to:

a∗12 − a1

a∗5 − a1

+
a∗34 − a3

a∗5 − a3

≥ 1

Note that by varying the distribution µ, we can make a∗12 (resp. a
∗
34) take

any value in [a1, a2] (resp. [a3, a4]). This means that as long as the following
inequality is satis�ed, we can �nd a distribution µ, where all types have
positive probability, such that the above mechanism implements the optimal
deterministic outcome functions:

a2 − a1

a5 − a1

+
a4 − a3

a5 − a3

> 1

There exists an equilibrium where types θ1 and θ2 announce θ1, types θ3

and θ4 announce θ3, and type θ5 announces his real type in stage 1. Along
the equilibrium path, the implemented action is credible : a∗12 (resp. a∗34) is
optimal given the belief that types θ1 and θ2 (resp. θ3 and θ4) choose the path
leading to it. O� the equilibrium path, an agent presenting the wrong piece of
evidence is believed to be the lowest type capable of such deviation (this belief
corresponds to the maximal punishment) and the action that is implemented
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is credible. In conclusion, the deterministic optimal solution in this setting
is implementable with credibility. However, if we had a∗12 + a∗34 = a∗5 then it
would be implementable but without credibility, because the implementation
would require the use of the punishment action a0 = 0 o� equilibrium.

5 Application

Consider a scenario where the principal is an employer and the agent is a
job candidate. The employer has several vacancies and needs to �nd employ-
ees in a short period of time. Each job requires a di�erent set of skills which
constitute the wanted pro�le (type). The outputs of these jobs are di�erent
and therefore the wage levels the employer is willing to o�er are di�erent.
The problem is that the candidates disutility of work is the same irrespec-
tive of their pro�le or the job they are doing which means that the employer
needs to test each applicant in order to know if he really has the required
skill levels to accomplish the job he is applying for. However, because of
the time constraint, it is impossible to fully test the applicants. Instead, the
employer will only partially examine their skills.

The hiring procedure used in this case can be described by a game Gg:
�rst, the candidate applies for a speci�c job, thereby announcing that he is
of the wanted type, then the employer chooses a test which is equivalent to
asking the applicant to present a certain piece of evidence, �nally the can-
didates takes the test, if he passes he is hired for the corresponding wage
level, otherwise he is not hired. Using a pure strategy in the second stage is
equivalent to telling the applicant about the tests beforehand. In practice,
employers do not give such details to applicants.

In the remainder of this section, we focus on an example: The agent,
independently of his skills, has a quadratic disutility so that for an hourly
wage w, he is willing to work S(w) = w hours. The hourly wage W (θ) that
the employer is willing to o�er depends on the skills of the candidate which
are represented by his type θ.

In this setting, the utility functions are given by:

• Agent's utility: u(w) = w2

2
.

• Principal's utility: v(w, θ) = (W (θ)− w)w.

The agent's utility function is minimal for a wage w = 0. In other words,
the principal's punishment action is to choose not to hire the agent. Let there

18



be three types Θ = {(1, 0), (0, 1), (1, 1)}. The agent has two characteristics
that can take values in {0, 1}. This representation describes the situation
where the candidate has two possible skills and where the skill levels are
binary: 1 if he masters it and 0 otherwise. Let the set of evidence of each
type contain two elements, one for each skill certifying its value. In essence,
the evidence structure in this setting is equivalent to that of Example 1. As-
sume that the principal's willingness to pay for type θ is the sum of the two
coordinates, i.e. W (θ) = θ1 + θ2.

Note that the concavity assumption is satis�ed which ensures the exis-
tence of an optimal deterministic solution: for every type θ, v(θ, ·) = cθ(u(·)),
where cθ(x) = W (θ)

√
2x− 2x. A deterministic outcome function is given by

a vector w = (w01, w10, w11) and by rearranging the conditions, we can show
that w is implementable if and only if it satis�es w2

11 ≤ w2
01 + w2

10. In the
case of equiprobable types, the principal's program (P ) is:

max V (w)

s.t. w2
11 ≤ w2

10 + w2
01

where V (w) = (1 − w10)w10 + (1 − w01)w01 + (2 − w11)w11 (three times
expected payo�). The program (Pw) is simply the unconstrained program
and its solution is the �rst-best given by w01 = w10 = 1

2
and w11 = 1. In

order to solve (P ), we �rst check that at the optimum w2
11 = w2

10 + w2
01 and

w10 = w01. The optimal outcome function is w∗ such that:

• w∗01 = w∗10 = 1+
√

2
4

> 1
2

• w∗11 = 2+
√

2
4

< 1

We observe that the high type wage is distorded downwards, and the low
types wage is distorted upwards. The distortion is similar to informational
rent in standard models of adverse selection. However, in adverse selection
models, the optimal outcome is better than the �rst-best for all types, while
in this model the high type is worse o�. Moreover, it is interesting to notice
that the optimal solution is not implementable without cheap talk and there-
fore the use of cheap talk strictly improve the principal's welfare. Finally,
notice that the optimal solution is not credible: the action w∗11 has to be
implemented at a node where the principal knows that the agent is of type
(1, 1) but is not optimal given this belief. This is coherent with Proposition 6
as the value of (Pw) is strictly higher than the value of (P ) here.
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6 Appendix

Proof of Proposition 1. Bull and Watson [2007] showed that if g is im-
plemented by a general mechanism, then it is also implemented by a spe-
cial three-stage mechanism M = (σ, f) with truthful reporting at stage 1.
Therefore, for every type θ and every message m, there must exist a piece
of evidence e in Eθ such that the outcome g(θ) is implemented whenever the
agent announces θ, the principal sends m and the agent shows e. Formally:

∀θ, ∀m,∃eθ,m ∈ Eθ such that f(θ,m, eθ,m) = g(θ)

For every type θ, let φθ be a mapping from messages m to evidence eθ,m :

∀m,φθ(m) ∈ Eθ and f(θ,m, φθ(m)) = g(θ)

We know that M satis�es the incentive compatibility constraints :

∀θ, ∀θ′,
∑
m

σ(θ′,m) max
e∈Eθ

u(f(θ′,m, e)) ≤ u(g(θ)).

Consider the mechanism M̂ = (σ̂, f̂) de�ned by:

• ∀θ, ∀e, σ̂(θ, e) =
∑

m∈φ−1
θ (e) σ(θ,m).

• ∀θ, ∀e, f̂(θ, e, e) = g(θ).

• ∀θ, ∀e′ 6= e, f̂(θ, e, e′) = a0.

We can easily check that ∀θ,
∑

e∈Eθ σ̂(θ, e) = 1. As a consequence, the

mechanism M̂ is well de�ned. Notice that this mechanism is equivalent
to playing the strategy σ̂ in the game Gg. So, in order to prove that σ̂

implements g in Gg, we will show that M̂ satis�es the incentive compatibility
constraints. First, using the de�nition of σ̂, we have:

∀θ, ∀θ′,
∑
e

σ̂(θ′, e) max
e′∈Eθ

u(f̂(θ′, e, e′)) =
∑
e

∑
m∈φ−1

θ′ (e)

σ(θ′,m) max
e′∈Eθ

u(f̂(θ′, e, e′))

By de�nition, if m ∈ φ−1
θ′ (e) then f(θ′,m, e) = g(θ′) = f̂(θ′, e, e), and for

e′ 6= e, we have u(f(θ′,m, e′)) ≥ u(a0) = u(f̂(θ, e, e′)). Therefore
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∀θ, ∀θ′,
∑
e

σ̂(θ′, e) max
e′∈Eθ

u(f̂(θ′, e, e′)) ≤
∑
e

∑
m∈φ−1

θ′ (e)

σ(θ′,m) max
e′∈Eθ

u(f(θ′,m, e′))

The r.h.s term is equal to
∑

m σ(θ′,m) maxe∈Eθ u(f(θ′,m, e)) and we �-
nally get:

∀θ, ∀θ′,
∑
e

σ̂(θ′, e) max
e′∈Eθ

u(f̂(θ′, e, e′)) ≤ u(g(θ)).

Which are exactly the incentive compatibility constraints of M̂ .

Proof of Lemma 1. Given the structure of Gg, the outcome g(θ) is imple-
mented only if the agent reports type θ in stage 1 and shows the required
piece of evidence in stage 3. This means that in order to implement g in Gg,
truth telling is necessary in stage 1. As a consequence, if the reported type
is θ, the principal can ask only for evidence in Eθ. Otherwise, an agent of
type θ who reports truthfully has a positive probability of being asked for
evidence he cannot present. A strategy σ satisfying this condition is such
that ∀θ, σθθ = 1.

In addition, σ must be such that the agent has no incentive to lie about
his type. The expected utility of an agent of type θ′ when she reports
type θ is equal to σθ′θu(g(θ)). In particular, the expected utility of truth
telling for an agent of type θ is u(g(θ)) as long as the strategy satis�es
the �rst condition. Therefore, the agents have incentive to tell the truth if
∀θ, ∀θ′, σθ′θu(g(θ)) ≤ u(g(θ′)).

Conversely, if σ satis�es ∀θ, ∀θ′, σθ′θu(g(θ)) ≤ u(g(θ′)), then truth telling
in stage 1 is a best response for the agent and it leads to the implementation
of g.

Finally, we show that the second set of conditions as written in Lemma 1
does not involve division by zero. This is true because we can assume without
loss of generality that for all θ, u(g(θ)) > u(a0) = 0. Actually, solving the
problem where u(g(θ)) = 0 for some types θ in a subset Θ0 ⊆ Θ is equivalent
to solving the problem where those types and their evidence are removed, i.e.
the set of types is Θ \Θ0 and the evidence set is E \ ∪θ∈Θ0Eθ. Consider the
original problem. For every θ′ ∈ Θ0 the conditions will be ∀θ ∈ Θ\Θ0σθ′θ = 0.
Therefore, the principal cannot ask any type outside Θ0 for evidence that any
type in this subset can present. If σ is a solution of the original problem, then
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its restriction to Θ \ Θ0 is a solution of the reduced problem. Conversely, if
σ is a solution of the reduced problem, let σ′ be equal to σ on Θ \Θ0 and for
every type θ in Θ0, let σ

′(θ, eθ) = 1 for some eθ ∈ Eθ. We can easily check
that σ′ is a solution of the original program.

Proof of Proposition 3. Let g be an outcome function. Recall the three
statements:

(i) g is implementable in pure strategies.

(ii) g is evidence compatible.

(iii) g is implementable without cheap talk.

In order to prove the equivalence, we will show the following implications:
(i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii) A pure strategy σ is such that ∀θ, ∃eθ ∈ E such that σ(θ, eθ) = 1.
If σ implements g then it must satisfy the �rst set of conditions in
Lemma 1, which yields ∀θ, eθ ∈ Eθ. Thus, σθ′θ = 1 if eθ ∈ Eθ′ and
σθ′θ = 0 otherwise. It follows from the second set of conditions that
eθ 6∈ Eθ′ whenever u(g(θ′)) < u(g(θ)), i.e. g is evidence compatible.

(ii)⇒(iii) For every type θ there exists a piece of evidence eθ in Eθ such
that:

∀θ′, if u(g(θ′)) < u(g(θ)) then eθ /∈ Eθ′ .

Consider the following mechanism: the agent shows a piece of evidence
and then the principal implements g(θ) if she observes eθ for some θ,
and a0 if she observes any evidence outside the set {eθ|θ ∈ Θ}. The best
response of an agent of type θ will be to show eθ and this no-cheap-talk
mechanism implements g.

(iii)⇒(i) g is implementable without cheap talk. Such a mechanism is de-
�ned by a mapping h : E → ∆(A). The principal implements the
outcome h(e) if the agent shows the piece of evidence e. The strategy
of an agent of type θ is given by a probability distribution over evidence
in Eθ, denoted ξ(θ). This mechanism implements g if there is a best
response ξ to h such that for every type θ, g(θ, ·) =

∑
e∈Eθ ξ(θ, e)h(e, ·).

As ξ is a best response, if ξ(θ, e) > 0 then u(h(e)) = maxe′∈Eθ u(h(e′)).
The utility of the outcome g(θ):
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u(g(θ)) = Eg(θ)(u)

=
∑
e∈Eθ

ξ(θ, e)Eh(e)(u)

= max
e∈Eθ

u(h(e))

For every θ, choose a piece of evidence eθ ∈ Eθ from the support of
ξ(θ), i.e. eθ such that ξ(θ, e) > 0. Consider the game Gg with the pure
strategy σ such that for every type θ, σ(θ, eθ) = 1. We have

∀θ, u(g(θ)) = max
e∈Eθ

u(h(e)) = u(h(eθ))

Therefore, if two types θ and θ′ are such that u(g(θ′)) < u(g(θ)) then

eθ 6∈ Eθ′ which ensures that σθ′θ = 0 < u(g(θ′))
u(g(θ))

. In conclusion, the pure
strategy σ implements g.

Proof of Proposition 5. Reorder the action space A = {a0, a1, . . . , am}
according to the agent's preferences, i.e. 0 = u(a0) < u(a1) < u(a2) <
. . . < u(am). Consider an implementable outcome function g such that for
some type θ, the utility level u(g(θ)) cannot be achieved using one action,
i.e. there exists l such that u(al) < u(g(θ) < u(al+1). Given that the agent
is indi�erent between all lotteries with expected utility u(g(θ), the principal
can choose the one that maximizes her utility. Because of the concavity
assumption, the principal is better o� choosing to randomize only over al
and al+1. The conclusion follows.

Proof of Proposition 6. We give the proof for deterministic optimal out-
come functions under the assumptions of Proposition 4. The argument can
be simply applied for the optimal solutions of Proposition 5 using the follow-
ing transformation: if A = {a1, . . . , am} is ordered according to the agent's
preferences, i.e. 0 = u(a0) < u(a1) < u(a2) < . . . < u(am), we can obtain an
equivalent problem with a connected actions space de�ned by:

Ã =
⋃

l∈{1,...,m}

∆({al−1, al}).

Under the assumptions of Proposition 4, let g be an optimal determinis-
tic outcome function. Assuming g is implementable with credibility and the
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value of (Pw) is strictly higher than the value of (P ), we prove a contradiction.

The assumption that g is implementable with credibility means by de�-
nition that it is the outcome of a PBE in the game G. Let σ be the strategy
that the principal uses at stage 2 in this PBE. The goal is to de�ne an out-
come function g̃ and a strategy σ̃ by slightly modifying g and σ, such that
the principal strictly prefers g̃ to g and σ̃ implements g̃ without credibility,
i.e. in the game Gg̃, thereby contradicting the optimality of g.

The concavity assumption tells us that:

∀θ, ∃cθ concave s.t. v(θ, ·) = cθ(u(·)) (1)

For every level t of agent's utility, let Θt = {θ | u(g(θ)) = t} the set of
types of utility t according to g. The credible implementation implies that
at every terminal node, the principal chooses the action that maximizes her
expected payo� given her belief about the types. As a consequence, for every
nonempty Θt:

t ∈ arg max
s

∑
θ∈Θt

µθcθ(s)

The problem (Pw) is de�ned in this context by:

max
∑
θ∈Θ

µθcθ(xθ)

s.t. ∀θ, θ′ 1{Eθ⊂Eθ′}(xθ − xθ′) ≤ 0

Consider (P t
w) the restricted version of (Pw) to types in Θt:

max
∑
θ∈Θt

µθcθ(xθ)

s.t. ∀θ, θ′ ∈ Θt 1{Eθ⊂Eθ′}(xθ − xθ′) ≤ 0

Notice that there exists a nonempty Θt such that the vector x = (t, t, . . . , t)
is not a solution of (P t

w), because otherwise g would be a solution of (Pw),
which would imply that its value is equal to the value of (P ). From the con-
cavity assumption and the convexity of the set of (P t

w)'s feasible solutions,
we get:
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∀λ > 0,∃xλ s.t. ∀θ ∈ Θt, |xλθ − t| ≤ λ

and
∑
θ∈Θt

µθcθ(xθ) >
∑
θ∈Θt

µθcθ(t)

For every λ, de�ne an outcome function gλ such that:

∀θ ∈ Θt, u(gλ(θ)) = xλθ
∀θ 6∈ Θt, gλ(θ) = g(θ)

The function gλ is obtained as a slight modi�cation of g and it gives
a strictly higher payo� to the principal. We will now prove that for some
λ, gλ is implementable using the fact that g is implementable with credibility.

First, for every type θ de�ne uθ the highest utility level that an agent of
type θ can achieve if he deviates and is asked to provide evidence he does
not possess:

uθ = max
e∈Eθ

min
θ′|e∈Eθ′

u(g∗(θ′))

where g∗ is the �rst-best outcome function. Because punishment is assumed
to never be optimal, we obtain that for all types θ, the level of utility uθ is
strictly positive. For every utility level s, let the path that types in Θs follow
be labeled s and the principal's strategy at the second stage be labeled σs.
The credible implementation implies that:

∀θ, (s− uθ)σs(Eθ) ≤ u(g(θ))− uθ
In the game Ggλ

, for every positive ε de�ne a strategy σε as follows: For
every θ outside the set Θt, let σ

ε(θ, ·) be identical to σs(·) where s is the label
of the path that type θ follows. For every θ and θ′ in Θt such that xλθ′ < xλθ
we know that there exists a piece of evidence eθ\θ′ in Eθ that is not in Eθ′
because of the feasibility of x in (P t

w). For all such cases, let σε(θ, eθ\θ′) = ε.
For every other piece of evidence e, let σε(θ, e) = (1 − kε)σ(θ, e) where k is
the number of eθ\θ′s with ε weight. We then get for every θ in Θt and θ

′ in
Θs:
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If s = t then σεθ′θ ≤ 1− ε < u(g(θ′))

u(g(θ))
= 1

If s < t then σεθ′θ ≤ σt(Eθ′) + kε, with σt(Eθ′) <
u(g(θ′))

u(g(θ))

If s > t then σεθθ′ = σs(Eθ) <
u(g(θ))

u(g(θ′))

These inequalities are strict because of the way σε is de�ned and the fact
that uθ is always strictly positive. For well chosen positive ε and λ, we can see
that these inequalities still hold for the outcome function gλ as well, meaning
that it can be implemented using σε.

All along, it was assumed that all types in Θt follow the same path in
the game G, but the argument still holds when they follow separate paths
as well. We would just have to de�ne σε(θ, ·) using the strategy on the path
followed by type θ.

Study of the case where a0 does not exist. This happens when infa∈A u(a)
is not attained. If infa∈A u(a) = −∞ then the situation is equivalent to hav-
ing full evidence disclosure because the punishment can be as big as the
principal wants. Formally, g is implementable if and only if there exists a
strategy σ and α ∈ R such that

∀θ, θ′ σθ′θu(g(θ))− (1− σθ′θ)α ≤ u(g(θ′))

First, note that if Eθ ⊆ Eθ′ then σθ′θ is necessarily equal to 1 which implies
u(g(θ)) ≤ u(g(θ′)). Consider the following strategy : if the agent reports
type θ, ask for all evidence in Eθ with the same probability. Then ∀θ, θ′, if
Eθ 6⊆ Eθ′ , the above inequality is satis�ed for α large enough. Because we
have a �nite number of such inequalities, we can take the largest α to satisfy
all of them. We conclude that if infa∈A u(a) = −∞, g is implementable if
and only if

∀θ, θ′ Eθ′ ⊆ Eθ =⇒ u(g(θ′)) ≤ u(g(θ))

If on the other hand infa∈A u(a) is �nite, we can set it to 0 w.l.o.g and
denote by aε an action such that u(aε) = ε for all ε > 0. By continuity of
u, such action always exists. In this case, g is implementable if and only if
there exists a strategy σ such that

∃ε > 0 s.t ∀θ, θ′ σθ′θu(g(θ)) + (1− σθ′θ)ε ≤ u(g(θ′))

⇔ ∀θ, θ′ if u(g(θ′)) < u(g(θ)) then σθ′θu(g(θ)) < u(g(θ′))
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We conclude that a strategy σ implements g i�

∀θ, θ′, if u(g(θ′)) < u(g(θ)) then σθ′θ <
u(g(θ′))

u(g(θ))

Implementation results follow from Lemma 1, where, in this context,
certain inequalities are replaced with strict inequalities. The subsequent
results still hold but have to be modi�ed accordingly.

Zero-sum game interpretation of Proposition 2. Consider the zero-sum
game Γk de�ned as follows, having a value w ≤ 1:

• Player 1 (Fictitious): chooses a type j in J = {1, . . . , k − 1}.

• Player 2 (The principal): chooses a document elk in {e1
k, . . . , e

qk
k }. Let

L = {1, . . . , qk}.

• If elk ∈ Eθj then player 1 gets u(g(θk))
u(g(θj))

= 1
bj
, otherwise he gets 0.

The matrix Λ of this game is therefore given by ∀j ∈ J, l ∈ L,Λjl =
1{el

k
∈Eθj }

bj
=

Ajl
bj
. The von Neumann theorem ensures that there exists X∗ ∈

∆(J) and Y ∗ ∈ ∆(L) such that:

∀l ∈ L, (X∗Λ)l ≥ w and ∀j ∈ j, (ΛY ∗)j ≤ w

If w = 0, then ∀j ∈ j, (ΛY ∗)j ≤ w translates into ΛY ∗ = 0 because all
terms are positive. It is easy to see that in this case Pk is feasible for every
x = αY ∗ with α > 0, and that its value is unbounded.

Otherwise, 0 < w ≤ 1, let x∗ = 1
w
Y ∗ and y∗ = 1

w
X∗. The following

program Dk is the dual of Pk:

Min y · b
s.t. yA ≥ c

y ≥ 0

We check that Pk is feasible for x∗ and Dk is feasible for y∗, and that
y∗ · b = c · x∗ = 1

w
. The value of Pk is therefore v = 1

w
≥ 1.
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Conversely, if there exists a zero column of A, i.e. ∃l0 s.t. Ajl0 = 0,∀j,
then Pk is feasible for every x such that xl0 = α > 0 and xl = 0, ∀l 6= l0.
Therefore, Pk's value is unbounded. Let Y ∗ ∈ ∆(L) be such that Yl0 = 1.
We then have ΛY ∗ = 0 and the value of Γk is 0.

If A has no zero column, then we check that Pk is feasible for x = 0 and
Dk is feasible for y large enough. Pk has therefore a value v and there exists
x∗ ≥ 0 and y∗ ≥ 0 such that y∗ · b = c · x∗ = v. Assuming that v ≥ 1, de�ne
X∗ = 1

v
y∗ and Y ∗ = 1

v
x∗. We check that X∗ ∈ ∆(J), Y ∗ ∈ ∆(L) and that:

∀l ∈ L, (X∗Λ)l ≥
1

v
and ∀j ∈ J, (ΛY ∗)j ≤

1

v

Γk's value is therefore w = 1
v
≤ 1.

On the concavity assumption of Proposition 4. The existence of an op-
timal deterministic outcome function relies upon the concavity assumption
stated in Proposition 4:

∀θ, ∃cθ concave such that ∀a ∈ A, v(θ, a) = cθ(u(a))

In this section, we construct an example where this condition is violated
and �nd a randomized outcome function that improves the principal's payo�
compared to deterministic ones.

Consider the following framework: A = [0, 1], u(a) = a and Θ = {θ1, θ2, θ3}
with Eθ1 = {e1}, Eθ2 = {e2} and Eθ3 = {e1, e2}. The principal utility func-
tions have the following shape:

Figure 1: Principal utility functions
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where a3 = a1 + a2 and v(θ2, a) = v(θ1, a − (a2 − a1)). Let the probabil-
ity distribution of types be µ such that µ(θ) = 1

3
for all θ ∈ Θ. Note that

the assumptions of Proposition 4 are all satis�ed except for the concavity
assumption, which v(θ3, ·) violates. Our goal is to show that in this case, the
principal can strictly increase his payo� by randomizing over actions. First,
we determine the best deterministic outcome function, and then we �nd a
non-deterministic function that gives a strictly higher payo� to the principal.

An outcome function g is implementable if and only if g(θ1)+g(θ2) ≥ g(θ3)
and g(θ3) = maxi g(θi). We know that a3 = a1 + a2 which guarantees that
the outcome function g̃ given by g̃(θi) = ai for i ∈ {1, 2} and g̃(θ3) =
a3 is implementable. Let's show that g̃ is the best deterministic outcome
function. Consider an implementable deterministic outcome function g, and
let V (g) = 1

3

∑3
i=1 v(θi, g(θi)) denote the expected payo� of g. If g(θ1) ≤

a1 and g(θ2) ≤ a2, then the implementability condition and the shape of
the principal's utility functions ensure that V (g) ≤ V (g̃). If g(θ1) > a1 or
g(θ2) > a2, the only bene�t would be to allow g(θ3) to be larger than a3. Set
g(θ3) = a3 + t for t > 0. We can show that for a �xed t, it is optimal to set
g(θ1) = a1 + t

2
and g(θ2) = a2 + t

2
. For such a con�guration, we get:

V (g) = V (g̃) +
1

3
(γ(t)− 2ψ(

t

2
))

where

v(θ1, a1 + x) = v(θ1, a1)− ψ(x) ∀x ≥ 0

v(θ2, a2 + x) = v(θ2, a2)− ψ(x) ∀x ≥ 0

v(θ3, a3 + x) = v(θ3, a3) + γ(x) ∀x ≥ 0

We conclude that g̃ is the best deterministic outcome function if γ(t) ≤
2ψ( t

2
). Now, consider the non-deterministic outcome function g given by

g(θi) = ai for i ∈ {1, 2}, g(θ3) = a3 with probability α and a3 with probability
1−α. For α such that a3 = αa3 + (1−α)a3, the function g is implementable
and V (g) > V (g̃).
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