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Abstract

We introduce and analyze three definitions of equilibrium for finite extensive

games with imperfect information and ambiguity averse players. In a setting where

players’ preferences are represented by maxmin expected utility, as characterized

in Gilboa and Schmeidler (1989), our definitions capture the intuition that players

may consider the possibility of slight arbitrary mistakes. This generalizes the idea

leading to trembling-hand perfect equilibrium as introduced in Selten (1975), by

allowing for ambiguous trembles characterized by sets of distributions. We prove

existence for two of our equilibrium notions, and relate our definitions to standard

equilibrium concepts with expected utility maximizing players. Our analysis shows

that ambiguity aversion can lead to behavioral implications that are distinct from

those attained under expected utility maximization, even if ambiguous beliefs only

arise from the possibility of slight mistakes in the implementation of unambiguous

strategies.
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1 Introduction

The main difficulty in defining equilibrium concepts for extensive games with imperfect

information is how to characterize players’ equilibrium beliefs about past actions at

information sets that do not lie on the equilibrium path. For games where players are

expected utility maximizers, the two most common ways to solve this difficulty give

rise to the definitions of Weak Perfect Bayesian Equilibrium (WPBE) and Sequential

Equilibrium (SE). For a WPBE, any beliefs are defined to be consistent off the equilibrium

path; for SE, consistency is defined by requiring equilibrium beliefs at all information sets

to be the limit of beliefs derived using Bayesian updating from a sequence of completely

mixed behavioral strategies that converges to the SE strategy.

In this paper, we propose an alternative approach in an environment with ambigu-

ity/uncertainty averse players, whose preferences are represented by maxmin expected

utility, as axiomatized by Gilboa and Schmeidler (1989).1 The intuition for our equi-

librium definition is analogous to the suggestion of Selten (1975) that equilibrium play

should take into account the possibility of slight mistakes. We allow for such mistakes

by assuming that players believe that with a small ε probability their opponents may

not be rational and may deviate from their equilibrium strategies. However, in contrast

to Selten (1975), we do not view such deviations as occurring according to exogenously

given probability distributions, assuming instead that if a mistake occurs, it can follow

any distribution over the relevant action space. As a result, players are faced with a

set of possible distributions over the actions of their opponents, which we model as an

ε-contamination of the actual equilibrium strategies. Given any probability measure p

defined over a set Θ and any ε ∈ (0, 1), an ε-contamination of p is defined by the set

pε := {r ∈ ∆Θ | r = (1− ε)p+ εq, with q ∈ ∆Θ},

where ∆Θ denotes the set of all probability measures with support in Θ. Thus, if say

p is an equilibrium strategy of a player at some information set, his opponents believe

that this player plays p with a high probability 1 − ε, and makes a mistake with prob-

ability ε. Moreover, if he makes a mistake, he may do so according to any arbitrary

distribution over his action set. The players’ beliefs about past actions at any informa-

1See also Gajdos et al. (2008) for a maxmin expected utility representation for agents who possess

objective but imprecise information.

1



tion set are then defined using full Bayesian updating across all opponents’ strategies in

the ε-contamination under which the particular information set is reached with positive

probability. Similarly, beliefs about future actions are defined by the ε-contamination of

opponents’ strategies at future information sets. If the resulting set-valued beliefs are

assumed to generate the sets of “priors” corresponding to a maxmin expected utility rep-

resentation of the players’ preferences, the associated decision rule can be used to derive

best responses at each information set, and define corresponding equilibrium notions.

Hence, our equilibrium definitions implicitly require that the relevant set of probability

distributions in the maxmin expected utility representation of a player’s preferences is

derived from an ε-contamination of his opponents’ equilibrium strategies.2 While the

main part of the paper assumes that players update their beliefs using the full Bayesian

updating method, many of our results also apply to more general updating rules. We

discuss such generalizations after presenting our main results.

Our modeling approach has a number of advantages: The use of ε-contaminations

generates ambiguous beliefs modeled by sets of distributions from an equilibrium strategy

profile described by precise unambiguous distributions over action sets. Thus, equilibria

are defined using standard behavioral strategy profiles, and can be characterized without

having to specify an associated belief system as for WPBE or SE. Furthermore, the

resulting beliefs are in a certain sense “more ambiguous” at information sets that do not

lie on the equilibrium path. This has a very intuitive interpretation—if players observe

a counterfactual, i.e., if they find themselves at an information set that should not have

been reached according to the equilibrium strategies, their beliefs about what kind of

play by their opponents led to this information set are more ambiguous than beliefs at

information sets that lie on the equilibrium path. In addition, our definition relies on

the standard notion of ε-contamination, which has been used extensively in Bayesian

statistics to analyze robustness questions,3 and has recently been applied in a variety

economic contexts, such as in Nishimura and Ozaki (2004), Bose, Ozdenoren, and Pape

(2006) and Bose and Daripa (2009).

To our knowledge, the only paper that allows for ambiguity aversion in extensive

games with imperfect information is Lo (1999), who defines a notion of “multiple prior

2A justification for such beliefs could be inferred from the axiomatic decision-theoretic models of

Nishimura and Ozaki (2006) and Kopylov (2008).
3See, for example, Berger (1985) or Wasserman and Kadane (1990).
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Nash equilibrium” for such games. As in our model, the only uncertainty that players

face in the games he considers is regarding the strategies of their opponents. In his

equilibrium notion, players beliefs about their opponents are modeled using sets of prob-

ability measures over opponents’ strategies, which are only updated at information sets

that are in the support of a player’s beliefs. Given that multiple prior Nash equilibrium

is an extension of the “equilibrium in beliefs” for strategic games with uncertainty averse

players (Lo, 1996), it defines a consistency notion for the players’ beliefs, which does not

require consideration of information sets that cannot arise according to such beliefs. This

allows a definition of a Nash equilibrium for the corresponding extensive games that does

not make any restrictions on “off-the-equilibrium-path” behavior, and therefore does not

require any additional assumptions about counterfactual beliefs. To define consistency

of beliefs corresponding to a multiple prior Nash equilibrium, the support of a player’s

beliefs is only allowed to include strategies of his opponents that are optimal given their

own beliefs. The interpretation given is that each player knows his opponents’ beliefs,

and that they are rational. As a consequence, each strategy in the support of any of the

players’ set-valued beliefs must be optimal at every information set that is consistent with

the belief sets that define the equilibrium. This requirement also yields the implication

that players are ambiguous about their opponents’ strategies, but have complete knowl-

edge of their opponents’ beliefs. In contrast, our equilibrium notion is defined in terms of

a consistency condition on strategies and not on beliefs, and relies on players allowing for

opponents who make mistakes and play sub-optimal actions. This assumption enables a

careful analysis of beliefs even at information sets that lie off the equilibrium path, and

a definition of optimality of strategies at such information sets.

Note that in our model players do not have the option of choosing “ambiguous strate-

gies,” i.e., they cannot use subjective randomization devices such as Ellsberg urns to

determine their action choices. Bade (2011) and Riedel and Sass (2013) analyze normal

form games where players can choose such ambiguous strategies. Riedel and Sass (2013)

base their definition of “Ellsberg equilibrium” on maxmin expected utility, and require an

ambiguous equilibrium strategy to only contain distributions over a player’s actions that

attain the maxmin of his expected utility, where the minimum is taken over the elements

of his opponents’ (ambiguous) equilibrium strategies. In a similar way, the “beliefs equi-

librium” of Lo (1996) requires the ambiguous beliefs (over opponents’ strategies) that
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define the equilibrium notion to only contain distributions that are optimal in the sense

of attaining a maxmin given the opponents’ own beliefs.4 In contrast to these papers,

the ambiguous beliefs in our paper are generated by trembles, which by definition are

not required to be optimal. There is also a literature on incomplete information games

with ambiguous beliefs about states of the world. Such Bayesian games with ambiguous

beliefs are analyzed for example in Kajii and Ui (2005), Bose et al. (2006), Bose and

Daripa (2009), Azrieli and Teper (2011) and Stauber (2011). In the present paper, the

environment of the game is common knowledge and thus there is never any ambiguity

about any states of the world—the only ambiguity present is in regards to the actions

chosen by a player’s opponents. A natural extension of our analysis could be achieved by

considering games that include both ambiguity about states of the world and opponents’

actions.

We introduce three equilibrium notions for our environment. The first, referred to as

ε-Perfect Maxmin Equilibrium (ε-PME), requires equilibrium strategies β to be optimal

for beliefs derived from an ε-contamination of β. The second notion defines a strategy

profile to be a Perfect Maxmin Equilibrium (PME) if it is the limit of a sequence of ε-PME

strategies as ε → 0. Thus, the definition of a PME is analogous to Selten’s definition

of (trembling-hand) perfect equilibrium (Selten, 1975), which is defined as the limit of

a sequence of equilibria of perturbed games. Our third equilibrium definition considers

the set limit of beliefs induced by an ε-contamination of equilibrium strategies as ε→ 0,

and requires the equilibrium strategies to be optimal given these limiting beliefs. We call

such an equilibrium a Strong Perfect Maxmin Equilibrium (SPME). Our main result is

that an SPME may not always exist, but that every extensive game with perfect recall

always has an ε-PME and thus a PME. We also show that SPME and PME are Nash

Equilibria (NE) and Subgame Perfect Equilibria (SPE) of the respective games. However,

both SPME and PME are distinct from WPBE and SE when viewed as refinements of

NE—strategies corresponding to WPBE or SE are not necessarily SPME or PME, and

conversely, there are SPME and PME that are not part of a WPBE or SE. Given that our

model considers players with ambiguity averse preferences, and the standard definitions

of NE and its refinements assume expected utility maximizing players, our equilibrium

4The equilibrium notion of Lo (1996) also allows for disagreement and correlation in the players’ beliefs

about other players’ strategies.
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notions cannot be interpreted directly as refinements. Our analysis therefore implicitly

views expected utility preferences as a subset of maxmin preferences, where the relevant

beliefs are given by a singleton distribution, and only compares the respective equilibrium

strategies. Based on this interpretation, our results show that ambiguity aversion may

yield behavioral implications that are distinct from those derived under expected utility

maximization, even when ambiguous beliefs only arise from small probability errors in

the implementation of unambiguous strategies, and we consider the limiting case where

the probability of such errors converges to zero. We illustrate our results using various

examples.

The paper is structured as follows: A model of extensive games with imperfect in-

formation is presented in Section 2. Section 3 introduces our equilibrium definitions.

Existence of equilibria is explored in Section 4, and the relation of our equilibrium def-

initions to standard equilibrium concepts is analyzed in Section 5. Section 6 discusses

various generalizations and extensions, and Section 7 concludes.

2 Extensive games with imperfect information

We use the model and notation of Osborne and Rubinstein (1994, p. 200), with the

additional assumptions that all games satisfy perfect recall, and that preferences can

be represented by maxmin expected utility. A finite extensive game with imperfect

information is then defined as follows:

• A finite set N representing the players of the game;

• A finite set H of sequences of actions (ak)k=1,...,K , representing the histories of the

game (including the empty history ∅);

• A set Z ⊂ H of terminal histories; for each h ∈ H \ Z, A(h) := {a | (h, a) ∈ H}

defines the set of actions available after history h;

• A player function P : H \ Z → N ;

• For each player i ∈ N an information partition Ii of the set {h ∈ H \Z |P (h) = i},

having the property that if h, h′ ∈ Ii ∈ Ii, then A(h) = A(h′); the player choosing

an action at the information set Ii is denoted by P (Ii), and the actions available

at Ii by A(Ii);
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• All players have perfect recall, i.e., if two histories h and h′ belong to the same

information set Ii, then h is not a sub-history of h′ and h′ not a sub-history of h,

and both h and h′ pass through the same sequence of information sets of player i,

and contain identical actions at all such information sets;

• The preferences of each player i satisfy the axioms of Gilboa and Schmeidler (1989)

and can be represented by a maxmin expected utility function ui : Z → R, i.e., if

player i’s ambiguous beliefs over terminal histories are given by a set of distributions

M ⊂ ∆Z, then his expected utility is defined by minµ∈M Eµ[ui(z)], where Eµ
denotes the expectation operator associated to the distribution µ.

The set of pure strategies of player i is defined by Si := ×Ii∈IiA(Ii), and the set of

mixed strategies by Mi := ∆Si. A behavioral strategy of player i, βi = (βi(Ii))Ii∈Ii ,

with βi(Ii) ∈ ∆A(Ii), is a function that assigns to each information set Ii of player i a

probability distribution over the set of actions available at Ii. We let β denote a profile of

behavioral strategies βi, and Bi denote the set of all behavioral strategies of player i, with

B := ×Ni=1Bi. Given a profile of strategies β ∈ B, O(β) denotes the probability measure

over terminal histories Z induced by β, and given a probability measure µ(Ii) ∈ ∆Ii,

O(β, µ(Ii)) denotes the probability measure over Z conditional on Ii and µ(Ii). Finally,

ui(O(β)) and ui(O(β, µ(Ii))) denote the expected utilities of the respective measures.

3 Strategies and equilibria with ambiguity averse players

As noted in the introduction, we define equilibria in terms of unambiguous strategy

profiles, but endow players at each information set with ambiguous beliefs derived from

their opponents’ strategies. We assume that players choose behavioral strategies.5 Given

a profile of behavioral strategies, each player’s ambiguous beliefs are derived from a

behavioral ε-contamination of every opponent’s strategy, defined as follows:

Definition 1. Let βj ∈ Bj and ε ∈ (0, 1). A behavioral ε-contamination of βj is the set

βεj ⊂ Bj defined by

βεj := {β′j ∈ Bj |β′j(Ij) = (1− ε)βj(Ij) + εδj(Ij), ∀δj ∈ Bj , ∀Ij ∈ Ij}.
5We will discuss the appropriateness of this modeling approach shortly.
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In deriving beliefs from behavioral ε-contaminations, we assume that from the point of

view of the opponents of player j, this player is expected to make a mistake with proba-

bility ε at each of his information sets, in which case he may choose his actions according

to any distribution over the actions that are feasible at the respective information sets.

Since mistakes result by definition from unintentional trembles, all feasible distributions

are thus viewed as equally-likely candidates for a mistake. Furthermore, the distributions

over actions in case a mistake occurs are assumed to be independent across information

sets.

Hence, when defining our equilibrium notions, we consider a fixed behavioral strategy

profile β, but think of each player i’s beliefs about his opponents’ strategies as being

derived from an ε-contamination βε−i induced by β−i. Then, given any information set

Ii of player i, there always exist strategies in βε−i under which this information set is

reached with positive probability, as long as player i’s actions are consistent with Ii.

We can thus define i’s beliefs at Ii over past actions as the set of all distributions over

histories in Ii that are derived using full Bayesian updating across all those strategies in

βε−i under which Ii is reached with positive probability, assuming that player i’s actions

prior to Ii are consistent with Ii. Furthermore, beliefs at Ii over future actions are given

by the ε-contaminations of all his opponents’ relevant future strategies.

It is well-known that the maxmin expected utility model need not be dynamically con-

sistent with full Bayesian updating.6 Dynamic consistency is also not guaranteed to hold

in the restricted environment we consider, when beliefs are derived from ε-contaminated

strategies as described above. This is illustrated by the following example:

Example 1. Consider the game structure described in Figure 1, where player 2’s payoffs

are arbitrary, and fix a strategy for player 2 such that β2(R) = 1. Assuming player 1

chooses a strategy at the start of the game, his available pure strategy choices are CA

and CB, and his expected utility from playing CA with probability p is given by

u1(p, β2) = (1− ε)[101p+ 100(1− p)]

+ ε min
(qO,qL,qR)∈∆{O,L,R}

{−qO + qL(1− p)101 + qR[101p+ 100(1− p)]}.

6For a discussion and analysis of this issue in a decision-theoretic setting, see for example Epstein

and Schneider (2003) and Hanany and Klibanoff (2007). See also Sass (2013) for an analysis of dynamic

consistency in a game-theoretic setting where players can choose ambiguous strategies.
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Figure 1: Example 1.

Clearly, the minimum in the second term is attained when qO = 1, which implies that

the optimal choice at the start of the game is to set p = 1, and hence to play CA.

Now consider the optimal choice of player 1 at this second information set. The

histories constituting this information set are given by CL and CR, and player 1’s con-

ditional beliefs over these histories are derived from an ε-contamination of player 2’s

strategy β2(R) = 1. Letting µ denote the probability assigned to CR, the set of all such

conditional beliefs is given by µ ∈ [1 − ε, 1]. Then 1’s expected utility from assigning

probability p to action A is given by

u1(p, β2) = min
µ∈[1−ε,1]

{µ[101p+ 100(1− p)] + (1− µ)(1− p)101}

= min
µ∈[1−ε,1]

{µ(102p− 1) + 101(1− p)}

=

100 + p, if p ≤ 1
102 ,

100 + ε+ (1− 102ε)p if p > 1
102 .

It follows that as long as 1− 102ε < 0, or equivalently, ε > 1
102 , the optimal strategy of

player 1 is to set p = 1
102 , so player 1’s preferences are not dynamically consistent.7 C

Since dynamic consistency will in general not hold in our environment, in defining

our equilibrium notions, we follow the approach to dynamic choice introduced by Strotz

(1955-1956), usually referred to as consistent planning.8 Assuming consistent planning,

7Note that dynamic inconsistency can also arise with arbitrarily small values of ε. For example, if

player 2 is assumed to play O with probability 1, then for any ε > 0, every p ∈ [0, 1] is optimal at the

start of the game, but only p = 1
102

is optimal at player 1’s second information set.
8See also Siniscalchi (2011) for a recent axiomatic justification for consistent planning, which shows
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each information set of every player is viewed as defining a separate individual who decides

independently what strategy to choose at that information set. When making a choice

at an information set, each corresponding individual will correctly predict the strategies

chosen at future information sets by different instances of the same player. Furthermore,

given that we assume perfect recall, each player always knows exactly what actions he

has chosen at past information sets.

Consider now, as an alternative to introducing trembles information set-by-information

set through behavioral ε-contaminations, the possibility of introducing trembles to mixed

strategies in the strategic form of an extensive game. Such an approach would essentially

assume that players can commit to a mixed strategy ex-ante, and that trembles occur at

this commitment stage. If dynamic inconsistency arises in the game under consideration,

this would contradict the dynamic structure of the game, since it would deprive the play-

ers of the option of choosing actions at individual information sets, which, in the case

of ambiguity averse players, would not be without loss of generality. In contrast, when

using the consistent planning approach, each information set is treated as an individual

player who chooses an action given the information available at that information set.

As a consequence, the fact that actions are chosen individually at each information set

suggests that if mistakes can occur, they should be modeled as individual trembles that

are made when actions are chosen, i.e., at individual information sets, as in the definition

of a behavioral ε-contamination.9

Epstein and Schneider (2003) and Hanany and Klibanoff (2007) show that dynamic

consistency can be guaranteed to hold in dynamic choice settings with maxmin expected

utility, by either restricting the class of feasible initial priors, or carefully choosing up-

dating rules that differ from full Bayesian updating. We discuss in Section 6.2 how these

approaches might be used in our game-theoretic framework to restore dynamic consis-

tency, but also show that even for our initial model, in a certain sense, any dynamic

inconsistency associated with our equilibrium strategies disappears at the limit, when

ε→ 0.

Before introducing our equilibrium definitions, we now characterize the ambiguous

that knowledge of ex-ante preferences over decision trees is sufficient to characterize the behavior of a

consistent planner.
9Note that this discussion applies even to games such as the one discussed in Example 1, where each

player only has one information set at which he must choose an action.
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Figure 2: The derivation of µIi(β
ε).

beliefs that can arise through the previously described updating procedure. For any

information set Ii such that player i moves at Ii, there is a unique, but possibly empty,

sequence of actions of player i that leads to Ii and is contained in every history h ∈

Ii. Given a strategy profile β, let β−i[Ii] denote the probability of reaching Ii under

β−i, assuming that i plays the unique action sequence that leads to Ii. If βε is an ε-

contamination of β, let µIi(β
ε) ⊂ ∆Ii denote the set of probability distributions over

Ii that are derived from βε−i using full Bayesian updating across all β′−i ∈ βε−i with

β′−i[Ii] > 0. Thus, every element in µIi(β
ε) yields a distribution over histories in Ii,

conditional on player i playing the sequence of actions that leads to Ii. Define

µIi(β) := lim sup
ε→0

µIi(β
ε),

where the lim sup is with respect to set limits.10 Note that lim supε→0 µIi(β
ε) is always

a closed set.

The following example illustrates the derivation of µIi(β
ε), and its properties. These

properties generalize to some extent to any finite extensive game, as shown in the subse-

quent two lemmas.

10If En is a sequence of sets, lim supnEn is the set of cluster points of sequences yn ∈ En, and

lim infnEn is the set of limit points of sequences yn ∈ En. If lim supnEn = lim infnEn, the resulting set

is equal to the Hausdorff limit of En. See Aubin and Frankowska (1990, pp. 16-23) and Nadler (1978,

pp. 4-6) for a discussion of set limits.
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Example 2. Consider again the game from Example 1, and let ε = 1
10 , β2(L) = 4

9 ,

and β2(R) = 2
9 . The unconditional probabilities at player 1’s second information set

corresponding to 2’s strategy assign probability β2(L) to history L, and β2(R) to history

R. The unconditional probabilities derived from the ε-contamination of 2’s strategy are

given by the sum of the vector (1− ε)(β2(L), β2(R)) and the projection of ε∆{O,L,R}

to the coordinates corresponding to L and R. The resulting set of all such unconditional

probabilities are represented by the gray shaded triangle in Figure 2. Bayesian updating

of all unconditional probabilities in this set results in a set of conditional probability

distributions over {L,R} where the probability assigned to L ranges from 4
7 to 5

7 . In

Figure 2, this set is represented by the thick black line connecting the points
(

4
7 ,

3
7

)
and(

5
7 ,

2
7

)
. If we let ε → 0, the gray shaded triangle shrinks towards the black dot located

at the point (β2(L), β2(R)), and the set of conditional probability distributions derived

from the ε-contamination converges to the point
(

2
3 ,

1
3

)
, which is just the conditional

distribution derived from β2. Note also that for a constant value of ε, the set of conditional

distributions derived from the corresponding ε-contamination varies continuously in β2.

(The size of the gray shaded triangle stays constant, but the line connecting the origin of

the coordinate system with the bottom left corner of the triangle changes continuously

with β2.)

If however we had started with (β2(L), β2(R)) = (0, 0), the bottom left corner of

the gray shaded triangle in Figure 2 would coincide with the origin, and the resulting

conditional distributions over L and R would be represented by the line connecting the

points (1, 0) and (0, 1). In this case, the set of conditional distributions derived from

such an ε-contamination would not vary with ε, and its limit as ε → 0 would therefore

also be given by all distributions over {L,R}. C

Note that the example illustrates two appealing properties of our modeling frame-

work: If we interpret the “size” of the set of conditional beliefs as a measure for the

degree of ambiguity, then ambiguity is clearly increasing in the probability ε of making a

mistake. Moreover, given a fixed value of ε, the smaller the probability that a particular

information set is reached according to the equilibrium strategies of a player’s opponents,

the larger the weight of the opponent’s potential mistakes will be in the calculation of

the player’s conditional beliefs at this information set. The resulting effect is particularly

stark at information sets that are not reached with positive probability—in the example
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above, this results in a set of conditional beliefs that is given by all distributions over

histories in the corresponding information set. The greatest difference in the degree of

ambiguity on and off the equilibrium path in the example is attained at the limit, when

ε → 0. In this case, beliefs on the equilibrium path are singletons, and beliefs off the

equilibrium path have “full” ambiguity.

The following lemma shows that at information sets for which β−i[Ii] > 0, µIi(β) is

always a singleton set that is equal to the Hausdorff limit of µIi(β
ε).

Lemma 1. If β−i[Ii] > 0, then for any ε ∈ (0, 1), µIi(β
ε) is a compact set, and µIi(β)

is the singleton set defined by the conditional distribution induced by β−i, which is equal

to the Hausdorff limit of µIi(β
ε) as ε→ 0.

Proof. Given β−i, consider an information set Ii such that β−i[Ii] > 0. Let Ij , with

j 6= i, be an information set for which there exists an action aj ∈ A(Ij) such that aj is

contained in some history h ∈ Ii, i.e., Ij is an information set that “leads to Ii.” For

any such Ij , β
ε
j (Ij) is a compact subset of a Euclidean space, since it is defined as the

sum of ε(∆A(Ij)), which is compact, and the vector (1− ε)βj(Ij). Thus, the projection

of βεj (Ij) onto coordinates that correspond to actions belonging to some history in Ii is

also compact. Taking the Cartesian product of all such projections across all information

sets Ij that lead to Ii will therefore also yield a compact set. The set µIi(β
ε) ⊂ ∆Ii is

the image of a continuous function defined on this Cartesian product, and is therefore

compact—the corresponding function is continuous since its domain is a compact subset

of Rl+ for some l-dimensional Euclidean space, which does not include any vector that

assigns an unconditional probability of zero to the information set Ii.

As ε → 0, each βεj (Ij) converges in the corresponding Hausdorff metric to {βj(Ij)},

and hence the Cartesian product described above converges to a singleton set. It fol-

lows that µIi(β
ε) converges in the Hausdorff metric to the singleton set defined by the

conditional distribution induced by β−i.

Note that when β−i[Ii] = 0 at some information set Ii, the set µIi(β) will in general

be a non-singleton, which is sometimes equal to the set of all distributions over Ii, as

in Example 2, but which can also be a strict subset of this set. As an example where

this is the case, consider the game structure displayed in Figure 3, and assume that

β1(L) = p ∈ (0, 1) and β2(C) = 1, so β−3[I3] = 0. Then every distribution in µI3(β)
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A B

C

A B

C2

3

Figure 3: β−3[I3] = 0 if β2(C) = 1.

at player 3’s information set must assign probability p to the set of histories {LA,LB},

and must satisfy the property that the ratios of the probabilities assigned to LA vs. RA,

and LB vs. RB, if defined, are equal to p
1−p . Hence, µI3(β) would be a strict subset of

the set of all distributions over I3. More generally, the following lemma shows that the

sets µIi(β
ε) are ordered by set inclusion, which allows a simplification of the definition

of µIi(β) as the Hausdorff limit of µIi(β
ε).11

Lemma 2. For every strategy profile β and information set Ii, the sets µIi(β
ε) are

monotonic in ε relative to set inclusion, and thus µIi(β) = limε→0 µIi(β
ε).

Proof. As in the proof of Lemma 1, consider an information set Ij leading to Ii. Then the

ε-contamination of βj(Ij) is given by the set (1−ε)βj(Ij)+ε(∆A(Ij)), which is monotonic

in ε. To see why, note that this set contains the point βj(Ij) = (1− ε)βj(Ij) + εβj(Ij),
12

and that the ε-contamination always shrinks monotonically towards this point as ε→ 0.

Thus, the projection of the ε-contamination of βj(Ij) to coordinates that correspond to

actions belonging to some history in Ii, is also monotonic in ε.

The unconditional probabilities over histories in Ii resulting from the Cartesian prod-

uct over all such projections across all information sets Ij leading to Ii, are therefore

also monotonic in ε. If β−i[Ii] > 0, the corresponding set of unconditional probabilities

does not contain the zero vector for any ε ∈ (0, 1), and if β−i[Ii] = 0, this set contains

the zero vector for every ε ∈ (0, 1). It follows that the set of induced conditional prob-

abilities µIi(β
ε), which is the continuous image of all non-zero vectors of unconditional

probabilities, is also monotonic in ε.

11Note that this result also implies that µIi(β
ε) converges to µIi(β) in terms of net convergence, where

the corresponding net is indexed by ε ∈ (0, 1).
12In Figure 2, this point is represented by the black dot in the grey shaded triangle.
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We next propose three different definitions of equilibrium for our environment. The

first considers the case where players’ beliefs are derived from an ε-contamination of their

opponents’ strategies, and the equilibrium strategies are optimal at each information set

given these beliefs. We call the resulting equilibria ε-Perfect Maxmin Equilibria (ε-

PME). The second definition considers the set limit as ε → 0 of the set of all ε-PME,

and defines any strategy profile in this limit to be a Perfect Maxmin Equilibrium (PME).

The last definition considers first the set limit µIi(β) of the beliefs µIi(β
ε) induced by

ε-contaminations as ε → 0, and defines a strategy profile β to be a Strong Perfect

Maxmin Equilibrium (SPME) if it prescribes strategies that are optimal for µIi(β) at

each information set Ii. In the following, the notation βi(Ii+) is used to denote the

continuation strategy induced by βi at all information sets of player i that follow Ii.

Definition 2 (ε-Perfect Maxmin Equilibrium). A strategy profile β ∈ B is an ε-perfect

maxmin equilibrium if for every i and Ii ∈ Ii,

βi(Ii) ∈ arg max
β′i(Ii)∈∆(A(Ii))

inf{ui(O((β′i(Ii), βi(Ii+), β̃−i), µ̃Ii)) | β̃−i ∈ βε−i, µ̃Ii ∈ µIi(βε)}.

Definition 3 (Perfect Maxmin Equilibrium). Let B(ε-PME) denote the set of ε-PME.

A strategy profile β ∈ B is a perfect maxmin equilibrium if β ∈ lim supε→0 B(ε-PME).

Note that an ε-PME strategy β is required to be optimal given beliefs derived from

an ε-contamination of β, for a particular ε. A strategy β constitutes a PME if it can be

approximated by a sequence of ε-PMEs as ε→ 0, using the respective Euclidean metric.

Thus, we can view a PME as approximating the equilibrium behavior resulting from an

ε-PME, when the probability of a mistake is arbitrarily small. An equilibrium definition

that is stronger than that of an ε-PME, could require that an equilibrium strategy β is

optimal for beliefs µIi(β
ε) derived from β, for all values of ε that are smaller than some

cutoff value (which would imply that β is an ε-PME for all small enough ε). Although we

will not pursue such an equilibrium definition in the paper, we introduce next a closely

related definition that requires optimality of an equilibrium strategy β for beliefs defined

by µIi(β) = limε→0 µIi(β
ε). Clearly, if β is optimal for all µIi(β

ε) with ε small enough,

it will be optimal for the resulting limit beliefs µIi(β), but the converse may not hold.

However, as we will show, even the weaker definition is too strong to guarantee existence

of a corresponding equilibrium.
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Definition 4 (Strong Perfect Maxmin Equilibrium). A strategy profile β ∈ B is a strong

perfect maxmin equilibrium if for every i and Ii ∈ Ii,

βi(Ii) ∈ arg max
β′i(Ii)∈∆(A(Ii))

min{ui(O((β′i(Ii), βi(Ii+), β−i), µ̃Ii)) | µ̃Ii ∈ µIi(β)}.

Our equilibrium definitions implicitly assume that players maintain the assumption

that their opponents will follow their equilibrium strategies with high probability, even

after having observed a deviation from the equilibrium strategies. Thus, any deviation

is interpreted as a small probability mistake that has no implications regarding future

play. Equilibria are defined by behavioral strategies profiles β—for ε-PME and SPME,

the equilibrium strategies must be optimal for the corresponding belief systems defined

by µIi(β
ε) and µIi(β), but strategies corresponding to a PME β may not necessarily be

optimal for the belief system defined by µIi(β).13

An alternative way to define an equilibrium, which does not rely on ε-contaminations,

could require optimality of an equilibrium strategy β for beliefs defined by µIi(β) at in-

formation sets Ii with β−i[Ii] > 0 (in which case beliefs would be unambiguous by Lemma

1, and could just be derived from β−i using Bayes’ rule), and by ∆Ii at information sets

Ii with β−i[Ii] = 0 (so beliefs reflect “full” ambiguity). We do not pursue such a defini-

tion for two principal reasons: As a practical reason, such an equilibrium may not always

exist—in Example 3 below, it would also be an SPME, and the non-existence of SPME in

the example implies that such an equilibrium would not exist either. More importantly,

the previous discussion of the game from Figure 3 shows that even if β−i[Ii] = 0, the

knowledge of equilibrium strategies chosen before Ii can significantly restrict the feasible

beliefs at Ii, in which case the approach using ε-contaminations provides a tractable and

intuitive way to derive the resulting beliefs. While other approaches to define equilibria

that incorporate some form of ambiguity, especially off the equilibrium path, are possible,

we view our approach based on ε-contaminations as the the most parsimonious depar-

ture from the standard analysis under expected utility maximization, which maintains

the usual assumption that players know the equilibrium strategy profile, and also has an

intuitive interpretation based on trembles modeled by ε-contaminations.

13The last paragraph of Example 3 illustrates why this is the case.
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Figure 4: Example 3.

4 (Non-)Existence

For the following example, no SPME exists, but an ε-PME exists for every ε ∈ (0, 1):

Example 3. For the game described in Figure 4, consider the possibility of an SPME

where β1(L) > 0 and β1(R) = 0. Then 2’s beliefs assign probability one to L, and

thus his best response is to play B, in which case R is optimal for player 1. A similar

argument shows that there is no SPME with β1(R) > 0 and β1(L) = 0. For an SPME to

exist where β1(L) > 0 and β1(R) > 0, 1 must be indifferent between these two actions,

which can only be the case when β2(A) = β2(B) = 1
2 . But then O is a best response for

player 1. Consider as a last option the possibility of an SPME where β1(O) = 1. Then 2’s

information set is not reached according to 1’s strategy, and thus his set of beliefs is given

by all possible distributions over {L,R}.14 Letting µ denote the probability assigned to

the history L by 2’s beliefs, and p denote the probability that 2 assigns to his action A,

2’s expected utility is given by

u2(β1, p) = min
µ∈[0,1]

{µ[p+ 2(1− p)] + (1− µ)2p}

= min
µ∈[0,1]

{µ(2− 3p) + 2p}

=

2p, if p ≤ 2
3 ,

2− p if p > 2
3 .

It follows that p = 2
3 is the unique optimal strategy for player 2, in which case the payoff

14The set of unconditional probabilities over {L,R} induced by an ε-contamination is the convex hull

of {(0, 0), (0, ε), (ε, 0)}. The corresponding set of conditional distributions is equal to ∆{L,R} for any

ε ∈ (0, 1), and therefore so is the set limit as ε→ 0.
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1 receives from L is equal to 8, which is higher than the payoff of 7 he receives from

playing O. Hence, the game has no SPME.

The case where 1 plays O and 2’s beliefs are given by the set of all µ ∈ [0, 1], illustrates

that a player with maxmin preferences can strictly prefer randomizing over playing the

corresponding pure strategies. As the minimizing value of µ is not constant across p, and

hence the resulting expected payoffs u2(β1, p) are not linear in p, the (unique) optimal

choice of p = 2
3 allows player 2 to completely hedge against the ambiguity he faces,

and achieve a strictly higher expected payoff than he can get from any pure strategy

or any alternative randomization. In contrast, since SE is based on standard expected

utility preferences, 2’s expected payoffs are linear in p for any SE, and hence player 2

only randomizes over his actions if he is indifferent between the pure actions and all

corresponding randomizations. As a result, there exist a continuum of SE where 1 plays

O and 2 chooses any randomization with p ∈
[

5
12 ,

7
12

]
, based on precise beliefs given by

µ = 2
3 .

As indicated previously, the game always possesses ε-PME, which are derived in

Appendix A. In particular, we show that for ε < 1
8 , there is a unique ε-PME given by

β1(L) =
2ε

(1− ε)
, β1(R) = 0, and β2(A) =

7

(1− ε)12
,

which implies that the PME of this game is the limit of the ε-PME as ε → 0, and is

given by β1(O) = 1 and β2(A) = 7
12 . In this example, the set of PME is a strict subset of

the set of SE (which in this case is the same as the set of WPBE). The SE of the game

are summarized by β1(O) = 1, β2(A) ∈
[

5
12 ,

7
12

]
, and µ2(L) = 2

3 .

To see what happens at the limit as ε→ 0, denote the ε-PME derived in this example

by β[ε]. Then β[ε]1(L) = 2ε
(1−ε) → 0, but the set-valued conditional beliefs of player 2

derived from β[ε]1 are constant across ε and given by µ2(L) ∈
[

2
3 , 1
]
, and hence also

converge to
[

2
3 , 1
]

as ε→ 0. For ambiguous beliefs defined by
[

2
3 , 1
]
, player 2 maximizes

his expected utility by choosing any β2(A) ∈
[
0, 2

3

]
, so the PME strategy that assigns

probability 7
12 to action A is optimal. However, if we consider an ε-contamination of

player 1’s PME strategy, which assigns probability 1 to action O, and take the limit of

the induced beliefs as ε → 0, then this limit is given by all µ2(L) ∈ [0, 1], in which case

player 2’s optimal strategy is to play action A with probability 2
3 . C

The existence result from the example generalizes to any finite extensive game:
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Theorem 1. Every finite extensive game with perfect recall has an ε-PME for ε ∈ (0, 1).

Proof. The consistent planning assumption implies that each information set Ii defines

a distinct individual of player i who maximizes the infimum of his expected utility over

the conditional beliefs over histories in Ii derived from an ε-contamination βε−i of his

opponents’ strategy profile, and over all distributions over terminal histories following

Ii, as induced by βi(Ii+) and βε−i. We can therefore consider the best responses of each

player at every one of his information sets separately.

Fix an information set Ii of player i, and consider an information set Ij for which

there exists an action aj ∈ A(Ij) such that for some h ∈ Ii, aj is either contained in

the history h, or is the last action in a history that has h as a sub-history. Then Ij

is either an information set that “leads to Ii,” in the first case, or one that “follows

Ii,” in the second case.15 Similarly, we will refer to the corresponding action aj as

described above as an action that leads to Ii or an action that follows Ii. Given a

strategy profile β−i, let β′−i ∈ βε−i denote a strategy profile for which β′−i[Ii] > 0.16

Then the strategies constituting β′−i that correspond to information sets that lead to Ii

define a conditional distribution over histories in Ii using Bayesian updating. Let µ′Ii

denote the corresponding conditional beliefs. If player i uses a strategy σ ∈ ∆A(Ii) at

Ii, and uses strategies given by βi(Ii+) at any of his information sets that follow Ii,

the probability of a terminal history (h, ai, aj1, . . . , ajk) with h ∈ Ii, conditional on Ii,

is given by µ′Ii(h)σ(ai)
∏l=k
l=1 β̃jl(ajl), where β̃jl is either defined by β′−i if jl 6= i, or by

βi(Ii+) if jl = i. This is a consequence of perfect recall, since no information set can

appear more than once along any particular history. Let Ui(σ, βi(Ii+), β′−i, µ
′
Ii

) denote

the expected utility of player i conditional on Ii, as induced by these probabilities over

terminal histories. Note that we write Ui as a function of β′−i for notational simplicity,

even though only those components of β′−i that correspond to information sets that follow

Ii will affect this expected utility, as the components that lead to Ii are reflected in µ′Ii .

Given the strategy profile β and information set Ii, let ΓIi(β
ε) denote the set of all

pairs (β′−i, µ
′
Ii

) derived from strategies β′−i ∈ βε−i with β′−i[Ii] > 0. Then the expected

15Note that it is possible for an information set Ij to both lead to Ii and follow Ii.
16Recall that β−i[Ii] denotes the probability of reaching Ii under β−i, assuming that player i plays the

unique action sequence that leads to Ii.
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utility of player i at Ii corresponding to β and a strategy σ ∈ ∆A(Ii) is given by

inf
(β′−i,µ

′
Ii

)∈ΓIi
(βε)

Ui(σ, βi(Ii+), β′−i, µ
′
Ii),

17

and his best response at Ii to an ε-contamination of β is defined by

BRIi(βi(Ii+), βε−i) := arg max
σ∈∆A(Ii)

inf
(β′−i,µ

′
Ii

)∈ΓIi
(βε)

Ui(σ, βi(Ii+), β′−i, µ
′
Ii).

We will show that the closure of ΓIi(β
ε), cl(ΓIi(β

ε)), is continuous in β. We then have

ŪIi(σ, β) := inf
(β′−i,µ

′
Ii

)∈ΓIi
(βε)

Ui(σ, βi(Ii+), β′−i, µ
′
Ii)

= min
(β′−i,µ

′
Ii

)∈cl(ΓIi
(βε))

Ui(σ, βi(Ii+), β′−i, µ
′
Ii),

and since Ui is linear in σ for every (β′−i, µ
′
Ii

), it follows that ŪIi is concave in σ for

every β. Furthermore, since Ui is continuous in each of its arguments, if cl(ΓIi(β
ε)) is

continuous in β, the Maximum Theorem implies that ŪIi is continuous in (σ, β).

We can then apply the Maximum Theorem to the problem maxσ∈∆A(Ii) ŪIi(σ, β) that

defines the best response BRIi(βi(Ii+), βε−i). Since ∆A(Ii) is compact and convex, and

independent of β, the Maximum Theorem implies that BRIi is convex-valued, upper

hemi-continuous and closed-valued, and hence closed. A standard application of Kaku-

tani’s fixed point theorem, where each information set of a player is considered as a

separate agent of this player, then shows that an ε-PME exists.

It remains to show that cl(ΓIi(β
ε)) is continuous in β. We start by proving a prelim-

inary lemma. Consider an arbitrary vector ρ ∈ ∆k−1 in the (k− 1)-dimensional simplex,

so ρ can be interpreted as a distribution over the action set A(Ij) at some information

set Ij . Then the ε-contamination of ρ, defined by

ρε = {(1− ε)ρ+ εq | q ∈ ∆k−1},

is compact, since it is the sum of (1 − ε)ρ and ε∆k−1, and the following lemma shows

that ρε is continuous in ρ:

Lemma 3. If (ρn) ⊂ ∆k−1 is a convergent sequence such that ρn → ρ, then ρεn → ρε in

the corresponding Hausdorff metric over subsets of ∆k−1.

17We assume that player i has perfect recall and considers his future actions to be determined by

βi(Ii+). The results would not change if we would instead assume that i’s beliefs about his future

actions are given by βε
i (Ii+).
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Proof. Since (1− ε)ρn + εq → (1− ε)ρ+ εq for every q ∈ ∆k−1, every r ∈ ρε is the limit

of a sequence rn ∈ ρεn. Furthermore, every sequence (1 − ε)ρnk
+ εqnk

, if convergent,

must converge to a point in ρε, since ρnk
→ ρ, which implies that qnk

must converge

to some element of ∆k−1. Thus, every element of ρε is a limit point of ρεn, and every

cluster point of ρεn is an element of ρε. Since the set of limit points is a subset of the

set of cluster points, this implies that ρε ⊂ lim inf ρεn ⊂ lim sup ρεn ⊂ ρε, and hence

ρε = lim inf ρεn = lim sup ρεn, so the result follows from Theorem 0.7 in Nadler (1978).

To show that cl(ΓIi(β
ε)) is continuous in β, let βn → β, and consider any point

(β̃−i, µ̃Ii) ∈ cl(ΓIi(β
ε)). Then there exists a sequence (β̃k−i, µ̃

k
Ii

) → (β̃−i, µ̃Ii) such that

(β̃k−i, µ̃
k
Ii

) ∈ ΓIi(β
ε) for every k, and hence β̃k−i[Ii] > 0 for every k. Since βε is continuous

in β, every such (β̃k−i, µ̃
k
Ii

) is the limit of a sequence ((β̃n,k−i , µ̃
n,k
Ii

)) ⊂ ΓIi(β
n,ε), which

implies that

cl(ΓIi(β
ε)) ⊂ lim inf cl(ΓIi(β

n,ε)).

Now consider any sequence (β̃nl
−i, µ̃

nl
Ii

) →l (β̃−i, µ̃Ii) such that (β̃nl
−i, µ̃

nl
Ii

) ∈ cl(ΓIi(β
nl,ε)).

Since each βnl,ε
−i is closed, β̃nl

−i ∈ βnl,ε
−i for every nl, and hence Lemma 3 implies that

β̃−i ∈ βε. If β̃−i[Ii] > 0, we must have (β̃−i, µ̃Ii) ∈ ΓIi(β
ε). If β̃−i[Ii] = 0, there

exists a sequence (β̃m−i) ⊂ βε−i such that β̃m−i → β̃i and β̃m−i[Ii] > 0 for all m. But then

(β̃m−i, µ̃
m
Ii

) ∈ ΓIi(β
ε) and (β̃m−i, µ̃

m
Ii

)→ (β̃−i, µ̃Ii), which implies

lim sup cl(ΓIi(β
n,ε)) ⊂ cl(ΓIi(β

ε)),

and hence, since lim inf cl(ΓIi(β
n,ε)) ⊂ lim sup cl(ΓIi(β

n,ε)), the continuity of the closure

follows from Theorem 0.7 in Nadler (1978).

Since a PME is defined as a cluster point of the set of ε-PME as ε→ 0, and the set

of behavioral strategy profiles is compact, Theorem 1 yields the following:

Corollary 4. Every finite extensive game with perfect recall has a PME.

5 Relation to other equilibrium notions

Since SPME and PME are defined by (unambiguous) behavioral strategy profiles, we

can ask whether such strategy profiles also constitute a Nash equilibrium of the game

20



in consideration, when the corresponding utility functions ui are interpreted as stan-

dard von Neumann-Morgenstern utility functions. The answer to this question is indeed

affirmative:

Proposition 5. Every SPME and PME is a Nash equilibrium.

Proof. Consider first an SPME defined by a strategy profile β. If β−i[Ii] = 0 for an infor-

mation set Ii, then the information set Ii will never be reached with positive probability

given the strategies of i’s opponents, β−i, no matter what actions player i chooses at

any of his information sets. Thus, no deviation by player i at such an information set

Ii has any effect on the induced distribution over terminal histories, and therefore every

strategy at Ii is optimal with respect to the strategic form of the game. Now consider an

information set Ii with β−i[Ii] > 0. Then Lemma 1 implies that i’s beliefs over histories

in Ii in the SPME are given by the singleton set containing the probability distribution

derived from β−i using Bayesian updating, and thus that these beliefs correctly capture

the actions induced by β−i whenever i chooses an action sequence that leads to Ii. Thus,

the fact that β is a SPME implies that βi prescribes an optimal strategy at every Ii

with β−i[Ii] > 0, given precise beliefs over histories in Ii that are induced by β−i, and

assuming that β determines all players’ strategies at information sets other than Ii. The

“one-shot-deviation principle” for extensive games with perfect recall (Hendon et al.,

1996) then implies that βi is sequentially rational for i at all Ii with β−i[Ii] > 0, and

hence that βi constitutes an optimal strategy for the strategic form.

Now let β denote a PME. Then β is the limit of a sequence of ε-PME strategy profiles

β[ε] converging to β as ε → 0. Since β−i[ε][Ii] → β−i[Ii], it follows that if β−i[Ii] > 0,

then β−i[ε][Ii] > 0 for small enough ε, and furthermore β−i[ε][Ii] is also bounded away

from 0 for small enough ε. This implies that the conditional beliefs µIi(β
ε
[ε]) converge

to a singleton set given by the probability distribution over Ii derived from β−i using

Bayesian updating. Since the strategies induced by β[ε] at Ii are optimal given µIi(β
ε
[ε])

and the continuation strategies defined by β[ε], the limit strategies induced by β at Ii

are optimal given the limit of µIi(β
ε
[ε]). Therefore, the same arguments we made for an

SPME imply that β is a Nash equilibrium.

In addition to being a Nash equilibrium, every SPME or PME strategy profile also

defines a subgame perfect equilibrium (SPE):

21



Proposition 6. Every SPME and PME is a subgame perfect equilibrium.

Proof. Consider an SPME β and a history h∗ such that all histories following h∗ define a

subgame of the original game. Denote this subgame by G(h∗), and the restriction of any

strategy βi to G(h∗) by βi|G(h∗). Furthermore, for any information set Ii in G(h∗), let

β−i|G(h∗)[Ii] be the probability of reaching Ii conditional on h∗, given strategies β−i|G(h∗)

and assuming that player i’s actions in G(h∗) are consistent with Ii.

To show that β induces a NE in G(h∗), we can ignore i’s actions at every Ii with

β−i|G(h∗)[Ii] = 0, since no such information set will be reached with positive probability

in the subgame given β−i|G(h∗). Consider then any Ii with β−i|G(h∗)[Ii] > 0, and let

µIi(β
′
−i) denote the beliefs over histories in Ii induced by some β′−i ∈ βε−i with β′−i[Ii] >

0. If β′−i[Ii] > 0, it must also be the case that β′−i|G(h∗)[Ii] > 0, and furthermore

the beliefs µIi(β
′
−i) must be independent of the probability of reaching h∗ under β′−i,

since this probability always yields a common factor in the corresponding unconditional

probabilities. Hence, µIi(β
′
−i) is defined by the Bayesian update of β−i|G(h∗), assuming

that i’s actions are consistent with Ii. Since our contaminations are independent across

information sets, it follows that in order to derive µIi(β
ε), we only need to consider the

unconditional probabilities over histories in Ii induced by βε in the subgame G(h∗), i.e.,

conditional on h∗. An application of Lemma 1 to the subgame then implies that µIi(β)

is a singleton set defined by the Bayesian update of β−i|G(h∗) in G(h∗), and the argument

used in the proof of Proposition 5 then implies that β induces a NE in G(h∗).

To show that a PME β is also a SPE, note that if β[ε] → β, then β−i|G(h∗)[ε] → β−i|G(h∗)

for any subgame G(h∗), and hence β−i|G(h∗)[ε][Ii]→ β−i|G(h∗)[Ii]. It follows that whenever

β−i|G(h∗)[Ii] > 0, β−i|G(h∗)[ε][Ii] > 0 for small enough ε. Since beliefs induced by βε−i[ε] at

Ii only depend on βε−i|G(h∗)[ε], the argument use in the proof of Proposition 5 shows that

β also induces a NE in G(h∗).

The proof of the previous proposition shows that any player i’s beliefs corresponding

to an SPME or PME are precise at all information sets except those information sets

Ii for which there does not exist a subgame G(h∗) such that β−i|G(h∗)[Ii] > 0. Hence,

non-trivial ambiguous beliefs can only arise at an information set Ii if β−i|G(h∗)[Ii] = 0

for every subgame containing Ii. Even though this property significantly restricts the

possibility of non-precise beliefs, as we show next, there exist games where SPME and
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Figure 5: Example 4.

PME strategies are not included in any WPBE or SE. Hence, the “belief-system-based”

refinements of WPBE and SE may not always capture outcomes that may arise if players

are ambiguity averse, even though in some games they may yield much larger sets of

predictions, such as in Example 3. The following example shows that an SPME/PME

strategy profile may not yield a WPBE:

Example 4. Consider the game depicted in Figure 5. Since player 1 has a dominant

strategy to play O, he must assign probability 1 to O in any type of equilibrium. Let

µ denote the probability assigned to history L at player 2’s first information set, and

let δ denote the probability assigned to history LD at player 2’s second information set.

The fact that 1 must play O in any equilibrium, implies that any ε-contamination of

1’s strategy will yield conditional beliefs at the two information sets of player 2 that are

given by all µ ∈ [0, 1] and δ ∈ [0, 1]. Consider first the second information set of player

2, and denote the probability he assigns to action A by q. Then his expected utility

conditional on reaching this information set is given by

u22(β1, q) = min
δ∈[0,1]

{δ(2q) + (1− δ)2(1− q)} = min
δ∈[0,1]

{δ(4q − 2) + 2(1− q)}

=

2q, if q ≤ 1
2 ,

2− 2q if q > 1
2 ,

and thus his unique optimal strategy is to set q = 1
2 . The consistent planning assumption

implies that at player 2’s first information set, he takes the optimal strategy q = 1
2 at his

second information set as given, and chooses a probability p to assign to action S that
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maximizes

u21(β1, p) = min
µ∈[0,1]

{µ[3p+ (1− p)] + (1− µ)(1− p)}

= min
µ∈[0,1]

{µ3p+ 1− p} = 1− p.

Hence, the optimal strategy at 2’s first information set is to set p = 0. It follows that

the game has a unique SPME, ε-PME and PME, where 1 plays O, and 2 sets p = 0 and

q = 1
2 . Clearly, this strategy profile constitutes a NE. The strategy

(
p = 0, q = 1

2

)
yields

a WPBE if there exists a (precise) belief system (µ̄, δ̄) such that q = 1
2 is sequentially

rational at 2’s second information set if δ̄ ∈ [0, 1] is the probability assigned to history

LD, and
(
p = 0, q = 1

2

)
is sequentially rational at 2’s first information set if µ̄ ∈ [0, 1]

is the probability assigned to the history L. Clearly, for δ̄ = 1
2 , 2 is indifferent between

his two actions at his second information set, so q = 1
2 is sequentially rational given

such beliefs. To check sequential rationality at 2’s first information set, notice that we

need to find a value µ̄ ∈ [0, 1] such that p = 0 and q = 1
2 are jointly optimal at the

first information set. Thus, for this strategy profile to yield a WPBE, there must exist a

µ̄ ∈ [0, 1] so that
(
p = 0, q = 1

2

)
solve

max
(p,q)
{µ̄[3p+ 2(1− p)q] + (1− µ̄)[2(1− p)(1− q)]}

= max
(p,q)
{(4µ̄− 2)(1− p)q + (5µ̄− 2)p+ 2− 2µ̄}.

For p = 0 and q = 1
2 the corresponding payoff is 1, and is thus independent of µ̄. If

µ̄ ≥ 1
2 , and we set p = q = 1, the resulting payoff is 3µ̄ ≥ 3

2 > 1; similarly, if µ̄ < 1
2 we

can set p = q = 0, which yields a payoff 2 − 2µ̄ > 1. It follows that no µ̄ ∈ [0, 1] exists

for which p = 0 and q = 1
2 are sequentially rational at 2’s first information set. C

The main reason why the SPME/PME from the previous example is not part of

a WPBE, is that sequential rationality does not hold at the first of two subsequent

information sets of a player. The following proposition shows that in games where each

player’s information sets are not interdependent in such a way, every SPME/PME yields

a WPBE:

Proposition 7. Assume that no two distinct information sets Ii and I ′i of any player i

have the property that I ′i contains histories that have sub-histories in Ii. Then if β is a
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strategy profile that defines an SPME or PME, there exists a belief system γ consisting

of precise beliefs, such that (β, γ) is a WPBE.

Proof. Note first that if the assumption of the proposition is satisfied, sequential rational-

ity at any player’s information set can be checked independently of his other information

sets. Now let β denote an SPME or PME. Then the strategy prescribed by β at an

information set Ii with β−i[Ii] > 0 is optimal given precise beliefs that are derived as the

limit of µIi(β
ε) if β is an SPME, or the limit of µIi(β

ε
[ε]) if β is a PME defined as the limit

of a sequence of ε-PME β[ε]. This follows from Lemma 1 and the proof of Proposition 5,

and from the fact that future actions are not contaminated at the limit for an SPME or

PME. For the case where β is a PME, let µ̄Ii(β) := limε→0 µIi(β
ε
[ε]). By the definition of

SPME and PME, if β−i[Ii] = 0 at an information set Ii, the strategy prescribed by β at

Ii, βi(Ii), is optimal given the ambiguous beliefs defined by µIi(β) or µ̄Ii(β), respectively.

To show that β also yields a WPBE, we need to show that there exist precise beliefs γIi

at Ii, under which βi(Ii) is sequentially rational. We prove the existence of such a γIi

when β is an SPME. The proof for the case where β is a PME follows by substituting

µ̄Ii(β) for µIi(β).

Let hk denote an arbitrary history in Ii, let al denote an arbitrary action in A(Ii), and

let Ui(hk, al) denote the expected utility of player i induced by the strategy β conditional

on hk and al. For any µ′Ii ∈ cl(µIi(β)) and σ ∈ ∆A(Ii), also define

Ui(µ
′
Ii , σ) :=

∑
k

∑
l

µ′Ii(hk)σ(al)Ui(hk, al).

Then the SPME strategy βIi ≡ βi(Ii) satisfies

βIi ∈ arg max
σ∈∆A(Ii)

min
µ′Ii
∈cl(µIi (β))

Ui(µ
′
Ii , σ).

If co(cl(µIi(β))) denotes the convex hull of cl(µIi(β)), we must have

min
µ′Ii
∈cl(µIi (β))

Ui(µ
′
Ii , σ) = min

µ′Ii
∈co(cl(µIi (β)))

Ui(µ
′
Ii , σ) (1)

for every σ ∈ ∆A(Ii). To see why, let µ∗ ∈ co(cl(µIi(β))) be a solution to the second

minimization problem above, so that µ∗ = αµ′+(1−α)µ′′, with µ′, µ′′ ∈ cl(µIi(β)). Then

Ui(µ
′, σ) ≥ Ui(µ∗, σ), Ui(µ

′′, σ) ≥ Ui(µ∗, σ), and

Ui(µ
∗, σ) = αUi(µ

′, σ) + (1− α)Ui(µ
′′, σ),
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which implies that the minima in equation (1) must be attained at an element of

cl(µIi(β)). It follows that

max
σ∈∆A(Ii)

min
µ′Ii
∈cl(µIi (β))

Ui(µ
′
Ii , σ) = max

σ∈∆A(Ii)
min

µ′Ii
∈co(cl(µIi (β)))

Ui(µ
′
Ii , σ),

and that βIi is also a solution to maxσ∈∆A(Ii) minµ′Ii∈co(cl(µIi (β))) Ui(µ
′
Ii
, σ). Since both

∆A(Ii) and co(cl(µIi(β))) are compact and convex, and Ui(µ
′
Ii
, σ) is linear in µ′Ii and σ,

we can apply the Minimax Theorem of Fan (1952) to conclude that

max
σ∈∆A(Ii)

min
µ′Ii
∈co(cl(µIi (β)))

Ui(µ
′
Ii , σ) = min

µ′Ii
∈co(cl(µIi (β)))

max
σ∈∆A(Ii)

Ui(µ
′
Ii , σ),

and that there exist solutions to the corresponding maxmin and minmax problems. We

know that βIi solves the maxmin problem. If we let γIi ∈ co(cl(µIi(β))) denote a solution

to the minmax problem, then (γIi , βIi) must be a saddle point of Ui (see Bertsekas et al.,

2003, pp. 131-132), and hence

Ui(γIi , σ) ≤ Ui(γIi , βIi) ≤ Ui(µ′Ii , βIi), (2)

for all σ ∈ ∆A(Ii) and µ′Ii ∈ co(cl(µIi(β))). The saddle point equation (2) implies

in particular that βIi is sequentially rational given the precise beliefs γIi . Hence, if

β−i[Ii] = 0, and thus Ii lies off the equilibrium path, we can use the beliefs γIi to define

a belief system that yields (β, γ) as a WPBE.18

Clearly, since any SE is also a WPBE, an SPME or PME strategy profile may not

always yield an SE. The following example shows that even when the assumption of

Proposition 7 is satisfied, so every SPME or PME yields a WPBE, this may not be the

case for an SE:

18The saddle point equation (2) also shows, as would be expected, that in cases where βIi assigns

strictly positive probability to more than one action in A(Ii), the corresponding precise beliefs γIi must

make player i indifferent between all those those actions to which βIi assigns strictly positive probability.

To see this, assume that βIi only assigns strictly positive probability to actions al and am, and denote the

strategies in ∆A(Ii) that assign probability 1 to these actions by δal and δam , respectively. Then the sad-

dle point equation implies that Ui(γIi , δal) ≤ Ui(γIi , βIi) and Ui(γIi , δam) ≤ Ui(γIi , βIi). Furthermore,

we have

Ui(γIi , βIi) = βIi(al)Ui(γIi , δal) + βIi(am)Ui(γIi , δam),

which implies that all three expected utilities must be equal, so player i is indifferent between al and am

at Ii, given precise beliefs γIi .
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Figure 6: Example 5.

Example 5. Consider the game in Figure 6. Since player 1 has a dominant strategy

to play O, he must assign probability 1 to O in any type of equilibrium. Let µ denote

the probability assigned to history L at player 2’s information set, and let δ denote the

probability assigned to history LD at player 3’s information set. The fact that 1 must

play O in any equilibrium, implies that any ε-contamination of 1’s strategy will yield

conditional beliefs at the other players’ information sets that are given by all µ ∈ [0, 1]

and δ ∈ [0, 1]. Since in addition, 2’s payoffs do not depend on 3’s actions, it follows that

in any SPME or ε-PME (and hence PME), 2’s and 3’s equilibrium strategies must be

optimal given beliefs defined by µ ∈ [0, 1] and δ ∈ [0, 1]. Denoting the probability that 2

assigns to action S by p, his expected utility is given by

u2(β1, p) = min
µ∈[0,1]

{µ[p+ 2(1− p)] + (1− µ)2p} = min
µ∈[0,1]

{µ(2− 3p) + 2p}

=

2p, if p ≤ 2
3 ,

2− p if p > 2
3 .

Similarly, denoting the probability that 3 assigns to action A by q, yields the following

expected utility at 3’s information set:

u3(β1, q) = min
δ∈[0,1]

{δ(2q) + (1− δ)2(1− q)} = min
δ∈[0,1]

{δ(4q − 2) + 2(1− q)}

=

2q, if q ≤ 1
2 ,

2− 2q if q > 1
2 .

It follows that the game has a unique SPME, ε-PME and PME, where 1 plays O, 2

sets p = 2
3 , and 3 sets q = 1

2 . Clearly, this strategy profile constitutes a NE. To show
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that it also yields a WPBE, we must derive a belief system (µ̄, δ̄), consisting of precise

beliefs, under which players 2 and 3 are indifferent between the actions available at

their respective information sets (since they randomize in the unique SPME/PME). If µ̄

denotes the probability assigned to history L by player 2, then 2 is indifferent between

S and D if

u2(S) = µ̄+ 2(1− µ̄) = 2µ̄ = u2(D) ⇔ µ̄ =
2

3
.

Similarly, if δ̄ denotes the probability assigned to history LD by player 3, then 3 is

indifferent between A and B if

u3(A) = 2δ̄3 = 2(1− δ̄) = u3(B) ⇔ δ̄ =
1

2
.

Since WPBE imposes no restrictions on beliefs off the equilibrium path, these values for µ̄

and δ̄ yield a belief system under which the SPME/PME strategy profile is sequentially

rational, and hence defines a WPBE. The same strategy profile only defines an SE if

the same beliefs µ̄ and δ̄ are also consistent in the sense of SE. However, if µ̄n and δ̄n

denote corresponding beliefs of players 2 and 3 that are derived from a completely mixed

strategy profile βn using Bayes’ rule, then it must be that µ̄n = δ̄n for all n, and hence, it

is impossible for µ̄n to converge to 2
3 , while at the same time δ̄n converges to 1

2 . It follows

that no consistent belief system exists under which the SPME/PME strategy profile is

sequentially rational, and thus, it will not be played as part of any SE. Note also that

the game has a continuum of SE that are induced by all belief systems (µ̄, δ̄) with µ̄ = δ̄,

in contrast to having a unique SPME, ε-PME and PME. C

Together with Example 3, which shows that strategy profiles corresponding to WPBE

or SE do not necessarily constitute an SPME or PME, our previous results imply that

while SPME and PME can be viewed as refinements of NE and SPE, they do not yield re-

finements of WPBE or SE. Hence, with some abuse of notation, SPME/PME ( NE/SPE,

but SPME/PME * WPBE/SE and WPBE/SE * SPME/PME. Note however, that since

every SPME or PME strategy profile is associated with a unique corresponding system

of potentially ambiguous beliefs, the set of SPME or PME will in general be smaller

than the set of WPBE or SE. This is the case in Example 3, where the set of PME does

not include all WPBE and SE strategy profiles of the corresponding game. However,

the excluded WPBE and SE only differ from the remaining ones in terms of equilibrium

behavior off the equilibrium path. The following two examples show that PME and
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SPME can also exclude WPBE and SE that differ from non-excluded ones in terms of

the behavior on the equilibrium path, and hence in terms of the outcomes of the game.

Example 6. Consider the game in Figure 7, and let µ denote the probability that player

2 assigns to history L at his information set. Then the set of SE (and WPBE) is given

by (L,B) with µ = 1, (O,A) with µ ∈
[
0, 1

2

]
, and the strategy profile where 1 plays O,

and 2 plays A with probability at least 1
3 , with µ = 1

2 .

To derive the set of SPME, consider the possibility that 1 plays O in such an equi-

librium. Then 2’s information set is not reached, and thus 2 considers all µ ∈ [0, 1] as

possible at his information set. Letting p denote the probability that 2 assigns to action

A, 2’s expected utility is given by

u2(β1, p) = min
µ∈[0,1]

{µ[p+ 2(1− p)] + (1− µ)[3p+ 2(1− p)]}

= min
µ∈[0,1]

{µ(−2p) + 2 + p} = 2− p.

It follows that 2’s best response is to set p = 0, and thus to play B, in which case 1 would

deviate to L. Since L dominates R, 1 never plays R with strictly positive probability,

and therefore the only SPME is (L,B) with µ = 1. Hence, the set of SPME is strictly

contained in the set of SE.

To derive the ε-PME of the game, denote the strategy of player 1 by

β1 = (β1(O), β1(L), β1(R)) = (1− l − r, l, r),

denote the strategy of player 2 by

β2 = (β2(A), β2(B)) = (p, 1− p),
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and let µ denote the probability player 2 assigns to history L according to some condi-

tional belief. Then player 1’s expected utility arising from β1 and an ε-contamination of

β2 is given by

u1(β1, β2) = 2(1− l − r) + (1− ε)[l(1− p)3− rp+ r(1− p)] + ε min
q∈[0,1]

{q(−3l − 2r) + 3l + r}

= 2(1− l − r) + (1− ε)(1− p)3l + [(1− ε)(1− 2p)− ε]r.

It follows that 1’s best response is to play L when

p <
1− 3ε

3(1− ε)
, or equivalently, when 1− p > 2

3(1− ε)
,

to play O when the reverse inequalities hold, and mix over L and O using any distribution

when the inequalities hold with equality. Therefore, when looking for any ε-PME, we

can restrict the analysis to the case where β1(R) = 0. Then if β1(O) = 1, the set µ(βε1)

of conditional beliefs of player 2 is given by ∆{L,R} for any ε > 0, which yields B as

a best response for player 2. If β1(L) > 0, the minimum of player 2’s expected utility

over µ(βε1) is still attained when µ = 1, and thus 2’s best response remains to play B, or

equivalently, to set p = 0. Hence, in any ε-PME, player 2 always plays B, and as long as

ε < 1/3, this implies that player 1 plays L. It follows that (L,B) is the unique ε-PME

for ε < 1/3, and is therefore also the unique PME (which in this example is equal to

the SPME of the game). C
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Example 7. Consider next the signaling game described in Figure 8,19 and assume that

p is common knowledge and belongs to (0, 1), so chance is not viewed as a player in the

game. Hence, in order to derive the players’ beliefs, only the actions of their opponents

are contaminated, but not the move of nature. Note also that a weak type of player 1

has a dominant strategy to play U , independently of whether the strategies of player 2

at any of his information sets are contaminated or not, and hence such a weak type plays

U for all equilibrium concepts we consider. The game has a pure strategy separating

equilibrium that is a SE, an SPME, and an ε-PME for small enough ε, and hence a

PME. In this separating equilibrium, a strong type of player 1 plays R, and player 2

plays A at his top information set and F at his bottom information set.

To analyze the pooling equilibria, consider first the WPBE/SE, and note that if

p > 1
4 , 2 always plays A at his bottom information set if he assigns probabilities p and

1 − p to the respective histories in this information set. Thus, there exist a continuum

of pooling WPBE/SE where both types of 1 play U , and 2 is allowed to have any beliefs

and corresponding optimal actions at his top information set. If p < 1
4 , 2 plays F at

his bottom information set in a pooling WPBE/SE, and therefore sequential rationality

of U for a strong type of player 1 requires 2 to play F at his top information set. This

is optimal as long as the history (strong, R) is assigned probability at most 1
4 . All such

beliefs yield a continuum of pooling WPBE/SE where 2 plays F at both his information

sets. In contrast, we show in Appendix B that for the case of p < 1
4 , no corresponding

pooling SPME or PME exist. C

We close this section with a brief exploration of the relation between SPME and PME.

If β is an SPME in pure strategies that is strict, in the sense that the strategy prescribed

in equilibrium yields a strictly higher expected payoff than any alternative pure or mixed

strategy, then the fact that β is optimal given µIi(β), and that µIi(β) = limε→0 µIi(β
ε),

implies that the strategies prescribed by β must also be optimal if beliefs are given by

µIi(β
ε) for small enough ε. This yields the following result:

Proposition 8. Every strict SPME in pure strategies is a PME.

The following example shows that the conditions from Proposition 8 are sufficient, but

not necessary, for an SPME to be a PME. The associated game possesses an SPME in

19This example is borrowed from Osborne (2004).
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mixed strategies that is not strict, but is still a PME:

Example 8. Consider the game illustrated in Figure 9, which is a standard “battle of

the sexes” game in extensive form. Since there are no information sets that lie off the

equilibrium path, beliefs µIi(β) induced by the limit of ε-contaminations of any strategy

β are precise, and given by the corresponding Bayesian updates. Hence, the sets of SE

and SPME coincide, and are given by the Nash equilibria of the game. In particular,

there exists an SPME in mixed strategies where player 1 plays L with probability 2
3 and

player 2 plays A with probability 1
3 . We will show that this particular strategy profile is

the limit of a sequence of ε-PME as ε→ 0, and is thus also a PME.

Denote the probability of playing L for player 1 by p, and the probability of playing A

for player 2 by q. Then the expected utility of player 2, as induced by an ε-contamination

of 1’s strategy p is given by

u2(p, q) = min
µ∈[(1−ε)p,(1−ε)p+ε]

{µq + (1− µ)2(1− q)} = min
µ∈[(1−ε)p,(1−ε)p+ε]

{µ(3q − 2) + 2(1− q)}

=

[3(1− ε)p− 2 + 3ε]q + 2[1− (1− ε)p− ε], if q ≤ 2
3 ,

[3(1− ε)p− 2]q + 2[1− (1− ε)p] if q > 2
3 ,

and the expected utility of player 1, as induced by an ε-contamination of 2’s strategy q

is given by

u1(p, q) = min
δ∈[(1−ε)q,(1−ε)q+ε]

{δ2p+ (1− δ)(1− p)} = min
δ∈[(1−ε)q,(1−ε)q+ε]

{δ(3p− 1) + (1− p)}

=

[3(1− ε)q − 1 + 3ε]p+ [1− (1− ε)q − ε], if p ≤ 1
3 ,

[3(1− ε)q − 1]p+ [1− (1− ε)q] if p > 1
3 ,
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We get the following best responses:

BR2(p) =



q = 0, if p < 2−3ε
3(1−ε) ,

q ∈
[
0, 2

3

]
, if p = 2−3ε

3(1−ε) ,

q = 2
3 , if p ∈

(
2−3ε

3(1−ε) ,
2

3(1−ε)

)
,

q ∈
[

2
3 , 1
]
, if p = 2

3(1−ε) ,

q = 1, if p > 2
3(1−ε) ,

BR1(q) =



p = 0, if q < 1−3ε
3(1−ε) ,

p ∈
[
0, 1

3

]
, if q = 1−3ε

3(1−ε) ,

p = 1
3 , if q ∈

(
1−3ε

3(1−ε) ,
1

3(1−ε)

)
,

p ∈
[

1
3 , 1
]
, if q = 1

3(1−ε) ,

p = 1, if q > 1
3(1−ε) .

In addition to yielding two ε-PME where both p and q are equal to either 0 or 1, when

ε < 1
3 , these best responses also show that there exists an ε-PME with

p =
2− 3ε

3(1− ε)
, and q =

1

3(1− ε)
.

Clearly, when ε → 0, these ε-PME converge to the mixed strategy SPME identified

previously, which is thus also a PME. C

Given a strategy profile β and ε ∈ (0, 1), let µ(βε) denote a profile of (possibly

ambiguous) beliefs across all information sets corresponding to a game, as induced by an

ε-contamination of β. Thus, µ(βε) collects the beliefs µIi(β
ε) across all information sets

Ii and players i. Furthermore, let µ(β) = limε→0 µ(βε).

Proposition 9. Let β be a PME, with β[ε] denoting a sequence of ε-PMEs converging

to β. If µ(β) = limε→0 µ(βε[ε]), then β is also an SPME.20

Proof. If β[ε] is optimal given µ(βε[ε]), and β[ε] → β, then µ(β) = limε→0 µ(βε[ε]) implies

that β is optimal given µ(β), and thus β is an SPME.

20Note that limε→0 µ(βε
[ε]) denotes the limit of the beliefs induced by the ε-contaminations of the strat-

egy profiles β[ε], whereas µ(β) = limε→0 µ(βε) denotes the limit of the beliefs induced by ε-contaminations

of the fixed strategy profile β.
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6 Extensions and generalizations

6.1 Alternative updating rules or contaminations

Our results so far have assumed that beliefs about past actions at every information

set are derived based on full prior-by-prior Bayesian updating whenever possible. While

this approach yields the most straightforward updating rule in the context of ambiguous

beliefs modeled by sets of distributions, alternative updating methods are easy to de-

fine. For example, the best-known alternative to full Bayesian updating is the maximum

likelihood rule, which in our setting would result in only updating those unconditional

beliefs under which the probability of reaching the information set in question is maxi-

mized. More generally, an arbitrary abstract updating rule can be defined by specifying

for each information set, a particular subset of unconditional beliefs corresponding to an

ε-contamination of opponents’ strategies, whose Bayesian updates are then assumed to

define the beliefs of the player moving at that information set.21 Given a strategy profile

β, and a corresponding ε-contamination βε, we can denote the beliefs at an information

set Ii that result from such an arbitrary updating rule by µ̂Ii(β
ε). The assumption that

these beliefs are defined by only updating a subset of the unconditional beliefs defined by

βε then implies that µ̂Ii(β
ε) ⊂ µIi(β

ε) ⊂ ∆A(Ii). If an abstract updating rule excludes

a particular strategy β′j ⊂ βεj in the computation of beliefs µ̂Ii(β
ε) at player i’s informa-

tion set Ii, assume that following Ii, player i also excludes the possibility that j plays

according to the strategy β′j . Assume further that every such rule yields a non-empty set

of beliefs at every Ii. If we then define

µ̂Ii(β) := lim sup
ε→0

µ̂Ii(β
ε),

our prior definitions of ε-PME, PME and SPME apply directly to the case of an arbitrary

updating rule, by replacing µIi(β
ε) and µIi(β) with µ̂Ii(β

ε) and µ̂Ii(β), respectively.

A different generalization of our model can be obtained by changing the nature of

the contaminations, instead of (or in addition to) the updating rule. The type of ε-

contaminations used so far seem to most appropriately capture the intuition that if mis-

takes are arbitrary and involuntary, then we should be agnostic about the nature of trem-

bles that we can expect, and hence view all distributions over actions as equally possible

21General definitions of such updating rules in dynamic choice problems can be found in Gilboa and

Schmeidler (1993) and Hanany and Klibanoff (2007).
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in case a mistake occurs. We could however also consider alternative ε-contaminations,

where mistakes still occur with small probability ε, but where the possible distributions

that may generate such mistakes are restricted to subsets of the feasible strategy spaces.

More generally, we could define a perturbation of a strategy not by an ε-contamination,

but by the closure of an arbitrary open neighborhood containing the intended strategy.

Denote a sequence of such arbitrary perturbations of a strategy profile β by β[n], where

n is an index such that limn→∞ β
[n] = {β}. The resulting beliefs at an information set

Ii can then be derived using either full Bayesian updating, or some alternative updating

rule. If µIi(β
[n]) or µ̂Ii(β

[n]) represent corresponding beliefs, we can let

µIi(β) := lim sup
n→∞

µIi(β
[n]), or µ̂Ii(β) := lim sup

n→∞
µ̂Ii(β

[n]),

and our prior definitions of ε-PME, PME and SPME apply again using the appropriate

adjustments.

Note that for certain simple games, such as the game analyzed in Example 3, any

sequence of generalized contaminations that are updated using full Bayesian updating,

can be equivalently replicated using a sequence of ε-contaminations (indexed by ε→ 0)

that are updated using a more general updating rule, and vice versa. Furthermore, as

shown in Appendix C, for this particular example the sets of SPME and PME resulting

from any arbitrary such generalization are identical to the ones derived using the initial

assumption of full Bayesian updating of beliefs derived from standard ε-contaminations.

For a generalized model yielding beliefs µ̂Ii(β
[n]) at an information set Ii, which are

derived from a perturbation β[n] using an arbitrary updating rule, define, analogously to

the definition in the proof of Theorem 1, a set

Γ̂Ii(β
[n]) := {(β′−i, µ′Ii) |µ

′
Ii ∈ µ̂Ii(β

[n]), and

µ′Ii is derived from β′−i using Bayesian updating}.

If the perturbations β[n] and the updating rule yielding µ̂Ii(β
[n]) satisfy the property

that cl(Γ̂Ii(β
[n])) is continuous in β for any particular n, then the proof of Theorem

1 implies the existence of an ε-PME (where the ε now corresponds to the index n)

for this model. Note that while this continuity requirement will hold for a large class

of perturbations and updating rules, it might not hold for all games if the maximum

likelihood updating rule is used, since the set of maximizers at some information sets
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may not always be continuous in β.22 There exist however games where the beliefs

derived using the maximum likelihood updating rule are identical to the beliefs derived

using full Bayesian updating,23so beliefs, and hence equilibrium outcomes, will be the

same under both updating rules. Finally, the assumptions we made also imply that

Lemma 1 holds for such general models, so µ̂Ii(β) is given by the Bayesian update of β−i

whenever β−i[Ii] > 0. As a consequence, the proofs of Propositions 5 and 7 apply, and

hence the associated PME and SPME are also NE and SPE.

6.2 Dynamic consistency of equilibrium strategies

We now discuss the possibility of attaining dynamic consistency in our model. The

decision theory literature presents two alternative approaches that can guarantee dy-

namic consistency with maxmin preferences: Epstein and Schneider (2003) maintain full

Bayesian updating, but restrict the class of feasible priors, whereas Hanany and Klibanoff

(2007) allow arbitrary sets of priors and restrict the updating rule. Before addressing

how these approaches might be used in our modeling framework, consider first our initial

setting where beliefs are derived from ε-contaminations through full Bayesian updat-

ing. While preferences in this model may in general be dynamically inconsistent, this is

not an issue if we are only concerned with the dynamic consistency of SPME or PME

strategies—since any SPME or PME β yields precise beliefs derived through Bayesian

updating at information sets Ii for which β−i[Ii] > 0, as shown in the proof of Proposition

5, and equilibrium strategies are optimal given these beliefs, an application of the one-

shot-deviation principle analogous to the proof of Proposition 5, implies that equilibrium

strategies across information sets with β−i[Ii] > 0 are also optimal from an ex-ante point

of view, and are thus dynamically consistent. Furthermore, since information sets with

β−i[Ii] = 0 are reached with probability zero from an ex-ante viewpoint, any strategies

chosen at such information sets are optimal ex-ante, and hence do not contradict dynamic

22It is (relatively) easy to construct games that generate such discontinuities. For instance, in Example

4, if we split player 2’s information set, so that he observes 1’s move, and 3’s beliefs are derived using

maximum likelihood updating, then 3’s beliefs are discontinuous at any strategy profile where 2 assigns

equal probabilities to D at both information sets.
23For example, this is the case if unconditional beliefs have a triangular shape as in Figure 2, in which

case the hypotenuse of the triangle represents the set of relevant unconditional probabilities that are

updated under the maximum likelihood rule.
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consistency. It follows that every SPME or PME strategy profile is optimal both from an

ex-ante point of view, and from an interim point of view conditional on each information

set, and is therefore dynamically consistent.

Note however that an analogous dynamic consistency property may not hold for strat-

egy profiles that define an ε-PME. Since any ε-PME requires strategies to be sequentially

rational, i.e., conditionally optimal at each information set given beliefs derived from ε-

contaminations and given the consistent planning assumption, such equilibrium strategies

may not be optimal as ex-ante plans of action, which just reflects the potential dynamic

inconsistency of maxmin preferences. However, this is mitigated by the fact that even

though ε-PME strategies may not be optimal ex-ante, the potential ex-ante losses from

such strategies are small when ε is small, and are converging to zero as ε → 0. To see

this, let β denote a PME that is the limit of a sequence of ε-PMEs β[ε]. As noted in the

proof of Proposition 5, along the equilibrium path induced by β, the PME strategy βi

is optimal for player i given precise beliefs derived from β−i using Bayesian updating,

and is furthermore ex-ante optimal as noted above. Since βi = limε→0 βi[ε], this im-

plies that for small values of ε, βi[ε] is approximately optimal from an ex-ante viewpoint

given beliefs derived from β−i. Now if we consider player i’s ex-ante beliefs as induced by

the ε-contamination βε−i[ε], these beliefs place high probability on the opponents’ strategy

profile β−i[ε], which implies that βi[ε] is approximately ex-ante optimal since β−i[ε] → β−i.

Example 9. To illustrate the properties discussed above, consider again the game from

Example 3. Clearly, the strategy profile defining the PME is dynamically consistent,

in the sense that if player 2 were able to commit to a strategy ex-ante, before player 1

chooses an action, then given 1’s PME strategy β1(O) = 1, any strategy of 2 is optimal,

in particular his PME strategy β2(A) = 7
12 . Furthermore, given 1’s ε-PME strategy,

we can derive 2’s ex-ante expected utility as a function of the probability p assigned to

action A, which yields

uEA2 (β[ε]1, p) =

2(1− ε), if p ≤ 2
3 ,

2− 3εp, if p > 2
3 .

It follows that in this particular case, 2’s ε-PME strategy is also optimal at an ex-ante

stage, and is therefore dynamically consistent. However, this property does not always

hold. If we change player 2’s payoff from history O to −1, then the ε-PME, and hence
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PME, of the game do not change, and thus the PME strategy profile is still dynamically

consistent. But given 1’s ε-PME strategy, 2’s ex-ante expected utility now becomes

uEA2 (β[ε]1, p) = 6ε− 1− 2εp,

which implies that p = 0 is uniquely optimal ex-ante, and hence that the ε-PME strategy

β[ε]2(A) = 7
(1−ε)12 is not dynamically consistent. Player 2’s ex-ante losses associated with

his ε-PME strategy are given by 7ε
6(1−ε) , a value that is small as long as ε is small, and

that converges to zero as ε→ 0. C

If the approaches of Epstein and Schneider (2003) or Hanany and Klibanoff (2007) ap-

ply in our game-theoretic setting, they should allow us to guarantee dynamic consistency

across our model, and not just for equilibrium strategies. While their methods work for

certain games, their application presents various difficulties, which we now discuss.

Epstein and Schneider (2003) show that maxmin preferences are dynamically con-

sistent with full Bayesian updating if the initial set of priors satisfies a “rectangularity”

assumption with respect to the decision-maker’s information filtration. Roughly, rectan-

gularity means that the initial set of priors can be constructed by recursively combining

all corresponding conditional and marginal probabilities at each stage of the information

filtration. In our game-theoretic setting, as the set of priors corresponding to each player’s

information filtration is derived from the ε-contaminations of his opponents’ strategies,

to attain rectangularity, we would need to consider a generalized set of contaminations

(as described in Section 6.1) that is chosen in a way that yields rectangularity for each

player. While this approach works in limited settings, we show in Aryal and Stauber

(2013) that even in a simple three-player game where each player only moves once, it

may be impossible to attain the rectangularity property by suitably choosing the shape

of the contaminations. The basic intuition for this result is that since each player’s infor-

mation filtration is induced by the structure of the game relative to his own information

partition, for the case of more than two players, the requirements on player 1’s contam-

ination that are needed to guarantee rectangularity for player 2’s information filtration

may be incompatible with those needed to guarantee rectangularity for player 3’s infor-

mation filtration. Hence, unless players 2 and 3 are allowed to have distinct beliefs about

the contamination of 1’s strategy, this contamination cannot be defined in a way that

guarantees rectangularity for both of his opponents.
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Hanany and Klibanoff (2007) (henceforth, HK) show that dynamic consistency can

be achieved with maxmin preferences through the choice of an appropriate updating

rule, which may depend on the given dynamic choice problem and the optimal ex-ante

choice. Applying the updating rules described by HK in our game-theoretic setting is not

straightforward, mainly because the strong non-null assumptions of HK, which require

that each conditioning event is assigned strictly positive probability by every element of

the prior set, are not always satisfied in our model. In an extensive game, the relevant

conditioning events are defined by the players’ information sets. If an information set Ii

of player i is a “null event” in a sense that will be made more precise shortly, then every

action at that information set is optimal ex-ante, even an action that is dominated across

all histories in the information set—clearly, no updating rule exists under which such a

dominated action is optimal. Whether an information set Ii is null will depend on the

given strategy profile: For example, if an ex-ante optimal strategy of player i implies that

Ii will never be reached, independently of his opponents’ actions, Ii is null;24 alternatively,

Ii is null given an ε-contamination of his opponents’ strategies, if the distribution in the

induced beliefs of player i that attains an ex-ante maxmin assigns probability zero to

Ii. If an information set is null given a strategy profile β, we cannot guarantee the

existence of an updating rule for that information set which is dynamically consistent in

the sense that any ex-ante optimal strategy is also conditionally optimal. However, since

any conditionally optimal strategy at such an information set is also optimal ex-ante,

no updating rule contradicts dynamic consistency. We can then apply the method of

HK to choose dynamically consistent updating rules only at non-null information sets.

HK show that such rules exist, but that they would depend on the initial set of priors,

and potentially require updating different subsets of priors at different information sets.

Although as discussed in Section 6.1, our equilibrium definitions still apply with arbitrary

updating rules, to attain dynamic consistency following HK, the required updating rules

may need to vary with the chosen strategies.25 As a consequence, in equilibrium, both

the null events and updating rules would depend on equilibrium strategies, and hence

24Hence, in contrast to the two-stage decision-theoretic framework of HK, whether an information set

Ii can be identified as a null event also depends on the strategy chosen by player i.
25For example, a dynamically consistent updating rule for a given strategy could use full Bayesian

updating at null information sets, and use the “ambiguity maximizing” updating rule of HK at non-null

information sets.
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any dynamically consistent updating rule would be endogenously determined as part of

the equilibrium. A full analysis along these lines—which would also need to analyze

whether dynamically consistent updating rules yield the continuity properties required

for equilibrium existence—would provide an interesting game-theoretic application of

HK, but is beyond the scope of the present paper.

7 Conclusion

We introduce equilibrium notions that capture how ambiguity averse players may interact

in an extensive game. The two notions of Strong Perfect Maxmin Equilibrium (SPME)

and Perfect Maxmin Equilibrium (PME) can both be viewed as refinements of NE and

SPE, if expected utility preferences are interpreted as a subset of maxmin preferences.

Hence, our model seems to indicate that NE and SPE are still valid solution concepts

in some environments with ambiguity averse players, if non-trivial ambiguous beliefs are

suitably restricted to off-the-equilibrium-path information sets. However, the predictions

of SPME and PME are distinct from those of WPBE and SE, in the sense that there exist

WPBE and SE that do not yield SPME or PME, and there exist SPME and PME that

do not correspond to any WPBE or SE. Hence, allowing for ambiguity averse players

can yield behavior that differs from the predictions of belief-system-based refinements

under standard expected utility maximization, even if the ambiguity only results from

allowing for small probability errors in the implementation of unambiguous strategies,

and we consider the limiting case where the probability of making such errors converges

to zero.

In addition to the generalizations we already discussed, a few other modeling assump-

tions could easily be varied. A limited modification of our setup could be achieved by

assuming that each player also considers the possibility that he himself might tremble

and make mistakes. Since players have perfect recall about their own past actions, and

future mistakes have small probability, such a change would not have resulted in a signif-

icant difference to our results. Considering different types of preferences with ambiguity

would most likely make a significant difference, but such considerations would require

extensive changes that fall outside the scope of the current paper.
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Appendices

A Derivation of ε-PME for Example 3

To derive the ε-PME of the game, denote the strategy of player 1 by

β1 = (β1(O), β1(L), β1(R)) = (1− l − r, l, r),

denote the strategy of player 2 by

β2 = (β2(A), β2(B)) = (p, 1− p),

and let µ denote the probability player 2 assigns to history L according to some condi-

tional belief. Then player 1’s expected utility arising from β1 and an ε-contamination of

β2 is given by

u1(β1, β2) = (1− ε)[7(1− l − r) + 12lp+ 12r(1− p)] + ε min
q∈[0,1]

{7(1− l − r) + 12lq + 12r(1− q)}

= 7(1− l − r) + (1− ε)12lp+ (1− ε)12r(1− p) + ε min
q∈[0,1]

{12q(l − r) + 12r}

=

7 + [(1− ε)12p− 7]l + [5− 12(1− ε)p]r, if l ≥ r,

7 + [(1− ε)12p+ ε12− 7]l + [(1− ε)12(1− p)− 7]r, if l < r.

Note that for every p, u1(β1, β2) = u1((l, r), p) is a continuous and piecewise linear

function of (l, r). The domain of this function is the “Machina triangle” defined by

the convex hull of {(0, 0), (1, 0), (0, 1)}, and the function is linear on the two subsets of

this domain defined by the points {(0, 0), (1, 0), (1/2, 1/2)} and {(0, 0), (1/2, 1/2), (0, 1)},

respectively (see Figure 10). Hence, since player 1 maximizes a function that is continuous

and piecewise linear on the union of two convex polytopes, the maximum over (l, r) must

be attained at the extreme points of these two polytopes. We get

u1((0, 0), p) = 7, u1((1, 0), p) = (1− ε)12p,

u1((1/2, 1/2), p) = 6, u1((0, 1), p) = (1− ε)12(1− p).

Comparing the payoffs resulting from these four points implies that when ε > 5
12 ,

playing O is a unique best response for player 1 for every p, and that when ε ∈
(
0, 5

12

)
,
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Figure 10: Graph of u1((l, r), p).

the best response of player 1 as a function of p is given by

BR1(p) =



{R}, if p ∈
[
0, 1− 7

(1−ε)12

)
,

∆{R,O}, if p = 1− 7
(1−ε)12 ,

{O}, if p ∈
(

1− 7
(1−ε)12 ,

7
(1−ε)12

)
,

∆{O,L}, if p = 7
(1−ε)12 ,

{L}, if p ∈
(

7
(1−ε)12 , 1

]
.

To characterize the best response of player 2, note that the extreme points of 2’s condi-

tional beliefs induced by a strategy (l, r) of player 1 are derived from the Bayesian updates

of the unconditional probabilities given by (1− ε)(l, r) + ε(1, 0) and (1− ε)(l, r) + ε(0, 1).

It follows that the probability µ that 2 assigns to the history L ranges from

(1− ε)l
(1− ε)l + (1− ε)r + ε

to
(1− ε)l + ε

(1− ε)l + (1− ε)r + ε
.

Denoting this set of conditional beliefs by µε(l, r), we get

u2((l, r), p) = min
µ∈µε(l,r)

{µ[p+ 2(1− p)] + (1− µ)2p}

= min
µ∈µε(l,r)

{µ(2− 3p) + 2p}

=


2(1−ε)l

(1−ε)(l+r)+ε +
[
2− 3(1−ε)l

(1−ε)(l+r)+ε

]
p, if p ≤ 2

3 ,

2(1−ε)l+2ε
(1−ε)(l+r)+ε +

[
2− 3(1−ε)l+3ε

(1−ε)(l+r)+ε

]
p, if p > 2

3 .
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The best response of player 2 as a function of (l, r) is then

BR2(l, r) =



p = 0, if 2(1− ε)r < (1− ε)l − 2ε,

p ∈
[
0, 2

3

]
, if 2(1− ε)r = (1− ε)l − 2ε,

p = 2
3 , if 2(1− ε)r > (1− ε)l − 2ε and 2(1− ε)r < (1− ε)l + ε,

p ∈
[

2
3 , 1
]
, if 2(1− ε)r = (1− ε)l + ε,

p = 1, if 2(1− ε)r > (1− ε)l + ε.

To find the set of ε-PME, consider the possibility that 1 plays O in such an equilibrium,

so l = r = 0. Then 2’s best response is to set p = 2
3 , in which case playing O is a best

response for 1 if ε ≥ 1
8 , but not if ε < 1

8 , in which case L yields a higher payoff. Thus, we

get an ε-PME where 1 plays O and 2 sets p = 2
3 as long as ε ≥ 1

8 . Assume from here on

that ε < 1
8 , and consider the possibility that 1 plays L, so l = 1 and r = 0. Then as long

as ε < 1
3 , p = 0 is a best response for 2, in which case 1 would prefer to play R. Similarly,

consider the possibility that 1 plays R, so l = 0 and r = 1. Then as long as ε < 2
3 , p = 1

is a best response for 2, in which case 1 would prefer to play L. It follows that if ε < 1
8 ,

1 cannot play a pure strategy in any ε-PME, and therefore, p must be equal to either

1− 7
(1−ε)12 or 7

(1−ε)12 . Since both these terms are less than 2
3 when ε < 1

8 , the equilibrium

values of l and r must satisfy 2(1 − ε)r = (1 − ε)l − 2ε. Player 1’s best response shows

that he will only randomize over R and O, or over O and L. Setting l = 0 implies that

(1 − ε)r = −ε, which can never hold. Hence, it must be the case that l > 0 and r = 0,

which implies that for ε ∈
(
0, 1

8

)
, a (unique) ε-PME exists where

l =
2ε

(1− ε)
, r = 0, and p =

7

(1− ε)12
.

B Non-existence of pooling SPME or PME for Example 7

Let µ denote the probability assigned by player 2 to the history (strong, R) at his top

information set, let q and r denote the probabilities 2 assigns to action A at his top and

bottom information sets, respectively, and let α denote the probability of playing R for a

strong type of player 1. Consider the possibility of a pooling SPME where α = 0, so both

types of player 1 play U , and p < 1
4 , so player 2 plays F at his bottom information set.

Then the beliefs corresponding to such an SPME at the top information set are given by
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all µ ∈ [0, 1], and hence player 2’s utility at the top information set as a function of his

strategy q is

u2,top(q) = min
µ∈[0,1]

{µ(2q − (1− q)) + (1− µ)2(1− q)}

=

3q − 1, if q ≤ 3
5 ,

−2q + 2 if q > 3
5 .

It follows that 2’s optimal strategy is to set q = 3
5 , in which case the expected payoff of

a strong type of player 1 from playing R is 16
5 = 3.2, which is greater than the payoff of

3 he receives from playing U . Hence, no pooling SPME exists when p < 1
4 .

To characterize the PME when p < 1
4 , note that since U always dominates R for a

weak type of player 1, the beliefs of player 2 at his top information set, as induced by an

ε-contamination of 1’s strategy, are given by all µ in the interval

µε(α) :=

[
(1− ε)pα

(1− ε)pα+ ε(1− p)
, 1

]
,

and hence, 2’s expected utility at his top information set is given by

u2,top(q) = min
µ∈µε(α)

{µ(2q − (1− q)) + (1− µ)2(1− q)}

=

3q − 1, if q ≤ 3
5 ,[

5(1−ε)pα
(1−ε)pα+ε(1−p) − 2

]
q +

[
2− 3(1−ε)pα

(1−ε)pα+ε(1−p)

]
, if q > 3

5 .

This yields the following best response as a function of α:

BR2,top(α) =


q = 3

5 , if α < 2ε(1−p)
3(1−ε)p ,

q ∈
[

3
5 , 1
]
, if α = 2ε(1−p)

3(1−ε)p ,

q = 1, if α > 2ε(1−p)
3(1−ε)p .

This best response implies in particular that q ≥ 3
5 in any ε-PME. Furthermore, since the

trembles of player 2 at his top and bottom information sets are independent, a strong

type of player 1 will choose whichever of his actions R or U yields the largest worst-

case expected payoff given 2’s trembles, which yields the following best response in any

ε-PME:

BR1,strong(q, r) =


α = 0, if q < r + 1

2(1−ε) ,

α ∈ [0, 1] , if q = r + 1
2(1−ε) ,

α = 1, if q > r + 1
2(1−ε) .
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Figure 11: The game from Example 3.

To show that there exists no pooling PME in which player 2 plays F at his bottom

information set, or equivalently, sets r = 0, note that if such a PME were to exist, it

would be the limit of a sequence of ε-PME, indexed by n, with corresponding probabilities

rn → 0, and contaminations defined by εn → 0. For n large enough, the associated values

of qn, rn and εn must satisfy

qn ≥ 3

5
> rn +

1

2(1− εn)
,

in which case the best response of a strong type of player 1 requires α = 1, or equivalently,

playing R, which contradicts the existence of a pooling PME with r = 0.

C Generalized contaminations in Example 3

Consider again the game from Example 3, reproduced in Figure 11, but assume instead

a sequence of generalized contaminations β[n] defined for any strategy β = (β1, β2),

such that each β
[n]
i is given by the closure of a convex open set26 containing βi, with

β
[n+1]
i ⊆ β

[n]
i , and the diameter of β

[n]
i converging to 0 as n → ∞. Assume also that

every β
[n]
i is continuous in βi. An equilibrium analogous to ε-PME is defined for each

n by a strategies β1 = (1 − l − r, l, r) and β2 = (p, 1 − p) that are optimal given beliefs

derived from β[n]. To derive the beliefs of player 2 at his information set, we project β
[n]
1

onto the coordinates corresponding to actions L and R, and find all conditional beliefs

corresponding to points in this projection. If l = r = 0, the assumption that β
[n]
1 is

the closure of an open set containing β1 implies that the resulting conditional beliefs

are given by all µ ∈ [0, 1], where µ denotes the probability assigned to history L. If

26Assuming that openness is defined relative to the respective strategy set.
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1− l− r < 1, the resulting conditional beliefs are given by all µ in a (non-empty) interval

[σn, τn] ⊆ [0, 1]. Player 2’s expected utility can then be calculated as

u2(β) = min
µ∈[σn,τn]

{µ(2− 3p) + 2p}

=

(2− 3σn)p+ 2σn, if p ≤ 2
3 ,

(2− 3τn)p+ 2τn, if p > 2
3 ,

which yields the following best response:

BRn2 (l, r) =



p = 0, if σn >
2
3 ,

p ∈
[
0, 2

3

]
, if σn = 2

3 ,

p = 2
3 , if σn <

2
3 and τn >

2
3 ,

p ∈
[

2
3 , 1
]
, if τn = 2

3 ,

p = 1, if τn <
2
3 .

Similarly, from the point of view of player 1, the probability p assigned to action A by

player 2 must lie in some interval [an, bn] defined by β
[n]
2 , and hence his expected utility

is given by

u1(β) = 7(1− l − r) + min
p∈[an,bn]

{12p(l − r) + 12r}

=

7 + (12an − 7)l + (12(1− an)− 7)r, if l ≥ r,

7 + (12bn − 7)l + (12(1− bn)− 7)r, if l < r.

As in the case of ε-contaminations, we only need to compare the corresponding expected

utilities at points where (l, r) is given by (0, 0),
(

1
2 ,

1
2

)
, (1, 0) and (0, 1), which yields the

following best response:

BRn1 (p) =



{R}, if an < bn <
5
12 ,

∆{R,O}, if an < bn = 5
12 ,

{O}, if an <
7
12 and bn >

5
12 ,

∆{O,L}, if bn > an = 7
12 ,

{L}, if bn > an >
7
12 .

For each n, let (ln, rn, pn) denote an equilibrium point associated to the above best

responses, and assume that (ln, rn, pn)→ (l, r, p) as n→∞. Then (l, r, p) corresponds to
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a PME for such generalized contaminations, and it must be the case that [an, bn]→ {p},

that p is a best response given beliefs defined by [σ, τ ], with [σn, τn] → [σ, τ ], and that

(l, r) is a best response to p. Player 1’s best response BRn1 implies that both l and r

cannot be strictly positive at the same time. Hence, either l > 0 and r = 0, r > 0 and

l = 0, or l = r = 0. If l > 0 and r = 0, we must have σ = τ = 1, which implies p = 0,

contradicting the fact that l > 0. Similarly, if r > 0 and l = 0, we must have σ = τ = 0,

which implies p = 1, contradicting the fact that r > 0. Thus, l = r = 0 must hold in

any such equilibrium, which implies that for beliefs given by [σ, τ ], the best response of

player 1 is to either play O, mix between O and L, or mix between O and R. For O and

R to be optimal at the limit, we need p = 5
12 , which requires σ = 2

3 . However, such limit

beliefs [σ, τ ] can only be attained if ln > 0 and rn = 0 for large enough n, which is only

possible if pn ≥ 7
12 , which cannot converge to p = 5

12 . For O only to be optimal at the

limit, we need p ∈
(

5
12 ,

7
12

)
, and since 7

12 <
8
12 = 2

3 , this again requires σ = 2
3 . However,

p ∈
(

5
12 ,

7
12

)
can only hold if an <

7
12 and bn >

5
12 for large enough n, which implies

ln = rn = 0, and thus, [σ, τ ] = [0, 1], which contradicts the optimality of O. The only

remaining option is that both O and L are optimal at the limit, which requires p = 7
12 .

Since we already showed that l = r = 0, this yields the same unique PME that we found

for the case based on ε-contaminations.
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