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Abstract

This article proposes a new mechanism for allocating a divisible commodity to a
number of buyers. Buyers are assumed to behave as price-anticipators rather than
as price-takers. The proposed mechanism is as parsimonious as possible, in the
sense that it requests participants to report a single-dimensional message instead
of an entire utility function, as requested by VCG mechanisms. This article shows
that this mechanism yields efficient allocations in Nash equilibria, and moreover,
that these equilibria are envy-free. Additionally, this paper presents distinct results
that this mechanism is the only simple VCG-like mechanism that both implements
efficient Nash equilibria and satisfies the No Envy axiom of fairness. Furthermore,
the mechanism’s Nash equilibria are proven to satisfy the fairness properties of
both Ranking and Voluntary Participation.

1 Introduction

This paper investigates the problem of allocating an infinitely divisible object to a fi-
nite number of buyers. Examples of divisible commodity allocation can be found in
auctions of Treasury notes (Back and Zender (1993), Keloharju, Nyborg and Rydqvist
(2005)), the sale of communication network capacity, the design of electricity markets
(Green and Newbery (1992), Ausubel (2006)) or auctions for spectrum licenses (Levin
(1966)).

In this paper, we assume that each buyer has a quasi-linear preference and participates
in a game promoted by a mechanism. Each participant submits a one-dimensional bid
(also known as message or signal) to a mechanism. Once all bids have been collected,
the mechanism determines both the allocation of resources and the payment scheme
for each participant. Nash equilibrium points are considered to be predictors of the
behavior of agents.

This model has received intensive attention from computer scientists interested in de-
signing network capacity allocation mechanisms (Maheswaran and Basar (2005, 2006),
Johari and Tsitsiklis (2004), Hajek and Yang (2004), Kelly (1997) and Kelly et al.
(1998)). Researchers focused on achieving incentive compatibility of divisible com-
modity allocation mechanisms have recently constructed some remarkable mechanisms.
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SSVCG mechanisms by Johari and Tsitsiklis (2007); g-mechanisms by Yang and Hajek
(2005, 2006a); and VCG-Kelly mechanisms (Yang and Hajek (2006b)) have proven to
implement efficient Nash equilibria.

The mechanisms discovered by these researchers adopt single dimensional message
spaces and differentiated unit prices, similar to the mechanism proposed in this article.
They are similar in both spirit and form to the Vickrey-Clarke-Groves mechanisms
(VCG mechanisms, Green and Laffont (1979)) except that each individual reports a
one-dimensional message, rather than his or her entire utility function. For this reason,
this group of mechanisms will be called pseudo-VCG mechanisms.1

Although research into pseudo-VCG mechanisms has proven that they achieve efficiency
and incentive compatibility, very few articles concerning the fairness of pseudo-VCG
mechanisms have been written. Since a mechanism designer is concerned with the
welfare or happiness of the participants, the question of whether a mechanism’s im-
plemented allocation is fair enough to meet every individual’s need for justice is an
important issue. This normative problem has led to the formation of the No Envy
axiom, a central standard of fairness in mechanism design theory (Thomson (2007)).

Maskin (1999) and Fleurbaey and Maniquet (1997) show that, for a preference satis-
fying monotonic closedness2, the No Envy axiom is satisfied if an allocation rule has
Nash implementability in addition to equal treatment of equals. Unfortunately, quasi-
linear preferences are not monotonically closed, rendering Maskin’s, and Fluerbaey and
Maniquet’s promising results inapplicable. Likewise, Zhang (2005) and Feldman et al
(2005) study a modified version of the No Envy axiom, c-approximate envy-freeness3,
but their results are applicable only to cases of multiple resource allocation. You (2008a)
explains that many otherwise-remarkable pseudo-VCG mechanisms fail No Envy tests
for every utility profile, or for commonly assumed utility functions. Examining pseudo-
VCG mechanisms for the No Envy (or Envy-freeness) property in an environment of
infinitely divisible goods is a difficult task.

Despite the barrier to success, this paper reaches a positive result. It proposes a group
of pseudo-VCG mechanisms that not only implement efficient Nash equilibria, but also
satisfy the Envy-free axiom. Furthermore, this group of mechanisms assigns simply-
formed payment rules to agents and satisfies the Ranking and Voluntary Participa-
tion fairness properties. We call this group of mechanisms the Simple Envy-free VCG

1These pseudo-VCG mechanisms have attractive features: informational burden is low in pseudo-
VCG mechanisms compared to the size of information in VCG mechanisms, since the latter require
reports of infinite dimensional vectors in divisible commodity allocation. Differentiated prices allow
these mechanisms to achieve efficiency while mechanisms with uniform price (Johari and Tsitsiklis
(2004), Yang and Hajek (2004)) fail to implement efficient allocations.

2Let X denote an agent’s consumption set with typical elements a, b, ...., andR denote the domain of
admissible preferences over X. We define Monotonic Closedness as the follows: ∀R, R′ ∈ R, ∀a, b ∈ X
such that aPb, ∃R′′i ∈ R, ∀c ∈ X, (i) aR′c ⇒ aR′′c, (ii)bRc ⇒ bR′′c, and (iii) ∼ (aI ′′b).

3c-approximately envy-free is defined as follows: let ρ(x) = mini6=j
ui(xi)
ui(xj)

. When ρ(x) ≥ 1, the

allocation x is known as an envy-free allocation. We call a mechanism c-approximately envy-free if for
any x, ρ(x) ≥ c.
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mechanisms (SEF-VCG mechanisms). The SEF-VCG mechanisms are characterized
as a group of pseudo-VCG mechanisms in which resource allocation is proportional to
signals and payment to each agent is linear in his or her signal. In addition, we confirm
that the SEF-VCG mechanisms can be shown as a group of SSVCG mechanisms.

The remainder of the paper is organized in the following manner. In Section 2, we
describe the model. In Section 3, we construct the SEF-VCG mechanisms and show
their incentive compatibility and fairness properties. Characterizations of the SEF-
VCG mechanisms are illustrated in Section 4. In Section 5, we delve into the three
most notable of the pseudo-VCG mechanisms mentioned earlier, and discuss the re-
lationship between the three and the SEF-VCG mechanisms, demonstrating how the
three mechanisms fail No Envy tests, while the SEF-VCG mechanisms realize envy-free
allocations. In the final section, we qualify the need for future research dealing with
both the identification of more general classes of Envy-free pseudo-VCG mechanisms,
and the investigation of budget imbalances in the pseudo-VCG mechanisms.

2 Model

The objective of a mechanism is to allocate a fixed amount of a divisible resource to a
finite number of agents efficiently. Let n ≥ 2 be the number of agents and the set of
agents be denoted as N = {1, · · · , n}. Suppose that the total amount of the resource
is C > 0.

When agent i receives his or her resource share from the mechanism, the monetary
value of the share is represented by a utility function, ui, that is continuous, strictly
increasing, concave, and continuously differentiable on [0, +∞). Let ui(0) = 0 for each
i ∈ N .

The mechanism attempts to maximize the sum of agents’ utilities through the allo-
cation of a resource. If it achieves the goal by choosing allocation x, that is, x ∈
argmaxx∈X

∑
i∈N ui(xi) where X = {x :

∑
l∈N xl ≤ C, xi ≥ 0 for all i ∈ N}, the

resource allocation x is said to be efficient.

For this model, however, an individual’s utility function is unknown to the mechanism,
so a method is needed to create efficient allocations. For this, the mechanism requests
each agent i to submit a single dimensional bid θi such that θi ∈ [0, +∞), and then
collects these bids θ = (θ1, · · · , θn). With all collected bids, the mechanism decides
the resource allocation to every agent and the payment scheme for each participant.
Therefore, a mechanism consists of a triple (Θ, x, t) where Θ is the set of allowable
strategies of the form θ = (θ1, · · · , θn), x is the allocation rule, and t is the payment
scheme.
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3 The SEF-VCG mechanism

The SEF-VCG mechanisms which this paper is concerned with is constructed in the
following way. Resource allocation is determined to be proportional to bids and so
the allocation to individual i is xi = θi

θN
C where θN =

∑
l∈N θl. The payment scheme

ti assigned to each i is ti = θiθN\i − S−i where θN\i = θN − θi, S =
∑

i∈N θ2
i , and

S−i = S − θ2
i . Additionally, let θ2

N = (θN )2. Payment of some agents can be negative,
which means that they are subsidized through the mechanism by others or directly
from the mechanism. In this mechanism, agent i’s net utility from submitting θi is

pi(θi, θ−i) = ui(
θi

θN
C)− θiθN\i + S−i.

where θ−i = (θ1, · · · , θi−1, θi+1, · · · , θn) are submitted by others. Let us call this mech-
anism the Simple Envy-free VCG mechanism(SEF-VCG mechanism).

Each agent i tries to maximize his or her net utility by selecting θi based on a unilateral
decision. We define a Nash equilibrium as follows: θ is Nash equilibrium if and only if
for every i ∈ N ,

pi(θi, θ−i) ≥ pi(θ′i, θ−i)

for every θ′i ∈ R+. Nash equilibrium θ is efficient if the resource allocation x(θ) is
efficient.

To see if a Nash equilibrium exists in this mechanism, we consider a case where every
agent submits 0 to the mechanism. If agent 1 changes his strategy from 0 to ε such
that ε > 0, then his or her net utility becomes u1(C), which is positive, while his or
her net utility is 0 when staying with θ1 = 0. Thus, θ = 0 is not a Nash equilibrium.

Now, suppose that agent i submits ε > 0 while all others submit 0. Agent i has no
incentive to change his or her strategy ε to ε′ such that ε′ 6= ε,> 0, since his or her net
utility remains the same, ui(C). If agent j 6= i changes his or her strategy from 0 to
δ, then his or her net utility becomes pj(δ, θ−j) = uj( δ

δ+εC)− δε + ε2, while his or her
previous utility is pj(0, θ−j) = ε2. Thus, if uj( δ

δ+εC) − δε ≤ 0, j will keep his or her
strategy at 0. Let fj(δ) = uj( δ

δ+εC)− δε. Then, fj(0) = 0 and

f ′j(δ) = u′j(
δ

δ + ε
C)

ε

(δ + ε)2
− ε

=
ε

(δ + ε)2
[u′j(

δ

δ + ε
C)− (δ + ε)2].

u′j(
δ

δ+εC) − (δ + ε)2 is nonincreasing in δ and ε
(ε+δ)2

> 0. Thus, uj( δ
δ+εC) − δε ≤ 0, if

and only if u′j(0)− ε2 ≤ 0. Consequently, if u′j(0) ≤ ε2 for every j 6= i, then θi = ε > 0,
θj = 0 for all j 6= i is Nash equilibrium. There are infinitely many Nash equilibria
having this form.
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However, equilibria which give the entirety of a resource to one agent are typically
not efficient. Consider the following: there are two agents and a resource with a total
amount equal to 1. The preference of these participants are described as u1(x) = 5x
and u2(x) = 2x. Suppose that agent 1 submits θ = 0 and agent 2 submits θ2 > 0.
If θ2

2 ≥ 5, this is an inefficient Nash equilbrium since agent 2 takes all the resource.
Certainly, for the case in which there is only one agent with a positive strategy, Nash
equilibria may exist, but they are generally not efficient. As long as all other agents
j′s have finite u′j(0), j 6= i, agent i has an opportunity to take all the entirety of the
resource resulting in an inefficient equilibrium. Thus, to prevent an inefficient equilib-
rium, for each agent, there should be at least one other agent with u′(0) = +∞. From
this example, we can create the following assumption that ensures that there are at
least two agents whose strategies are positive.

Assumption 1. u′i(0) = ∞ for at least two agents.

With assumption 1, we show that the SEF-VCG mechanism has Nash equilibria and
that all of its equilibria are efficient.

Proposition 1. The SEF-VCG mechanism has Nash equilibria and they are efficient.

Proof. The net utility of agent i with strategy θi when others submit θ−i is

pi(θi, θ−i) = ui(
θi

θN
C)− θiθN\i + S−i.

Note that for each agent i, θN\i 6= 0. Given θ−i, agent i tries to maximize pi(θi, θ−i)
given θ−i and pi is continuous and concave in θi. Therefore, the first order condition
(FOC) is sufficient and necessary condition to find Nash equilibria. The condition is

u′i(
θi

θN
C)

θN\i
θ2
N

C − θN\i = 0 if θi > 0

u′i(
θi

θN
C)

θN\i
θ2
N

C − θN\i ≤ 0 if θi = 0.

Since θN\i > 0, this conditions equals

u′i(
θi

θN
C) =

θ2
N

C
if θi > 0

u′i(
θi

θN
C) ≤ θ2

N

C
if θi = 0.

Let µ = θ2
N
C and xi = θi

θN
C for ∀i ∈ N . Then the FOC is rewritten as

u′i(xi) = µ if xi > 0
u′i(xi) ≤ µ if xi = 0.

Thus, θ is a Nash equilibrium if and only if for all i ∈ N , we have

u′i(xi) = µ if xi > 0
u′i(xi) ≤ µ if xi = 0
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where µ = θ2
N
C , xi = θi

θN
C, and

∑
i∈N xi ≤ C. we know allocation x∗ is efficient if

and only if it satisfies x∗ ∈ argmaxx∈X
∑

i∈N ui(xi). Since
∑

i∈N ui(xi) is continuous
in x and X is compact, efficient allocations exist. Also,

∑
i∈N ui(xi) is concave, so the

sufficient and necessary, FOC is

u′i(x
∗
i ) = λ if x∗i > 0

u′i(x
∗
i ) ≤ λ if x∗i = 0

where λ > 0. We can show that µ = λ.

For the sake of contradiction, suppose that µ > λ. Denote an allocation at equilibrium
by x and an efficient allocation by x∗. Choose i such that xi > 0. Then, u′i(xi) = µ >
λ ≥ u′i(x

∗
i ). This implies xi < x∗i , so C − xi =

∑
j 6=i xj > C − x∗i =

∑
j 6=i x

∗
j . If this

is the case, there should be j 6= i such that xj > x∗j and we have u′j(xj) ≤ u′j(x
∗
j ).

Since x∗j ≥ 0, we have xj > 0 and µ = u′j(xj) ≤ u′j(x
∗
j ) ≤ λ. Hence, µ ≤ λ and this

contradicts to the previous assumption. Therefore, µ = λ. We conclude two FOC’s
are indeed the same, so that θ is Nash if and only if x = x(θ) is an efficient allocation.
The existence of efficient allocations also guarantees that of Nash equilibria. Therefore,
Nash equilibria exist and they are efficient, as desired. ¥

The SEF-VCG mechanism may have multiple Nash equilibria depending on utility
functions. An example of multiple equilibria is given as follows:

Example 1. Multiple Nash equilibria

Let the number of agents be two. If each agent’s utility function has a constant slope
over a part of the domain as we see in the following graph, we can have multiple equilib-
ria. Let u1 and u2 have the same constant slope over [x1,

C
2 ] and [C2 , x2], respectively,

where x1 + x2 = C. Then, we have u′1(x1) = u′2(x2), and x = (x1, x2) is a Nash
equilibrium allocation. Therefore, there is a pair of equilibrium strategies θ1, θ2 which
satisfies x1 = θ1

θ1+θ2
C and x2 = θ2

θ1+θ2
C. Likewise, if Q1 ∈ [x1,

C
2 ] and Q2 ∈ [C2 , x2] with

Q1 +Q2 = C, we again have u′1(Q1) = u′2(Q2), and there is a pair of equilibrium strate-
gies θ′1 and θ′2 which satisfies Q1 = θ′1

θ′1+θ′2
C and Q2 = θ′2

θ′1+θ′2
C. We can find infinitely

many equilibria in this example.

The SEF-VCG mechanism is not only efficient, but also satisfies fairness properties. If
an agent receives a bigger share of the resource than the other agents, he or she has to
pay a greater amount than the others. This notion is represented as Ranking (RK): if
xi ≤ xj , then ti ≤ tj for any i 6= j ∈ N . Individuals are not forced to participate in
the mechanism if they would be made worse off through participation. If equilibrium
allocation satisfies this property, the mechanism is said to satisfy voluntary participa-
tion. We assume that ui(0) = 0 for any i ∈ N and xi = ti = 0 if agent i doesn’t submit
any bid. Then, Voluntary Participation is expressed as: if each agent i ∈ N has net
utility pi(θ) which is nonnegative at equilibrium θ, the mechanism satisfies Voluntary
Participation (VP).
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Figure 1: An Example of Multiple Equilibria

Additionally, the mechanism is envy-free, or satisfies No Envy, if no agent envies any
others at equilibrium. Agent i doesn’t envy agent j if his own equilibrium allocation
of resource and payment gives net utility at least as high as his net utility from the
case in which he receives agent j’s share and payment allocation instead. The envy
free state of agent i against agent j is written as ui(xi)− ti ≥ ui(xj)− tj at equilibrium
allocation. If this relationship holds for every pair in N , the mechanism is envy free.

Proposition 2. (i) The SEF-VCG mechanism satisfies Ranking, (ii) achieves Volun-
tary Participation, and (iii) guarantees No Envy.

Proof. (i) Suppose that xi ≤ xj , which is equivalent to θi ≤ θj . Remember that
ti = θiθN\i − S−i. Then,

ti − tj = θiθN\i − S−i − θjθN\j + S−j

= θN (θi − θj).

Thus ti ≤ tj if and only if θi ≤ θj(xi ≤ xj).

(ii) Since pi(θi, θ−i) is concave in θi, it is sufficient to check if pi(0, θ−i) ≥ 0. We see
pi(0, θ−i) = S−i > 0 and so VP holds.

(iii) Agent i doesn’t envy j if and only if ui(xi) − ui(xj) ≥ ti − tj at the equilibrium
allocation (x, t). This inequality equals ui(xi) − ui(xj) ≥ θN (θi − θj) which can be
rewritten as

ui(xi)− ui(xj) ≥ θ2
N

C
(xi − xj)

since θi = xi
θN
C . If xi = xj , then ti = tj and there is no envy. If xi < xj , there is no

envy if and only if ui(xi)−ui(xj)
xi−xj

≤ θ2
N
C . Due to the concavity of ui, we have the equation

ui(xi)−ui(xj)
xi−xj

≤ u′i(xi) and the equilibrium condition gives u′i(xi) ≤ θ2
N
C . Thus, no envy

condition holds. If xi > xj , then xi > 0 and, at equilibrium, u′i(xi) = θ2
N
C . No envy

holds if and only if ui(xi)−ui(xj)
xi−xj

≥ θ2
N
C . Concave ui implies ui(xi)−ui(xj)

xi−xj
≥ u′i(xi) and
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therefore, envy free condition holds. ¥

However, the SEF-VCG mechanism yields a Budget Deficit (BD) or budget balance.

Proposition 3. The SEF-VCG mechanism yields a budget deficit which can range
from 0 to Cλ(n−1) where λ is the market clearing price for price taking buyers. When
every agent has the same utility function so that each agent submits the same strategy,
θ = (α, · · · , α), the mechanism’s budget is balanced.

Proof. The mechanism collects
∑

i∈N ti and we have
∑

i∈N

ti =
∑

i∈N

[θiθN\i − S−i]

=
∑

i∈N

[θiθN − θ2
i − S−i]

=
∑

i∈N

[θiθN − S]

=
∑

i∈N

θiθN − nS

= θ2
N − nS

= (
∑

i∈N

θi)2 − n
∑

i∈N

θ2
i

≤ 0.

The last inequality holds due to the Cauchy-Schwartz inequality. Thus, the SEF-VCG
mechanism always yields a budget deficit.

Budget deficit (BD) = n
∑

i∈N θ2
i − (

∑
i∈N θi)2. Substituting θi = xi

θN
C ,

BD = n(
∑

i∈N

x2
i )

θ2
N

C
− θ2

N

C
(
∑

i∈N

xi)2

= n(
∑

i∈N

x2
i )

θ2
N

C2
− θ2

N .

There is a i ∈ N with xi > 0 and so u′i(xi) = θ2
N
C .

BD =
n

C
u′i(xi)

∑

i∈N

x2
i − Cu′i(xi)

=
n

C
u′i(xi)[

∑

i∈N

x2
i −

C2

n
]

=
n

C
λ[

∑

i∈N

x2
i −

C2

n
].

Observations:
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(a) If ui = uj for all i 6= j and i, j ∈ N , then θi = θj for all i 6= j and xi = C
n for all

i ∈ N . Then, it is easy to check that the mechanism has a balanced budget.

(b) Note that the supremum of
∑

i∈N x2
i for x ∈ X is achieved at extreme points of

x ∈ X . Then, we have

BD =
n

C
λ[

∑

i∈N

x2
i −

C2

n
]

≤ n

C
λ(C2 − C2

n
)

= λC(n− 1).

¥

4 Generalized SEF-VCG mechanism

We can generalize the SEF-VCG mechanism by modifying its payment scheme. De-
pending on specific parameters of a generalized Simple mechanism, we can reduce the
possibility of a large budget deficit to a negligible amount.

Definition 1. The SEF-VCG(k, γ) is a mechanism which allocates a resource propor-
tionally to strategies such that xi = θi

θN
C for each i ∈ N and requests agent i to pay

ti = kθiθN\i − kS−i + γ where k, γ > 0.

According to this definition, the previously discussed Simple mechanism is renamed
SEF-VCG(1,0). We can show that any SEF-VCG(k, γ) mechanism shares the same
properties to the SEF-VCG(1,0).

Theorem 1. A SEF-VCG(k, γ) mechanism Nash implements efficient allocations and
satisfies Ranking and No Envy. In addition, if γ = 0, the mechanism satisfies Volun-
tary Participation and its budget deficit will equal the SEF-VCG(1,0) mechanism’s.

If γ 6= 0, Voluntary Participation may fail, but the mechanism may have a budget sur-
plus. Since the proof of Theorem 1 is basically the same as that of the SEF-VCG(1,0)
mechanism, we will omit it here.

We can show that the generalized SEF-VCG mechanism is characterized by the combi-
nation of efficient Nash implementation proportional to agents’ strategies and No Envy
fairness. Consider the following assumptions on a mechanism (Θ, x, t).

Assumption S1. There are at least two agents. The set of strategies Θ equals RN
+ , and

the allocation is proportional to submitted strategies: xi = θi
θN

C if θ 6= 0 and xi = 0 if
θ = 0.
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Assumption S2. The symmetric payment by agent i is the sum of a variable price in θi

and a fixed price independent of θi: ti = gi(θ) + h(θ−i) where gi(θ) is affine in θi, i.e.,
gi(θ) = θiα(θ−i) + β(θ−i).

Assumption S3. For any utility profiles u1, · · · , un such that each ui is strictly in-
creasing, concave, continuous and continuously differentiable for all i ∈ N , a Nash
equilibrium exists and it is efficient.

Assumption S4. The mechanism’s Nash equilibria are envy-free.

Proposition 4. Suppose (Θ, x, t) is a mechanism satisfying Assumptions S1 − S4.
Then it is a SEF-VCG(k, γ) mechanim for some constants k and γ where k, γ > 0.

Proof. With these assumptions, agent i’s net utility is pi(θi, θ−i) = ui( θi
θN

C)− gi(θ)−
h(θ−i). pi is concave in θi since gi is linear in θi. For Nash equilibrium, θ is Nash if
and only if we have

u′i(
θi

θN
C)

θN\i
θ2
N

C = g′i(θ) if θi > 0

u′i(
θi

θN
C)

θN\i
θ2
N

C ≤ g′i(θ) if θi = 0

where g′i(θ) = ∂gi(θ)
∂θi

. With xi = θi
θN

C, this FOC condition equals

u′i(xi) = g′i(θ)
θ2
N

θN\iC
if θi > 0

u′i(xi) ≤ g′i(θ)
θ2
N

θN\iC
if θi = 0.

Since every Nash equilibrium is efficient, we should have

λ = g′i(θ)
θ2
N

θN\iC

where λ is the market clearing price for price taking buyers and λ > 0. Since gi(θ) =
θiα(θ−i) + β(θ−i) for α(θ−i) > 0, g′i(θ) = α(θ−i). Again, λ = α(θ−i)

θ2
N

θN\iC
for all i ∈ N

implies α(θ−i) = kθN\i where k is a positive constant. Thus, ti = kθN\iθi + β(θ−i) +
h(θ−i). Now any equilibria should be envy free, i.e., we have

ui(xi)− ui(xj) ≥ ti − tj = k(θN\iθi − θN\jθj) + h(θ−i)− h(θ−j) + β(θ−i)− β(θ−j)

for any i 6= j. From xi = θi
θN

C, xi − xj = (θi − θj) C
θN

. If θi = θj , then xi = xj , ti = tj
and there is no envy. If θi < θj , then xi < xj and in this case, No Envy holds if and
only if

ui(xi)− ui(xj)
xi − xj

≤ k
(θN\iθi − θN\jθj)

θi − θj

θN

C
+

[h(θ−i)− h(θ−j) + β(θ−i)− β(θ−j)]
θi − θj

θN

C
.
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By concavity and the equilibrium condition, ui(xi)−ui(xj)
xi−xj

≤ u′i(xi) ≤ λ = kθ2
N

C . Thus,
the envy-free condition holds if and only if

kθ2
N

C
≤ k

(θN\iθi − θN\jθj)
θi − θj

θN

C
+

[h(θ−i)− h(θ−j) + β(θ−i)− β(θ−j)]
θi − θj

θN

C
.

In the case such that θi > θj ≥ 0, we have xi > 0 and No Envy holds if and only if

ui(xi)− ui(xj)
xi − xj

≥ k
(θN\iθi − θN\jθj)

θi − θj

θN

C
+

[h(θ−i)− h(θ−j) + β(θ−i)− β(θ−j)]
θi − θj

θN

C
.

Concave ui and an equilibrium condition implies ui(xi)−ui(xj)
xi−xj

≥ u′i(xi) = λ, so envy-free
condition equals

kθ2
N

C
≥ k

(θN\iθi − θN\jθj)
θi − θj

θN

C
+

[h(θ−i)− h(θ−j) + β(θ−i)− β(θ−j)]
θi − θj

θN

C
.

Therefore, No Envy holds if and only if

kθ2
N

C
= k

(θN\iθi − θN\jθj)
θi − θj

θN

C
+

[h(θ−i)− h(θ−j) + β(θ−i)− β(θ−j)]
θi − θj

θN

C

= k
θN

C

θN (θi − θj)− (θ2
i − θ2

j )
θi − θj

+
[h(θ−i)− h(θ−j) + β(θ−i)− β(θ−j)]

θi − θj

θN

C

= k
θN

C
[
∑

l 6=i,j

θl] +
[h(θ−i)− h(θ−j) + β(θ−i)− β(θ−j)]

θi − θj

θN

C

for any i 6= j such that i, j ∈ N . This is equivalent to

kθN = k
∑

l 6=i,j

θl +
[h(θ−i)− h(θ−j) + β(θ−i)− β(θ−j)]

θi − θj

and again, in the same way, to

[h(θ−i) + β(θ−i)]− [h(θ−j) + β(θ−j)] = k(θ2
i − θ2

j ).

Then, h(θ−i) + β(θ−i) = −kS−i + γ where γ is an arbitrary constant. Therefore, we
have ti = kθiθN\i − kS−i + γ. ¥

5 Discussion

As we briefly mentioned earlier, most of the currently developed allocation mechanisms
for a divisible commodity fail to meet fairness properties such as the No Envy axiom.
They are mainly concerned with incentive compatibility and efficiency. In this section,
we introduce three special pseudo-VCG mechanisms with a uniform pricing mechanism
and discuss about their efficiency and fairness properties.4 These groups are the Kelly,

4For detailed discussion, refer to You (2008a)
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VCG-Kelly, g-mechanisms, and SSVCG mechanisms.

For submitted bids or strategies θ, the Kelly mechanism determines resource allocation
x such that for each i ∈ N , xi = θi

θN
C if θ 6= 0 or xi = 0 if θ = 0. The mechanism

requests agent i to pay ti = θi. Thus, each agent i’s net utility is

p(θi, θ−i) = ui(
θi

θN
C)− θi if θ 6= 0

ui(0) if θ = 0.

With this allocation and payment rules, the Kelly mechanism performs efficient alloca-
tion when participants are price takers. However, the Kelly mechanism and its general
version of D class mechanisms fail to implement efficient allocations when agents be-
have strategically.5 Moreover, these mechanisms fail to provide fair allocations except
that they apply a uniform price for every participant. The Kelly mechanism always
generates envy among agents for very common utility profiles.

Due to the fact that we allow price discrimination among different users in the same
way that VCG mechanisms do, we can distribute a divisible resource efficiently using
a VCG-like mechanism when we face strategic players. These mechanisms are called
pseudo VCG mechanisms and three groups of pseudo VCG mechanisms are introduced
here: VCG-Kelly, g-mechanisms, and SSVCG mechanisms.

A g-mechanism allocates a resource proportionally to bids, but uses a continuous ver-
sion of a pivotal payment scheme such that ti = CθN\i

∫ θi

0
g(t;θ−i)

(t+θN\i)
2 dt if θN\i 6= 0 or

ti = 0 if θN\i = 0 for each i ∈ N . Here it is assumed that g(θ) : Rn
+ →R+ is a contin-

uous, nondecreasing function such that g(cθ) is a strictly increasing function from R+

onto R+ whenever θ 6= 0. Thus, the net utility of agent i is

pi(θi, θ−i) = ui(
θi

θN
C)− CθN\i

∫ θi

0

g(t; θ−i)
(t + θN\i)2

dt if θN\i 6= 0

ui(0) otherwise.

Any g-mechanisms assign efficient allocations at unique Nash equilibrium for strictly
concave utility profiles. Yang and Hajek (2006a) discuss the g-mechanism’s efficiency
and convergence to equilibrium. Unfortunately, when a g-mechanism sets its generator
function as g(θ) = θ2

N
C , the mechanisms fails the No Envy test for every utility profile.

Furthermore, if g(θ) = θN
C or g(θ) =

√
θN

2
√

C
, the mechanism produces envy for very com-

mon utility profiles.

A SSVCG mechanism uses a surrogate function ū(x, θ) with some regular assumptions
and an allocation rule determined by the surrogate function. The resource allocation x
is an argument to maximize

∑
i∈N ū(xi, θi) over the feasible set X . Its payment scheme

for agent i is ti = −∑
j 6=i ū(xj(θ), θj) + hi(θ−i) where hi(θ−i) is an arbitrary function

5For detailed discussion, refer to Jahari and Tsitsiklis (2004, 2007).
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independent of θi, which we will refer to as its residual payment scheme. Thus, agent
i has a net utility written as

pi(θi, θ−i) = ui(xi(θ)) +
∑

i∈N

ū(xj(θ), θj)− hi(θ−i).

As Johari and Tsitsiklis (2007) discuss, the SSVCG mechanisms achieve efficient Nash
implementation and they encompass many mechanisms because their allocation and
payment scheme change according to the choice of surrogate functions.

Indeed, VCG-Kelly mechanisms (Yang and Hajek (2006b)) are specific cases of SSVCG
mechanisms. The VCG-Kelly mechanisms set a surrogate function ū(xi, θi) = θifi(xi)
for each i ∈ N under slightly different assumptions for a function f , such that fi’s are
strictly increasing, strictly concave, and twice differentiable over R+. Instead of using
the general form of residual payment scheme h(θ−i) as SSVCG mechanisms do, VCG-
Kelly mechanisms specify payment to be a pivotal scheme in terms of their surrogate
functions as follows: each agent i ∈ N pays

ti = maxx∈X ,xi=0

∑

j∈N,j 6=i

θjfj(xj , θj)−
∑

j∈N,j 6=i

θjfj(x(θ), θj)

where x(θ) = argmaxx∈X
∑

i∈N ū(xi, θi). Therefore, they share the main properties of
SSVCG mechanisms.

Unfortunately, many SSVCG mechanisms fail to have the envy-free property. Whether
the No Envy axiom holds or fails really depends on the surrogate function ū of SSVCG
mechanisms. If a specific form of surrogate function such as ū(x, θ) = θ log x or
ū(x, θ) =

√
θx is chosen by a SSVCG mechanism, equilibrium allocations generate

envy for very common utility profiles no matter what the residual payment scheme
h(θ−i) is set as. Even if it is the case that a surrogate function is carefully chosen,
the next task is to find a residual payment function h(θ−i) that meets the envy-free
property.

Of course, there are some SSVCG mechanisms which satisfy the envy-free axiom. If
we set a surrogate function of SSVCG mechanisms to be ū(x, θ) = −k θ2

x C and residual
payment scheme to be h(θ−i) = −kθ2

N\i−kS−i +γ where θ2
N\i = (θN\i)2, we can check

easily that the SSVCG mechanisms become the SEF-VCG(k, γ) mechanisms.

The SEF-VCG(k, γ) mechanisms are remarkable since they not only Nash implement
efficient division but also satisfy strong fairness properties such as Ranking, No Envy,
and Voluntary Participation. Also, with a SEF-VCG mechanism, a designer can choose
the extent of the budget deficit or surplus as he or she desires. Additionally, the
payment scheme of the SEF-VCG(k, γ) mechanisms are very simple compared to g-
mechanisms or VCG-Kelly mechanisms.
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6 Conclusion

Identifying a broad group of efficient and envy free pseudo-VCG mechanisms is a task
that lies ahead. It would be especially promising to find them in the SSVCG mecha-
nisms. Another path for future research concerns problems with budget imbalances in
the SEF-VCG mechanisms similar to other pseudo-VCG mechanisms. To counteract
this, comparing the SEF-VCG mechanisms to others in terms of relative efficiency loss6

may be a reasonable solution. A final direction for future study is finding incentive-
compatible and fair mechanisms for division of an economic bad such as pollution.
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