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Abstract

We study the process of equilibrium selection in games when players
have "sophisticated" preferences of the type discussed, among others, by
Rabin [16] and Segal and Sobel [17]. To this end, we employ standard
noisy version of the best response dynamics. We obtain several results
concerning some popular games such as the Prisoner's Dilemma, the Bat-
tle of the Sexes and the Dictator Game. For example we show that with
the preferences for reciprocity introduced by Rabin, the cooperative Nash
equilibrium in the Prisoner's Dilemma is never stochastically stable.
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You really shouldn't leave a bar or restaurant without leaving a tip
of at least �fteen percent and about the same should be added to
taxi fares. A hotel porter should get roughly $1 for each bag carried
to your room; a coatcheck clerk should receive the same per coat.
(The Rough Guide to California)

1 Introduction

Although the notion of Nash equilibrium is a cornerstone of non cooperative
game theory, few scholars believe that Nash equilibria are good predictors of
the way games are played by ordinary people facing a game for the �rst time.
There are many sources for this skepticism. For example, players can only com-
pute their Nash equilibrium strategies if their payo� functions are common
knowledge. Young [22] notices that this assumption "strain[s] credulity: if any-
thing is common knowledge, it is that utility functions are almost never common
knowledge." (117)
One might reply that such a claim is too strong, at least when a game's

outcomes are simple monetary amounts as it is usually the case in experiments.
If one could assume that players were only concerned with their own monetary
payo�s, then the only source of uncertainty about other players' preferences
would be their degree of risk aversion. A large amount of experimental evidence
gathered in the last two decades, however, shows that such an assumption is
unwarranted. Players trust other players (and repay their trust) in Trust Games,
give money in Dictator Games and reject unfair o�ers in Ultimatum Games.
(See Camerer [6] for an overview) None of these choices can be rationalized
assuming that players are only concerned with the money they receive at the
end of the experiment.
To make sense of these experimental �ndings, several models have been pro-

posed in which human beings are assumed to be concerned with other things
other than their material payo�s. This literature is customarily divided into
two main strands. There is a �rst class of models (whose most representative
articles are Bolton and Ockenfels [5] and Fehr and Schmidt [11]) in which players
take into consideration the amount of money obtained by other players beside
themselves. They might be altruists (sacri�cing their own well being to improve
the wellbeing of others), inequality adverse (being willing to pay to reduce in-
equality between themselves and other players) and so on. Despite the success
of these models in accounting for many experimental �ndings, there is a large
agreement on the fact that a pure concern for the distribution of the outcomes
is unable to account for many important anomalies observed in experiments.
(See Sobel [18])
The second strand of research, pioneered by Rabin [16] and developed further

by Charness and Rabin [8], Falk and Fischbacher [10] and Dufwenberg and
Kirchsteiger [9], is based on a somewhat stronger set of assumptions. Besides a
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concern for the outcome of the game, these models assume that people's utilities
are inuenced by their mutual expectations concerning the way in which the
game will be played. A typical (but not unique) way in which such a concern
manifests itself is a taste for reciprocity. A player who expects to be treated
fairly by other players will be willing to sacri�ce part of his payo� in order
to be fair to them. The same player would be willing to forego part of his
monetary payo� in order to "punish" other player's unfairness. Since players'
preferences depend not only upon the outcome of the game, but also upon their
mutual expectations, this approach requires a more complex analytical toolset,
which is usually taken from (a simpli�ed version of) psychological game theory
introduced by Geanakoplos, Pearce, and Stacchetti [12].
Making more sophisticated assumptions on people's preferences has two ef-

fects. On the one hand, models become more exible, which allows for the exis-
tence of equilibria that are more in line with what one observes in experiments.
However, and this is the second e�ect, in the presence of more sophisticated
preferences equilibrium predictions become even more doubtful. If common
knowledge of payo� functions looks suspicious when preferences include only
material payo�s, it looks even more so if other aspects of human motivation
like altruism and reciprocity are taken into the picture. Furthermore, more
sophisticated preferences usually do not reduce the number of equilibria, so
that the equilibrium selection problem presents itself just like in ordinary game
theoretical models.
There is a well established tradition in game theory that looks suspiciously at

NE as predictors of individual's behavior in one-shot interactions, but considers
it a plausible approximation for situations in which players are allowed to learn
and experiment. It is customary to refer to this approach as "evolutionary",
although it is by no means con�ned to situations in which genetic selection
takes place. Rather than trying to answer the question of what is the rational
course of action in a given game, evolutionary models assume that players are
boundedly rational and adjust their behavior over time to the behavior of other
players. In this context, Nash equilibria are interpreted as conventions, that
is as beliefs concerning how a certain game is to be played, which are shared
within a population of individuals.
This paper presents an evolutionary model in which agents' preferences are

of the kind �rst studied by Rabin [16]. The model has thus two main ingre-
dients. First, a "sophisticated" theory of player's preferences. I take this part
from Segal and Sobel [17], which is the most general approach to interdepen-
dent preferences proposed so far for simultaneous games. Some popular models
such as those proposed by Rabin [16] and Dufwenberg and Kirchsteiger [9], are
particular cases of their axiomatic model. The second ingredient is a dynamic
process of adjustment, which is taken from the best response models introduced
by Kandori, Mailath and Rob [13] and Young [20], and popularized in many
other papers afterwards. In particular, I shall follow the recent comprehensive
treatment proposed in Binmore, Samuelson and Young [4]. To show the rel-
evance and exibility of the model I will discuss a few games the Prisoner's
Dilemma, the Battle of the Sexes and the Dictator Game the approach to reci-
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procity pioneered by Rabin [8].
The paper proceeds as follows: Section 2 introduces the necessary tech-

nicalities concerning player's preferences. Section 3 discusses the dynamical
adjustment process and proves some fairly general lemmata. Section 5 contains
the applications. Section 6 concludes.

2 The game

We shall present here the axiomatic approach to (simultaneous) psychological
games pioneered by Segal and Sobel [17]. Our presentation will necessarily be
cursory. For ease of comparison, we shall follow them as closely as possible. The
interested reader is to look at the original paper for the details and the main
motivation.
We shall deal with simultaneous two-players games. The approach we pro-

pose can be easily extended to n players games, although it would become more
cumbersome and less straightforward. It can be extended to sequential games,
but in this case some more substantial work needs to be done. We leave this
task for future research.
Players will be denoted as 1 and 2. Let Xi be the set of outcomes for player

i. Player i has a preference relation <outi over the set of lotteries on Xi we
shall indicate as �(Xi). These preferences satisfy the assumptions of expected
utility. They can thus be represented by a pair of von Neumann-Morgernstern
functions �i : �(Xi) ! R. We shall refer to �i as player i0s material payo�
function.
Let A1 and A2 be the set of pure strategies for player 1 and 2 resp., with

generic element aki . S1 and S2 are the sets of mixed strategies derived from
A1 and A2, with generic element si. si(a

k
i ) is the probability with which a

k
i

is played in si. A = A1 � A2 is the set of pure strategy combinations and
S = S1 � S2 is the set of mixed strategy combinations. The outcome function
for player i is Oi : A ! Xi. It assigns an element in Xi to any pure strategy
combination chosen by the two agents. We shall indicate with �i(a

k
1 ; a

h
2 ) (rather

than �i(Oi(a
k
1 ; a

h
2 ))) player i's utility for the outcome he gets when the strategy

combination chosen by the players is (ak1 ; a
h
2 ).

Since preferences over outcomes obey the axioms of expected utility, the
extension of material payo�s to mixed strategies is immediate:

�i(s1; s2) =
X
ak12A1

X
ah22A2

s1(a
k
1)s2(a

h
2 )�i(a

k
1 ; a

h
2 )

In standard game theory, preferences over the strategies of the game are
directly derived from those for outcomes. If player i expects player j's to use his
(possibly mixed) strategy sj , he prefers strategy si to s

0
i i� �i(si; sj) > �i(s

0
i; sj).

A generic game G is a quadruple G =< A1; A2; �1; �2 >, where Ai is the set of
pure strategies for player i, and �i is payo� function.
S&S assume that player i's preferences over strategies depend, beside the

strategy chosen by the other player (which determines the outcome of the game)
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upon the expected pattern of play. Suppose that players' expectations concern-
ing the way in which the game will be played is represented by a (possibly
mixed) of strategies s� = (s�1; s

�
2). Then, player i's preferences over strategies

will be represented by a complete and transitive preference relation <i;s� .
The relation <i;s� is assumed to satisfy the following axioms:

1. Continuity (C): For every si 2 Si and s� 2 S, the sets f(s0i; s�) : s0i <i;s�
sig and f(s0i; s�) : si <i;s� s0ig are closed subsets of Si � S.

2. Independence (I): For every si; s
0
i; s

00
i 2 Si, for every s� 2 S and for every

� 2 (0; 1], si <i;s� s0i if and only if � si + (1��)s00i <i;s� � s0i + (1��)s00i .

3. Self-interest (SI) Suppose �j(si; s
�
j ) = �j(s

0
i; s

�
j ). Then si <i;s� s0i if and

only if �i(si; s
�
j ) � �i(s0i; s�j ).

The self-interest assumption (SI) has the following intuitive content. Sup-
pose player i expects player j to play s�j and can choose two di�erent strategies
si and s

0
i which (given s

�
j ) yield player j the same utility over outcomes. Then

he will prefer the strategy that yields the highest utility (over outcomes) to
himself.
S&S main result is the following theorem.

Theorem 1 (Segal and Sobel [17] Theorem 1) If preferences <i;s� satisfy ax-
ioms (C) (I) and (SI) they can be represented by a utility function with the
following form:

Vi(si; s
�) = �i(si; s

�
j ) + �i(s

�)�j(si; s
�
j ) (1)

where s� is the "context" of the game.

This theorem states that each player i's utility function is the sum of two
terms:

1. his own utility over outcomes when he plays the strategy si and expects
j to play her strategy s�j .

2. the utility i "gives" to j when he chooses si and expects j to play s
�
j ,

weighted by the coe�cient �i(s
�).

�i(s
�) represents i's attitude to j (either altruistic of spiteful) and depends

upon the expected pattern of play s�.1 Standard game theoretical models as-
sume that �j(s�) = 0 for any s�. Psychological game theory allows for the
possibility that an agent is altruistic in context s� (�i(s

�) > 0) and spiteful

1Notice that in evaluating strategy ak1 , player 1 considers s
� = (s�1; s

�
2) as the context of

the game rather than (aki ; s
�
2). The idea is that s

�
1 is the strategy that player 1 is expected to

play in that game when the context is s�. If he picks a di�erent pure strategy ak1 , he gets a
di�erent payo�, but he cannot alter the context of the game. In a simultaneous move game,
player i cannot assume that j observes his unilateral deviation from the expected pattern of
play.
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in a di�erent context s�� (�i(s
��) < 0). For example, a player might behave

altruistically in a Prisoner's Dilemma if he believes that the other player will
cooperate, and sel�shly if he believes that the other player will defect.
We shall indicate with GV =< G;V1; V2 > the psychological game obtained

by an ordinary game G, when player's preferences over strategies are represented
by V1 and V2.
Let us now turn to the notion of equilibrium appropriate for a psychological

game GV . The choice of the notion of equilibrium hinges upon the interpretation
of mixed strategies. Mixed strategies raise problems in psychological games that
are even more delicate than the problems they raise in standard games. The
reason is that it makes a di�erence whether one interprets them as conscious
randomization or uncertainty about other player's behavior (see Segal and Sobel
[17] and Dufwenberg and Kirchsteiger [9]). We have no space here to discuss
this matter. We shall limit ourselves to assume that players do not randomize,
and believe that other players do not randomize too. Mixed strategies are
thus interpreted as uncertainty concerning other player's behavior. This is the
natural interpretation in view of the model we shall present in Section 3. In that
model, mixed strategies will be explicitly modelled as distributions of strategies
within populations of identical agents, each of whom only uses a pure strategy.
We shall indicate with BRi(s

�) player i's set of best responses to context s�,
calculated with utility functions as in Equation 1. Formally, BRi(s

�) = faki 2
Ai : Vi(a

k
i ; s

�) � Vi(si; s�) 8si 2 Sig.
Since players do no randomize, the relevant notion of equilibrium is equilib-

rium in beliefs as de�ned in Aumann and Brandenburger [1].

De�nition 1 A belief pro�le s� 2 S is an equilibrium in beliefs if s�i (a
k
i ) > 0

implies that aki 2 BRi(s�).

Notice that since s�i (a
k
i ) is the probability with which j expects i to play his

pure strategy aki , s
� is an equilibrium if each player expects the other to play a

strategy with positive probability only when that strategy is a best response to
s�. Notice also that when �i(s

�) = 0 for all i, s� can only be an equilibrium i�
s� is a Nash equilibrium for the game G.

3 The Learning Model

Suppose there are two large populations which (with a slight abuse of notation) we
shall denote as 1 and 2. Each population numbers N individuals. Time is dis-
crete. The psychological game GV is played in each round by pairs of agents
drawn at random from the two populations. The agent drawn from population
i = 1; 2 always occupies the corresponding role in the game GV .
Each agent adopts a pure strategy to play the game at every match. Let Nk

i

be the number of individuals playing strategy aki in population i. �i(a
k
i ) =

Nk
i

N
is the fraction of population i playing aki . The state of the two populations is
� = (�1; �2). �i is the set of possible states for population i and � = �1 � �2
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is the set of possible states for the entire process. Notice that the set of states
�i and the set of mixed strategies Si are both probability distributions over the
set of pure strategies Ai.
At the end of each period, each agent receives, with probability �, the pos-

sibility to revise his strategy. (With probability (1 � �) his strategy remains
unchanged.) In this case we say that an agent receives the learning draw. When
an agent receives the learning draw, he �rst observes the current state of the two
populations � and updates his expectations concerning the way in which people
behave (and expect him to behave) in the game. In the terminology introduced
in Section 2, updating agents take the current state of the two populations � as
the conventional way of playing game GV .
Given �, a revising agent will choose a pure strategy aki which maximizes

Vi(a
k
i ; �), that is a strategy a

k
i 2 BR(�). This process de�nes a Markov chain

over the possible states of the population, which we shall denote as �(0; N). At
the beginning of each period, depending on the current state of the population
�, there is a well de�ned probability ��0 that the system will enter a new state
�0. As it is customary in this kind of literature, we shall assume that with a
strictly positive probability " each agent is then selected to make a "mistake".
Such an agent will take a pure strategy at random.
The process derived from the combination of the learning process �(0; N)

plus the mistakes will be denoted as �(";N). For any " > 0, this process will
have a strictly positive transition matrix and will therefore be unreducible. As a
consequence, there will be a unique stationary distribution �";N . The elements
of �";N represent the average time the process spends in each state as t gets large.
We are interested in the stationary distribution �";N for small values of ". We
say that a state � is stochastically stable if lim"!0�";N (�) > 0. Stochastically
stable states are those states we expect to observe in the long run when mistakes
become arbitrarily rare.

3.1 Absorbing states in the unperturbed process

We say that a set of states Q � � is absorbing in the process �(0; N) if: (i) it
is impossible from a state � 2 Q to reach a state �0 =2 Q and (ii) for any two
states �; �0 2 Q it is possible to reach � from �0. When an absorbing set Q is
a singleton, we say that it is an equilibrium. We will indicate with S the set of
equilibria, and with �S � S the set of stochastically stable equilibria.
We shall deal with games that have the following property.

De�nition 2 No-cycling condition: the process �(0; N) satis�es the no-cycling
condition if all its absorbing states are singletons.

A state �� 2 � can be an equilibrium only provided that none of the agents,
when receiving the learning draw, will be induced to adopt a di�erent strategy.
This requires that there is a single best response to �� for both players, and in
both populations all agents adopt their (unique) best response. Formally, �� is
an equilibrium if for any agent in population i = 1; 2 there is a strategy aki such

that ��i (a
k
i ) = 1 and Vi(a

k
i ; �

�) > Vi(a
k0

i ; �
�) for any k0 6= k.
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We shall denote as �kh the state in which all agents in population 1 play a
k
1

and all agents in population 2 play ah2 . If �kh corresponds to an equilibrium we
shall indicate it as ��kh. Clearly, �

�
kh can be an equilibrium only provided that

two conditions are met (i) (ak1 ; a
h
2 ) is an equilibrium in beliefs as in De�nition

1, and (ii) BRi(�
�) is a singleton for i = 1; 2.

Young [20] proved that, in standard game theory, the no-cycling condition
holds for a large class of games, known as weakly acyclical games. An analogous
de�nition can be made with minimal modi�cations in our context as well.
Let a = (ak1 ; a

h
2 ) be a pair of pure strategies for the two players. We shall

de�ne a best-reply graph of GV in the same way it is de�ned in Young [20]. Each
vertex of the graph is a pair of pure strategies a = (ak1 ; a

h
2 ). Let a and a

0 be two
vertexes of the graph. There is a directed edge a! a0 if and only if a 6= a0 and
either a1 = a

0
1 and a

0
2 2 BR2(a), or a2 = a02 and a01 2 BR1(a).

In other words, two edges a and a0 are connected only if one of the two
players is playing the same strategy both in a and a0, while the other player
plays a best reply to that strategy in a0. We say that a game GV is weakly
acyclical if for each vertex a of its best-reply graph, there is a directed path to
a vertex a� from which there is no outgoing arrow. Clearly, a vertex without
outgoing arrows corresponds to an equilibrium in pure strategies of the game
GV .
The following theorem is a counterpart of Young [20], Theorem 1.

Theorem 2 Let GV be a weakly acyclical game. The unperturbed process �(0; N)
converges almost surely to an equilibrium ��kh.

Proof. Consider any state � and suppose that aki 2 BRi(�). Let all agents in
population i receive the learning draw (this event has clearly a positive prob-
ability). Since they will all observe �, there is a strict probability that they
will all choose aki . We have thus reached a new state �

0 in which all agents in
population i play the same strategy aki . Suppose in the next period all (and
only) agents in population j receive the learning draw (again, this event has a
non-zero probability under the process �(0; N)). Since in �0 all agents in pop-
ulation i play aki , there is a positive probability that all agents in j will choose
the same strategy ahj 2 BR(�0). We have thus reached a state �00 in which all
agents in population i play aki and all agents in population j play a

k
j . If these

strategies form a strict equilibrium (that is if aki = BRi(�
00) and ahj = BRj(�

00))
then we are done: the process has reached an absorbing state.
Suppose instead that �00 is not an equilibrium. Since the game is weakly

acycical, there is a path �00 ! �1 ! �2::: ! �n = �� with the following
characteristics. First, for any t = 1; 2; ::; n, �t = �kh for some h and k. In other
words, all agents in population 1 play the same pure strategy ak1 and all agents
in population 2 play the same pure strategy ah2 . Second, in �

t either ak1 or a
h
2

are best responses to �t�1 for any t > 1. That is to say, �t can be reached from
�t�1 by having all agents in one of the two populations to receive simultaneously
the learning draw, another event which occurs with strictly positive probabiliy
under the unperturbed process �(0; N). As a consequence, there is a non-zero
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probability that from any state like �00 in which all agents in both populations
play the same pure strategy one reaches an absorbing state ��.
This proposition shows that when playing a weakly acyclical game GV , two

populations of myopic players will sooner or later �nd their way to an equilib-
rium. In games with multiple equilibria, this theorem is of little use, however,
as one would like to know which equilibrium is most likely to be selected. To
answer this question, we have to turn to the perturbed process �(";N) and to
the notion of stochastic stability.

3.2 Stochastic stability

The idea behind stochastic stability has a fairly intuitive content, although the
technical apparatus to make it rigorous is somewhat demanding. In a weakly
acyclical game GV the only absorbing states for the unperturbed process �(0; N)
are equilibria. In the perturbed process �(";N) agents occasionally make mis-
takes. These mistakes produce occasional jumps from one equilibrium to an-
other. The intuitive idea is that the larger the number of mistakes needed for
a transition from one equilibrium to another, the less likely that transition will
be. Some equilibria will be easier to reach than others, because they require
fewer mistakes. Intuitively, an equilibrium �� will be stochastically stable if it
is the easiest equilibrium to reach from all other equilibria.
We shall now make this idea precise. Consider two equilibria ��; ��� 2 S.

The resistance between �� and ���; r(��; ���), is the minimum number of mis-
takes required to go from � to ���. We say that a collection of directed edges
over the set of equilibria S is a tree rooted at �� if for any other equilibrium
��� 2 S there is a single path from ��� to ��. Let T (��) be a tree rooted at ��

and T�� the set of such trees. We say that the resistance of a tree is the sum of
the resistances over its edges. The stochastic potential of an equilibrium is the
minimum resistance over all trees rooted at ��. The following well known the-
orem, due to Young [20], characterizes the set of stochastically stable equilibria
in terms of their stochastic potential.

Theorem 3 Young [20], Theorem 4. An equilibrium �� is stochastically stable
if and only if there is no other equilibrium ��� with a lower stochastic potential.

The following piece of notation will be useful in the rest of the paper. Let
�� be an equilibrium. The basin of attraction of ��, B(��), is the set of states �
such that the unperturbed process �(0; N) converges to �� with probability one.
The basin of potential attraction of ��, B�(��), is the set of states � such that
the unperturbed process �(0; N) converges to �� with positive probability. The
resistance between two equilibria r(��; ���) is the minimum number of mistakes
required to enter the basin of potential attaction of equilibrium ��� starting
from ��. To see this, consider that once the system has entered the basin of
potential attraction of a new equilibrium ���, it can reach the equilibrium ���

with positive probability even if no more mistakes intervene.
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4 Reciprocal altruism

The applications we shall present in the next Section concern the particular
speci�cations of the model presented above due to Rabin [16]. We shall briey
deal with Rabin's model, entering in some details only to show that it has a
natural interpretation in terms of the two populations model presented above.
Let GV be a psychological game played by pairs of agents drawn from popu-

lation 1 and 2. Imagine that an agent in population i receives the learning draw,
and observes the state of population � = (�1; �2). He then comes to believe
that a fraction �j(a

h
j ) of population j chooses strategy a

h
j . He also assumes

that each agent in population j will expect a fraction �i(a
k
i ) of population i to

choose strategy aki .
The �rst step in Rabin's analysis is to determine how kind it is to choose

a strategy aki after having observed �. To this end, let �j(�j) be the set of
expected payo�s an agent in population i can "give" (on average) to agents in
population j, when the state of that population is �j . In choosing his pure
strategy aki , the agent in population i "chooses" an expected payo� (for the
agents in population j) within �j(�j). Let �

h
j be the highest payo� in �j(�j)

and �lj the lowest payo� in �j(�j), among those that are Pareto e�cient.
2

The equitable payo� for player j is simply the average between these two
payo�s �ej(�j) =

1
2 (�

h
j (�j)+�

l
j(�j)). Player i's fairness in choosing pure strategy

aki is de�ned as the di�erence between the (expected) payo� he gives to members
of population j and the equitable payo�: fi(a

k
i ; �j) = �j(a

k
i ; �j) � �ej(�j). A

similar de�nition holds for a player in the j population using ahj when the state
of population i is �i.
In line with the assumption that players do not randomize, a player's fairness

is only de�ned for pure, rather than mixed, strategies. However, when choosing
a pure strategy aki , an i agent knows that he will meet a j agent playing a

h
j with

probability �j(a
h
j ). He also believes that a j agent who choose a

h
j knew that the

state of the i population was �i and therefore that agent's fairness is fj(a
h
j ; �i).

Rabin assumes that player's overall utility function is:

Vi(a
k
i ; �) =

X
ahj 2Aj

�j(a
k
j )[�i(a

k
i ; a

h
j ) + �i fj(a

h
j ; �i) fi(a

k
i ; �j)] (2)

= �i(a
k
i ; �j) +

X
ahj 2Aj

�j(a
k
j ) �i fj(a

h
j ; �i) (�j(a

k
i ; �j)� �ej(�j))

= �i(a
k
i ; �j) + �i fj(�j ; �i) (�j(a

k
i ; �j)� �ej(�j))

where fj(�j ; �i) =
P

ahj 2Aj
�j(a

k
j )fj(a

h
j ; �i).

2Dufwenberg and Kirchsteiger [9] choose a di�erent formulation, in which �lj is simply the

minimum payo� in �j(�j). This di�erence is immaterial in all the applications we propose
below, and therefore we shall not discuss it further.
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Vi(a
k
i ; �) has the following interpretation. Consider the term inside the

square bracket in the �rst equation. This is the payo� a player using aki obtains
in a match with an agent using ahj , when the state of the populations is �. The

�rst term, �i(a
k
i ; a

h
j ), is simply i's material payo� and therefore it does not de-

pend on �. The second term introduces fairness. fj(a
h
j ; �i) is i

0s assessment of

the fairness of an agent playing ahj . fi(a
k
i ; �j) is i's own fairness, again under the

hypothesis that he cannot observe ahj , but only �j . Finally, �i is a parameter
which weights fairness considerations with respect to material payo�.
The utility function Vi(a

k
i ; �) models the idea that players are willing to

reciprocate other people's nice and nasty behavior. This is shown clearly in the
second equation above. Suppose that choosing ahj when the state is � is a fair

choice, so that fj(a
h
j ; �i) > 0. Then the material payo� of a j agent who plays

ahj enters i's utility function with a positive weight. Otherwise, such a weight is
negative. This means that i is willing to sacri�ce part of his material payo� to
increase the material payo�s of those j agents who employ nice strategies, and
to reduce the material payo� of agents who choose nasty strategies.

5 Applications

This section presents three applications of the learning model discussed in Sec-
tion 3.

5.1 The Battle of the Sexes

I consider the following parametrized version of the Battle of the Sexes game,
with k > 1. S2 is a player's most preferred strategy, and k measures how much
it is preferred to S1. This matrix represents player's "material payo�s". Players'
extended preferences are assumed to be represented by equation 2. We assume
that all agents have the same concern for fairness, represented by a parameter
� = �1 = �2.

S1 S2
S1 0; 0 1; k
S2 k; 1 0; 0

Consider the following open intervals: I1 = (0; 2k2 ), I2 = ( 2k2 ;
2(2+k+k2)
k(k3�1) ),

I3 = ( 2(2+k+k
2)

k(k3�1) ; 2k); I4 = (2k;1). (To obtain less cumbersome results, we

avoid dealing with border cases.)

Proposition 1 If � 2 I1, S =f��12; ��21g. If � 2 I2[I3, then S =f��12; ��21; ��22g.
If � 2 I4 then S =f��12; ��21; ��22; ��11g.

This proposition states that when fairness considerations are su�ciently
unimportant (� < 2

k2 ), the only absorbing states of the process generated by
the game GV coincide with the strict Nash equilibria of the underlying Battle of
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the Sexes game. When � becomes su�ciently large (� 2 ( 2k2 ; 2k)), then a third
absorbing state emerges, in which all agents in both populations use their fa-
vorite strategy S2. Finally, if � becomes still larger (� > 2k) a fourth absorbing
state emerges, in which all agents play their least favorite strategy S1.
This proposition is not new, as it is a simple consequence of Rabin's treat-

ment of the Battle of the Sexes Game. The next proposition is more interesting,
as it deals with stochastic stability.

Proposition 2 If � 2 I1 [ I2, then �S = f��12; ��21g. If � 2 I3 [ I4, then
�S = f��22g.

This proposition states that if players are su�ciently concerned with fairness

(� > 2(2+k+k2)
k(k3�1) ), the only stochastically stable equilibrium is the one in which all

agents in both populations choose their most preferred strategy. The expected
outcome is thus (S2; S2), which wouldn't be a NE if players were exclusively
concerned with material payo�s.
Picture 1 illustrates the content of this proposition (it assumes that k = 2

and �1 = �2 = � = 1). Every state of the two populations � corresponds to
a point in the square. �2i represents the fraction of population i who employs
strategy S2. The shading of the di�erent areas indicates the combination of
strategies that are best responses to points in that area. For example, in the
darkest area S1 is a best response for agents in population 1 and S2 is a best
response for agents in population 2. In the lightest area the reverse is true.
There are three equilibria ��12, �

�
21 and �

�
22. To see this, consider for example

that the point in which all agents play S2 (�
2
1 = �22 = 1) belongs to the area

with intermediate shading, in which playing S2 is in fact a best response for
agents belonging to both populations.
The gist of the proof is to show that the easiest transition out from the

basin of attraction of each equilibrium involves only mistakes in one of the to
populations. In particular, the segment r22 represents the easiest way out from
the basin of attraction of equilibrium ��22, while r12 is the simplest way out from
the basin of attraction of equilibrium ��21. The symmetrical segment, not shown
in the picture, is the easiest way out from equilibrium ��12. Proposition 2 estab-
lishes the conditions under which r22 > r12 (in which case �

�
22 is stochastically

stable) and r12 > r22 (in which case both �
�
12 and �

�
21 are stochastically stable).

5.2 The Prisoner's Dilemma

I shall consider the following, normalized version of the PD. The gains for mutual
cooperation are set equal to one, while mutual non cooperation yields zero. T
is the extra gain for unilateral defection, while S is the cost of being the only
cooperator.

C D
C 1; 1 �S; 1 + T
D 1 + T;�S 0; 0
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Figure 1: Basins of attraction for the Battle of the Sexes. � = 1:

As in the previous section, agents are assumed to have preferences �a la Rabin,
and their concern for fairness is represented by a single parameter �. Let �Ci
be the fraction of the population i = 1; 2 which chooses C. �DD is the state in
which all agents in both populations play D, and �CC is the state in which all
agents play C.

Proposition 3 If � � 2T
(1+S)2 , then S = f�DDg. If � >

2T
(1+S)2 , then S = f�DD; �CCg.

For any value of � � 0 �S = f�DDg.

The characterization of absorbing states is just a consequence of Rabin's
treatment of the PD. If players are su�ciently motivated by reciprocity (� >
2T

(1+S)2 ) there is an equilibrium in which all agents cooperate. The second part of

this proposition deals with stochastic stability and it is original. It shows that,
for any degree of concern for reciprocity, the cooperative equilibrium fails to be
stochastically stable. The two populations will always spend longer periods of
time in the equilibrium in which no cooperation is observed.
Figure 2 illustrates this proposition. rC is the minimum number of mistakes

needed in either population 1 or 2 to exit the basin of attraction of equilibrium
�C and to enter the basins of potential attraction of �DD. rD is the number of
mistakes needed to leave the basin of attraction of the non-cooperative equilib-
rium �DD to enter the basin of potential attraction of �CC . The proof in the
appendix shows that for any value of �, rC is always shorter than rD.
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Figure 2: Basins of (potential) attraction for equilibria in the PD. � = 2:

6 Conclusions

The model presented here lies at the interface between two areas of research that
have rarely meet so far: "sophisticated" social preferences embedding psycho-
logically plausible assumptions such as fairness and guilt, and social learning. It
aspires to give a contribution to both. First, the model presented above might
be a source of inspiration for scholars working on the empirical validation of
the various hypothesis concerning "social" preferences. Rather than assuming
that an equilibrium will be played in experiments as if individuals where fully
rational, it would be more promising to investigate the stability properties of
various equilibria. Although admittedly stochastic stability is not very accurate
as a predictor of the way in which games are played in experiments, because
it requires very long time spans before it becomes realistic, a knowledge of the
size of the various basins of attraction of the existing

A Appendix

The following Lemma holds for any speci�cation of the utility functions and
greatly simpli�es proofs.

Lemma 1 Ler ��kh be an equilibrium. For any � such that either a
k
1 2 BR1(�)

or ah2 2 BR2(�), � 2 B�(��kh).
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Proof. Suppose that ak1 2 BR1(�) (the case in which ah2 2 BR2(�) can be
treated symmetrically). If the process is in state � and all agents in population 1
receive the learning draw, there is a positive probability that the in the following
state �0 all agents in population 1 play aki . (It requires that all agents who receive
the learning draw will adopt the same best response). Since by hypothesis ��kh
is an equilibrium, BR2(�

0) = ah2 (because a
h
2 is the only best response to a

k
1).

If all players in population 2 receive the learning draw, the process will reach
��kh.

A.1 Stochastic Stability in the Prisoner's Dilemma

We prove Proposition 3 by proving a certain number of claims. We prove the
claims for agents in population 1, but symmetrical arguments also hold for
population 2.

Claim 1 For any value of � > 0, and p 2 [0; 1], V1(C; p; 12 ) < V1(D; p;
1
2 ).

Proof. When a fraction p of Population 1 plays C, the equitable payo� would be
�e1(p) =

1
2 (�1(p; C)+�2(p;D)). On the other hand, for any p, when population 2

is split equally between cooperators and not cooperators one has that �1(p;
1
2 ) =

1
2�1(p; C) +

1
2�1(p;D), so that �1(p;

1
2 ) = �e1(p), and hence f2(p;

1
2 ) = 0. It

follows that V1(C; p;
1
2 ) = �1(C;

1
2 ) < V2(D; p;

1
2 ) = �2(D;

1
2 ).

Claim 2 For � > 1
4 , for any p 2 [0; 1] V1(C; p; 1) > V1(D; p; 1).

Claim 3 If BRi(�) = fDg, then (p; q) 2 B�(�DD)

Part 1 of Proposition is a consequence of Claim 2. In fact, by continuity of
the utility functions Vi(:; :; :), if � >

1
4 there is an " > 0 such that V1(C; p; 1�") >

V1(D; p; 1 � ") and (symmetrically) V2(C; 1 � "; q) > V2(D; 1 � "; q). It follows
that for any state � such that p > 1�" and q > 1�" C is a strict best response.
It follows that, in the absence of mutations, from all these states the system
converges with probability one to the equilibrium �CC .
Part 2 of Proposition 3 is obtained as a combination of the three claims.

From Claim 1 it follows that for any � such that p � 1
2 and q �

1
2 D is a best

response in both populations. As a consequence, if rDD is the minimum number
of mistakes that are necessary to leave the basin of attraction of equilibrium
�DD, one has that rDD > 1

2 for any value of �. If � > 1
4 �CC is also an

equilibrium. If a su�ciently large number of agents in one of the two populations
switch from C to D, a state � is reached such that D becomes a best response
for agents in the other population. From Claim 3, it follows that such a stat �
belongs to B�(�DD). Because of Claim 1, we know that if half of a population
switches from C to D, D is in fact a best response for the other population. As
a consequence, if rCC it the minimum number of mistakes needed to leave the
basin of attraction of �CC , rCC <

1
2 for any value of �. Therefore, rDD >

1
2 >

rCC which proves our proposition.
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Notation
G normal form game
Ai set of pure strategies for player i = 1; 2
mi number of pure strategies for player i.
aki generic element of Ai.
Si mixed strategies set derived from Ai
si generic element of Si.
si(a

k
i ) the probability with which aki is played in si.

�i : S ! R player i0s material payo� function.
�i(s1; s2) i0s payo� when (s1; s2) is the outcome.
s� = (s�1; s

�
2) 2 S the "context" of a game.

Vi : S � S ! R player's i preference over strategies
Vi(a

k
i ; s

�) = �i(a
k
i ; s

�
j ) + �i(s

�)�j(a
k
i ; s

�
j )

�i(s
�) player i's "reciprocity coe�cient"

fi(a
k
i ; �j) player i's fairness coe�cient

�ei (�i) equitable payo� for player i
N number of individuals in each populations.
�i is the set of possible states in which population i can be.
� = �1 � �2 is the set of possible states
� = (�1; �2) 2 �1 � �2 = � state of the process
�i state of population i
�i(a

k
i ) fraction of population i that adopts strategy aki in state �i.

� probability of learning
BR(�) = (BR1(�); BR2(�)) best responses to state �.
" probability of mutation
�(";N) Markov chain over the set of states �
�(") invariant distribution
S set of equilibria
�S the set of stochastically stable equilibria.
�hk state in which all agents in population 1 adopt ak1 and all agents in

population 2 adopt ah2 .
��kh �kh if it is an equilibrium
B(��) The basin of attraction of ��

B�(��) The basin of potential attraction of ��
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