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Abstract

We model the behavior of agents who, in competitive situations, care about receiving

their �just deserts�, i.e., what they feel they deserve. In particular we analyze the strategic

behavior of two identical desert-motivated agents in a rank-order tournament. Each agent

is assumed to be loss averse about an endogenous and meritocratically determined reference

point that represents her perceived entitlement. Su¢ ciently strong desert concerns render

the usual symmetric equilibrium unstable or non-existent and allow asymmetric desert equi-

libria to arise in which one agent works hard while the other slacks o¤. By pushing their

e¤ort levels apart, the agents end up closer to their reference points on average. As a result,

agents may prefer competition for status or rank to a random allocation, even though the

supply of status/rank is �xed. We also �nd that when employees are desert-motivated, but

continue to play a symmetric equilibrium, an employer will prefer a tournament to a linear

relative performance pay scheme if output noise is su¢ ciently fat-tailed.
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1 Introduction

Rank-order tournaments, where agents compete for a �xed prize or set of prizes, are ubiquitous.

Promotional tournaments are common in consulting, law partnerships, academia and industry.

Firms frequently use bonus schemes based on relative performance. Sports contests, examina-

tions, patent races, elections and competition for status can all be thought of as tournaments.

We claim that in a competitive setting such as a tournament, agents often care about receiving

their �just deserts�. We adopt a meritocratic notion of desert according to which an agent�s

perceived entitlement will be sensitive to the e¤ort she has exerted relative to her rival, who

is otherwise identical: an agent feels she deserves more if and only if she works harder than

the rival.1 Desert-motivated agents will feel hard done by if they receive less than what they

perceive to be their fair recompense, while feelings of elation or guilt are possible if they do

better than they deserve. We analyze how the introduction of desert alters equilibrium play

and payo¤s in tournaments, and we apply our �ndings to analyze competition for status/rank

and the design of incentive schemes.

While little work has been carried out to formally introduce desert concerns into a theoretical

economic model,2 there exists an empirical literature which supports the idea that people are

indeed motivated by a meritocratic notion of desert. According to a review of relevant literature

by Konow (2003), �a common view is that di¤erences owing to birth, luck and choice are all

unfair and that only di¤erences attributable to e¤ort are fair� (pp. 1207-1208). Furthermore,

Konow (1996) distills an accountability principle from the responses to his attitude survey

according to which a person�s entitlement varies in direct proportion to the value of his relevant

discretionary variables, relative to others (p.19). This is closely related to the claims of equity

theory, a social psychological theory of fairness that has its origins in Aristotle�s claim that the

equitable ratio of outcomes is proportional to the ratio of inputs (Konow, 2003). In its modern

manifestation equity theory goes back to Adams (1965), whose work led him to conclude that

�When [a person] �nds that his outcomes and inputs are not in balance in relation to those

of others, feelings of inequity result� (p. 280) and that �there can be little doubt that inequity

results in dissatisfaction, in an unpleasant emotional state, be it anger or guilt� (p. 283). The

signi�cance of equity theory is also noted by Rabin (1998) who writes that �desert will obviously

1 We leave open the question of what constitutes one�s just deserts if some agents possess an advantage such as a
higher innate ability or a lower cost of e¤ort.

2 An exception is Konow (2000) who develops a model in which people are in�uenced by the departure of the
allocation from a fair one which re�ects the e¤orts exerted by all agents. Agents experience dissonance costs
when the allocation departs from the one they believe to be fair and psychic costs of self-deception when this
belief departs from the truly fair allocation. However, Konow considers only the optimal division of output
by a dictator given e¤orts, and not the choice of e¤ort levels by the agents. Varian (1974) analyzes whether
allocations can be fair, in the sense that they are e¢ cient and nobody envies anyone else�s bundle, where agents
can substitute between leisure and labour (i.e., exert e¤ort).
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be relevant in many situations - and the massive psychological literature on �equity theory�shows

that people feel that those who have put more e¤ort into creating resources have more claim on

those resources� (p. 18).

Experimental economics provides further evidence in favor of the idea that people are sen-

sitive to considerations of desert. In a bargaining experiment, Burrows and Loomes (1994) �nd

that bargained outcomes tend to exhibit greater inequality, awarding higher �nal payo¤s to the

party that began with a greater initial endowment, when endowments were allocated according

to parties�performances in a simple word game than when the endowments were allocated at

random. They conclude that the results of their experiment are consistent with the proposition

that �many people believe that when di¤erent individuals have a similar ability and opportunity

to put in e¤ort, those that put in more e¤ort should get a greater reward because they are rel-

atively deserving� (p. 220). Konow (2000) experimentally con�rms his theoretical prediction

that dictators with no stake in the allocation between a pair of agents distribute rewards in

proportion to the ratio of e¤orts exerted in an envelope �lling task. Frohlich et al. (2004) pro-

vide further experimental evidence that a notion of entitlement to one�s "just deserts" motivates

dictators�allocation decisions: where the amount to be allocated is determined by the dictator

and recipient�s e¤orts in a proof-reading task, the authors �nd that �the just deserts response

is modal� (p. 109). In a setting similar to Frohlich et al.�s, but where "e¤ort" is measured by

investment of money, Cappelen et al. (2007) �nd that: �the majority of the participants ... care

about the investments made by the opponent when they decide how much to o¤er� (p. 14).3

We suppose that two identical agents compete in a Lazear and Rosen (1981) type rank-order

tournament and that each agent maximizes a utility function that comprises three components:

a material utility component, which resembles a standard utility function, a cost of e¤ort com-

ponent, and a desert utility component, which depends on the departure of the agent�s actual

material utility from that associated with her deserved reference payo¤. This reference point is

endogenous and is given by the agent�s expected payo¤, given the chosen e¤ort levels.4 The idea

is that, given the ex ante symmetry of the agents, an agent�s average payo¤ is a re�ection of the

useful e¤ort she has exerted relative to her rival and thus plausibly represents the proportion of

the prize that she feels she deserves.

Moreover, we assume that desert utility is more steeply increasing in the loss domain than

the gain domain. This captures the central stylized fact - loss aversion - that has emerged from

the empirical literature on reference-dependent preferences more generally: losses relative to

3 Güth (1988) surveys some earlier relevant experimental evidence.
4 Experimental evidence from the psychology literature supports the thesis that agents�emotional responses when
receiving the payo¤ associated with a lottery depend on expectations. See, for instance, Mellers (1999).
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the reference point loom larger than corresponding gains (see Rabin (1998) for a survey of this

literature). In the speci�c context of fairness judgments, Kahneman et al. (1986) �nd strong

evidence for loss aversion. People apparently perceive that it is more important that �rms avoid

hurting customers relative to a �fair�reference transaction than that they attempt to increase

customer surplus relative to this reference level.

As well as having empirical support, there are also a priori grounds to accept an assumption

of loss aversion in this context. As one agent�s undeserved bonus has meant another�s undeserved

loss, we might expect any sensation of elation the agent experiences as a result of having her

reference point exceeded to be somewhat muted. Indeed, if the agent were su¢ ciently socially

minded she would presumably feel an overall sensation of pain. We remain agnostic as to

whether desert utility is rising or falling above the reference point. When it is rising we say that

preferences exhibit desert elation, while when it is falling we say that preferences exhibit desert

guilt.

If desert utility is in fact falling in the gain domain, then desert preferences will be struc-

turally similar to the preferences of the inequity averse agents of Fehr and Schmidt (1999),5

albeit de�ned with respect to a di¤erent reference point. Inequity averse agents exhibit a pref-

erence for equality of payo¤s across agents in a reference group: when there are only two agents

in the group, each agent�s reference point is simply the payo¤ of the other agent. By contrast,

in our setup reference points are functions of the e¤ort levels. In this sense, our agents adopt a

more sophisticated conception of fairness than those of Fehr and Schmidt. They care about the

relationship between the distribution of material payo¤s and the distribution of agents�e¤orts,

not just about the brute distribution of material payo¤s.6

The structure of our agents� preferences also clearly resembles that of other models of

reference-dependent preferences such as Kahneman and Tversky�s (1979) Prospect Theory.

However, there are also important points of contrast. In particular, while the reference point

of the value function in Kahneman and Tversky�s (1979) Prospect Theory is exogenous, our

reference points are endogenously determined (since they depend on agents� e¤orts). In this

sense, our model has some of the �avor of K½oszegi and Rabin (2006) and Loomes and Sugden

(1986) in which a loss corresponds to a situation in which an agent�s endogenous expectations

have been confounded eliciting disappointment, while a gain corresponds to a situation in which

5 Bolton and Ockenfels (2000) develop a similar theory of inequity aversion.
6 Desert utility can be understood as a kind of �inequity aversion�if the latter is taken to denote the preferences of
agents who dislike departures from �fair�outcomes. We adopt the terminology �desert utility�because agents in
our model are averse to a particular kind of unfairness - namely the unfairness associated with failing to receive
one�s just deserts, which depend on the vector of e¤orts but not on the monetary payo¤ of the other agent.
Extending Fehr and Schmidt�s notion of inequity aversion to allow aversion to di¤erences in payo¤s net of e¤ort
costs, as done by Demougin and Fluet (2003) in the context of tournaments, implies that, unlike in our set-up,
the payo¤ of the other agent enters into the reference point (together with the di¤erence in e¤ort costs).
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her expectations have been exceeded eliciting elation.

In contrast to both K½oszegi and Rabin (2006) and Loomes and Sugden (1986), who focus

on the decision problem of a single agent, our focus is on a two-agent setting in which strategic

considerations are operative. As in Loomes and Sugden�s (1986) model, but in contrast to

K½oszegi and Rabin (2006), our reference points are sensitive to agents�actual choices, rather

than depending on agents�prior expectations about those actions.7 Assuming desert elation

rather than desert guilt, our model of preferences can therefore be interpreted as a model of

disappointment aversion with strategic interactions. In this sense, our paper can be viewed as

an exploration of further behavioral implications of disappointment aversion.

1.1 An Example

For concreteness, think of two salesmen of equal ability competing on a shop �oor for a bonus

paid to the salesman who sells the most units over a month. This bonus could for example be a

direct monetary payment, a promotion, or the monetary value of the reputational e¤ect linked

to being publicly made salesman of the month. Suppose the two salesmen work equally hard,

but fortuitously one happens to win because a few easy sales happened to come his way. Our

thesis is that the loser su¤ers a psychological cost and that this cost is greater than any elation

experienced by the winner. If the loser had worked less hard than his rival, we claim that his

desert loss would have been lessened as he would have felt he deserved less than his rival, while

if he had worked harder, his desert loss would have been even greater. Finally, we posit that

the salesmen anticipate any psychological costs or bene�ts arising from desert when choosing

how hard to work.

1.2 Summary of Findings

Lazear and Rosen (1981) found that given identical agents compete in the tournament there

is a unique and symmetric Nash equilibrium. We �nd that weak desert concerns do not a¤ect

the equilibrium, so e¤ort choices are unchanged, although desert does lower expected payo¤s.

However, su¢ ciently large desert concerns render the unique symmetric equilibrium that prevails

in the absence of desert concerns either unstable or non-existent. Moreover, asymmetric desert

equilibria can arise in which one agent exerts high e¤ort and the other agent low e¤ort even if

agents are otherwise identically situated. Intuitively, when identical agents exert the same level

of e¤ort they have an equal chance of winning, but one ends up winning and the other losing

7 Shalev (2000) also considers reference points which vary with the chosen action in a strategic setting. Shalev
takes the reference point to be the expected utility of the action, including expected reference-dependent losses
and gains.
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even though neither is more deserving than the other. The greater the di¤erence in the agents�

e¤orts, the greater the probability that an outcome emerges in which the more hardworking

and therefore more deserving agent wins and the closer on average are both agents�reference

points to their actual payo¤s. This means that in expectation the losses from desert are at a

maximum when the e¤ort di¤erence is zero and are falling as the e¤ort di¤erence rises. In other

words, desert concerns give agents an incentive to choose di¤erent levels of e¤ort.

In the tournament context, desert concerns entail that an agent�s objective function has a

simple mean-variance form. It is important to note, however, that risk aversion (in the absence

of desert concerns) will not generate such an objective function. Lazear and Rosen�s (1981)

�nding that with standard agents there is a unique and symmetric Nash equilibrium holds even

after introducing risk aversion over monetary payo¤s.

We develop two applications of our model, the �rst using asymmetric equilibria and the

second symmetric ones. First, we interpret our tournament as a zero-sum competition for

status/rank (in which e¤ort does not increase the size of the pie). We �nd that desert concerns

can undermine the standard conclusion that competition for the �xed supply of status is socially

wasteful. Competition can allow asymmetric equilibria, lowering desert losses, so the agents

may in fact prefer to compete for a �xed supply of status rather than have that status allocated

randomly.

Second, we turn to an employer�s choice of relative performance compensation scheme. When

desert concerns are weak, so employees continue to play a symmetric equilibrium, we �nd that an

employer prefers a tournament to relative performance pay linear in the di¤erence in employees�

outputs when the distribution of output noise is su¢ ciently fat-tailed. In that case, desert

losses under the linear scheme become too costly. Our theory of desert thus provides a new

explanation for why employers might choose to use tournament-style incentive schemes.

By merging the literatures on tournaments, equity and loss aversion, we have been able to

develop an empirically motivated meritocratic theory of desert in competitive situations. In

doing so, we have contributed to the understanding of strategic behavior in the presence of

loss aversion with endogenous reference points. Our novel insights into the behavior of desert-

motivated agents are of interest in themselves, but also have important implications in any

applied setting where the size of desert losses matter.

The paper proceeds as follows. Section 2 sets out the model. Section 3 derives general results,

provides a simple analytical example and discusses experimental testing. Section 4 presents two

applications, the �rst to status competition and the second to the design of incentive schemes.

Section 5 concludes. The appendix presents omitted proofs.
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2 Model

Two identical agents are competing to win a �xed prize of monetary value v > 0 in a Lazear

and Rosen (1981) type rank-order tournament.8 (Later, in Section 4.2, the prize will be chosen

optimally by a �rm.) The agents simultaneously choose e¤ort levels ei 2 [0;1) at a twice

continuously di¤erentiable cost C (ei) ; where C (0) = 0; C 0 (0) � 0, C 0 (ei) > 0 for ei > 0, and

C 00 (ei) > 0. Agent i0s output is given by  i = ei + �i where the noise term �i v f (�i) with

E[�i] = 0 and V ar[�i] = �2: The �i�s are i.i.d. across the two agents. The agent with the higher

 i wins the prize. Let Pi (ei; ej) represent i�s probability of winning and let � � �j � �i. As

the �i�s are i.i.d., � v q(�) with E[�] = 0, V ar[�] = 2�2 and q(�) is symmetric about zero. We

assume that the c.d.f. of �; Q(�), is twice continuously di¤erentiable, that q(�) > 0 8�; and that

vq(0) > C 0(0): Then:

Pi (ei; ej) = Pr
�
 i �  j

�
= Pr [ei + �i � ej + �j ] = Pr [ei � ej � �] = Q (ei � ej) 2 (0; 1)

Pj (ei; ej) = 1� Pi (ei; ej) = 1�Q (ei � ej)

We capture the agents�desert concerns by supposing that each cares not only about her

monetary payo¤ yi, but also about the comparison of this payo¤ with a reference point ri that

represents the payo¤ that she perceives that she deserves. We assume that the agents feel they

deserve their expected monetary payo¤,9 so:

ri = E [yi] = vPi (ei; ej) = vQ (ei � ej)

Given the ex ante symmetry of the agents, an agent�s expected payo¤ re�ects the useful (to

her) e¤ort she has exerted relative to her rival and thus plausibly represents the proportion of the

prize that she feels she deserves.10 Our notion of desert is meritocratic: ei = ej ) Pi = Pj =
1
2

and @vPi(ei;ej)
@ei

= vq (ei � ej) > 0 so an agent feels she deserves more than her rival if and only

if she has put in more e¤ort. The agents�notion of desert is also consistent in that ri + rj = v:

The agents are assumed loss averse around their endogenous reference points. In particular,

8 Introducing a prize for the loser has no e¤ect on the analysis, as all payo¤s are increased by a constant. v would
then be the di¤erence between the winner�s prize and the loser�s prize.

9 As noted in Section 1, the concept of a reference point given by endogenous expectations follows K½oszegi and
Rabin (2006) and Loomes and Sugden (1986). The analysis would be unaltered if agents compared monetary
payo¤s net of e¤ort costs to expectations net of e¤ort costs, as the e¤orts costs would cancel in the comparison.

10 Alternatives might be that ri = ei
ei+ej

v or ri =
C(ei)

C(ei)+C(ej)
v (with ri = rj =

v
2
when ei = ej = 0): However,

both these formulations have the disadvantage of being discontinuous at zero. In particular if one agent slacked
o¤ completely and the second put in just a tiny bit of e¤ort, the second would feel she deserved all of the prize.
Also, these formulations take no account of the varying marginal impact of e¤ort on winning probabilities - we
�nd it plausible that the greater the impact of a unit of e¤ort, the stronger the e¤ect on feelings of desert.
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agent i�s instantaneous utility is assumed to be separable in money, desert payo¤ and e¤ort cost

as follows:

Ui (yi; ei; ej) = yi +Di (yi � ri)� C (ei)

where desert utility Di(x) has the following piecewise linear reference-dependent form:

Di (x) =

8>>><>>>:
gx if x > 0

0 if x = 0

lx if x < 0

lx represents the utility associated with situations in which yi < ri and the agent receives

less than she deserves. In that case we say that the agent su¤ers a desert loss and we assume

that such losses are unambiguously painful, so l > 0:

gx represents the utility associated with situations in which yi > ri and the agent receives

more than she deserves. g can be positive or negative depending on whether the agent�s prefer-

ences exhibit desert elation or desert guilt. We restrict g > �1 to avoid giving the tournament

winner an incentive to forgo material utility to reduce guilt (either by burning money or making

a transfer to the loser).

Let � � l � g: The assumption of loss aversion implies that � > 0; i.e., l > g; so desert

losses resonate more strongly than any desert elation, as is consistent with Prospect Theory

(see Kahneman and Tversky (1979), p. 279). The utility function is kinked at the reference

point, but this kink is not essential for our results on tournaments (in the sense that there exist

unkinked Di(x)0s under which our results continue to hold).11

The above entails the following formulation for expected utility:

EUi (ei; ej) = Pi [v + g (v � ri)] + (1� Pi) [0� l (ri � 0)]� C (ei)

= Pi [v + g (v � vPi)] + (1� Pi) (�lvPi)� C (ei)

= vPi � v�Pi (1� Pi)� C (ei) (1)

(1) looks like a representation of mean-variance preferences, so we might suspect that desert

introduces similar e¤ects to risk aversion. However, in the absence of desert introducing risk

aversion over monetary payo¤s (as done by Nalebu¤ and Stiglitz (1983)) does not change qual-

itative behavior, so our simple tournament structure nicely disentangles the e¤ects of desert

11 Suppose that instead of linear desert preferences, agents exhibited an unkinked quadratic loss function with
Di(x) = gx2 for x > 0, Di(x) = �l (�x)2 for x � 0 and l = �g: Then EUi = Pi

�
v + g (v � ri)

2� + (1 �
Pi)

�
0� l (ri � 0)2

�
� C(ei) which simpli�es to vPi � v2lPi (1� Pi) � C(ei): This has the same form as (1),

replacing � with vl: Thus, all our results on tournaments continue to hold (qualitatively), demonstrating that
they do not depend on the kink.
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from those of risk aversion.12 A corollary is that if our identical agents were loss averse around

a �xed reference point they would behave qualitatively as in the standard model, as such loss

aversion can be represented by a risk averse concave utility function. Thus the endogeneity of

our reference points is crucial to our results.

Notice that instead of thinking of each agent as having a �xed conception of how much

she deserves equal to her expected payo¤, we could instead model the agent as holding two

reference points, corresponding to a win and a loss. The agent then compares her actual payo¤

to both reference points, weighting the desert payo¤s in each case by the probability of each

reference point. This transplants K½oszegi and Rabin (2006)�s reference lottery concept to our

desert setting (see their equation (2)). As they put it: �the sense of gain or loss from a given

consumption outcome derives from comparing it with all outcomes possible under the reference

lottery� (p. 1137). Applying such a framework, we get:

Ui(Win) = v + Pi [�l(v � v)] + (1� Pi)g(v � 0)� C (ei)

Ui(Loss) = Pi [�l(v � 0)] + (1� Pi)g(0� 0)� C (ei)

Calculating the ex ante EUi; we end up with (1) again, just as when the reference point is

simply the expected payo¤.

The game�s payo¤ functions are common knowledge. Taking ej as given, agent i chooses

her e¤ort to maximize her expected utility, EUi (ei; ej). We assume that the problem of moral

hazard precludes the agents�use of insurance.13 Having exerted their chosen e¤ort levels, the

agents receive their monetary payo¤s and also observe the e¤ort level exerted by the other

agent.14 The choice of e¤ort a¤ects EUi in the standard way by altering expected material

utility E [yi] and the cost of e¤ort C (ei) : E¤ort also a¤ects utility via the desert function, �rst

by altering the distribution of monetary payo¤s, but also by changing the agent�s reference point

ri: The more e¤ort the agent puts in, the more she feels she deserves. Holding the distribution

of monetary payo¤s �xed, higher e¤ort increases the scope for desert losses and reduces the

scope for undeserved gains and hence the potential for desert elation or guilt.

12 Assuming that Ui = �(yi) � C(ei) with �0 > 0 and �00 < 0, EUi = Pi�(v) + (1 � Pi)�(0) � C (ei) which equals
Pi [�(v)� �(0)] + �(0)� C (ei) : This utility function does not exhibit mean-variance preferences. The reason is
that with only two possible outcomes, success or failure, all the payo¤-relevant information is captured by Pi:
Thus, in the absence of desert introducing risk aversion does not change the tournament analysis qualitatively:
normalizing �(0) to zero, we can simply replace v with �(v):

13 Furthermore, narrow framing of losses and gains (see Barberis et al.) may prevent the agents from diversifying
the variability of their desert payo¤s across multiple tournaments or other events.

14 In the absence of such observability, the psychological foundation for desert payo¤s would be undermined as payo¤s
would depend on uncertain conjectures about rivals�actions. Also, agents might attempt to infer information
about ej from yi; complicating the problem. Finally, the impact of deviations on rival payo¤s would be di¤erent,
an issue if the game were repeated.
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We call a Nash equilibrium of this game a desert equilibrium, and we restrict attention to

pure-strategy equilibria. In a desert equilibrium, each agent�s e¤ort choice is optimal given the

e¤ort chosen by her rival. Note that in contrast to Rabin (1993)�s fairness equilibrium, our

game is standard in the sense that payo¤s depend purely on actions and not on beliefs about

agents�actions or intentions. Thus, unlike Rabin, we do not have to rely on Geanakoplos et

al. (1989)�s concept of a psychological equilibrium, and all the usual existence results apply to

desert equilibria.

3 Results

Referring to (1), we can measure the strength of desert by �: In the limit as g ! l; so � ! 0;

expected desert payo¤s tend to zero and hence do not a¤ect behavior. Note also that because

� > 0 and Pi < 1, expected desert payo¤s are always strictly negative. Letting


i (ei � ej) � Pi (1� Pi) = Q (ei � ej) (1�Q (ei � ej)) ; (2)

we call the expression v�
i (ei � ej) ; which is strictly positive, agent i�s desert de�cit. From

(2) we can see that the desert de�cit is a concave function of Pi that is maximized at Pi = 1
2 :

It also follows that the desert de�cit is strictly quasi-concave in the e¤ort di¤erence, and hence

in each agent�s e¤ort, since

@
i(ei�ej)
@ei

=
@
i(ei�ej)
@(ei�ej) = q (ei � ej) (1� 2Q (ei � ej)) (3)

which is strictly positive whenever ei < ej since then Q (ei � ej) < 1
2 , strictly negative if ei > ej

and zero if ei = ej . Finally, note that Pi = 1� Pj ; so Pi (1� Pi) = Pj (1� Pj) ; and the agents

always face the same desert de�cit, i.e., 
i (x) = 
j (�x) : By the symmetry of the agents,


j (�x) = 
i (�x) : Putting these two facts together, we see that 
i (ei � ej) is symmetric

about zero. These properties of the desert de�cit are summarized in the following lemma.

Lemma 1 Each agent�s desert de�cit is given by the function v�
i (ei � ej) where 
i (x) �

Q (x) (1�Q (x)). 
i (x) is (i) strictly positive and strictly quasi-concave for all x; (ii) maximized

at x = 0 where Pi = 1
2 ; and (iii) symmetric about zero.

Intuitively, when agents exert equal e¤orts and thus have equal chances of winning, both

the winner and loser end up far from their common reference point. As one increases her e¤ort

above the other and so the chances of winning become less equal, the expected payo¤ of the

favorite and the underdog become less equal, and it becomes more likely that the favorite wins.
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Thus, the average departure between agents�monetary payo¤s and their reference points falls,

reducing the scope for both desert losses and desert elation or guilt. Since losses loom larger

than any elation by assumption, the overall desert de�cit falls for both agents.

Next we note the following:

@Pi(ei;ej)
@ei

=
@Q(ei�ej)
@(ei�ej) = q (ei � ej) (4)

@Pj(ei;ej)
@ej

=
�@Q(ei�ej)
@(ei�ej) (�1) = q (ei � ej) (5)

Thus, at any (ei; ej) pair, the agents face the same marginal e¤ect of e¤ort on the probability

of winning. This is because an increase in ei is equivalent to a decrease in ej as winning

probabilities depend on ei � ej ; while the impact of ei on Pi is the opposite of its impact on Pj
as Pi = 1� Pj .

Using (1), (4) and (5), the �rst order conditions (FOCs) are:

@EUi
@ei

= vq (ei � ej)� v� [(1� 2Pi) q (ei � ej)]� C 0 (ei) = 0 (6)

@EUj
@ej

= vq (ei � ej)� v� [(1� 2Pj) q (ei � ej)]� C 0 (ej) = 0

while the second order conditions (SOCs) are:

@2EUi
@(ei)

2 = v
@q(ei�ej)

@ei
� v�

h
(1� 2Pi) @q(ei�ej)@ei

� 2 [q (ei � ej)]2
i
� C 00 (ei) � 0 (7)

@2EUj
@(ej)

2 = v
�@q(ei�ej)

@ei
� v�

h
(1� 2Pj) �@q(ei�ej)@ei

� 2 [q (ei � ej)]2
i
� C 00 (ej) � 0

3.1 Symmetric Equilibria

As originally discovered by Lazear and Rosen (1981), in the absence of desert (l = g = � = 0)

the FOCs imply that, given the strict convexity of C (ei) ; any (pure-strategy) equilibrium must

be symmetric and unique. Such an equilibrium will be given by e�i = e�j = C 0�1 (vq (0)) ;

with e�i = e�j > 0:15 Asymmetric equilibria are not possible, as at any (ei; ej) pair the agents�

marginal impact of e¤ort on winning probabilities q (ei � ej) are identical, as explained above.16

The symmetry of q(�) about zero implies that @q(0)@ei
= 0; so the SOCs in the absence of desert

are satis�ed as C 00 (ei) > 0: As noted by Lazear and Rosen (1981) and by Nalebu¤ and Stiglitz

(1983), even if the local SOCs are satis�ed, a pure-strategy equilibrium may not exist if �2 is

15 The assumption that vq(0) > C0(0) ensures that if ei = 0; ej has a strict incentive to work, so all symmetric
equilibrium e¤orts are strictly positive.

16 Formally, suppose e�i > e�j � 0: e�i > 0 ) vq
�
e�i � e�j

�
= C0 (e�i ) : But then vq

�
e�i � e�j

�
> C0 �e�j� ; so j has a

strict incentive to work harder. Note that this argument does not depend on the assumption that vq(0) > C0(0):
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too low.17 In what follows, we assume existence in the absence of desert.

In the presence of desert considerations, any symmetric equilibrium will be the same as

without desert. Assuming symmetry, ei = ej so Pi = Pj = Q(0) = 1
2 : Thus, 1 � 2Pi = 0 and

the desert term in the FOCs drop out. However for su¢ ciently strong desert, the SOCs will no

longer be satis�ed. Given symmetry, agent i�s SOC reduces to 2v� [q (0)]2 � C 00
�
C 0�1 (vq (0))

�
;

which only holds for � su¢ ciently small.

On i�s reaction function (RF), d@EUi@ei
= @2EUi

@(ei)
2 de

�
i +

@2EUi
@ej@ei

dej = 0; so de�i
dej

= �
@2EUi
@ej@ei

@2EUi

@(ei)
2

: The

cross-derivative is:

@2EUi
@ej@ei

= v
�@q(ei�ej)

@ei
� v�

h
(1� 2Pi) �@q(ei�ej)@ei

+ 2 [q (ei � ej)]2
i

(8)

At a symmetric equilibrium, we found above that @q(0)
@ei

and 1 � 2Pi = 0; and the SOC must

hold. Thus, at a symmetric equilibrium the slope of i0s RF is:18

de�i
dej

= �2v�[q(0)]2

C00(C0�1(vq(0)))�2v�[q(0)]2 � 0

The RFs are weakly downwards sloping and have the same slope, so any symmetric equilibrium

will be asymptotically stable19 if and only if:

de�i
dej

> �1, 4v� [q (0)]2 < C 00
�
C 0�1 (vq (0))

�
Absent desert, stability is automatic, but for su¢ ciently strong desert any symmetric equilibrium

will be asymptotically unstable. The following proposition summarizes these �ndings.

Proposition 1

In the absence of desert considerations, the equilibrium is symmetric and unique. Any sym-

metric desert equilibrium must be the same as without desert.

For � 2
�
C00(C0�1(vq(0)))

4v[q(0)]2
;
C00(C0�1(vq(0)))

2v[q(0)]2

�
; such a symmetric desert equilibrium will be as-

ymptotically unstable.

For � >
C00(C0�1(vq(0)))

2v[q(0)]2
; i.e., for su¢ ciently strong desert, such a symmetric desert equilib-

rium cannot exist (as the second order conditions will be violated).

17 If �2 is too low, vq (0) may be so high that at the local symmetric equilibrium the agents prefer to deviate to
zero e¤ort. Of course, global concavity of the objective function would guarantee existence.

18 If � =
C00(C0�1(vq(0)))

2v[q(0)]2
; i.e., the SOCs are satis�ed with equality, it may be that no symmetric equilibrium exists.

If one does, the slopes of the RFs are unde�ned. An in�nitesimal change in ej requires a discontinuous jump in
e�i ; so the equilibrium cannot be stable.

19 See Fudenberg and Tirole (1991, pp. 23-25) for more on asymptotic stability and tâtonnement adjustment
processes.
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Similarly to the case without desert, the need for global optimality may rule out a symmetric

desert equilibrium even if the local SOCs are satis�ed. One might wonder whether this might

make it impossible for unstable symmetric desert equilibria to exist, but we can show that

for su¢ ciently high noise or convex costs, stable and unstable symmetric desert equilibria can

indeed exist (see Appendix B, part (i) in Gill and Stone, 2006).

The result in Proposition 1 that in a symmetric desert equilibrium e¤ort is the same as

without desert is driven by the fact that at such a symmetric desert equilibrium, each agent

has an equal chance of winning. As a result, 
i is maximized, and so from Lemma 1 the

desert de�cit is at its strongest. Because 
i is at an extremum, the e¤ect of desert on marginal

incentives is zero. The result should be contrasted with Grund and Sliwka�s (2005) �nding that

in tournaments inequity averse agents put in more e¤ort in equilibrium. Grund and Sliwka�s

agents care about the equity of outcomes irrespective of e¤ort levels and hence any consideration

of whether outcomes were deserved or not. Receiving more than the rival induces compassion

and receiving less gives rise to envy. Agents want to work harder to avoid envy and less hard

to avoid compassion, and because envy is assumed to be a stronger emotion than compassion,

the agents work harder in a symmetric equilibrium.

Around a symmetric desert equilibrium, if ej goes up slightly, Pi; and hence 
i; falls. Thus,

agent i�s incentive to exert e¤ort is reduced compared to the no desert case. Increasing e¤ort

raises the desert de�cit by making the expected winnings more symmetrical, and so the RFs

become strictly downwards sloping rather than �at as in the no desert case. This means that,

by contrast to the no desert case, if j can precommit to a level of e¤ort before i chooses her

e¤ort, j will have a local strategic incentive to choose e¤ort above the desert equilibrium level.

With the power to precommit the derivative of j�s utility with respect to her e¤ort level is given

by
dEUj
dej

=
@EUj
@ej

+
@EUj
@ei

de�i
dej

At the desert equilibrium, j�s FOC implies that @EUj
@ej

= 0, the slope of the RFs implies that
de�i
dej

< 0; and @EUj
@ei

= �vq (0)+ v�
0j (0) < 0 since q (0) > 0 and 
0j (0) = 0. Thus,
dEUj
dej

> 0 and

j would like to increase her e¤ort above the equilibrium level. By contrast, as in Dixit (1987),

without desert the RFs are �at, so de�i
dej

= 0 and therefore dEUj
dej

= 0 at the equilibrium.20

With su¢ ciently strong desert, the RFs become su¢ ciently downwards sloping that in (ei; ej)

space; RFj crosses RFi from above, and so any symmetric desert equilibrium becomes unstable.

For very strong desert, the objective function becomes locally convex around the no desert

20 Dixit (1987) also analyzes asymmetric tournaments in which the favorite (underdog) has a local incentive to
precommit to a higher (lower) level of e¤ort.
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symmetric equilibrium as the agents have too strong an incentive to create an asymmetry in

order to reduce the large desert de�cit, so the SOCs no longer hold and there is no symmetric

desert equilibrium.

3.2 Asymmetric Equilibria

The �nding that when we introduce desert, the symmetric equilibrium might be unstable, or

indeed no longer exist at all, leads one to ask whether asymmetric equilibria are possible with

desert. We saw above that without desert asymmetric equilibria are impossible in this identical

agent model. Furthermore, introducing inequity aversion while retaining symmetry of the agents

does not alter this basic �nding, as discovered by Grund and Sliwka (2005). In this section, we

investigate whether asymmetric equilibria can arise with desert. We start by showing that for

su¢ ciently weak desert concerns, there can be no asymmetric equilibrium.

Proposition 2 For strictly positive � close enough to zero, no asymmetric desert equilibrium

can exist.

Proof. See Appendix.

Next we show that for su¢ ciently strong desert concerns, asymmetric equilibria can indeed

exist. We prove the existence of equilibria in which one agent works hard while the other slacks

o¤ completely, but, depending on �; the shape of the noise distribution and the cost of e¤ort

function, less extreme interior asymmetric equilibria may also exist.

Since the two agents are identical, they will have identical reaction functions. Let e� (ej ; �)

denote agent i�s reaction function, or global optimum given ej and �.21 Let e� (0; �) denote

the best response to an opponent exerting zero e¤ort (throughout, if more than one exists, we

take e� (0; �) to refer to the lowest one). We �rst show that the best response to zero e¤ort is

strictly positive, e� (0; �) > 0; and then �nd that for � su¢ ciently large e� (e� (0; �) ; �) - the

best response to e� (0; �) - is equal to zero. Thus, asymmetric desert equilibria exist in which

one agent exerts strictly positive e¤ort e� (0; �) > 0 and the other agent slacks o¤ completely.

We start by showing that e� (0; �) > 0: Because we have assumed vq (0) > C 0 (0) ; even

without desert the best response to no e¤ort is strictly positive. Desert considerations simply

increase the incentive to work when the rival slacks o¤, as doing so reduces the expected desert

de�cit. As � rises, the desert de�cit gets stronger for any di¤erence in the e¤orts, so the agent

has a stronger incentive to push e¤ort up to reduce the desert de�cit, i.e., e� (0; �) goes up.

21 vPi and �v�Pi(1�Pi) are bounded, while C00(ei) > 0 implies that C(ei) is unbounded. Thus, given the continuity
of Pi and C(ei); a global optimum must exist, as i will not wish to raise ei inde�nitely. In general, more than
one might exist.
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Lemma 2 (i) e� (0; �) > 0; (ii) e� (0; �) is strictly increasing in �; and (iii) e� (0; �) is un-

bounded above as � rises.

Proof. See Appendix.

The proof of Proposition 3 also makes use of the following lemma, which follows from the

fact that EUi net of e¤ort costs is a function of ei � ej , while e¤ort costs depend on ei: Thus

for ej > 0; agent i will wish to set ei � ej lower than for ej = 0; as for any ei � ej the marginal

impact of e¤ort on utility net of costs is the same, but the marginal cost of e¤ort is higher.

Lemma 3 For ej > 0; the di¤erence between an agent�s global optimum e¤ort e� (ej ; �) and her

rival�s e¤ort ej is always less than the best response to zero e¤ort, i.e., e� (ej ; �)�ej < e� (0; �) :

Proof. See Appendix.

By raising � su¢ ciently, we can raise e� (0; �) so high and make desert considerations so

important that in response to e� (0; �) > 0 the rival wants to set zero e¤ort to reduce the desert

de�cit as much as possible (without incurring the huge cost of working harder than her rival,

by Lemma 3), so we get asymmetric equilibria. Asymptotic stability follows in non-pathological

cases, as the slacker i�s reaction function is locally vertical in (ei; ej) space, i.e., for small changes

in ej away from e� (0; �) ; i wishes to remain at ei = 0:22

Proposition 3 For su¢ ciently large �: (i) there exist two asymmetric desert equilibria in each

of which one agent exerts strictly positive e¤ort e� (0; �) > 0 and the other agent exerts zero

e¤ort as the unique best response; and (ii) such equilibria are asymptotically stable, so long as

e� (ej ; �) changes smoothly in ej at ej = 0:

Proof. See Appendix.

Intuitively, in an asymmetric equilibrium in which i is exerting zero e¤ort and j is exerting

high e¤ort e� (0; �), j is more likely to win and feels that such a win is deserved while i is more

likely to lose but feels that such a loss is deserved. If j lowers her e¤ort or i increases hers then

22 Stone (2004) and Ederer and Fehr (2006) also �nd that introducing loss aversion into a tournament set-up can
allow ex ante identical agents to play asymmetric equilibria. In Stone�s model winning probabilities are restricted
to be linear and, unlike in this paper but as in K½oszegi and Rabin (2006), the agents take their reference points
as �xed when they optimize. In a two-stage tournament with feedback on interim performance, Ederer and Fehr
(2006) �nd that loss averse agents may play an asymmetric equilibrium at the interim stage. The interim leader�s
advantage gives him a higher reference point and so a greater incentive to exert e¤ort. Cornes and Hartley
(2003) introduce loss aversion into a Tullock-style rent-seeking contest. They focus on symmetric equilibria
(which always exist), but note that asymmetric equilibria are also possible. Stone (2006) �nds that agents with
self-image concerns may play an asymmetric equilibrium to avoid revealing too much information to themselves
about their own ability.
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on average the departure between monetary payo¤s and agents�reference points will increase,

increasing the desert de�cit (see Lemma 1). Thus, agents have an incentive not to reduce the

di¤erence in their e¤orts. For su¢ ciently large � this force deters i from increasing her e¤ort

above zero, even if doing so would increase her probability of winning su¢ ciently for the increase

in material utility to cover the increase in her e¤ort costs. Given agent i exerts zero e¤ort, j�s

material and desert payo¤s are both increasing as she increases her e¤ort, and she will increase

her e¤ort up until the point at which the marginal disutility of e¤ort overwhelms the resulting

marginal reduction of the desert de�cit and increase in her expected monetary payo¤.

Of course, the existence of such asymmetric equilibria raises the question of how the players

could coordinate on one of them. Exiting from the strict con�nes of the game at hand, some

form of pre-play communication might aid coordination, or, with repeated play, a tâtonnement

adjustment process could lead to one of the equilibria (Proposition 3 tells us that the equilibria

are stable to such a process once they are reached). Note also that if the game was played twice,

one equilibrium of the repeated game would be for the agents to play an asymmetric equilibrium

in each period, but reversing the role of the hard worker and slacker across the periods. In the

absence of discounting, the payo¤s would become symmetric across the two periods. Again,

pre-play communication could help coordinate on the roles.

3.3 Example with Uniform Noise

In this subsection, we solve a simple example analytically to aid the understanding of the general

results above. We assume the following.

Assumptions

(i) � v U [�; ]

(ii) C (ei) =
ce2i
2

(iii) v < 22c
1+�

Under (i), q(�) = 1
2 for � 2 [�; ] and Q (ei � ej) =

ei�ej+
2 for jei � ej j � :23 The 

parameter is a measure of noise - the more noise, the lower the marginal e¤ect of e¤ort on the

probability of winning. The agents face a linear probability of winning function, up to a bound

where Pi = 1 at ei = ej +  and down to a bound where Pi = 0 at ei = ej � . As we will

now explain, assumption (iii) makes the model consistent with our general framework, in which

q(�) > 0 8� and Q (ei � ej) is twice continuously di¤erentiable. Restricting e¤orts to the range
23 No standard underlying noise function that we are aware of would give � uniformly distributed. However, we
have chosen a uniform distribution here for its analytical and pedagogical convenience. We can also think of the
noise as arising from the measurement of the di¤erence in e¤orts rather than of each agent�s separate e¤ort level.
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jei � ej j �  and using (6) gives:

@EUi
@ei

= v 1
2 � v�

h�
1� 2

�
ei�ej+
2

��
1
2

i
� cei

= v 1
2 + v�

h
ei�ej
22

i
� cei

@2EUi
@(ei)

2 = v�
22

� c

Thus, the objective function is strictly globally concave (over jei � ej j � ) for v� < 22c:

We assume that v < 22c
1+� ; which implies global concavity, and also that i

0s optimal e¤ort e�i < 

according to the following lemma.

Lemma 4 Given v < 22c
1+� ; e

�
i <  8ej 2 [0;1) :

Proof. See Appendix.

Lemma 4 allows us to restrict attention to ei 2 [0; ] when calculating equilibria. Thus

jei� ej j � ; so Q (ei � ej) is twice continuously di¤erentiable, q (ei � ej) > 0 and the objective

function is strictly concave. The FOCs are satis�ed where

v + v� (ei � ej) = 22cei , v[��ej ]
22c�v� = ei

Note that v[��ej ]
22c�v� <  , v + v�� v�ej

 < 22c which holds by assumption (iii). Therefore,

we get the following linear reaction functions:

e�i (ej) =

8<:
v[��ej ]
22c�v� 2 (0; ) if ej <


�

0 if ej � 
�

Now, e�i (0) =
v

22c�v� S

� , v� S 23c � v� , � S 2c

v : Thus we get the following

proposition, as illustrated in Figures 1 to 4.

Proposition 4

For � < 2c
v ; the unique desert equilibrium e�i = e�j =

v
2c is symmetric and stable.

For � > 2c
v ; the set of desert equilibria is

�
e�i ; e

�
j

�
2
n�

v
22c�v� ; 0

�
;
�
0; v
22c�v�

�
;
�
v
2c ;

v
2c

�o
:

The symmetric equilibrium remains, but is unstable, and there are now also two asymmetric

stable desert equilibria.
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For � = 2c
v ; the reaction functions coincide, so there is a continuum of desert equilibria

given by �
e�i ; e

�
j

�
2
��

v[��e�j ]
22c�v� ; e

�
j

�
: e�j 2

�
0; �

��
:

As we would expect, e¤ort in both the symmetric and asymmetric equilibria is increasing

in v and decreasing in c and in the noise : In the asymmetric case, as predicted by Lemma 2

higher � increases the agents�incentive to di¤erentiate and so increases the hard worker�s e¤ort.

Figure 1: � < 2c
v and 

� �  Figure 2: � < 2c
v and 

� > 
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3.4 Experimental Evidence and Testing

The simple example from the previous subsection suggests an experimental test of our theory.

In a laboratory setting, we can vary the value of 
2c
v : Our theory implies a speci�c prediction,

which to the best of our knowledge is unique to our model, namely that as 2c
v changes from

a high to a low value the agents should move from a symmetric equilibrium to an asymmetric

one.

The existing experimental evidence on symmetric tournaments tends to report only the

mean of e¤ort choices across pairs of players (and not the variance between a pair�s e¤ort

17



choices), which would mask any asymmetries. Nonetheless the �nding of excess variability in

such means (see for instance the classic paper by Bull et al. (1987) and, more recently, van

Dijk et al. (2001)) is consistent with the agents attempting to coordinate on an asymmetric

equilibrium.24 Interestingly, in a setting with multiple prizes where the theoretical prediction

was for the agents to all exert maximal e¤ort, Harbring and Irlenbusch (2003) report commonly

�nding highly asymmetric behavior, with some agents in a particular group putting in maximal

e¤ort and the others exerting very low e¤ort.

Schotter andWeigelt (1992) and Orrison et al. (2004) experimentally study asymmetric tour-

naments. In "unfair" tournaments, to win the disadvantaged agent j0s output needs to exceed

that of the advantaged agent i by a strictly positive margin k. Theory predicts that the equi-

librium remains symmetric, but advantaged agents have been found to work harder than their

disadvantaged counterparts. In the unfair tournament, Pi(ei; ej) = Pr [ei + �i + k � ej + �j ] =

Q (ei � ej + k) ; giving the FOCs as in (6) replacing q (ei � ej) with q (ei � ej + k) : Thus the

no-desert equilibrium is symmetric with e�i = e�j = C 0�1 (vq (k)) : With desert there can be no

symmetric equilibrium as ei = ej ) Pi > Pj : In fact, starting from the no-desert symmetric

equilibrium e¤ort pair @EUi
@ei

> 0 and @EUj
@ej

< 0; while starting from any symmetric e¤ort pair

@EUi
@ei

>
@EUj
@ej

; which suggests that desert might help explain the asymmetric e¤ort choices found

in practice. This possibility warrants further theoretical and experimental investigation.

4 Applications

We now turn to two applications of our theory of desert, the �rst using asymmetric equilibria

and the second symmetric ones.

First, we analyze competition for status in the presence of desert concerns. We show that

when desert is strong enough that agents play an asymmetric equilibrium, competition for status

dominates a random allocation of status / rank, even though e¤ort is socially wasteful. Thus

desert considerations can provide a psychological basis for allowing agents to compete for a �xed

supply of status.

Second, we consider an employer�s choice of relative performance compensation scheme.

We show that when desert is not too strong, so employees play a symmetric equilibrium, an

employer will choose a tournament over relative performance pay linear in the di¤erence in the

employees�outputs if output noise is su¢ ciently fat-tailed. Desert considerations thus provide

a new explanation for why employers might choose to use tournament-style incentive schemes.

24 Note that in most of the experimental literature, and in all the studies cited in this section, agent pairings or
groupings are kept constant through multiple repetitions of the stage game.
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4.1 Status Competition

Agents often compete for status within a group, where an agent�s status is de�ned as her ordinal

rank in the group. Within a group the supply of rank is �xed, which is why a number of authors

have considered competition for status to be a socially wasteful zero-sum game. Recent notable

examples of such a perspective are presented by Hopkins and Kornienko (2004) and Frank

(2005), who consider agents competing for status by spending on positional goods:

�In the equilibrium, the additional expenditure on conspicuous consumption has no e¤ect on

the individual�s position in the social hierarchy, and thus it is "wasteful" in the sense it leads to

a Pareto-inferior outcome� (Hopkins and Kornienko, pp. 1091-1092).

�expenditure arms races focused on positional goods... divert resources from non-positional

goods, causing welfare losses� (Frank p. 137).

We can interpret our tournament as a competition for status. Agents care about their

relative rank in the distribution of  ; with  i distributed as before, and they value a higher

rank at v: Much of the literature has focused on status as determined by spending on positional

goods, and we can think of  as such spending, where agents exert e¤ort to increase the budget

they can spend on such goods. Our model can also incorporate many other types of status

concerns. For example, we can think of winning the tournament as being allocated a position

of higher importance in an organization.

In the absence of desert concerns, the zero-sum nature of the �nal status allocation does

indeed lead to the conclusion that competition over status is socially wasteful. In the unique

equilibrium of the game, the agents exert the same level of e¤ort so each has an equal opportunity

of winning and losing. Thus, the agents would be better o¤ if they could somehow enforce an

equal reduction in their e¤orts, since this would reduce wasteful expenditure on e¤ort while

leaving the winning probabilities unchanged. It follows that both agents would be better o¤ if

competition was banned and social rank was instead determined randomly.

The conclusion that banning competition is good for welfare may be undermined when agents

have desert concerns.25 This is true whenever asymmetric equilibria can arise. An asymmetric

equilibrium has the feature that, more often than not, it will allocate the higher status to the

agent who exerted higher e¤ort and therefore deserves it more and the lower status to the agent

who deserves it less. By contrast, when status is allocated randomly, as when competition is

banned or when competing agents exert identical e¤orts, the outcome is less satisfactory in

desert terms: although neither agent is more deserving than the other, one agent is always

deemed the winner and the other the loser at the end of the tournament. Thus, on average,
25Of course, the conclusion is also undermined if positive externalities from e¤ort are su¢ ciently strong. We show
that even absent any such externalities, desert considerations can reverse the standard argument.
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the discrepancy between what an agent receives ex post and what she deserves given agents�

e¤orts is larger than in any asymmetric equilibrium - as shown in Lemma 1, the desert de�cit is

always lower the more unequal the winning probabilities. When competition is not permitted,

the higher desert de�cit can overwhelm the bene�t of lower e¤ort, compared to an asymmetric

equilibrium under competition.

To see this more formally, we take the analytical example from Section 3.3 in which the

probability of winning functions are linear in e¤ort. If � < 2c
v then the unique desert equilibrium

is symmetric. Thus, randomly allocating status via a coin �ip clearly increases welfare as e¤ort

costs go down, but the desert de�cit each agent faces remains unchanged at �v�4 . On the other

hand, if � > 2c
v then only asymmetric desert equilibria are stable. Assuming such a stable

equilibrium to be played, denoting the high e¤ort agent by H and the low e¤ort agent by L;

and letting t � 22c� v�; we know from Proposition 4 that eH =
v
t 2 (0; ) and eL = 0: Thus:

PH =
v
t
+

2 = 1
2 +

v
2t 2 (0; 1)

PL =
�v
t
+

2 = 1
2 �

v
2t 2 (0; 1)

Letting �i � EUi

�
e�i ; e

�
j

�
� EUi (0; 0) denote the di¤erence between utility with competition

and without, and using (1) along with the fact that PH = 1� PL :

�H = v
�
1
2 +

v
2t

�
� v�

�
1
4 �

�
v
2t

�2�� c
2

�v
t

�2 � �v2 � v�
4

�
�L = v

�
1
2 �

v
2t

�
� v�

�
1
4 �

�
v
2t

�2�� �v2 � v�
4

�
Thus, using the fact that t > 0 in the example,

X
�i = 2v�

�
v
2t

�2 � c
2

�v
t

�2
> 0

, v� > 2c, � > 2c
v

so we get the following.

Proposition 5 Under the assumptions of Section 3.3, when � > 2c
v (so only the asymmetric

desert equilibria are stable) welfare is lower if competition is banned and status is allocated

randomly. Thus even when the supply of status is �xed, competition for status is not always

socially wasteful.

Note that an immediate corollary is that the asymmetric equilibria are more e¢ cient than

the unstable symmetric one, as the unstable symmetric equilibrium has even worse welfare

properties than imposing zero e¤ort.
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Although total utility is higher with competition, the slacker will prefer competition to be

banned for � 2
�
2c
v ;

4
3
2c
v

�
:26

�L = �v
�
v
2t

�
+ v�

�
v
2t

�2
< 0

, � < 2t
v =

42c�2v�
v , � < 4

3
2c
v

In this range, preventing her rival from competing increases the slacker�s desert de�cit, but

also increases her probability of winning su¢ ciently to compensate. If desert is too strong,

even the slacker prefers the competitive set-up. On the other hand, despite the e¤ort cost the

hardworking agent prefers competition for all � > 2c
v :

�H = v
�
v
2t

�
+ v�

�
v
2t

�2 � c
2

�v
t

�2
> 0

, v
�
2t
v

�
+ v�� 22c > 0, t > 0

In conclusion, desert considerations can provide a psychological basis for preferring com-

petition, even in what appears to be a zero-sum game such as a competition for status: such

competition is not necessarily socially wasteful.

4.2 Relative Performance Pay Schemes

Firms commonly use tournament-type incentive schemes to motivate sta¤. (For some recent ev-

idence see DeVaro (2006). See also Conyon et al. (2001), Prendergast (1999) and the references

therein.) In this section, we analyze how desert preferences impact on the design of relative

performance incentive schemes, thus contributing to the literature which considers when �rms

might choose to implement tournaments and to the rapidly-growing behavioral contract litera-

ture.27 Throughout, we assume that from the perspective of �rms e¤orts are either unobservable

or unveri�able, so compensation must be based on output.

A number of papers have compared tournaments to individual performance-based compen-

sation (such as piece rates). A �rst strand of literature emphasizes that tournaments iron out

common output shocks that are unobservable to the employer. In the presence of risk aversion

they will thus be preferred if the variance of the common shock is su¢ ciently large (see for

instance Green and Stokey, 1983). However, tournaments are not the only incentive scheme

26 In the example, v < 22c
1+�

so � < 22c�v
v

: Note that 22c�v
v

> 4
3
2c
v
, 2c

v
> 3

2
; so for 2c

v
� 3

2
; the slacker prefers

competition to be banned for all the relevant range of �; i.e., for all � 2
�
2c
v
; 2

2c�v
v

�
:

27 For a survey of the literature on behavioral contract theory more generally, see Englmaier (2005). Bartling and
von Siemens (2004), Itoh (2004) and Rey Biel (2007) all analyze how inequity aversion over monetary payo¤s net
of e¤ort costs impact on compensation design in very simple frameworks with binary e¤ort choices.
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which iron out such shocks: other schemes which base payments on the relative output of work-

ers can also do the trick. A second strand of literature points out that tournaments �x total

payments in advance, so employers do not have the incentive to under-report performance that

occurs with individual performance schemes (see Malcomson, 1984). Yet again, however, not

just tournaments but any relative performance scheme with �xed total payments solves the

problem.

We compare how our tournament (which is the simplest rank-based incentive scheme) fares

relative to the simplest incentive scheme which takes the magnitude of the di¤erence in outputs

into account, namely pay linear in the output di¤erence of the workers. We call the latter linear

relative performance pay (LRPP). Both schemes iron out common additive output shocks28 and

entail a �xed total wage bill. In the absence of desert, we �nd that the employer is indi¤er-

ent between the two schemes, while in the presence of desert considerations the shape of the

noise distribution has a fundamental impact on an employer�s choice between these two relative

performance pay schemes.29

We assume that an employer is designing an incentive scheme for two identical workers with

weak desert preferences (who therefore play a symmetric equilibrium under the tournament).

The employer is required to induce a total e¤ort be > 0: However, our results are robust to

allowing the employer to choose productive e¤ort to maximize pro�ts (see Gill and Stone (2006),

Corollary 1, p. 24). Under the tournament, the employer chooses a �xed payment of FT to

each worker and a prize v: Under LRPP, the employer pays each worker a wage wi linear in

the di¤erence in their outputs. The employer chooses the strength of incentives � plus a �xed

payment FLRPP :

wi = �
�
 i �  j

�
+ FLRPP

The employer must design the scheme to satisfy the workers�participation constraint. In

particular each worker�s expected utility must cover her outside option U: For simplicity we

assume that the workers face no ex post credit constraints.30 We compare wage costs W (be) of
28We abstract from such shocks in the analysis below, but introducing an additive common output shock does not
alter any of our results.

29 Nalebu¤ and Stiglitz (1983, pp. 36-37) analyzed LRPP, comparing it to the use of piece rates. The only existing
comparison of tournaments and LRPP that we are aware of occurs in McLaughlin (1988, p.235), who claims to
�nd that in a free entry model with risk aversion and normal noise, the tournament can induce greater e¤ort.

30 In particular, the workers can absorb unlimited ex post penalties. The penalties for performing worse than the
rival need not be monetary. Non-monetary payo¤s could include making the poor performance public knowledge,
assigning the employee to less interesting tasks, giving the employee less responsibility or writing a bad reference
at the end of the employment contract. A more realistic scheme might put bounds on the linearity, so for

�� i �  j
��

greater than this bound, pay is no longer increasing or decreasing in the di¤erence in outputs. However, this
substantially complicates the analysis and implies two countervailing e¤ects on the value of the scheme to the
employer. First, for a given � such a scheme reduces desert losses, so the �xed payments fall. However, � needs
to rise to induce the same level of e¤ort as the expected impact of e¤ort on pay is lowered.
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inducing the target from using the tournament to those from using LRPP.

4.2.1 Wage Costs: LRPP

As in the tournament, under LRPP each worker�s reference point is taken to be her expected

monetary payo¤,31 so:

ri = E
�
�
�
 i �  j

�
+ FLRPP

�
= � (ei � ej) + FLRPP

wi � ri = �
�
( i � ei)�

�
 j � ej

��
= � [�i � �j ] = ���

EUi = � (ei � ej) + FLRPP +
R 0
�1g [��x] q(x)dx+

R1
0 l [��x] q(x)dx� C(ei)

As q (�) is symmetric about zero,
R1
0 xq(x)dx = �

R 0
�1xq(x)dx; and we get

EUi = � (ei � ej)� ��
R1
0 xq(x)dx� C(ei) + FLRPP

EUi is strictly concave, and the �rst order condition is � = C 0(e�i ); so each worker setting

e�i = C 0�1 (�) is the unique Nash equilibrium.32 Note that this is independent of �; as given �

the expected desert loss is the same for any ei � ej : However, desert will a¤ect how much the

employer needs to pay his workers to satisfy the participation constraint.

To induce total e¤ort of be, the employer sets � = C 0( be2); so
EUi = ��C 0( be2)R10 xq(x)dx� C( be2) + FLRPP

To satisfy the participation constraint, he must set

FLRPP (be) = �C 0( be2)R10 xq(x)dx+ C( be2) + U (9)

The total wage costs WLRPP (be) are simply 2FLRPP (be) : The employer needs to compensate
the workers both for the cost of e¤ort and for the expected desert loss. As be rises, so higher
powered incentives are required, both costs to the employer are increasing. Wage costs are also

increasing in �:

4.2.2 Wage Costs: Tournament

We assume here that be is induced by a symmetric desert equilibrium in the tournament, i.e., �

is not too high (see Propositions 1 and 2). Under the tournament, the monetary payo¤ yi and

31 As in the tournament, the reference point re�ects the marginal impact of e¤ort on the expected payment and is
meritocratic and consistent.

32Of course, if � � C0(0) we have a corner solution at e�i = 0:
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the reference point ri are both increased by FT ; so the desert de�cit term is una¤ected. Thus,

as under the LRPP scheme, conditional on the participation constraint being satis�ed behavior

is unaltered by the �xed payments. From Section 3.1, to induce total e¤ort be the employer sets
v =

C0( be
2
)

q(0) , so using (1):

EUi =
v
2 �

v�
4 � C(

be
2) + FT =

C0(
be
2 )

2q(0) �
�C0( be

2
)

4q(0) � C(
be
2) + FT

To satisfy the participation constraint, he must set

FT (be) = �C0( be
2
)

2q(0) +
�C0( be

2
)

4q(0) + C(
be
2) + U

and wage costs WT (be) are v + 2FT (be) so
WT (be) = C0( be

2
)

q(0) + 2

�
�C0( be

2
)

2q(0) +
�C0( be

2
)

4q(0) + C(
be
2) + U

�
=

�C0( be
2
)

2q(0) + 2C(
be
2) + 2U (10)

Just as for LRPP, under the tournament the employer has to compensate the workers both

for the cost of e¤ort and for the expected desert loss, and again costs are rising in be and �:
4.2.3 Wage Costs: Comparison

We now compare the wage costs under LRPP to those under a tournament. Using (9) and (10):

WT (be) SWLRPP (be), 2�C 0( be2)R10 xq(x)dx T �C0( be
2
)

2q(0)

First, note that in the absence of desert (l = g = � = 0), LRPP and the tournament have the

same cost. In each case, the workers need to be compensated just for their e¤ort costs (plus

the outside option). However, for � > 0; they also need to be compensated for expected desert

losses. With � > 0; the tournament is cheaper if and only if 4q(0)
R1
0 xq(x)dx � 1. Because

q (�) is symmetric about zero,

E [j�j] =
R1
0 xq(x)dx+

R 0
�1jxjq(x)dx =

R1
0 2xq(x)dx

and so we get the following proposition.
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Proposition 6 For � low enough that target e¤ort be is induced by a symmetric desert equilib-
rium in a tournament, WT (be) SWLRPP (be), 2q(0)E [j�j] T 1; i.e., wage costs are lower under

the tournament than under linear relative performance pay if and only if 2q(0)E [j�j] � 1: In the

absence of desert, the two schemes cost the same.

Remarkably, this result depends only on the shape of the noise distribution. In particular,

it is independent of the size of the target be; and of the size of � (within the relevant range).
A higher q(0) favors the tournament, as marginal incentives at the symmetric equilibrium are

higher and so the prize required to induce a given level of e¤ort is lower. In the absence of

desert this would not make the tournament any cheaper, as the �xed payments would have to

rise correspondingly to satisfy the participation constraint. However, in the presence of desert

a lower prize lowers the desert de�cit, as the workers�wages will be closer to their reference

points on average, and so wage costs are lower. Under LRPP, on the other hand, q(0) has no

e¤ect on marginal incentives.

Fatter tails as measured by E [j�j] also favor the tournament. With fatter tails, � is more

likely to be far from its mean, and hence under LRPP the workers are more likely to receive

wages far from their reference point, increasing the �xed payments necessary to compensate

them for their expected desert losses. Under a tournament, however, the desert de�cit depends

only on the prize and the probability of winning, which are independent of E [j�j] for a given

q(0) at the symmetric equilibrium.

In order to see how Proposition 6 applies in practice, we compare the two schemes given spe-

ci�c noise distributions. Suppose �rst that �i � N
�
0; �2

�
. The �i�s are i.i.d., so � = (�j � �i) �

N
�
0; 2�2

�
: Thus q(x) = 1p

2�2
p
2�
exp

�
�x2
2(2�2)

�
: To integrate, we use a change of variable, setting

a = x2

2(2�2)
: Then da

dx =
2x

2(2�2)
; so 2

�
2�2

�
da = 2xdx and hence:

2q(0)E [j�j] = 2 1p
2�2

p
2�

R1
0

2(2�2)p
2�2

p
2�
exp(�a)da

= 2
� [� exp(�a)]

1
0 = 2

� < 1

Thus for normally distributed noise, LRPP is always strictly cheaper whatever the variance. As

the variance rises, q(0) falls, while E [j�j] rises in an exactly compensating fashion. However,

under a fatter-tailed distribution, the tournament can dominate. Suppose instead that � is

distributed according to the Student�s t-distribution with z 2 (1;1) degrees of freedom. Thus

q(x) =
�( z+12 )p
z��( z2)

�
1 + x2

z

��1�z
2

where � is the gamma function.33 To integrate, we use a change

33 The variance is unde�ned for z 2 (1; 2] ; but none of our results are a¤ected. Also note that the use of non-integer
degrees of freedom is legitimate: see for instance Shaw (2006).
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of variable, with b = x2

z : Then
db
dx =

2x
z ; so 2xdx = zdb and hence:

2q(0)E [j�j] = 2
�( z+12 )p
z��( z2)

R1
0 z

�( z+12 )p
z��( z2)

(1 + b)
�1�z
2 db

= 2z

�
�( z+12 )p
z��( z2)

�2 h
2
1�z (1 + b)

1�z
2

i1
0
= 4z

z�1

�
�( z+12 )p
z��( z2)

�2
Figure 5 below plots this expression. We can see that 2q(0)E [j�j] � 1 , z � 2:34 As z

gets large, the expression tends to 2
� , its value under the normal, which is consistent with the

fact that the Student�s t-distribution approaches the standard normal as z ! 1. Thus, for

z > 2 degrees of freedom, the employer prefers LRPP, for z = 2, the employer is indi¤erent, and

for z 2 (1; 2) ; the tournament dominates. Figure 6 below compares the density functions of a

normal (full line) and a Student�s t-distribution for z = 3
2 (dotted line), calibrating the variance

of the normal to give a common q(0): The Student�s t density has su¢ ciently fatter tails that

the employer prefers to use a tournament.

Figure 5 Figure 6

2q(0)E [j�j] for z 2 (1; 10) q(x) for

8<: Normal (full)

Student�s t with z = 3
2 (dotted)

2 4 6 8 10
0

1

2

3

4

The following corollary summarizes these �ndings. Gill and Stone (2006, pp. 25-26) provide

a numerical example based on the Student�s t-distribution to show that choosing the right

compensation scheme can have a signi�cant impact on the wage bill.

Corollary 1 (Corollary to Proposition 6) For normally distributed noise, 2q(0)E [j�j] =
2
� < 1 so linear relative performance pay strictly dominates the tournament (for any variance).

For noise � distributed according to the (fatter-tailed) Student�s t-distribution, the tournament

strictly dominates linear relative performance pay for z 2 (1; 2) degrees of freedom.

We have found that wage costs are lower under a tournament than under LRPP if the

distribution of noise is su¢ ciently fat-tailed, given that the required e¤ort level is induced by

34We can con�rm that 8
�

�( 32 )p
2��(1)

�2
= 8

� 1
2

p
�

p
2�:1

�2
= 1.

26



a symmetric desert equilibrium in the tournament. Tournaments may also be preferred if the

required e¤ort can be induced by an asymmetric desert equilibrium or if the employer chooses

to induce an asymmetric equilibrium when she selects e¤ort optimally. Pushing the workers�

e¤ort levels apart lowers the desert de�cit, which in turn lowers the �xed fee needed to satisfy

the workers�participation constraint. Of course, this is counterbalanced by the fact that it is

less e¢ cient to make one worker take on the whole task: C(be) > 2C( be2) by the convexity of
costs. See Gill and Stone (2006, pp. 26-28) for an analysis of this issue.

5 Conclusion

In this paper, we have merged the literatures on tournaments, equity and loss aversion in

order to model the behavior of desert-motivated agents in competitive situations. In line with

existing psychological and experimental evidence, our agents adopt a meritocratic notion of

desert. Our model has allowed us to develop novel conclusions about the play of identical agents

in tournaments. In doing so, we have contributed to the understanding of strategic behavior

in the presence of endogenous reference points. Applying our model has also permitted us

to generate important insights into when competition for status might be socially bene�cial

and when employers might choose tournaments over other more continuous forms of relative

performance pay.

Fruitful extensions to our framework might analyze situations with many agents and prizes

or with asymmetric agents where some agents enjoy a productivity advantage (perhaps perceived

to be unfair or undeserved). Our concept of desert could be applied to other strategic settings

such as bargaining and the provision of public goods. Empirical and experimental evidence

could also be collected to test whether agents behave according to the theoretical predictions of

our model and so do in fact act as if they care about receiving their "just deserts". In particular,

assuming desert preferences we have developed novel predictions about how agents move from

symmetric to asymmetric equilibria in tournaments as the value of the prize rises and about

how �rms choose between tournaments and linear incentive schemes as the shape of the noise

distribution changes.
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Appendix

Proof of Proposition 2. Suppose that an asymmetric equilibrium
�
e�i ; e

�
j

�
exists with

e�i > e�j . From the FOCs in (6), noting that 1� 2Pj = 2Pi � 1 and allowing for the possibility

that e�j = 0;

@EUi
@ei

� @EUj
@ej

= 2v�
�
(2Pi � 1) q

�
e�i � e�j

��
� C 0 (e�i ) + C 0

�
e�j
�
� 0

Let q � sup q(�); which must exist as q(�) is a density continuous on (�1;1) : Then

v� [(2Pi � 1) q (ei � ej)] � v�q; so 2v�q � C 0 (e�i ) � C 0
�
e�j

�
: Now C 0 (e�i ) > C 0

�
e�j

�
and as

�! 0; 2v�q ! 0: Thus as �! 0; C 0 (e�i )� C 0
�
e�j

�
goes to zero, so e�i � e�j goes to zero. Thus

from the FOC e�i goes to C
0�1 (vq(0)) > 0 so e�j does so as well.

Let ex be "near" to C 0�1 (vq(0)) i¤

��ex � C 0�1 (vq(0))�� � max���e�i � C 0�1 (vq(0))�� ; ��e�j � C 0�1 (vq(0))��	
We now consider the slope of the agents�reaction functions (RFs) for e¤orts near to C 0�1 (vq(0)) :

The slope of RFi is given by �
@2EUi
@ej@ei

@2EUi

@(ei)
2

: As �! 0, (8)! 0 and (7)! �C 00(ei) (remember @q(0)@ei
= 0

and q0 is continuous) for e¤orts near to C 0�1 (vq(0)) ; so the slope of the RFs go to zero. In

(ei; ej) space, RFi tends to a vertical line while RFj tends to a horizontal line. Thus there exists

a � > 0 such that for all � < �, the RFs can only cross once near to C 0�1 (vq(0)) ; so there must

be a single equilibrium near to C 0�1 (vq(0)). But by the symmetry of the problem there must

be (at least) two asymmetric equilibria near to C 0�1 (vq(0)), so we get contradiction.

Proof of Lemma 2. Note �rst that given ej = 0; 
0i (0) = 0 at ei = 0 and 

0
i (ei) < 0 for

ei > 0 from Lemma 1.

(i) Suppose e� (0; �) = 0: 
0i (0) = 0 and by assumption vq (0) > C 0 (0) : Thus, @EUi(ei;0;�)@ei
=

vq (0)� C 0 (0) > 0 at ei = 0; so i has a strict incentive to increase e¤ort, a contradiction.

(ii) We suppose that for �2 > �1, e� (0; �2) � e� (0; �1) and �nd a contradiction.

Case (a): e� (0; �2) < e� (0; �1) : As e� (0; �) > 0 and 
0i (ei) < 0 for ei > 0; 
i (e
� (0; �1))�


i (e
� (0; �2)) < 0. By de�nition of global optimality:

[EUi(e
� (0; �1) ; 0; �1)� EUi(e� (0; �2) ; 0; �1)]+[EUi(e� (0; �2) ; 0; �2)� EUi(e� (0; �1) ; 0; �2)] � 0
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But

EUi(e
� (0; �1) ; 0; �1)� EUi(e� (0; �1) ; 0; �2) = � (�1 � �2) v
i (e� (0; �1))

EUi(e
� (0; �2) ; 0; �2)� EUi(e� (0; �2) ; 0; �1) = � (�2 � �1) v
i (e� (0; �2))

so we require that (�2 � �1) v [
i (e� (0; �1))� 
i (e� (0; �2))] � 0, a contradiction.

Case (b): e� (0; �2) = e� (0; �1) : Given e� (0; �1) > 0 the FOCs imply the following which,

together with 
0i(e
� (0; �1)) < 0; contradicts �2 > �1:

vq (e� (0; �1))� v�2
0i (e� (0; �1)) = vq (e� (0; �1))� v�1
0i (e� (0; �1))

(iii) Given ej = 0 and ei > 0, 
0i (ei) < 0: Thus for any x > 0, we can �nd a � > 0 such that

for 8ei 2 (0; x]:
@EUi(ei;0;�)

@ei
= vq (ei)� v�
0i (ei)� C 0 (ei) > 0

so e� (0; �) > x:

Proof of Lemma 3. We suppose that e� (ej ; �)� ej � e� (0; �) and �nd a contradiction.

Case (a): e� (ej ; �)� ej > e� (0; �) : By de�nition of global optimality:

[EUi(e
� (0; �) ; 0; �)� EUi(e� (ej ; �)� ej ; 0; �)]+[EUi(e� (ej ; �) ; ej ; �)� EUi(e� (0; �) + ej ; ej ; �)] � 0

But

EUi(e
� (0; �) ; 0; �)� EUi(e� (0; �) + ej ; ej ; �) = �C(e� (0; �)) + C(e� (0; �) + ej) > 0

EUi(e
� (ej ; �) ; ej ; �)� EUi(e� (ej ; �)� ej ; 0; �) = �C(e� (ej ; �)) + C(e� (ej ; �)� ej) < 0

so we require that C(e� (0; �) + ej) � C(e� (0; �)) � C(e� (ej ; �)) � C(e� (ej ; �) � ej): Because

C 00(ei) > 0; an increase in e¤ort of ej from the higher base of e� (ej ; �) � ej increases costs by

strictly more35, so we have a contradiction.

Case (b): e� (ej ; �)� ej = e� (0; �) : This implies that:

vq (e� (ej ; �)� ej)� v�
0i (e� (ej ; �)� ej) = vq (e� (0; �))� v�
0i (e� (0; �))

so, given e� (0; �) > 0 from Lemma 2 and C 00(ei) > 0; from the FOCs we immediately get a

contradiction.
35 d(C(x+y)�C(x))

dx
= C0(x+ y)� C0(x) > 0 for x � 0 and y > 0:
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Proof of Proposition 3. Let e�� (�) � e� (e� (0; �) ; �) : Let � be the � such that

� [1� 2Q (�e� (0; �))] = 1: As e� (0; �) > 0 is increasing in � from Lemma 2, Q0(x) > 0 and

Q(x) 2
�
0; 12

�
for x < 0; we see that 1 � 2Q (�e� (0; �)) 2 (0; 1) and is increasing in �; so such

a � exists and is unique. For � > �; let be (�) be the ei such that � [1� 2Q (ei � e� (0; �))] = 1:
Since Q(x)! 1

2 as x! 0; be (�) 2 (0; e� (0; �)) and is unique. Further, be (�) is strictly increasing
in � and unbounded above: as � goes up, so does e� (0; �), so be (�) needs to rise by even more.
Thus, as e� (0; �) is unbounded, so is be (�) :

(i) We will show that for � large enough, neither (a) e�� (�) � be (�) nor (b) e�� (�) 2 (0; be (�))
is possible, so given a global optimum always exists (see footnote 21), e�� (�) = 0:

Case (a): Suppose e�� (�) � be (�) : Letting �EUi (ei; ej ; �) � EUi (ei; ej ; �)� EUi (0; ej ; �):

�EUi (e
�� (�) ; e� (0; �) ; �) = v [Q (e�� (�)� e� (0; �))�Q (�e� (0; �))] (11)

�v� [
i (e�� (�)� e� (0; �))� 
i (�e� (0; �))]

� [C (e�� (�))� C(0)]

The �rst term of (11) is bounded above by v since Q is a c.d.f. The second term is strictly

negative, as je�� (�)� e� (0; �)j < j�e� (0; �)j and 
i is strictly quasi-concave and symmetric

about zero from Lemma 1. Where e�� (�) < e� (0; �) ; the inequality is automatic, while where

e�� (�) � e� (0; �) ; e�� (�)�e� (0; �) < e� (0; �) by Lemma 3. Thus �EUi (e�� (�) ; e� (0; �) ; �) <

v � C (e�� (�)) � v � C (be (�)) : As be (�) is unbounded above as � rises and C 00(ei) > 0; for

su¢ ciently large � �EUi (e
�� (�) ; e� (0; �) ; �) < 0; a contradiction as i would then prefer to

set zero e¤ort.

Case (b): Suppose that e�� (�) 2 [0; be (�)): Now, at ei = e�� (�)

@EUi (ei; e
� (0; �) ; �)

@ei
= vq (e�� (�)� e� (0; �))� v�
0i (e�� (�)� e� (0; �))� C 0 (e�� (�))

= vq (e�� (�)� e� (0; �)) f1� � [1� 2Q (e�� (�)� e� (0; �))]g � C 0 (e�� (�))

Since e�� (�) < be (�) ; � [1� 2Q (e�� (�)� e� (0; �))] > 1; so @EUi(ei;e
�(0;�);�)

@ei
< 0 at ei = e�� (�) ;

and hence we have a contradiction unless e�� (�) = 0:

(ii) We start by showing that for small enough eej > 0; ei = 0 remains the unique global opti-
mum in response to ej = e� (0; �)�eej ; so where i is the slacker, her reaction function is locally ver-
tical in (ei; ej) space. First, consider ei � be (�) : For large enough �;�EUi (ei; e� (0; �) ; �) < 0 as
e�� (�) = 0 is the unique global optimum from above. Furthermore, max

ei�be(�)�EUi (ei; e� (0; �) ; �)
exists as EUi (ei; e� (0; �) ; �) is unbounded below as ei goes up. Thus we can �nd a small enougheej such that �EUi (ei; e� (0; �)� eej ; �) < 0 8ei � be (�) : Second, consider ei < be (�) : From
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above, @EUi(ei;e
�(0;�);�)

@ei
< �C 0 (ei) � 0: Now @EUi(ei;e

�(0;�);�)
@ei

� max
ei<be(�) @EUi(ei;e

�(0;�);�)
@ei

< 0; so

we can �nd a small enough eej that @EUi(ei;e�(0;�)�eej ;�)@ei
< 0 8ei < be (�) : (If the slope is greater

at be (�) than any ei < be (�) ; no maximum will exist on our range, but then @EUi(ei;e
�(0;�);�)

@ei
<

�C 0 (be (�)) < 0:) Asymptotic stability follows immediately given the reaction function of the

slacker i is locally vertical in (ei; ej) space and the high e¤ort agent j0s reaction function has a

locally well-de�ned �nite slope. This last follows from assuming e� (ej ; �) changes smoothly in

ej at ej = 0.

Proof of Lemma 4. Suppose �rst that ej� < : If @EUi@ei
< 0 at ei = ; no ei 2 [;  + ej ]

can be optimal by the strict concavity of the objective function, and EUi (ei >  + ej ; ej) <

EUi (ei =  + ej ; ej) as Pi = 1 in both cases, but e¤ort costs are higher in the former. At

ei = ; ei � ej � , so @EUi
@ei

< 0 given

v 1
2 + v�

h

22

i
� c < 0, v < 22c

1+�

Suppose second that ej �  � : If @EUi@ei
< 0 at ei = ej � ; then no ei > ej �  can be

optimal by the strict concavity of the objective function. Furthermore, EUi(0; ej) > EUi(ei 2

(0; ej � ] ; ej) as Pi = 0 8ei � ej �  but e¤ort costs are lowest at ei = 0. The condition for

@EUi
@ei

< 0 is weaker in this case as at ei = ej � ; ei � ej <  and ei � :
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