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Abstract

The Type Indeterminacy model4 is a theoretical framework that uses some elements of quantum formalism to

model the constructive preference perspective suggested by Kahneman and Tversky. In this paper we extend the

TI-model from simple to strategic decision-making. In Part I we introduce TI-games by means of an example.

We investigate a 2X2 game with the pre-play of a cheap-talk promise game. We show in a numerical example

that in the TI-model the promise game can have impact on next following behavior when the standard classical

model predicts no impact whatsoever. The TI approach differs from other behavioral approaches in identifying

the source of the effect of cheap-talk promises in the intrinsic indeterminacy of the players’ type. In Part II, we

formulate some basic concepts for the analysis of games with type indeterminate players. We develop the theory

in close connection with the standard approach to game of incomplete information à la Harsanyi. We show an

equivalence between static games of incomplete information and static TI-games. We extend this equivalence

result to dynamic commuting TI-games. Finally, we develop a new solution concept for non-commuting dynamic

TI-games. It differs from the Perfect Bayesian equilibrium by the rule used for updating beliefs. The updating rule

captures the novelty brought about by Type Indeterminacy namely that in addition to affecting information and

payoffs, the action of a player impacts on the profile of types and thus on future actions. We provide an example

showing that strategies that form a Perfect Bayesian equilibrium are not part of any Perfect TI-equilibrium.
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1 Introduction

This paper belongs to a very recent and rapidly growing literature where formal tools of Quantum

Mechanics are proposed to explain a variety of behavioral anomalies in social sciences and in psychology

(see e.g., [14], [5], [6], [8], [11], [16], [12], [27]). To many people it may appear unmotivated or artificial to

turn to Quantum mechanics when investigating human behavioral phenomena. However, the founders of

QM, including Bohr [1] and Heisenberg [21] early recognized the similarities between the two fields. The

similarity stems from the fact that in both fields the object of investigation cannot (always) be separated

from the process of investigation.5 Quantum Mechanics and in particular its mathematical formalism

was developped to respond to that epistemological challenge (see the introduction in [2] for a enlighting

presentation).

The use of quantum formalism in game theory was initiated by Eisert et al. [15] who study how the

extension of classical moves to quantum ones can affect the analysis of a game.6 Another example is La

Mura [28] who investigates correlated equilibria with quantum signals in classical games. Whether and

when the use of quantum strategies (or strategies using quantum signals) can bring something truly novel

to game theory has been discussed in Levine [30] and in Brandenburger [9]. Our approach is different

from the so-called quantum game approach. It is based on the idea that players’ preferences(types)

(rather than the strategies they can choose) can feature non-classical (quantum) properties. This idea is

formalized in the Type Indeterminacy (TI) model of decision-making introduced by Lambert-Mogiliansky,

Zamir and Zwirn [27]. The TI-model has been proposed as a theoretical framework for modelling the

KT(Kahneman—Tversky)—man, i.e., for the "constructive preference perspective”.7 Most of the critics

developed by Levine does not apply. Yet, does Type Indeterminacy bring novel elements to Game Theory?

Interestingly, this issue is closely related to the so-called hidden variable argument in Physics.8 At some

very general level Game Theory allows for contextual types, but in most applications (e.g., in economics)

5 in the words of Bohr "the impossibility of a sharp separation between the behavior of atomic object and the interaction

with the measuring instruments which serves to define the condition under which the phenomena appears". In psychology

investigating a person’s emotional state affects the state of the person. In social sciences "revealing" one’s preferences in a

choice can affect those preferences: “There is a growing body of evidence that supports an alternative conception according

to which preferences are often constructed — not merely revealed — in the elicitation process. These constructions are

contingent on the framing of the problem, the method of elicitation, and the context of the choice”. [23] p.525.
6From a game-theoretical point of view the approach consists in changing the strategy spaces, and thus the interest of

the results lies in the appeal of these changes.
7 See the quote in footnote 5.
8As well-known when no restriction are put on the hidden variables all quantum phenomena can be reproduced. But

this is no longer true as soon as one requires some desirable properties e.g., locality or independence between the observer

and the observed system see [9] for a discussion in the context of quantum games.
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a clear separation between the definition of players (the payoff functions) and the (path of) interaction

is maintained. In section 5, we discuss the question in view of generic impossibility theorems and we

revisit our lead example of Part 2. We conclude that the TI-game approach does have something novel to

contribute to economics. We also want to argue that TI-games contributes to Game Theory by proposing

a fruitful and tractable way of formalizing contextual types. .

A main interest with TI-game is that the Type Indeterminacy hypothesis may modify the way we

think about games. Indeed, a major implication of the TI-hypothesis is to extend the field of strategic

interactions. This is because actions (or more precisely Game Situations (GS)9) impact not only on the

payoffs of other players but also on the profile of types of the players i.e., who the players are. In a

TI-model, players do not have a deterministic, exogenously given, type (preferences). The types change

along the game together with the Game Situations (which are modelled as measurements of the type).

We illustrate this in the example of Part 1 showing that an initially non-cooperative player can be (on

average) turned into a rather cooperative one by confronting him with a "tough" player in a pre-play

cheap-talk promise game.

The paper is divided into two parts. In part 1 we introduce some central features of TI-games. For

this purpose we investigate, in two different settings, a 2x2 game with options, to cooperate and to defect

and we refer to it as a Prisoner Dilemma, PD10. In the first setting, the players move simultaneously

and the game is played once. In the second setting, the simultaneous move PD game is preceded by a

promise exchange game. One objective is to illustrate how the TI approach can provide an explanation

to why cheap-talk promises matter.11 There exists a substantial literature on cheap talk communication

games (see for instance [24] for a survey). The approach in our paper does not belong to the literature on

communication games. The cheap-talk promise exchange stage is used to illustrate the possible impact of

pre-play interaction. Various behavioral theories have also been proposed to explain the impact of cheap-

talk promises. They most often rely on very specific assumptions amounting to adding ad-hoc elements

to the utility function (e.g., a moral cost for breaking promises) or emotional communication [18]. Our

approach provides an explanation relying on a fundamental structure of the model i.e., the quantum

indeterminacy of players’ type. Another advantage of our approach is that, as earlier mentioned, the

type indeterminacy hypothesis also explains a variety of so called behavioral anomalies such as framing

effects, cognitive dissonance [27], the disjunction effect [7] or the inverse fallacy [17].

In part II we develop basic concepts and solutions of maximal information TI-games. From a formal

9Game Situations are situations where the players must choose an action in a strategic context. In TI-games, they are

modelled as operators.
10This is for convenience, as we shall see that the game is not perceived as a true PD by all possible types of a player.
11Cheap talk promises are promises that can be broken at no cost.
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point of view the one single novelty is that we substitute the Harsanyi type space with a Hilbert space

of types. We find that much of conventional game theory can be maintained. In particular the standard

equilibrium concepts are applicable with non substantial modifications in static games and games where

the player only move once (simple signaling games). The first novel results appear in multi-stage non-

commuting games and they are linked to updating. We formulate an updating rule consistent with the

algebraic structure of the type space of TI-games. We show that this rule gives new content (beyond the

informational one) to pooling respectively separating behavior. In particular, this allows for a player’s

action to impact upon the future type of his opponent which enlarges the scope of strategic interaction.

The intuition is that when the best-reply to an action implies some pooling, some indeterminacy is

preserved and the probabilities for next-following choices will be marked by interference effects which

are the signature of indeterminacy. In contrast when a best-reply to an action separates between the

types of the opponent, interference effect are destroyed. We define a Perfect TI-game equilibrium and

demonstrate in an example that the set of Perfect Bayesian equilibrium and Perfect TI-game equilibria

do not coincide.
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Part I

Type Indeterminacy in Strategic Decision-making: An
Example12

.

2 A TI-model of strategic decision-making

In the TI-model a simple "decision situation" is represented by an observable13 called a DS. A decision-

maker is represented by his state or type. A type is a vector |tii in a Hilbert space. The measurement of
the observable corresponds to the act of choosing. Its outcome, the chosen item, actualizes an eigentype14

of the observable (or a superposition15 of eigentypes if the measurement is coarse). It is information about

the preferences (type) of the agent. For instance consider a TI-model where the agent has preferences

over sets of three items, i.e. he can rank any 3 items from the most preferred to the least preferred.

Any choice experiment involving three items is associated with six possible eigentypes corresponding to

the six rankings of the items. Supppose the agent is initially in a fully indeterminate state.16 Suppose

next that when confronted with the DS corresponding to "choosing one element out of the {a, b, c}", he
chooses a. According to the TI-model his type is modified by the act of choosing, i.e., it is projected onto

some superposition of the rankings [a > b > c] and [a > c > b] . Because the TI-model allows for DS that

do not commute, the change in type has implications that go beyond classical information updating. For

a detailed exposition of the TI-model see [27]. How does this simple scheme change when we are dealing

with strategic decision-making?

We denote by GS (for Game Situation) an observable that measures the type of an agent in a strategic

situation, i.e., in a situation where the outcome of the choice, in terms of the agent’s utility, depends

12Part 1 is heavily inspired by a joint work with Jerry Busemeyer
from Indiana University in Quantum Interaction 2009.
13An observable is a linear operator that operates on the state of a system. .
14The eigentypes are the types associate with the eigenvalues of the observable i.e., the possible outcomes of the mea-

surement of the DS.
15A superposition is a linear combination of the form

S
λi |tii ;

S
λ2i = 1 where the ti are possible states/types of the

players.
16A state where all of the six potential rankings have positive coefficient of superposition.
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on the choice of other agents as well. The interpretation of the outcome of the measurement is that

the chosen action is a best reply against the opponents’ expected action. This interpretation parallels

the one in the simple decision context. There, we interpret the chosen item as the preferred one in

accordance with an underlying assumption of rationality i.e., the agent maximizes his utility (he chooses

what he prefers). The notion of revealed preferences (we shall use the term "actualized" rather than

revealed17) and a fortiori of "actualized best-reply" is problematic however. A main issue here is that a

best-reply is a response to an expected play. When the expected play involves subjective beliefs there may

be a problem as to the observability of the preferences. This is in particular so if subjective beliefs are

quantum properties.18 But in the context of maximal information games (see below for precise definition)

probabilities are objective which secures that the actualized best-reply is well-defined.

TI-games are games with type indeterminate players, i.e., games characterized by uncertainty. In par-

ticular, players do not know the payoff of other players. The standard (classical) approach to incomplete

information in games is due to Harsanyi. It amounts to transforming the game into a game of imperfect

information where Nature moves at the beginning of the game and selects, for each player, one among

a multiplicity of possible types (payoff functions). A player’s own type is his private information. But

in a TI-game the players may not even know their own payoff. This is true even in TI-game of maximal

information where the initial types are pure types.19

Types and eigentypes We use the term type to refer to the quantum pure state of a player. A pure

type is maximal information about the player i.e., about his payoff function. But because of (intrinsic)

indeterminacy, the type is not complete information about the payoff function in all games simultaneously

not even to the player himself (see [11] for a systematic investigation of (non-classical) indeterminacy with

application to Social Sciences).

In a TI-game we also speak about the eigentypes of any specific game M , these are complete infor-

mation about the payoff functions in a specific static game M . Any eigentype of a player knows his own

M -game payoff function but he may not know that of the other players. The eigentypes of a TI-game M

17The expression revealed preferences implicitely assumes that the prefrences pre-existed the measurement and that

they are uncovered by the measurement. A central feature of the TI-model is precisely to depart from that assumption.

Preferences do not pre-exist the measurement. Preferences are in a state of potentials that can be actualized by the

measurement.
18 If subjective beliefs and preferences are quantum properties that do not commute then they cannot be measured

simultaneously.
19Pure types provide maximal information about a player. But in a context of indeterminacy, there is an irreducible

uncertainty. It is impossible to know all the type characteristics of a player with certainty. For a discussion about pure and

mixed types see Section 3.2 in [11].
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are identified with their payoff function in that game.

So we see that while the Harsanyi approach only uses a single concept, i.e., that of type and it

is identified both with the payoff function and with the player. In any specific TI-game M, we must

distinguish between the type which is identified with the player and the eigentypes (of M) which are

identified with the payoff functions in game M . A helpful analogy is with multiple-selves models (see

e.g., [31] and [19]). In multiple-selves models, we are most often dealing with two "levels of identity".

These two levels are identified with short-run impulsive selves on the one side and a long-run "rational

self" on the other side. In our context we have two levels as well: the level of the player (the type) and

the level of the selves (the eigentypes) which are to be viewed as potential incarnations of the player in

a specific game. In a TI-model a player is described as a superposition of (simultaneous) selves.

A central assumption that we make is that the reasoning leading to the determination of the best-reply

is performed at the level of the eigentypes of the game. This key assumption deserves some clarification.

What we do is to propose that players are involved in some form of parallel reasoning: all the active (with

non-zero coefficient of superposition) eigentypes perform their own strategic thinking. Another way to

put it is that we assume that the player is able to reason from different perspectives. Note that this is not

as demanding as it may at first appear. Indeed we are used in standard game theory to the assumption

that players are able to put themselves "in the skin" of other players to think out how those will play in

order to be able to best-respond to that.

As in the basic TI-model, the outcome of the act of choosing, here a move, is information about the

(actualized) type of the player and the act of choosing modifies the type of the player e.g., from some

initial superposition it "collapses" onto a specific eigentype of the game under consideration (see next

section for concrete examples).

Finally, we assume that each player is an independent system i.e., there is no entanglement between

players.20

We next investigate an example of a maximal information two-person game. The objective is to

introduce some basic features of TI-games in a simple context and to illustrate an equivalence and some

distinctions between the Bayes-Harsanyi approach and the TI-approach.

2.1 A single interaction

Consider a 2X2 symmetric game, M, and for concreteness we call the two possible actions cooperate

(C) and defect (D) (as in a Prisoner’s Dilemma game but as we shall see below for certain types, it is a

20 In future research we intend to investigate the possibility of entanglement between players.
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coordination game) and we define the preference types of game M also called the M-eigentypes as follows:

θ1 : prefers to cooperate whatever he expects the opponent to do;

θ2 : prefers to cooperate if he expects the opponent to cooperate with probability p > q (for some

q ≤ 1) otherwise he prefers to defect;
θ3 : prefers to defect whatever he expects the opponent to do.

An example of these types is in the payoff matrices below where we depict the row player’s payoff:

θ1 :

⎛⎜⎜⎜⎝
C D

C 10 5

D 0 0

⎞⎟⎟⎟⎠ , θ2 :

⎛⎜⎜⎜⎝
C D

C 10 0

D 6 8

⎞⎟⎟⎟⎠ , θ2 :

⎛⎜⎜⎜⎝
C D

C 0 0

D 10 5

⎞⎟⎟⎟⎠
We shall now proceed to investigate this simultaneous move TI-game. We note immediately that θ1

and θ3 are non-strategic while θ2 is, i.e., his best-reply will depend on what he expects the opponent

to do. The initial types are generally not eigentypes of the game under consideration. Let player 1 be

described by the superposition

|t1i = λ1 |θ1i+ λ2 |θ2i+ λ3 |θ3i ,
X

λ2i = 1. (1)

We shall first be interested in the optimal play of player 1 when he interacts with a player 2 of different

eigentypes. Suppose he interacts with a player 2 of eigentype θ1. Using the definitions of the eigentypes

θi above and (1), we know by Born’s rule21 that with probability λ
2
1+λ22

22 player 1 plays C (because θ2’s

best-reply to θ1 is C ) and he collapses on the (superposed) type |t01i = λ1√
λ21+λ

2
2

|θ1i+ λ2√
λ21+λ

2
2

|θ2i . With
probability λ23 player 1 playsD and collapses on the eigentype θ3. If instead player 1 interacts with a player

2 of type θ3 then with probability λ
2
1 he plays C and collapses on the eigentype θ1 and since θ

0
2s best-reply

to θ3 is D, with probability λ
2
2 + λ23 he plays D and collapses on type |t”1i= λ2√

λ23+λ
2
2

|θ2i+ λ3√
λ23+λ

2
2

|θ3i .

We note that the probabilities for player 1’s moves depends on the opponent’s type and corresponding

expected play - as usual. More interesting is that, as a consequence, the resulting type of player 1 also

depends on the type of the opponent. This is because in a TI-model the act of choice is a measurement

that operates on the type and changes it. We interpret the resulting type as the initial type modified

by the measurement. In a one-shot context, this is just an interpretation since formally it cannot be

21The calculus of probability in Quantum Mechanics is defined by Born’s rule according to which the probability for the

different eigentypes is given by the square of the coefficients of superposition.
22As in the original TI-model, the coefficients of superposition are real numbers and not complex numbers as in Quantum

Mechanics. We motivation for that can be found in ??.
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distinguished from a classical informational interpretation where the resulting type captures our revised

beliefs about player 1 (when our initial beliefs are given by (1)).

We now consider a case when player 2’s type is indeterminate as well:

|t2i = γ1 |θ1i+ γ2 |θ2i+ γ3 |θ3i ,
X

γ2i = 1. (2)

From the point of view of the eigentypes of a player (the θi), the situation can be analyzed as a

standard situation of incomplete information. We consider two examples:

Example 1 Let λ21 ≥ q, implying that the eigentype θ2 of player 2 cooperates and let γ21 + γ22 ≥ q so the

eigentype θ2 of player 1 cooperates as well.

Example 2 Let λ21 ≥ q so the eigentype θ2 of player 2 cooperates but now let γ21 + γ22 < q so here the

eigentype θ2 of player 1 prefers to defect.

In Example 1 the types θ1 and θ2 of both players pool to cooperate. So in particular player 1’s

resulting type is a superposition of |θ1i and |θ2i with probability
¡
λ21 + λ22

¢
and it is the eigentype |θ3i

with probability λ23. In Example 2, player 1’s eigentypes θ2 and θ3 pool to defect so player 1’s resulting

type is a superposition of |θ2i and |θ3i with probability λ22 + λ23 and |θ1i with probability λ21. So we see

again how the resulting type of player 1 varies with the initial (here superposed) type of his opponent.

Definition

A pure static TI-equilibrium of a game M with eigentypes θi ∈ E1 = E2 = E, with action set

A = {a1, a2} and strategy sets S1 = S2 = S : E → S and initial types
¡¯̄
tt=01

®
,
¯̄
tt=02

®¢
is

i. A profile of pure strategies (s∗1, s
∗
2) ∈ S × S such that each one of the M−eigentypes of each player

maximizes his expected utility given the (superposed) type of his opponent and the strategies played by the

opponent’s eigentypes:

s∗1
¡
θ1i
¢
= arg max

s01.∈S1

X
θ2i ;γi>0

γ2iui
¡
s01, s

∗
2

¡
θ2i
¢
,
¡
θ1i , θ

2
i

¢¢
(3)

and similarly for player 2.

ii. A corresponding profile of resulting types, one for each player and each action:A corresponding

profile of resulting types (t01, t
0
2), one for each player

| t01| aii =
X

θi;s∗1(θ1i )=a1i

λ0i
¯̄
θ1i
®
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where λ0i =
λi

j 6=i(λ1j)
2(s∗1(θ1j)=a1i )

and ai is the action played by player 1. Similarly for
¯̄
t02| a2i

®
.

For concreteness we shall now solve for the TI-equilibrium of this game for the following initial types

|t1i =
√
.7 |θ1i+

√
.2 |θ2i+

√
.1 |θ3i , (4)

|t2i =
√
.2 |θ1i+

√
.6 |θ2i+

√
.2 |θ3i . (5)

Given the payoff matrices above, the threshold probability q that rationalizes the play of C for the

eigentype θ2 is q = .666. For the ease of presentation, we let q = .7. We know that the θ2 of player 2

cooperates since λ21 = .7 ≥ q and so does the θ2 of player 1 since γ21+γ
2
2 = .8 > q.

In the TI-equilibrium of this game player 1 plays C with probability .9 and collapses on |t01i =
√
.7√

.7+.2
|θ1i+

√
.2√

.7+..2
|θ2i and with probability .1 player 1 plays D and collapses on |θ3i . Player 2 plays C

with probability .8 and collapses on |t02i =
√
.4√

.4+.4
|θ1i +

√
.4√

.4+.4
|θ2i and with probability .2, he plays D

and collapses on |θ3i .
We note that the mixture actually played by player 1 (.9C, .1D) is not the best reply of any of his

eigentypes. The same holds for player 2. The eigentypes are the "real players" and they play pure

strategies.

We end this section with a comparison of the TI-game approach with the standard incomplete infor-

mation treatment of this game where the square of the coefficients of superposition in (1) and (2) are

interpreted as players’ beliefs about each other. The sole substantial distinction is that in the Bayes-

Harsanyi setting the players privately learn their own type before playing while in the TI-model they

learn it in the process of playing. A player is thus in the same informational situation as his opponent

with respect to his own play. However under our assumption that all the reasoning is done by the eigen-

types, the classical approach and the TI-approach are indistinguishable. They yield the same equilibrium

outcome. The distinction is merely interpretational.

Statement 1

The equilibrium predictions TI-model of a simultaneous one-move game are the same as those of the

corresponding Bayes-Harsanyi model.

A formal proof of Statement 1 can be found in Part II.

This central equivalence result should be seen as an achievement which provides support for the

hypotheses that we make to extend the basic TI-model to strategic decision-making. Indeed, we do want

the non-classical model to deliver the same outcome in a simultaneous one-move context.23 We next move
23We know that quantum indeterminacy cannot be distinguished from incomplete information in the case of a single

measurement. A simultaneous one-move game corresponds to two single measurements performed on two non-entangled

systems.
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to a setting where one of the players is involved in a sequence of moves. This is the simplest setting in

which to introduce the novelty brought about by the type indeterminacy hypothesis.

2.2 A multi-stage TI-game

In this section we introduce a new interaction involving player 1 and a third player, a promise exchange

game.24 We assume that the GS representing the promise game do not commute with the GS representing

the gameM (described in the previous section).25 Player 1 and 3 play a promise game where they choose

between either making a non-binding promise to cooperate with each other in game M or withholding

from making such a promise. Our objective is to show that playing a promise exchange game - with

a third player - can increase the probability for cooperation (decrease the probability for defection)

between the player 1 and 2 in a next following game M. Such an impact of cheap-talk promises is related

to experimental evidence reported in Frank (1988)

We shall compare two situations called respectively protocol I and II. In protocol 1 player 1 and 2

play game M. In protocol II we add a third player, 3, and we have the following sequence of events:

step 1 Player player 1 and 3 play a promises exchange game N , described below.

step 2 Player 1 and 2 play M .

step 3 Player 1 and 3 play M .26

The promise exchange game

At step 1, player 1 and 3 have to simultaneously select one of the two announcements: "I promise to

play cooperate", denoted, P, and "I do not promise to play cooperate" denoted no − P . The promises

are cheap-talk i.e., breaking them in the next following games has no implications for the payoffs i.e., at

step 2 or step 3.

There exists three eigentypes in the promise exchange game:

τ1 : prefers to never make cheap-talk promises - let him be called the "honest type";

τ2 : prefers to make a promise to cooperate if he believes the opponent cooperates with probability

p ≥ q (in which case he cooperates whenever he is of type θ2 or θ1 or any superposition of the 2). Otherwise

he makes no promises - let him be called the "sincere type";

24The reason for introducing a third player is that we want to avoid any form of signaling. The exercise could be done

with only two players but the comparison between the classical and the TI-model would be less transparent.
25To each game we associate a collection of GS each of which measures the best reply a possible type of the opponent.
26The reason why we have the interaction at step 3 is essentially to motivate the promise exchange game. Our main

interest will focus on the interaction at step 2.
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τ3 : prefers to promise that he will cooperate whatever he intends to do - he can be viewed as the

"opportunistic type".

Information assumptions

We make the following assumptions about players’ information in the multi-stage game:

i. All players know the statistical correlations (conditional probabilities) between the eigentypes of

the two (non-commuting) games.27

ii. At step 2, player 2 knows that player 1 has interacted with player 3 but he does not know the

outcome of the interaction.

We note that ii. implies that we are not dealing with an issue of strategic communication between

player 1 and 2. No message is being received by player 2.

The classical model

We first establish that in the classical setting we have the same outcome in protocol I and at step 2 of

protocol II. We already know from Statement 1 that the predictions of a TI model of game M are the

same as the prediction of the classical Bayes-Harsanyi model of the corresponding incomplete information

game.

We investigate in turn how the interaction between player 1 and 3 at step 1 affects the incentives

and/or the information of player 1 and 2 at step 2. Let us first consider the case of player 1. In a classical

setting, player 1 knows his own type, so he learns nothing from the promise exchange stage. Moreover

the announcement he makes is not payoff relevant to his interaction with player 2. So the promise game

has no direct implication for his play with player 2. As to player 2, the question is whether he has

reason to update his beliefs about player 1. Initially he knows |t1i from which he derives his beliefs

about player 1’s equilibrium play in game M . By our informational assumption (i) he also knows the

statistical correlations between the eigentypes of the two games from which he can derive the expected

play conditional on the choice at the promise stage. He can write the probability of e.g., the play of D

using the conditional probability formula:

p (D) = p (P ) p (D|P ) + p (no− P ) p (D|no− P ) . (6)

He knows that player 1 interacted with 3 but he does not know the outcome of the interaction. Therefore

he has no new element from which to update his information about player 1. We conclude that the

introduction of the interaction with player 3 at step 1 leaves the payoffs and the information in the game

M unchanged. Hence, expected behavior at step 2 of protocol II is the same as in protocol I.

27 So in particular they can compute the correlation between the plays in the different games.
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The TI-model

Recall that the GS representing the promise game do not commute with the GS representing the gameM .

We now write eq.(1) and (2) in terms of the eigentypes of game N, i.e., of the promise stage eigentypes:

|t1i = λ01 |τ1i+ λ02 |τ2i+ λ03 |τ3i and |t3i = γ01 |τ1i+ γ02 |τ2i+ γ03 |τ3i .

Each one of the N−eigentype can in turn be expressed in terms of the eigentypes of game M :

|τ1i = δ11 |θ1i+ δ12 |θ2i+ δ13 |θ3i (7)

|τ2i = δ21 |θ1i+ δ22 |θ2i+ δ23 |θ3i

|τ3i = δ31 |θ1i+ δ32 |θ2i+ δ33 |θ3i

where the δij are the elements of the basis transformation matrix.28 Assume that player 3 is (initially)

of type θ3 with probability close to 1, we say he is a "tough" type. We shall investigate the choice of

between P and no-P of player 1 i.e., the best response of the eigentypes τ i of player 1.

By definition of the τ i type, we have that τ1 always plays no-P and τ3 always play P. Now by

assumption, player 3 is of type θ3 who never cooperates. Therefore, by the definition of τ2, player 1 of

type τ2 chooses not to promise to cooperate, he plays no−P .

This means that at step 1 with probability λ021 + λ022 player 1 plays no−P and collapses on
¯̄bt1® =

λ01

(λ201 +λ202 )
|τ1i+ λ02

(λ201 +λ202 )
|τ2i . With probability λ023 he collapses on |τ3i .

We shall next compare player 1’s propensity to defect in protocol I with that propensity in protocol

II. For simplicity we shall assume the following correlations: δ13 = δ31 = 0, meaning that the honest

type τ1, never systematically defects and that the opportunistic guy τ3 never systematically cooperates.

Player 1’s propensity to defect in protocol I

We shall consider the same numerical example as before i.e., given by (4) and (5) so in particular we

know that θ2 of player 1 cooperates so p (D ||t1i) = λ23. But our objective in this section is to account

for the indeterminacy due to the fact that in protocol I the promise game is not played. We have

|t1i = λ01 |τ1i+ λ02 |τ2i+ λ03 |τ3i ,
28A basis transformation matrix links the eigentypes of the two GO M and N :⎛⎜⎜⎜⎝

hτ1| θ1i = δ11 hτ1| θ2i = δ12 hτ1| θ3i = δ13

hτ2| θ1i = δ21 hτ2| θ2i = δ22 hτ2| θ3i = δ23

hτ3| θ1i = δ31 hτ3| θ2i = δ32 hτ3| θ3i = δ33

⎞⎟⎟⎟⎠ .
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using the formulas in (7) we substitute for the |τ ii

|t1i = λ01 (δ11 |θ1i+ δ12 |θ2i+ δ13 |θ3i) + λ02 (δ21 |θ1i+ δ22 |θ2i+ δ23 |θ3i)

+λ03 (δ31 |θ1i+ δ32 |θ2i+ δ33 |θ3i) .

Collecting the terms we obtain

|t1i =
¡
λ01δ11 + λ02δ21 + λ03δ31

¢
|θ1i+

¡
λ01δ12 + λ02δ22 + λ03δ32

¢
|θ2i+¡

λ013δ + λ02δ23 + λ03δ33
¢
|θ3i .

We know from the preceding section that both |θ1i and |θ2i choose to cooperate so

p (D ||t1i ) = p (|θ3i ||t1i ) .

Using δ13 = 0, we obtain the probability for player 1’s defection in protocol I:

p (D ||t1i )M =
¡
λ02δ23 + λ03δ33

¢2
= λ202 δ

2
23 + λ203 δ

2
33 + 2λ

0
2δ23λ

0
3δ33. (8)

Player 1’s propensity to defect in protocol II

When the promise game is being played, i.e., the measurement N is performed, we can (as in the

classical setting) use the conditional probability formula to compute the probability for the play of D

p (D ||t1i)MN = p (P ) p (D|P ) + p (no− P ) p (D|no− P ) . (9)

Let us consider the first term: p (P ) p (D|P ) .We know that p (P ) = p (|τ3i) = λ203 .We are now interested

in p (D|P ) or p (D |τ3i) . |τ3i writes as a superposition of the θi with θ1 who never defects, θ3 who always
defect while θ2’s propensity to defect depends on what he expects player 2 to do. We cannot take for

granted that player 2 will play in protocol II as he plays in protocol I. Instead we assume for now that

eigentype θ2 of player 2 chooses to cooperate (as in protocol I) because he expects player 1’s propensity

to cooperate to be no less than in protocol I. We below characterize the case when this expectation is

correct. Now if θ2 of player 2 chooses to cooperate so does θ2 of player 1 and p (D |τ3i) = δ233 so

p (P ) p (D|P ) = λ203 δ
2
33

We next consider the second term of (9). The probability p (no− P ) is
¡
λ201 + λ202

¢
and the type of player

1 changes, he collapses on
¯̄bt1® = λ01

(λ201 +λ202 )
|τ1i + λ02

(λ201 +λ202 )
|τ2i. Since we consider a case when θ2 of
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player 1 cooperates, the probability for defection of type
¯̄bt1® is Ã λ01

(λ201 +λ202 )

!2
δ213 +

Ã
λ02

(λ201 +λ202 )

!2
δ223.

Recalling that δ13 = 0, we obtain that p (no− P ) p (D|no− P ) is equal to

¡
λ201 + λ202

¢⎛⎝ λ02q¡
λ201 + λ202

¢
⎞⎠2

δ223 = λ202 δ
2
23

which gives

p (D ||t1i)MN = λ202 δ
2
23 + λ203 δ

2
33. (10)

Comparing formulas in (8) and (10) :

p (D ||t1i)MN − p (D ||t1i )M = −2λ02δ23λ03δ33 (11)

which can be negative or positive because the interference terms only involves amplitudes of probability

i.e., the square roots of probabilities. The probability to play defect decreases (and thus the probability

for cooperation increases) when player 1 plays a promise stage whenever 2λ02δ23λ
0
3δ33 > 0. In that case

the expectations of player 2 are correct and we have that the θ2 type of both players cooperate which we

assumed in our calculation above.29

Result 1: When player 1 meets a tough player 3 at step 1, the probability for playing defect in the

next following M game is not the same as in the M game alone, p (D ||t1i )M − p (D ||t1i)MN 6= 0.

It is interesting to note that p (D ||t1i)MN is the same as in the classical case. It can be obtained

from the same conditional probability formula.

In order to better understand our Result 1, we now consider a case when player 1 meets with a "soft"

player 3, i.e., a θ1 type, at step 1.

The soft player 3 case

In this section we show that if the promise stage is an interaction with a soft player 3 there is no effect

of the promise stage on player 1’s propensity to defect and thus no effect on the interaction at step 2.

Assume that player 3 is (initially) of type θ1 with probability close to 1. What is the best reply of the

N -eigentypes of player 1, i.e., how do they choose between P and no-P? By definition we have that τ1

always plays no-P and τ3 always play P. Now by the assumption we just made player 3 is of type θ1

who always cooperates so player 1 of type τ2 chooses to promise to cooperate, he plays P .

29For the case the best reply of the θ2 types changes with the performence of the promise game, the comparison between

the two protocols is less straightforward.
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This means that at t=1 with probability λ021 he collapses on |τ1i and with probability λ022 +λ023 player

1 plays P and collapses on
¯̄bt1® = λ02√

λ202 +λ
20
3

|τ2i + λ03√
λ202 +λ

20
3

|τ3i . We shall compute the probability to
defect of that type.30 We write the type vector

¯̄bt1® in terms of the M -eigentypes,
¯̄bt1® =

⎛⎝ λ02q
λ022 + λ023

⎞⎠ (δ21 |θ1i+ δ22 |θ2i+ δ23 |θ3i)

+

⎛⎝ λ03q
λ022 + λ023

⎞⎠ (δ31 |θ1i+ δ32 |θ2i+ δ33 |θ3i)

As we investigate player 1’s M -eigentypes’ best reply, we again have to make an assumption about player

2’s expectation. And the assumption we make is that he believes that player 1’s propensity to defect is

unchanged, so as in protocol I the θ2 of both players cooperate and only θ3 defects. We have

p
¡
D
¯̄¯̄bt1®¢MN

=

⎡⎣ λ02q
λ022 + λ023

δ23 +
λ03q

λ022 + λ023

δ33

⎤⎦2

p
¡
D
¯̄¯̄bt1®¢MN

=
1

λ202 + λ203

£
λ022δ223 + λ023δ233 + 2λ02λ03δ23δ33

¤
The probability for defection is thus

p (D ||t1i )MN = P (τ1) p (D ||τ1i ) + P
¡bt1¢ p ¡D ¯̄¯̄bt1®¢ =

0 +
¡
λ202 + λ203

¢ 1

λ202 + λ203

£
λ202 δ

2
23 + λ203 δ

2
33 + 2λ

0
2λ
0
3δ23δ33

¤
= λ202 δ

2
23 + λ203 δ

2
33 + 2λ

0
2λ
0
3δ23δ33.

Comparing with eq. (8) of protocol I we see that here

p (D ||t1i)M = p (D ||t1i)MN

There is NO effect of the promise stage. This is because the interference terms are still present. We note

also that player 2 was correct in his expectation about player 1’s propensity to defect.

Result 2

If player 1’s move at step 1 does not separate between the N-eigentypes that would otherwise interfere

in the determination of his play of D at step 2 then p (D ||t1i )M = p (D ||t1i )MN .

Let us try to provide an intuition for our two results. In the absence of a promise stage (protocol I) both

the sincere and opportunistic type coexist in the mind of player 1. Both these two types have a positive

propensity to defect. When they coexist they interfere positively(negatively) to reinforce(weaken) player

1’s propensity to defect. When playing the promise exchange game the two types may either separate

30Recall that τ1 never defects.
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or not. They separate in the case of a tough player 3. Player 1 collapses either on a superposition of

the honest and sincere type (and chooses no-P) or on the opportunistic type (and chooses P). Since the

sincere and the opportunistic types are separated (by the first measurement, game N) there is no more

interference. In the case of a soft player 3 case, the play of the promise game does not separate the sincere

from the opportunistic guy, they both prefer P. As a consequence the two N eigentypes interfere in the

determination of outcome of the next following M game as they do in protocol I.

In this example we demonstrated that in a TI-model of strategic interaction, a promise stage does

make a difference for players’ behavior in the next following performance of game M. The promise stage

makes a difference because it may destroy interference effects that are present in protocol I.

Quite remarkably the distinction between the predictions of the classical and the TI-game only appears

in the absence of the play of a promise stage (with a tough player). Indeed the probability formula that

applies in the TI-model for the case the agent undergoes the promise stage (10) is the same as the

conditional probability formula that applies in the standard classical setting.

The cheap-talk promise paradox

When promises that have no commitment or informational value affect behavior, we may speak about

a cheap talk paradox (with respect to established theory). In particular we may have the case that despite

the fact that all types pool to make cheap-talk promises (we only have non-revealing equilibria), they

nevertheless affect subsequent play. Our paper does not exactly address this case. This is because on

the one hand playing the promise game always separates between the τ1 and τ3. On the other hand the

promises are not communicated to player 2. Yet, because the analysis focuses on the separation between

τ2 and τ3 (and by its information assumption avoids Bayesian updating with respect to τ1), it suggests

two possible explanations for why cheap-talk promises may matter:

1. Unobserved separation

Here the idea is that the promise game actually does trigger separation between types (like in protocol

2 with a taught type). Reaching the promise response is more difficult for the reciprocating type τ2

than for the opportunistic τ3. It takes longer time to do the reasoning. The act of playing breaks the

indeterminacy of player 1 but that is not observed by player 2.31 In that case the TI-model’s predictions

in the next following PD game are not the same with a promise exchange pre-play compared as or without

pre-play. We have an impact of cheap-talk promises.

2. Observed pooling

31The idea is that player 2’s observation is too coarse: he does not know whether reaching the promise decision took long

time or not.

17



The second line of explanation of the paradox follows a different logic. It relies on the observation

that if the observer has the classical model in mind, his predictions are incorrect. When he confronts his

predictions in protocol 2 (which are the same as his predictions in protocol 1) with the actual outcome

of protocol 2, he notes a difference. This is because simply he did not account for the interference effects.

So here the explanation is not that pooling in cheap-talk promises changes behavior but that there is an

error in the modeling of the pooling outcome.
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Part II

Basic Concepts and Solutions of TI-games

Vladimir Danilov32, Ariane Lambert-Mogiliansky33

.

3 Static TI-games of maximal information

TI-games are games with type indeterminate players, i.e., games characterized by uncertainty, players

have incomplete information about important aspects of the game. It is therefore natural to look for the

classical counter-part in games with incomplete information.

In this section we deal exclusively with static games. Using the terminology introduced in section 2 of

Part 1, we denote by GS (for Game Situation) an operator (called observable in Physics) that measures

the type of an agent in a strategic situation i.e., in a situation where the outcome of the choice, in terms

of the agent’s utility, depends on the choice of other agents as well. The notion of GS applies exclusively

to game situations that can be associated with a first-kind measurement.34 The outcome of a GS i.e., of

a move, is information about the type of the player.35 This is because we interpret the outcome of the

measurement so that the chosen action is a best reply against the opponent’s expected action. Possible

problems with the notion of actualized best-reply due to the role of players’ beliefs are discussed in Part

1 p. 5. But with maximal information games, expectation is computed with objective probabilities. A

GS does not generally give maximal information about the type of the player.36 In particular, this is the

case when some of the possible types pool in their best-reply. Such a GS is a coarse measurement which

preserves some indeterminacy with implications beyond the pure informational aspects as we shall see

below.
32Central Economic Mathematic Institute, Moscow.
33Paris School of Economics, alambert@pse.ens.fr
34First-kindness is a property of reproducibility. If one performs a measurement on a system and obtains a result, then

one will get the same result if one performs again that measurement on the same system immediately after. First-kindness

does not entail that the first outcome is obtained when repeating a measurement if other measurements are performed on

the system in between.
35We assume throughout that each player is an independent system i.e., there is no quantum entanglement between

players.
36 In a TI context there is a distinction between maximal and complete information. See the subsection "type an eigentype".
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Uncertainty When some players do not know the payoff function of other players the game is said of

incomplete information. The standard approach, due to Harsanyi, is to transform the game into a game

of imperfect information where Nature moves at the beginning of the game and selects, for each player,

one among a multiplicity of possible types. A player’s own type is his private information. Generally,

the Harsanyi type includes a player’s information and beliefs. But in this paper we let the term Harsanyi

type exclusively refer to the payoff function while information is dealt with separately. This is because

we shall be dealing with TI-games of maximal information where all players are represented by pure

types (eigentype or superposition of eigentypes, see below for a definition).37 As we shall see this implies

that we are dealing with objective uncertainty. However in such a TI-game some players may not even

know their own payoff function. Can we nevertheless extend the Harsanyi approach to TI-games? We

shall argue that the TI-paradigm gives new content to Harsanyi’s approach. What is a fictitious Nature’s

move in Harsanyi’s setting becomes a real move (a measurement) with substantial implications. And the

theoretical multiplicity of types of a player becomes a substantial multiplicity of "selves".38

Types and eigentypes

We use the term type as the term quantum pure state. A (pure) type |ti ∈ T39 where T is a Hilbert
space, is maximal information about the player i.e., about his payoff function40. But because of (intrinsic)

indeterminacy (see below), a type does not provide complete information about the payoff function in all

possible GS not even to the player himself.

In a TI-game we also speak about the eigentypes of a game M, ei (M) ∈ E (M) , E (M) ⊂ T. The
term eigentype parallels the term eigenstate of a system. It is a state associated with one of the possible

eigenvalues of an observable. An eigentype is thus the type associated with one of the possible outcomes

of a GS (or more correctly of a complete set of commuting GS associated with a game).41 The eigentypes

are truly private and complete information about the payoff functions in a specific static game M . Any

eigentype of a player knows his own M -game payoff function but he may not know that of the other

players. The eigentypes of a TI-game M are identified with their payoff function in that game.

Let us be more precise as to the distinction between the Harsanyi approach to uncertainty and the

Type Indeterminacy approach. Harsanyi assumes that the player’s type are independently drawn from

37For a discussion about pure and mixed types (states) see Section 3.2 in Danilov and Lambert-Mogiliansky 2008.
38There exists various models of multiple selves in the literature. The original idea is due to Strotz (1956) and is used to

model time inconsistent behavior in dynamic utility maximization
39We use Dirac ket notation |i to denote a vector in a Hilbert space.
40We do not include any private information or beliefs in our definition of a type or of an eigentype.
41A GS corresponds to a specific strategic decision situation involving one or more other players. A complete set

of commuting GS provides information about a type’s behavior for any possible play of any opponent. It is complete

description of his preferences in this game and we identify it with a payoff function.
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a joint distribution p (θ1, ..., θn) where θi ∈ Θ is some Boolean space with finite number of elements.

A Harsanyi type summarizes all possible type characteristics of a player.42 The joint distribution is

common knowledge among all the players. Upon receiving information from Nature about one’s own

type, a player updates his beliefs about others’ type. The conditional probabilities p (θ−i; θi) constitute

the initial beliefs of player i and these beliefs are updated according Bayes’ rule along the game in view

of new information.

In TI-games, the types |tii are (vectors) elements of a (finite dimensional) Hilbert space T. In a
maximal information game the initial type of the players are pure types (i.e., not mixed) and they are

common knowledge among players. For any static game M, a type ti can be expressed in terms of

the eigentypes |ei (M)i ∈ E (M) ⊂ T, with |ei(M)i ⊥ |ej(M)i , i 6= j. An eigentype summarizes the

type characteristics relevant to a particular game. The uncertainty relevant to game M is given by the

expression of the initial type ti in terms of (a superposition) the eigentypes ei (M). In contrast to a

Harsanyi type, an eigentype does not summarize all the possible type characteristics. Consider a multi-

move game: M followed byN , the TI-model allows for the case when the type characteristics relevant toM

respective N are ”incompatible” in the sense that they cannot be revealed (actualized) simultaneously.43

This is the source of intrinsic indeterminacy i.e., of an uncertainty not due to incomplete information

but to the impossibility of actualizing type characteristics belonging to two non-commuting GS. The

classical Bayes-Harsanyi model corresponds to the special case of the TI-model when all GS commute.

As a consequence of non-commutativity, in a TI-game the players’ type change as the game proceeds.44

As the game proceeds players update their information but they do not generally follow Bayes’ rule.45

The updating rule reflects the (non- Boolean) structure of the type space, see B1-B2 below.

Assumption 1

In a TI-game all strategic reasoning is done by the eigentypes of the players.

This key assumption has been commented in Part 1, p.6. As earlier mentioned it is consistent with

standard game theory which assumes that players are able to adopt the perspective of other players. This

is necessary to figure out how other players will play in order to best-respond to their play. In the context

of dynamic TI-games Assumption 1 has non-trivial implications for utility maximization as we shall see

next.

42A Harsanyi type usually includes the player’s private information but we do not have any private information here.
43The tensor product set E (M)⊗E (N) does not exist when M and N are incompatible.
44 See [11] for an explanation of the links between the incompatibility of observables and the change on the type.
45 See [13] for a discussion on updating in a non-classical context
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Utility In the context of type indeterminacy we have to be careful with the notion of utility. A question

arises because the type of the agent changes along the path of actions with the decisions that are made:

which type’s utility is it that matters to the agent’s decisions? We shall adopt the following principle: at

each step the utility of an action profile is evaluated by the potential current eigentypes. In a multi-stage

context, these types are of course well aware that there is a continuation game and they do care about

the utility of the player’s future selves. We shall assume that the utility of the future selves is accounted

for as evaluated by these future selves. More precisely: in each period each potential eigentype of a player

maximizes his current utility plus the expected utility of the resulting type conditional on "surviving"

the current stage.46 This approach secures that the current eigentypes internalize the impact of their

own decision on the future selves of the player. We adopt the convention of giving the same weight to

the utility of all relevant types along the path. The utility of the whole path is the sum of the utilities of

each period’s action profile evaluated by the resulting type in that period.47

3.1 Static TI-game equilibrium

The standard equilibrium concept of static incomplete information game is the Bayesian Equilibrium.

It relies on the Harsanyi type approach to uncertainty described above. Let the set of players be N,

N = {1, 2}, the players are indexed by j = 1, 2. The sets of pure strategies are denoted Sj (we shall

limit ourselves to pure strategies) with sj : Θ→ Aj where Aj is the action set. The payoff functions are

uj
¡
s1,s2, θ

1, θ2
¢
. If player j knew the strategies of the other player as a function of his type, player j

could use his beliefs p
¡
θ−j ; θj

¢
to compute his expected payoff. This is the idea behind the concept of

Bayesian equilibrium.

A Bayesian equilibrium in a game of incomplete information with a finite number of types θi for each

player j, prior distribution p (.) , and pure strategy spaces Sj , is a Nash equilibrium where each player j

maximizes his utility conditional on θji
48

sj

³
θji

´
= arg max

s0j .∈Sj

X
θ−ji

p
³
θ−ji

¯̄̄
θji

´
uj

³
s0j , s−j

³
θ−ji

´
,
³
θji , θ

−j
i

´´
. (12)

46This means that the resulting type must include that eigentype among the potential eigentypes resulting from the first

move. If that was not the case, that eigentype’s utility would not enter the player’s utility.
47We note that this avoids doubble accounting. The eigentype does takes into account the impact of an action for the

future when making his choice between actions. But in each period only the utility of the (expected) current action is

accounted for in the computation of the utility of the path.
48The formulation in terms of utility conditional on the type is equivalent to the unconditional formulation because all

types have positive probability.
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A first equivalence result

As we wrote earlier, in a TI-game a player is not identified with his payoff function so when it comes to

equilibrium analysis we cannot proceed as in the classical case. Yet, under Assumption 1 all the strategic

reasoning is done by the eigentypes (the selves) who know their payoff functions just as the players know

their own payoff function in the Bayes-Harsanyi model. The eigentypes are the "real players" and we

shall see that under this assumption a static TI-game looks very much like an incomplete information

game and a static TI-equilibrium can be defined as a Nash equilibrium of the original two-player game

expanded to the eigentypes of each player.

Let Aj be a finite set of actions available to player j = 1, 2. Each player is represented by his type

|tji ∈ T. For any game situation M we have Ej (M) ⊂ T, where Ej (M) =
n¯̄̄
ej1 (M)

E
, ...,

¯̄̄
ejk (M)

Eo
is

the set of eigentypes of player j in GS M. In the static context of this section we can delete the qualifier

in parenthesis and write
¯̄̄
ej1

E
and Ej . A pure strategy for player 1 is a function s1 ∈ S1, s1 : E

1 → A1.

The initial type vector of player j = 1 can be expressed in terms of the eigenvectors of M :

|t1i =
kX
1

λi
¯̄
e1i
®
,

kX
1

λ2i = 1. (13)

The initial common knowledge beliefs about the eigentypes are given by the types |tji according to Born’s
rule

prob
¡
e1i
¯̄
|t1i
¢
= λ2i .

We call e1i a potential eigentype of player 1 iff λi > 0.
49

In the Bayes-Harsanyi model, Nature moves first and selects the (eigen)type of each player who is

privately informed about it. In a TI-game uncertainty is (partially) resolved by the measurement i.e.,

the actual act of playing. So before playing, the player does not know his own payoff function (i.e.,

his eigentype) only his initial (superposed) type (eq. 13). However, each one of his selves (we use the

terms self and eigentype interchangeably) knows his own payoff function. We assume that the potential

selves of a player all have the same information about the opponent’s type. Now if the selves know the

strategy of the eigentypes of their opponent, they can compute their expected payoff using the information

encapsulated in the (superposed) initial type of his opponent.

Definition
49We note that this is equivalent to an incomplete information representation with player 20s initial beliefs about 1 given

by
k[
1

p
�
e1i
�� e2j� = p

�
e1i
�� e2j� = �λ1i �2 for all ej .

23



A pure strategy TI-equilibrium of a two-player static game M with initial types |t1i =
P

λi
¯̄
e1i
®
and

|t2i =
P

γi
¯̄
e2i
®
is

i. A profile of pure strategies (s∗1, s
∗
2) with

s∗1
¡
e1i
¢
= arg max

s01.∈S1

X
e2i ;γi>0

γ2iui
¡
s01, s

∗
2

¡
e2i
¢
,
¡
e1i , e

2
i

¢¢
(14)

for all e1i ;λi > 0 i = 1, ..k and similarly for player 2.

ii. A corresponding profile of resulting types (t01, t
0
2),

| t01| aii =
X

ei;s∗1(e1i )=a1i

λ0i
¯̄
e1i
®

where λ0i =
λi

j 6=i λ
2
j(s∗1(e1j)=a1i )

and ai is the action played by player 1. Similarly for
¯̄
t02| a2i

®
.

The first part (i) says that each of the potential eigentypes of each player maximizes his expected

utility given the (superposed) type of his opponent and the strategies played by the opponent’s potential

eigentypes. It is very similar to the definition of a Bayesian equilibrium strategy profile except that

the probabilities for the opponent’s eigentypes are given by the initial superposed type instead of a

joint probability distribution.50 In the classical case, a player is identified with an eigentype. Hence,

maximizing the eigentype’s utility is the same as maximizing the player’s utility. In a TI-game, a player

is a superposition of eigentypes. The question may arises as to whether when each of the potential

eigentype maximizes his own utility, the utility of the player also is maximized. In a static context,

this issue is rather unproblematic. The (expected) utility of the, possibly superposed, resulting type

| t01| aii, is simply a convex combination of the (potential) eigentypes’ utilities which is increasing in all
its components.

The second part of the definition (ii) captures the fact that in a TI-game the players’ type is modified

by their play. The rule governing the change in the type is given by the von Neuman-Luder’s projection

postulate (see below for a detailed exposition). In a static setting it is equivalent to Bayesian updating

within the set Ej . We return to this issue in details below in connection with updating in multi-stage

games.

Proposition 1 A pure strategy TI-equilibrium profile of a static maximal information game M with

eigentypes (e1, .., ek) and initial types
¯̄̄
tji

E
=
Pkj
1 λji

¯̄̄
eji

E
is equivalent to a Bayesian pure strategy equilib-

50Note also that the best-reply condition (14) applies to potential eigentypes i.e., with a strictly positive coefficient of

superposition in the initial type only (in the standard classical approach all types have positive probability).
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rium profile of a game with type space Ej =
n
ej1, .., e

j
k

o
and common beliefs given by the distributions p

¡
e1i
¯̄
t1
¢
=

λ2i , p
¡
e2i
¯̄
t2
¢
= γ2i .

The proof follows immediately from the definitions.

In a TI-equilibrium, each eigentype of each player, if called to play, plays a best-reply to the (su-

perposed) type of his opponent. Nature moves at the time of the actual play, selects an eigentype who

already knows his best-reply to the type of the other player. From the point of view of an eigentype the

situation is equivalent to that of a player in an incomplete information game à la Harsanyi. The eigentype

knows his payoff function and can compute his best-reply to the expected eigentype of his opponent. The

fact that in the classical setting Nature moves before the beginning of the game while Nature moves at

the time of playing in the TI-setting has no implication for equilibrium analysis under the assumption

that all the strategic reasoning is done by the eigentypes.

4 Multi-stage TI-game

In the classical context, the static Bayesian equilibrium notion extends to multi-move games when no

observation is made between the moves. In such a case the different moves can be merged into a compound

move. For instance consider a situation where the players must first choose between Right and Left and

thereafter without having observed the opponent’s play, choose between Up and Down. This game can

just as well be expressed as a static game with action set A = {RU,RD,LU,LD} . The actions are merged.
This is generally not true in a TI-context (see Part 1 for an example where a move matters even when it

is not observed).

When it comes to games composed of more than one step for at least one player, the crucial issue for

TI-games is whether the corresponding GS commute with each other or not.

Commutativity of GS

We say that two GS M and N commute if they share a common set of eigentypes E = E (M)⊗E (N).51

Another way to express this is to say that the type are separable |ti = |tiM⊗|tiN . This is the standard de-
finition of commuting observables. For the case all GS commute, the Type Indeterminacy representation

of uncertainty about other players’ type is equivalent the classical Harsanyi representation.52

Definition

51When the two GS do not commute the tensor product set E (M)⊗E (N) does not exist.
52For a general result establishing the equivalence of the classical and the non-classical measurement theory in a multiple

commuting measurement context see (see ALM, HZ, SZ 2006 (JMP 2009) or Danilov Lambert-Mogiliansky 2008).
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A commuting multi-stage TI-game is such that for each player all the GS he may face (in and out

of the equilibrium path) commute with each other. Otherwise we say that the multi-stage game is

non-commuting.

If there is no observation between two commuting moves we can merge the two GS into one compound

GS with outcome set (ai (M) , ai (N)) . We are in a fully classical situation and the static equilibrium

concept applies. More generally commuting multi-stage TI-games are not distinguishable from classical

Bayesian games whether the actions are observed or not. This is because the von Neuman-Luder’s

postulate for deriving the resulting types at each stage is then equivalent with the Bayesian principle for

updating beliefs. We postpone the proof of this statement.

4.1 Simple signaling games

In standard game theory, the notion of multi-stage games includes games where each player only plays

once but in a sequence, e.g., simple signaling games. Simple signaling game qualify as multi-stage

games because updating takes place. The corresponding equilibrium concept is that of Perfect Bayesian

Equilibrium.

Updating

Generally, updating in non-classical measurement theory is a complex issue (see [13]). However, in

the case of Hilbert space models, the earlier mentioned von Neumann-Luder postulate tells us exactly

where a measurement takes the state and accordingly how information should be updated. Let the initial

type vector be an arbitrary

|t1i =
kX
i=1

λi
¯̄
e1i
®

Suppose that the measurement of M yields action a11 which is a best-reply against t2 for e
1
1 and e13 (the

GS is a coarse measurement). According the von Neuman-Luder postulate, the initial type vector |t1i is
projected onto the eigenspace spanned by

¯̄
e11
®
and

¯̄
e13
®
). After the play of a11 player 1’s type is given by

|t01i =
λ1q

(λ1)
2
+
¡
λ13
¢2 ¯̄e11®+ λ3q

(λ1)
2
++(λ3)

2

¯̄
e13
®
.

The resulting type |t01i is a superposition of the two eigentypes who pooled in choosing a11.53 Given this
new type, the updated probability for say e11 is given by Born’s rule to be the square of the coefficient of

superposition:
53 In [27] we discuss the behavioral hypothesis behind our interpretation of pooling in choice as a the outcome of a coarse

measurement.
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prob
¡
e11
¯̄
|t01i
¢
=

⎛⎝ λ1q
λ21 + λ23

⎞⎠2

=
λ21

λ21 + λ23
.

As earlier noticed withinE1 the von Neuman-Luder postulate induces Bayesian updating for appropriately

defined initial beliefs.

Consider a signaling two-player TI-game with action sets A1 and A2. A pure strategy for player 1

who moves first is s1 : E1 → A1, a strategy for player 2 s2 : E2 ×A1 → A2.

Definition

A pure strategy signaling TI-equilibrium with initial types are |t1i =
P

λi
¯̄
e1i
®
, |t2i =

P
γi
¯̄
e2i
®
and

where player 1 moves first to select a1 is characterized by :

P1 s∗1
¡
e1i
¢
= argmaxs0i.∈S1

P
e2j
γ2ju

1
i

¡
s01, s

∗

2

¡
e2j
¢
, e1i , e

2
j

¢
, for all e1i ∈ E1

P2 s∗2
¡
e2i
¢
= argmaxs0i.∈S2

P
e1i
μ
¡
e1i
¯̄
a1
¢
u2i
¡
s02, a1, e

2
i , e

1
i

¢
for all e2i ∈ E2

B μ
¡
e1i
¯̄
a1
¢
=

λ2i

j λ
2
j(s∗1(e1j)=a1)

or any probability if
qP

j λ
2
j

¡
s∗1
¡
e1j
¢
= a1

¢
= 0.

Proposition 2 A signaling TI-game where each player makes a single move in a sequence, is equivalent

to a classical signaling game for appropriately defined prior beliefs. The eigentypes are identified with

the Harsanyi type. The pure equilibrium strategy profile of a signaling TI-game is a Perfect Bayesian

equilibrium.

The proof follows from the definition of the signaling TI-equilibrium.

Again we obtain an equivalence result. This should not surprise us because signaling games only

involves a single measurement of each player’s type (as in a static TI-game). And we know that within

a set of eigentypes Ei, the von Neuman-Luder’s postulate implies Bayesian updating.

4.2 Multi-move games with observed actions

In the previous section we noted that commuting multi-stage TI-games without observation are not

distinguishable from static TI-game both of which are equivalent to static incomplete information games.

This result extends further to commuting dynamic games with observed action.

Result

Commuting dynamic TI-games are not distinguishable from classical games in terms of equilibrium

predictions.
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This result follows directly from a general result proving the equivalence between the quantum and

the classical models with respect to the predictions in a context where all measurements are commuting

(see e.g., [11] and [27] for a derivation of this result in a Social Sciences context). The intuition is that

the type space representing commuting type characteristics in the TI-context has a standard Boolean

algebraic structure.

Non-commuting multi-stage TI-games: strategic manipulation of players’ type

We are interested in multi-stage game with observed actions where in each period t the players simulta-

neously choose their action which are revealed at the end of the period.

We let as before the set of player be N = {1, 2} . And we consider a two-stage game t = 1, 2 where
the first stage corresponds to the Game Situation G

¡
h0
¢
where h0 is the history at date 0. The second

stage’s GS is G
¡
h1
¢
which does not commute with G

¡
h0
¢
. Let Aj (h

t) be a finite set of actions available

to player j = 1, 2 after history ht =
¡
a0, ...,at−1

¢
where at =

¡
a1t , a

2
t

¢
is the vector of date-t actions. A

pure behavioral strategy s maps the set of possible histories Ht and relevant eigentypes into the action

spaces: sti : Ht × E1 (G (h
t)) × E2 (G (h

t)) → At
1. Player i

0s payoff is ui
¡
hT , tT1

¢
where tT1 is the vector

of (initial and) resulting types tT=21 =
¡
t01, t

1
1, t

2
1

¢
for simplicity we assume that only the own type vector

affects utility. As we defined utility, it is the sum of the utility of the profile of actions up to date T

evaluated by the resulting type of the corresponding period.

Each player is represented by his type
¯̄
ttj
®
∈ T. As before we have Ej

¡
G
¡
h0
¢¢
⊂ T, where we

write Ej

¡
G
¡
h0
¢¢
= Ej

¡
h0
¢
=
n
ej1
¡
h0
¢
, ..., ejk

¡
h0
¢o
is the set of eigentypes of player j in G

¡
h0
¢
. And

Ej

¡
h1
¢
⊂ T, where Ej

¡
h1
¢
=
n
ej1
¡
h1
¢
, ..., ejk

¡
h1
¢o

is a set of eigentypes of the GS associated with

history h1.

The standard classical equilibrium concept is that of Perfect Bayesian equilibrium. It is an equilibrium

where all the strategies yield a Bayes Nash equilibrium not only for the whole game but for all continuation

game starting in each period after every possible history ht. To make the continuation games into a true

game one must specify the beliefs at the start of each continuation game. We shall proceed similarly

and characterize the properties of the equilibrium updating rule consistent with the Type Indeterminacy

hypothesis.

The new feature of non-commuting TI-games is that two consecutive GS are associated with two

distinct sets of eigentypes and that the set E
¡
h0
¢
× E

¡
h1
¢
does not exist. This implies that updating

cannot be purely Bayesian. Instead it will involve two steps including quantum probability calculus. As

we shall see this later feature opens up for strategic ”manipulation” of the opponent’s type.
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Step 1

Let
¡¯̄
t01
®
,
¯̄
t02
®¢
be the initial common knowledge pure type vector,

¯̄
t01
®
=
P

i λi
¯̄
ei
¡
h0
¢®
and

¯̄
t02
®
=P

i γi
¯̄
ei
¡
h0
¢®
. The eigentypes of both players share the initial beliefs

B0 : μ
¡
e1i
¡
h0
¢¢
= λ2i , μ

¡
e2i
¡
h0
¢¢
= γ2i . (15)

The first step is as described in the static TI-game in Sect.5. For initial types
¡¯̄
t01
®
,
¯̄
t02
®¢

, period

1 actions
¡
a11, a

1
2

¢
and strategy profile (s1, s2) , the von Neuman-Luder projection postulate is used to

compute the resulting type vector
¡¯̄
t11
¡
h1
¢®

,
¯̄
t12
¡
h1
¢®¢

in terms of G
¡
h0
¢
eigenvectors:

¯̄
t1
¡
h1
¢®
=
X
i

λ0i
¯̄
ei
¡
h0
¢®

(16)

where the sum is taken over i such that s1
¡
e1i
¡
h0
¢¢
= a11 and λ0i =

λi

k λ
2
k(s1(e1k(h0))=a11)

. The beliefs in

term of the eigentypes of G
¡
h0
¢
are

B1 : μ
¡
e1i
¡
h0
¢¯̄
a1
¢
= λ02i . (17)

As we earlier noted this is equivalent to Bayesian updating (for appropriately defined initial beliefs) which

is thus applied whenever it is possible.54

Step 2

The second step involves a "translation" of the types resulting from the first actions in eq. (16) so that

we express them in terms of the eigentypes of G
¡
h1
¢
. This operation is necessary to be able to compute

the equilibrium strategy in the subgames following h1. Indeed the potential G
¡
h1
¢
−eigentypes of each

player must reason using their expectation about the opponent’s play. But that expected play is computed

from the best-replies of the opponent’s G
¡
h1
¢
−eigentypes and from their relative probability weights

in the type vector resulting from period 1. The translation is performed using a basis transformation

matrix BG(h0)G(h1) that links the two non-commuting GS.55 We can express each eigentype of G
¡
h0
¢
in

terms of the eigentypes of G
¡
h1
¢
:
¯̄
ei
¡
h0
¢®
=
P

j δij
¯̄
ej
¡
h1
¢®
where δij are the elements of the basis

transformation matrix δij =

ej
¡
h1
¢¯̄
ei
¡
h0
¢®
.56 Collecting the terms we can write

¯̄
t1
¡
h1
¢®
=
X
j

ÃX
i

λ0iδij

! ¯̄
e1j
¡
h1
¢®

54μ
�
eiG(h0)

��a1� is any probability ifuSjG(h0)6=iG(h0) λ
2
j

�
s∗1

�
e1
jG(h0)

�
= a1

�
= 0.

55The transformation links the two non-commuting GS. It is indepedent of the player’s identity.
56We note that the basis transformation matrix does not depends on the individual players, it is the same for both.
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The probability for eigentype e11
¡
h1
¢
of player 1 at date t = 1 is

B2 : μ
¡
e11
¡
h1
¢¯̄
a1
¢
=

ÃX
i

λ0iδ1i

!2
(18)

This is the crucial formula that captures all the key distinction between the classical and the quantum

approach. B2 is not a conditional probability formula where the δ2ij are statistical correlations between

the eigentypes at the two stages. The player is a non-separable system with respect to G
¡
h0
¢
and

G
¡
h1
¢
.57 As a consequence, the updated beliefs are given by the square of a sum (implying cross terms)

and not the sum of squares.

To see this, consider a simple symmetric example and set k = 2, so E
¡
h0
¢
=
©
e1
¡
h0
¢
, e2

¡
h0
¢ª

and E
¡
h1
¢
=
©
e1
¡
h1
¢
, e2

¡
h1
¢ª

. Similarly, let A
¡
h0
¢
= {a1, a2} and A

¡
h1
¢
= {b1, b2} . Consider a

strategy profile such that the eigentypes of player 1 have the same best-reply to the expected play of

player 2 ,i.e., they pool, they both choose a1. In that case there is no updating
¯̄
t1
¡
h0
¢®
=
¯̄
t1
¡
h1
¢®
=

λ1
¯̄
e11
¡
h0
¢®
+λ2

¯̄
e12
¡
h0
¢®

. Assume next that at stage 2 e11
¡
h1
¢
and e12

¡
h0
¢
choose respectively b1 and b2

in response to player 2’s expected play. The ex-ante (at date h0) probability for the play of b1 by player

1 is

μ
¡
e11
¡
h1
¢¢

= (λ1δ11 + λ2δ21)
2 (19)

= λ21δ
2
1j + λ22δ

2
2j + 2λ1λ2δ1jδ2j .

Consider now another strategy profile where player 1’s eigentypes do not have the same best-reply to

the expected play of player 2, i.e., they separate at stage 1. Then,
¯̄
t1
¡
h0
¢®
6=
¯̄
t1
¡
h1
¢®

. We have¯̄
t1
¡
h1
¢®
=
¯̄
e1
¡
h0
¢®
with probability λ21 and

¯̄
t1
¡
h1
¢®
=
¯̄
e2
¡
h0
¢®
with probability λ22. We assume for

simplicity that, at stage 2, the h1−eigentypes separate as before in response to player 2’s expected play.
The ex-ante probability for the play of b1 is the probability for each of the possible resulting type times

the correlation with the eigentype of G
¡
h1
¢
that chooses b1 :

μ
¡
e11
¡
h1
¢¢
= λ21δ

2
11 + λ22δ

2
21. (20)

Hence, although player 1’s strategy at stage 2 does not depend on h1 : it is simply that eigentype e11
¡
h1
¢

plays b1, his actual expected play at stage 2 does! The probability for b1 is not the same in (19) and (20)

because the type of player 1 has been modified by his best-reply to player 2. Consequently when player

2 always (for all h1) prefers player 1 to play b1 he should clearly try to induce player 1’s eigentypes to

pool at stage 1 if the term 2λ11λ
1
2δ1jδ2j is positive (and to separate if the term is negative).

57This means that
��t11� cannot be written as a tensor product type composed of ��t1�GS(h0) and ��t1�GS(h1) or equivalently

that the tensor product set E (h0)⊗ E (h1) does not exist.
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Thus, when considering a move a player must account not only for the best-reply of his opponent

as usual but also for the induced resulting type of the opponent. More precisely, type indeterminacy

gives a new strategic content to pooling respectively separating moves, a content that goes beyond the

informational one. When some eigentypes of a player pool, that player remains indeterminate (super-

posed) with respect to those eigentypes. This conserved indeterminacy implies that in the next following

(non-commuting) GS, these superposed eigentypes may interact with each other producing interference

effects that affect the probabilities for the different play. Property B2 of the μ () function secures that

the players takes into account the impact of a play on the resulting profile of types.

For each player i, history ht, eigentype eij (h
t) and alternative strategy s0

P : ui
¡
s|ht, eij

¡
ht
¢
, μ
¡
., ht

¢¢
≥ ui

¡
s0|ht, eij

¡
ht
¢
, μ
¡
., ht

¢¢
Definition 1 A Perfect TI-equilibrium is a pair (s, μ) that satisfies conditions P and B0-B2 above.

Next follows an example showing that a Perfect TI-game equilibrium is not necessarily a Perfect

Bayesian equilibrium.

Example

We have 2 players and the following sequence of moves:

stage 1 both players choose simultaneously between Left or Right and

stage 2 player 1 chooses between Up and Down which ends the game. The payoffs are obtained at

the end.

Let E
¡
h0
¢
= {θ1, θ2, θ3} with θ1 : always prefers to go Left (stubborn or S-type); θ2 : prefers to do

the same as the opponent (coordination or C-type) so if e.g., 2 is expected to go Left with 50% or more

chance θ2 chooses to go Left and Right if the expectation is less than 50% ; θ3: prefers to do the contrary

of the opponent (anti-coordination or AC-type) following the same logic in his best response to expected

play as θ2.

The initial types of the players are

|t1i =
3X

i=1

λi |θii and |t2i =
3X

i=1

γi |θii .

for concreteness we set λ1 = λ2 = λ3 =
√
.33 and γ1 ' 0, γ2 '

√
0.4 and γ3 =

√
.6.
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We first consider a case when stage 1 is played alone. There is a pure strategy equilibrium where the

eigentypes of each player play as follows:

Player 1 :θ11 plays L, θ
1
2, R, and θ13 plays L, which we write

©¡
θ11, L

¢
,
¡
θ12, R

¢
,
¡
θ13, L

¢ª
and for player

2 we have
©¡
θ21, L

¢
,
¡
θ22, L

¢
,
¡
θ23, R

¢ª
.

We check that this is an equilibrium. Player 1 plays L with prob λ21 + λ23 > .5 so player 2’s AC-

type best-responds with R with probability γ23 = .6 > .5 so player 1 C-type best-responds with R with

probability λ22 while player 2
0s C-type plays L with probability γ22 = .4. So all eigentypes do play a

best-reply to the opponent expected play.

Now consider the whole game where both stages are played. We shall assume that player 1’s preferences

between Up and Down are the same whatever happened before (at stage 1). So from the point of view of

player 1, GS
¡
h1
¢
is the same for all h1 and it is a simple decision situation DS. Player 1’s preferences and

his play does not depend on player 2 but only on his type in GS
¡
h1
¢
. To simplify we consider only two

types: τ1 who prefers to play Up and τ2 who prefers to play Down We assume that the DS (GS
¡
h1
¢
) is

an operator that does not commute with the GS
¡
h0
¢
which means that the eigentype θi can be expressed

in terms of the eigentypes of the DS :

|θ1i = α1 |τ1i+ α2 |τ2i ; |θ2i = β1 |τ1i+ β2 |τ2i ; |θ3i = δ1 |τ1i+ δ2 |τ2i (21)

with δ1 close to 0 to simplify the presentation.

Assume further that Player 2 (end)payoff depends critically on player 1’s stage 2 decision: his payoff

of Up for any path of stage 1 is between 100 and 150 and his payoff of D is 0 for all paths of stage 1.

We next show that a Bayesian equilibrium of the classical version of the game is no longer an equilib-

rium in the TI-game version. In a classical version of the game player 1’s type characteristics (preferences)

are fixed, they are given by the initial move by Nature. As usual we take the square of the coefficients of

superposition to describe the corresponding classical incomplete information model. And we obtain that

the ex-ante probability for U is Prob(U) = λ21α
2
1 + λ22β

2
1. It does not depend on the play at stage 1 so

the equilibrium depicted above is part of a Bayesian equilibrium for the whole game.

What about the TI-model? First, we show that with the equilibrium of stage 1 depicted above we

obtain the same outcome as in the classical case. We note that the equilibrium depicted above Player

1’s resulting type is |t01i = λ1√
λ21+λ

2
3

|θ1i + λ3√
λ21+λ

2
3

|θ3i with probability
¡
λ21 + λ23

¢
, and |t01i = |θ2i with

probability λ22. Using the expressions in (21) the ex-ante probability for Up equal to¡
λ21 + λ23

¢µ λ21
λ21 + λ23

α21 +
λ22

λ21 + λ23
β22

¶
= λ21α

2
1 + λ22β

2
1.
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But we claim that under some condition, namely if 2λ1α1λ2β1 > 0, this is no longer an equilibrium of

the TI-game. Player 2 can do better. He can increase the probability for the play of U when he realizes

that his play at stage 1 influences the type of his opponent (and thus his subsequent expected play).

More specifically player 2’s θ23 eigentype realizes that if he plays L then the θ
1
2 of player 1 will choose L

and will pool with θ11 (θ
1
3 choose R). The resulting type of player 1 is then

|t01i = λ1√
λ21+λ

2
2

|θ1i + λ2√
λ21+λ

2
2

|θ2i with probability λ21 + λ22 and θ3 with probability λ23. This implies

an ex-ante probability for the play of U equal to (recall θ3 never plays U)

prob(U ; |t01i) = λ21α
2
1 + λ22β

2
1 + 2λ1α1λ2β1 > λ21α

2
1 + λ22β

2
1.

In the classical Bayes-Harsanyi version of this game, player 2 has no means of influencing player 1’s

play at stage 2. This play depends exclusively on the type of player 1, which is known to player 1 from

the beginning of the game.

In the TI-version of this game, the expected move of player 2 at stage 1 induces a measurement of

player 1’s indeterminate type. Different expected moves of player 2 induce different measurement because

the eigentypes of player 1 best-reply to player 2’s expected play. The impact of the measurement on the

type of player 1 is to induce some patterns of separation (or pooling) between eigentypes. In our example

when indeterminacy is preserved (by pooling) between θ11, θ
1
2, this gives rise to interference effects in the

determination of the probability for Up. By construction player 2 strictly (whatever his eigentype) prefers

player 1 to play U. So player 2 optimal strategy boils down to maximizing the probability for the play of

U. In our example θ11 and θ
1
2 can interfere positively to increase the probability for the play of U while θ11,

θ13, or θ
1
2 and θ13 cannot (because δ1 = 0). Hence, the optimal strategy of player 2 is to induce θ

1
1 and θ12

to pool at stage 1. This is achieved by the proposed first stage strategy profile
©¡
θ11, L

¢
,
¡
θ12, L

¢
,
¡
θ13, R

¢ª
and

©¡
θ21, L

¢
,
¡
θ22, L

¢
,
¡
θ23, L

¢ª
with the second stage play being computed mechanically and this is the

only Perfect TI—equilibrium of this game.

We note that the proposed strategy at stage 1
©¡
θ11, L

¢
,
¡
θ12, L

¢
,
¡
θ13, R

¢ª
and

©¡
θ21, L

¢
,
¡
θ22, L

¢
,
¡
θ23, L

¢ª
are

not part of a Bayesian equilibrium of the whole game.

Theorem 1 In any dynamic TI-game involving more than one action for each player, a Perfect TI-game

equilibrium strategy profile is a Perfect Bayesian equilibrium of the corresponding incomplete information

dynamic game if and only if the TI-game is a commuting TI-game. Otherwise, the two equilibrium

concepts do not coincide.
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We have identified the distinction between the Bayes Harsanyi and the TI-game approaches in the

rule for updating beliefs. In the classical approache, it captures learning. While in TI-games, it also

implies an opportunity to influence upon the (resulting) type profile. This influence takes the particular

form of inducing a pattern of separation and pooling of the currently relevant eigentypes.

5 "Do TI-games have any news for economists?" - The Hidden

Variable argument

The title of this section echoes the one of a paper by Levine "Quantum Qames have no News for Econ-

mists"58 . Can the TI-game approach bring something truly novel to economics in the sense that it cannot

be replicated using standard instruments of game theory?

As mentioned in the Introduction, the question of this Section is closely related to the issue of hidden

variables in Quantum Mechanics. A main characteristics of quantum theory is its non deterministic

character witnessing of the fact that a quantum system cannot be fully determined in the sense that the

result of any experiment can be given with certainty. This is the key feature that distinguishes a classical

system from a quantum system. This feature of the theory has been heavily criticized "God does not play

dices" famously said Einstein. The critics meant that the uncertainty characterizing quantum theory was

an expression of its incompleteness, i.e., there were other variables, hidden ones, not accounted for by

the theory. As well-known the hidden variable argument was definitely rejected in Physics by Aspect’s

experiments which exhibited unambiguous quantum entanglement between two particles.(give references).

In our context, the issue of entanglement does not arise however. In fact, as a first step we chose to

assume that there is no entanglement (between players). Yet, the TI-model exhibits an essential feature of

quantum systems namely Bohr’s complementarity of properties(give references). In a TI-model, the type

characteristics of a players are complementary in the sense that they cannot be simultaneously actualized

(revealed). This is captured by the algebraic structure of the type space including the non-commutativity

of the (measurement) operators, the GS. There are well-known proofs including that of von Neuman [32],

Jauch and Piron [22] and Kochen and Specker [25] showing that it is impossible to embed the algebraic

structure of the properties of a quantum system (represented by self-adjoint Hilbert space operators)

into the commutative algebra of real-valued functions on a phase space of hidden variables.59For an

presentation of these proofs see [4]. It is worthwhile noting that the arguments are purely mathematical

58We remind that quantum games and TI-games are not the same see introduction.
59While the earlier proofs were addressing a relatively limited class of hidden variables, this is not the case of the later

ones.
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i.e., they do not appeal to any particular physical phenomena. Nevertheless hidden variable theories

have been developped see e.g. Bohm and Bub (see [4]). But those theories depart from the classical

interpretation of a physical system. In fact, they do not recognize quantum properties as properties

pertaining to a system but as properties of a system in a measurement context. The hidden variables

are multi-valued, they are contextual. So just as Quantum Mechanics, those theories rest on a radical

revision of basic principles of physical explanation. Bohm et al. do not contradict the earlier mentioned

impossibility results: It is not possible to build a hidden variable theory that recovers quantum theory

in the sense that if we knew the (one true) value of the hidden variables we would be able to predict the

outcome of any experiment with certainty.

At some very general level Game Theory puts no restriction as to the definition of types. In particular

a player’s type can depend upon the whole history of past interactions. This truly means that Game

Theory is allowing for contextual types, i.e., for the case when type characteristics do not pertain to players

but to players in a context. At that level of generality Game Theory is consistent with the approach

developped by Bohm. However not much can be done at that level of generality. In nearly all applications

assumptions are made allowing for a clear separation between the type of the players and the context in

which players interact. Take for instance bargaining games, often players are characterized by a discount

factor "how impatient they are" or an "acceptance threshold". The characteristics that define the types

are not contextual e.g., the discount factor is exogenously given. This means that the classical paradigm

is adopted when modelling economic behavior: players’ type (payoff function) is defined separately from

the interaction. Thus in economics, the earlier mentioned impossibility results apply: the predictions of

TI-games cannot generally be replicated in an extended model with (non-contextual) hidden variables.

In their paper [3] Brandenburger and Yanofsky list a number of properties that hidden variables

should satisfied in order to qualify as acceptable candidates for building a theory in the classical sense.

We below revisit our example in view of the properties relevant to our context.

5.1 Example revisisted

Let us revisit our example from the previous section "looking for hidden variables" or equivalently trying

to provide a standard game theoretical model that yields the same equilibrium predictions as our TI-

game.

Let q denote the probability for the play of Up, our Perfect Baysian equilibrium strategy profile is£©¡
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1. .

Our Perfect TI-equilibrium is
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where the probability that player 1 turns out to be a τ1 type which prefers Up is prob(U | t01) =

35



λ21α
2
1 + λ22β

2
1 + 2λ1α1λ2β1.

Comparing the two equilibria, we see that

- the strategies of both players at stage 1 are not the same in the PBE and the PTIE

- the stage 2 expected play of player 1 is not the same in the PBE as in the PTIE.

Below we attempt to modify the classical variant of game by introducing a hidden variable so as to

recover the predictions of the TI-game i.e., the PTIE behavior.

Case 1

Consider a case where player 1’s payoff depends on the state of the world. We introduce some

uncertainty for player 1 relevant to the decision as to whether it is better to play U or D at stage 2. In

a standard context this could be modelled as follows. Whatever the type of player 1
¡
i.e., θ11 − θ13

¢
,60

he faces an uncertainty at stage 2 which in the absence of additional information makes him play mixed

so the probability for Up is λ21α
2
1 + λ22β

2
1 (and for Down

¡
1− λ21α

2
1 + λ22β

2
1

¢
. The figures are obviously

chosen so as allow for direct comparison with the equilibria (PBE and PTIE ) depicted in the example

of the previous section.

Assume next that player 2 has information about the state of the world relevant to player 1. Player 2

can try to transmit some information through his own play at stage 1. For some reason, player 1 believes

that if player 2 plays R, it signals that he should rather play D while if he plays L it may signal that the

play of U is more profitable.

The first point we want to make is that the profile
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is no longer part of an equilibrium. Indeed in that equilibrium player 2 plays R with probability .6 which

prompts a decrease in the probability for the play of Up at stage 2. But as we know player 2 always

prefers player 1 to play Up. That is whatever the information about the state of the world that player 2

has he wants to let player 1 believe that he should play Up.

In this game player 2 can affect the play of player 1 with his play at stage 1 as in the TI-game. Since

it is optimal for him to maximize the probability for the play of Up, he will never play R and the first

stage PTIE equilibrium strategy profile
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becomes

part of the PBE. Now the question is whether player 1 should modify his beliefs when he observes L.

Our point is that he knows that whatever the state of the world player 2 wants him to believe he should

increase his play of Up which he might do when observing L. But this means that the play of L is not

informative since player 2 choose L whatever the state of the world. Consequently player 1 does not

update his beliefs after observing L and he plays Up with probability q < q0. Hence we do not recover

the PTIE.
60 In this classical variant of the model, there are only 3 types and some uncertainty about the state of the world.
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Case 2.

Consider another hidden variable model. In this model, player 1 learns something about the state of

the world of relevance for stage 2 as he plays stage 1. More precisely what counts is what the cooperative

type θ12 plays. If the cooperative type plays R, player 1 learns (on avarage) nothing. But if the cooperative

type plays L, player 1 may learn that Up is more likely to be profitable. Again in this model player 2 can

influence player 1’s play by inducing a best reply of L from the cooperative type. This happens in the

PTIE first stage strategy profile. In contrast with case 1, here player 2 can increase the expected play

of Up, because if when θ12 plays L player 1 learns some reliable information that prompts an increase

in his propensity to play Up. By properly callibrating the impact of the signal, we could fit the PTIE

equilibrium predictions.

This hidden variable model with "learning" is thus able to reproduce the TI-game predictions. There

is a problem however namely it violates the so-called λ-independence property [3]. "This property says

that the nature of the particle (here the agent defined by his preferences) - as determined by the value of

the hidden variable - does not depend on the experiment conducted. There is, in a sense, no dependence

between the observer and the observed system."

Recall now in TI-games different play of player 2 corresponds to different experiments, GS, that

measure the type of player 1 (because he best-replies). Now in our model the value of the hidden variable

is not unique. In one experiment i.e., when player 1 best-replies to
©¡
θ21, L

¢
,
¡
θ22, L

¢
,
¡
θ23, R

¢ª
it yields

a value which convey no information about the state of the world i.e., no change in preferences. In the

other experiment where agent 1 best-replies to
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¢ª
it takes another value which

prompts a change in preferences with respect to Up and Down. We are dealing with a multiple valued

hidden variable à la Bohm which is not consistent with a standard classical model.

Clearly our investigation is not exhaustive in any sense but it suggests that reasonable hidden variable

models may be difficult to find when requesting that the hidden variables satisfy some desirable properties.

6 Possible fields of application for TI-games

We have learned that TI-games may bring forth new results in the context of multi-stage games or when

a game is preceded by some form of "pre-play". We conjecture that the Type Indeterminacy approach

may bring new light on the following issues:

- Players’ choice of selection principle in multiple equilibria situation;

In Camerer [10], the author reports about experiments where a pre-play auction impacts on the

principle of selection among multiple equilibria in a coordination game. A pre-play auction for the right
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to play a coordination game tends to push toward the payoff-dominant equilibrium compared with the no

pre-play case. In a TI-game, preferences with respect to the equilibrium selection criteria can be modified

by pre-play.

- The selection of a reference point;

According to experiments (see ) playing a contest before an ultimatum game can affect the equilibrium

offer and acceptance threshold. In a TI-game the pre-play of a contest may change the preferences of the

players with respect to what they feel entitled to in an ultimatum game played next.

- The sunk cost fallacy;

According to numerous experiments and casual evidence people seem to be the victims of the sunk

cost fallacy. In an experiment, people who were offered a year subscription to the theater showed (on

average) a greater propensity to go to the theater than people who were not offered subscription. In a

TI-game the decision to purchase a subscription may modify people’s valuation of theater plays.

- Path-dependency;

A single (little probable) move can radically modify the type of a player with significative implications

for the path of future play.

We believe that that TI-games have a rich potential to explain a variety of puzzles in (sequential)

interactive situations and to give new impulses to game theory.

7 Concluding remarks

This paper constitutes a first step in the development of a theory of games with type indeterminate

players. In a first part we introduce TI-games by means of an example where we show how in a TI-

game cheap-talk promises can have impact on subsequent play when standard theory predicts no impact.

Compared with conventional game theory the TI approach amounts to substituting the standard Harsanyi

type space for a Hilbert space. We show that this has no implication for the analysis of static games. In

contrast in a multi-move context, we must define an updating rule consistent with the algebraic structure

of our type space. We show that for non-commuting TI-games, it implies that players can manipulate each

others’ type thereby extending the field of strategic interaction. Using the new updating rule we define

an equilibrium concept similar to the Perfect Bayesian equilibrium. We call it Perfect TI-equilibrium.

We provide an example showing how the two concepts differ.

We discuss whether TI-game have any news for economist in light of the discussion on hidden vari-

ables in Physics. We conclude that at its most general level game theory is consistent with any form of

contextual type including those corresponding to quantum indeterminacy. However most applications in
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particular in economics adopt the classical paradigm which posits that players can be defined indepen-

dently from the interaction to which they participate. In that context, TI-games do bring in novelties

that cannot always be reproduced when extending the game with classical signals.

A restriction so far is that we confine ourselves to objective beliefs. Nevertheless we learned that

a coherent theory can be built with Type Indeterminate players and that it generates new equilibrium

predictions that cannot be replicated extending the model with standard hidden variables. Our next

step will be to introduce subjective beliefs which in the context of Type Indeterminacy opens up for new

fascinating issues (as suggest in the brief discussion on p.6).
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