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Abstract

In the epistemic analysis of games, the existence of redundant types,
which are Harsanyi types which represent the same sequential beliefs
over the basic uncertainty, has been an obstacle. To resolve the re-
dundancy of types, we adopt an extended belief space. We consider
sequential beliefs over not only the basic uncertainty but also a newly
added exogenous payoff irrelevant parameter space C. We show that,
when C = {0, 1} or it has larger cardinality, any Harsanyi type space,
even if it has redundant types, can be isomorphically embedded into
the extended sequential belief space. Based on this result, we also
show that there exists a universal type space where we can uniquely
embed any Harsanyi type space. Finally, as an application, we define
the intrinsic correlation by Brandenburger-Friedenberg [8] in terms of
redundancy, and show that our result can be applied to obtain the
same result as theirs.

1 Introduction
One difficulty in dealing with games of incomplete information is the infi-
nite regress of uncertainty. Typically, an agent is uncertain about the payoff
functions of the other agents. 1 In order to analyze an agent’s decision un-
der incomplete information, it is not enough to incorporate his belief over
the basic uncertainty, that is, the uncertainty about the agents’ payoffs. We

1The agents’ uncertainty about action spaces can be represented as the uncertainty
about payoff functions. See Hu-Stuart [21] for the details

1



have to incorporate what the agent believes about what his opponents believe
about the basic uncertainty too. And next we have to consider the agent’s
belief about what his opponents believe about what he believes about the
basic uncertainty, and so on ad infinitum. Therefore, to deal with games
of incomplete information, we have to model this infinite regress of beliefs
about beliefs, which we call sequential beliefs.

Since Harsanyi [18], we have been dealing with this difficulty by using the
notion of type and the associated Bayesian game. We postulate that all the
informational attributes of agents, including the sequential beliefs, can be
reduced to one variable called the agent’s “type”. This postulation allows
us to apply equilibrium concepts of games of complete information to games
of incomplete information. In this paper, we say that the types defined by
Harsanyi are Harsanyi types in order to distinguish them from epistemic types
which we will define later.

Concerning individual informational attributes, we can conceive the infor-
mation brought by private signals, predetermined personal conjectures (ex.
personal characters, or habits in thinking), and so on. We can easily model
these attributes with parameters. However, it is not clear that Harsanyi types
correctly reflect the agents’ sequential beliefs. This suspicion is cleared by
Mertens-Zamir [24] and Brandenburger-Dekel [7]. They showed that, under
reasonable conditions, the space of the sequential beliefs over the basic un-
certainty forms a Harsanyi type space, and we can embed arbitrary Harsanyi
type spaces into the space of the sequential beliefs. We say that this space
of the sequential beliefs is the universal type space and sequential beliefs are
epistemic types.

Still we have another difficulty about the sequential beliefs and Harsanyi
types. Indeed Mertens-Zamir and Brandenburger-Dekel verified that we can
represent sequential beliefs as Harsanyi types. However, there exists a dif-
ficulty with the specification of the model as shown in Ely-Peski [15]. The
following example shows that several different Harsanyi type spaces represent
the same sequential beliefs.

Example 1 (Ely-Peski (2006)): Consider the following two Harsanyi type
spaces.
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Type space A: The payoff parameter space is S = {−1, 1}, the set of agents
is N = {1, 2}, the set of types is Ti = {−1, 1} for i = 1, 2, and the belief
structure is characterized by a common prior µ ∈ ∆(S × T ) such that

µ(s, ti, t−i) =
{

1
4 if s = ti · t−i
0 otherwise

Let hki (ti) be the kth order belief of the agent i associated with his type ti.
We can derive the sequential beliefs over S in the above structure as follows;

h1
i (−1)[s] =

{
1
2 if s = −1
1
2 if s = −1

h2
i (−1)[s] =

{ 1
2h

1
j(−1)[−1] + 1

2h
1
j(1)[−1] = 1

2 if s = −1
1
2h

1
j(−1)[1] + 1

2h
1
j(1)[1] = 1

2 if s = 1

h3
i (−1)[s] =

{ 1
2h

2
j(−1)[−1] + 1

2h
2
j(1)[−1] = 1

2 if s = −1
1
2h

2
j(−1)[1] + 1

2h
2
j(1)[1] = 1

2 if s = 1
...

The resulting sequential belief of ti = −1 is 1
2 at each order to the infinite

for i = 1, 2. In the same way, hi(1) is 1
2 at each order for i = 1, 2.

Type space B: The payoff parameter is S = {−1, 1}, the set of agents is
N = {1, 2}, the set of types is Ti = {0} for i = 1, 2, and the belief structure
is characterized by a common prior µ ∈ ∆(S × T ) such that

µ(s, 0, 0) =
{

1
2 if s = −1
1
2 if s = 1

In this case, both agents put probability 1
2 on each element of S, and this is

common knowledge between the agents. Therefore the resulting sequential
belief of the type is 1

2 ,
1
2 , . . . for i = 1, 2. Type space A and type space B

have different type structures, but they result in the same sequential beliefs.
It means that the representation of a sequential belief using a Harsanyi type
is not unique.

Clearly, the type space A and the type space B in the example have differ-
ent informational structures.2 According to Mertens-Zamir, Harsanyi types

2Ely-Peski [15] showed that they have different sets of Bayesian equilibrium and ratio-
nalizable strategies.
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which lead to the same sequential beliefs are called redundant types. In the
example, the types ti = −1 and t′i = 1 in the type space A are redundant
types. The existence of redundant types shows the difficulty in modeling
games of incomplete information. But that is not all. The example also
implies that the sequential belief over the payoff parameter is not enough to
characterize the belief structure of agents. The universal type space does not
allow redundancy of types. However, without redundant types, we cannot
deal with an interesting class of games such as the type space A. In the type
space A, redundancy happens due to the strong correlation of the agents’
belief over the payoff parameter and their belief over the other agent’s types.
Such correlation is common in applications. In Morris-Shin (1996), the in-
vestors share the market information, such as the GDP report and personnel
affairs in firms, with some private noises. In their model, the private signals
are independent. But, if those private noises are correlated and every agent
knows it, then we need redundant types to model it.

Example 2: Correlated public information with noise Let N =
{1, · · · , n}. There are two states S = {G,B}. The agents receive private
signals Xi about the states from the government. The government tries to
hide the state when the state is bad, but it cannot be completely hidden,
because there is one agent that receives the true signal. Likewise, when the
state is good, the government tries to make it public, but it cannot do so
because one agents receives a wrong signal. The distribution of the signals
and the states are given by a common prior µ such that

∀i ∈ N, µ(X1 = G, · · · , Xi = B, · · · , Xn = G|s = G) = 1
n
,

Otherwise, µ( . |s = G) = 0.

∀i ∈ N, µ(X1 = G, · · · , Xi = B, · · · , Xn = G|s = B) = 1
n
,

Otherwise, µ( . |s = B) = 0.

Then, each type Xi assigns probability 1
2 to both states. Therefore, the re-

sulting sequential belief is 1
2 , · · · at each type.

Ely-Peski (2006) constructed a different kind of sequential beliefs called ∆-
hierarchies. That is, sequential beliefs over the space of probability distribu-
tions over the space of parameters. By using beliefs over beliefs as the first
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order belief, we can deal with the correlation between beliefs over the payoff
parameter and beliefs over the other agents’ types. And, in particular, some
types that would be called redundant under standard sequential beliefs are
mapped to different ∆-hierarchies. ∆-hierarchies can represent richer infor-
mation about the belief structure of the agents than ordinary epistemic types,
and give us a better foundation to work on the epistemic analysis of games.
In ∆-hierarchies, however, we can only distinguish redundant types up to
rationalizable actions. Harsanyi types which have different sets of rationaliz-
able actions result in different ∆-hierarchies, but Harsanyi types which share
the same set of rationalizable actions result in the same ∆-hierarchy. In the
above example, the types ti = 1 in the type space A and ti = 0 in the type
space B can be distinguished from each other in ∆-hierarchies, but ti = 1
and t′i = −1 in the type space A cannot be distinguished there. Therefore we
cannot always map Harsanyi type spaces into the space of the ∆-hierarchies
isomorphically.

Liu (2006) took a different approach from Ely-Peski. He augmented the uni-
versal type space by adding an additional parameter space, which he called
the payoff irrelevant parameter space. He showed that any Harsanyi type
space, even if it has redundant types, has its isomorphic image in the space
of the sequential beliefs over the payoff parameter S and the payoff irrele-
vant parameter C. However, the payoff irrelevant parameter space that Liu
used was the agents’ type space T . Therefore the resulting epistemic types
space vary depending on Harsanyi type spaces to be studied. Since we cannot
compare Harsanyi type spaces on one epistemic space, topological arguments
such as Fudenberg-Dekel-Morris [12] and Ely-Peski [16] are not possible here.
In this sense, the space that Liu constructed is different from the universal
type space that Mertens-Zamir and Brandenburger-Dekel did. Besides, from
the philosophical perspective, we cannot obtain any insight into what kind
of information beyond the universal type space is needed to deal with the
redundancy of types.

In this paper, we offer a solution by adopting an exogenous payoff ir-
relevant parameter space. Moreover we show that it is enough that the
exogenous parameter space has two elements. To get an intuition of our ar-
gument, consider a two person game. Let us make on the agents’ Harsanyi
type spaces a partition of equivalence classes whose elements have the same
sequential belief over the payoff parameter. Equivalently, we sort Harsanyi
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types into classes of redundant types. In type spaces with redundant types,
the beliefs of redundant types have the same probability distribution over the
equivalence classes of the other agent’s type space although they are differ-
ent within each equivalence class. This means that even if redundant types
have different conjectures over the payoff parameter and the other agents’s
type, they are different just within each equivalence class of the other agent,
not across equivalence classes. Since the members of each equivalence class
of the other agent’s types cannot be distinguished by their sequential be-
liefs, the agent’s redundant types also result in the same sequential belief.
Our method to deal with redundancy is to distinguish the members of each
equivalence class by attaching to each type of an agent a different conjecture
over a newly added payoff irrelevant parameter. As a result, those redundant
types have different first order beliefs over the payoff parameter and the pay-
off irrelevant parameter. It enables us to distinguish the redundant types of
the other agent by their second order beliefs because we can distinguish their
different conjectures within each equivalence class. We have a further result
when we assume that S and Ti, for all i ∈ N , are countable or uncountable
Polish. Then it is sufficient to distinguish the redundant types if the payoff
irrelevant parameter space has two elements. Here is a brief explanation of
it. All spaces are infinite and Polish, and so the type space of the agent 1 is
Borel equivalent to the closed interval [0, 1]. On the other hand, the space
of probability measures over {0, 1} is homeomorphic to [0, 1]. Thus we can
assign Borel equivalent different first order beliefs over the set {0, 1} to all
the types of the player 1. By doing this, we can distinguish the members
of each equivalence class of the player 1’s redundant types by their first or-
der belief, and so the player 2’s redundant types are distinguishable by their
second order belief whenever they have different conjectures over the payoff
parameter and the player 1’s type space.

This result is strong for two reasons. First, we can completely represent
any Harsanyi type space as a subspace of the sequential beliefs over S×{0, 1}.
One interpretation is that any correlation of the beliefs of agents which is not
captured by the sequential belief over the payoff parameter can be recovered
just by introducing a coin flip as a moderator across agents. Here is another
interpretation. The hidden information behind the sequential belief over the
payoff parameter is just the uncertainty about one agent’s personality. For
example, whether he believes in God or not. The sequential conjecture over
an agent’s personality generates the correlation of beliefs over the payoff pa-
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rameter and agents’ types. Second, the payoff irrelevant parameter {0, 1} is
exogenous and we do not have to change the payoff irrelevant parameter as
Liu did. It enables us to make topological arguments of types on the space
of the sequential beliefs over S × {0, 1}.

Based on this exogenous parameter space C, we make another theoretical
contribution to an argument of the existence of the universal type space. As
we explained, we can embed Harsanyi type spaces isomorphically into the
space of the sequential belief over S × C, U(S × C). However U(S × C) is
larger than needed. In this space, a Harsanyi type can have several isomor-
phic images. According to Mertens-Zamir [24] and Heifetz-Samet [20], the
unique embedding constitutes a part of the universal type space. Therefore,
we want to find a space where we can uniquely embed Harsanyi types. In
fact it exists. We will show that we can pick up a subspace of U(S × C) so
that we can embed Harsanyi type spaces uniquely. Mertens-Zamir showed
the existence in the case of non-redundancy, and Heifetz-Samet showed it in
the topology-free case. Our finding is a generalization of both works above
and can be viewed as a final remark in the literature on the existence of the
universal type space.

In the final section, we apply our main result to the argument of the intrin-
sic correlation which was initiated by Brandenburger-Friedenberg [8]. They
showed that the set of the correlated rationalizable actions are strictly larger
than the set of the intrinsic correlated rationalizable actions which only al-
low the correlation across beliefs but not the direct correlation of actions.
Aumann [3] and Brandenburger-Dekel [6] showed that any correlated ratio-
nalizable actions can be realized as an equilibrium of some Bayesian game.
We show that the inequality of these rationalizability occurs due to the redun-
dancy of types in the Bayesian game. Therefore, by applying our main result,
we can also show that the equality between the intrinsic and the usual notion
of correlated rationalizability is achieved by adding a parameter {0, 1} to the
basic uncertainty. It is the same result shown by Brandenburger-Friedenberg
[8] in a different way.

This paper is organized as follows. Section 2 is an informal explanation
of our proof using a countable example. In Section 3, we present the formal
model and the proof of our main result: the elimination of redundancy by
adding the payoff irrelevant parameter space C = {0, 1}. In Section 4, we
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show the existence of the universal type space. In Section 5, we discuss the
intrinsic correlation in terms of redundant types. In the Appendix, we give
the detailed proofs about measurability.

2 Preliminaries
Let X be an arbitrary set. We use ∆(X) to denote the space of the proba-
bility measures over X. When X is equipped with a topology, we use Σ(X)
to denote the Borel σ-algebra on X.

Let N be a finite set, and (Yi)i∈N be a family of sets. Then, for any i ∈ N ,
we use Y−i to denote the product space Πj∈N\{i}Yj.

2.1 Harsanyi type space
We consider a finite set of agents N = {1, ... n}. All the agents face the same
basic uncertainty about their payoffs. It can be represented by a parameter
space S.3 We call this S the payoff parameter space. A Harsanyi type space
is a sequence 〈S, (Ti)i∈N , (λi)i∈N〉, where, for each i ∈ N , λi is a function
from Ti to ∆(S × T−i). We call each element in Ti a Harsanyi type. By the
function λi, each type stands for a belief over the payoff parameter and the
other players’ types. Hereafter we make some assumptions on Harsanyi type
spaces.

Assumption 1: The parameter space S and the each agent’s type space
Ti are uncountable Polish spaces.

Let T ≡ Πi∈NTi. Then, as it is known, the product type space T is also
a Polish space.

In many works such as Mertens-Zamir [24] etc., the belief mapping λi is as-
sumed to be homeomorphism. Here we relax this usual assumption slightly.

Definition: A function f : X → Y is bimeasurable if f is measurable
and , for each measurable set E ⊂ X, f(E) is also measurable.

3See Mertens-Zamir [24], and Hu-Stuart [21].
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Assumption 2: For each i ∈ N , the function λi is a bimeasurable injec-
tion.

This assumption also precludes purely redundant types, which are Harsanyi
types ti, t′i ∈ Ti such that ti 6= t′i and λi(ti) = λi(t′i).

2.2 Universal type spaces
The universal type space was introduced by Mertens-Zamir[24]. It is the
space of the sequential beliefs over S which satisfy some coherency conditions.
They showed that the space is also a Harsanyi type space and any Harsanyi
type spaces is embedded there. To define the universal type space, we have
to define the space of the sequential beliefs first. Let a family of spaces
(Zk)k∈{1, ··· } be such that

Z1 ≡ S

For k > 1, Zk ≡ Zk−1 ×∆(Zk−1).

The space Zk is the set of the kth order belief over S. We say that Π∞k=1Z
k

is the sequential belief space and each element of it is the sequential belief.
Under the coherency of beliefs, we can consider each element in Π∞k=1Z

k as
its projective limit. Let the set of the projective limits be Z∞. We say that
each ei ∈ Z∞ is an epistemic type. The universal type space is the subset
of the product space Πi∈NZ

∞ which satisfies the coherency of beliefs. We
denote it as U(S). Mertens-Zamir showed the next strong theorem about
the universal type space.

Theorem 2.1. (Mertens-Zamir [24]) The universal type space U(S) and its
associated natural homeomorphism constitutes a Harsanyi type space.

Then we can define the function which maps Harsanyi types onto the se-
quential belief space. Let the first order mapping h1

i : Ti → ∆(S) be such
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that

h1
i (ti) = Marg(S)λi(ti).

For k > 1, let the kth order mapping hki : Ti → ∆(Zk) be such that

hki (ti) = λi(ti) ◦ [IdS, (hk−1
j )j∈N\{i}]−1,

where IdS is an identical function from S to S.

We say that the function (hki )∞k=1 : Ti → Π∞k=1Z
k is the hierarchy mapping.

Let h ≡ (hi)i∈N . Then, this h enables us to map any Harsanyi type space
to the sequential belief space. Also you can see that these sequential beliefs
derived in this way satisfy the coherency condition.

3 An extended sequential belief space
In this section, we extend the universal type space by adding another pa-
rameter space C which is irrelevant to payoffs. And we show that we can
isomorphically embed Harsanyi type spaces there even if they have redundant
types.

3.1 Redundant types
Let Λ = 〈S, T, (λ)i∈N〉 be a Harsanyi type space. Mertens-Zamir showed that
Harsanyi type spaces can be embedded as a subspace of U(S) homeomorphi-
cally only if they have redundant types. To discuss the matter, we have to
define redundant types first.

Definition: In a Harsanyi type space Λ, two Harsanyi types ti and t′i ∈ Ti
are redundant if hi(ti) = hi(t′i).

We say that the Harsanyi types which are not redundant are non-redundant
types. Then we can formally state what Mertens-Zamir showed.
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Proposition 3.1. (Mertens-Zamir [24]) Any Harsanyi type space without
redundant types can be embedded onto U(S) homeomorphically. And the hi-
erarchy mapping h is the unique embedding.

3.2 Extension with a payoff irrelevant parameter space
Now we construct an extended space of sequential beliefs so that we can
embed Harsanyi type spaces there even if they have redundant types. We
introduce a parameter space C = {0, 1} and consider the sequential belief
space over S × C instead of S. In the rest of this section, we assume that
N = {1, 2}.

Let C ≡ {0, 1}. We assume that any element does not affect the payoffs
of the agents. Therefore we call C the payoff irrelevant parameter space. We
define sequential beliefs over S × C and construct the coherent sequential
belief space over U(S × C) in the same way as we did over S.

Let

Z1 ≡ S × C,
∀k ≥ 2, Zk ≡ ∆(Πn=k−1

n=1 Zn).

And let

Hk(S × C) ≡ ∆(Πn=k
n=1Zk)

= Zk+1.

and

H(S × C) ≡ Πk=∞
k=1 H

k(S × C)
= Πk=∞

k=1 ∆(Zk).

For each k, Hk(S × C) is the set of the kth order belief over S × C. Let
U(S × C) ⊂ Πi∈NH(S × C) be the product space of the coherent sequential
beliefs.

11



We also define Harsanyi type spaces based on S×C by the sequence Φ = 〈S×
C, V, (φi)i∈N〉 where φi is a bimeasurable injection from Vi to ∆(S×C×V−i).

Before we embed a Harsanyi type space onto U(S × C), we extend it to
a Harsanyi type space on S × C. To do that, we should clarify what is “iso-
morphism" between Harsanyi type spaces.

Definition (Liu [22]) : LetX = 〈S, T, λ〉 and Y = 〈S×C, V, φ〉 be Harsanyi
type spaces on S and S × C respectively. Then, X and Y are S-isomorphic
to each other if there exists a g = (gi)i∈{0}∪N such that (1) g0 : S → S is an
identity function, (2) gi : Ti → Vi is Borel equivalence for all i ∈ N , and (3)
MargS×V φi(vi) = λi(ti) ◦ g−1 ◦ ProjS×V .

Hereafter, when Harsanyi type spaces X and Y are S-isomorphic, we use
X ∼S Y . And when both spaces are defined on S, we use X ∼ Y .

Next, we want to construct a Harsanyi type space on S × C which is S-
isomorphic to the original type space on S. For the construction, we need
the next well-known theorem.4

Theorem 3.2. Let X be an uncountable Polish space. Then X is Borel
equivalent to the closed interval [0, 1].

Let Λ ≡ 〈S, (Ti)i∈{1,2}, (λi)i∈{1,2}〉 be a Harsanyi type space. Since Ti is an
uncountable Polish space, there exists a Borel equivalence from Ti to [0, 1].
Let this equivalence be pi : Ti → [0, 1]. Using pi, we define a Harsanyi type
space Φ = 〈S × C, (Vi)i∈{1,2}, (φi)i∈N〉 so that

1. For all i ∈ {1, 2}, Vi = [0, 1].

2. For all i ∈ {1, 2}, φi : Vi → ∆(S×C × V−i) satisfies the next property;

For the agent 1,

4See Royden [28] for the detailed argument.
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∀v1 ∈ V1, Marg(S×V2)φ1(v1) = λ1(p−1
1 (v1)) ◦ [idS, p2]−1,

∀E ∈ Σ(S × V2), φ1(v1)[E × {0}] = v1λ1(p−1
1 (v1)) ◦ [idS, p2]−1[E].

For the agent 2,

∀v2 ∈ V2, Marg(S×V1)φ2[v2] = λ2[p−1
2 (v2)] ◦ [idS, p1]−1,

Marg(C)φ2({0}) = 1.

The bimeasurability of (φi)i∈{1,2} is given in the appendix. Then, you can
see that Φ is a well defined Harsanyi type space. Concerning this Harsanyi
type space Φ, we have the next fundamental lemma.

Lemma 3.3. The above type space Φ is S-isomorphic to Λ.

Proof. Let IdS : S → S be identity function. Then, (IdS, p1, p2) is S-
isomorphism from Λ to Φ by construction. �

3.3 S-isomorphic embedding onto U(S × C)
We go to the main part of this paper. We show that, in the Harsanyi type
space Φ defined above, all elements of Vi correspond to different sequential
beliefs over S × C.

Theorem 3.4. Let Λ and Φ be Harsanyi type spaces defined above. Then,
for each i ∈ {1, 2}, the agent i’s hierarchy mapping induced by Φ, hi : Vi →
H(S × C), is injection.

Proof. Let hki : Vi → Hk
i (S × C) be the agent i’s kth order belief mapping

on S × C induced by Φ, and let gki : Ti → Hk
i (S) be the agent i’s kth order
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belief mapping onto S induced by Λ.
(Step 1: For the agent 1)
Let v1, v

′
1 ∈ Vi be such that v1 6= v′1. His first order belief of v1 is

∀E ∈ Σ(S), h1
1(v1)[E × {0}] = φ1(v1)[E × {0} × V2]

= v1λ1(p−1
1 (v1)) ◦ [idS, p2]−1[E × V2]

= v1g
1
1(p−1

1 (v1))[E].

By the symmetric argument,

∀E ∈ Σ(S), h1
1(v′1)[E × {0}] = v′1g

1
1(p−1

1 (v′1))[E].

(Case 1:) Suppose that v1g
1
1[p−1

1 (v1)](E) = v′1g
1
1[p−1

1 (v′1)](E). Then, since
v1 6= v′1, g1

1[p−1
1 (v1)](E) 6= g1

1[p−1
1 (v′1)](E).

On the other hand,

h1
1(v1)[E × C] = φ1(v1)[E × C × V2]

= Marg(S×V2)φ1(v1)[E × V2]
= λ1(p−1

1 (v1)) ◦ [idS, p2]−1[E × V2]
= g1

1(p−1
1 (v1))[E].

From these results, we have

h1
1(v1)[E × {1}] = h1

1(v1)[E × C]− h1
1(v1)[E × {0}]

= g1
1(p−1

1 (v1))[E]− v1g
1
1(p−1

1 (v1))[E]
= g1

1(p−1
1 (v1))[E]− v′1g1

1(p−1
1 (v′1))[E]

6= g1
1(p−1

1 (v′1))[E]− v′1g1
1(p−1

1 (v′1))[E]
= h1

1(v′1)[E × {1}].

Thus h1 is injection.

(Case 2:) Suppose that v1g
1
1[p−1

1 (v1)](E) 6= v′1g
1
1[p−1

1 (v′1)](E). It means that
h1

1(v1)[E × {0}] 6= h1
1(v′1)[E × {0}]. Thus h1 is injection.
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(Step 2: For the agent 2)
Let v2, v

′
2 ∈ V2 be such that v2 6= v′2. Concerning his first order belief, by

construction,

∀E ∈ Σ(S),
h1

2(v2)[E × {0}] = g1
2(p−1

2 (v2))[E].
h1

2(v2)[E × {1}] = 0.

Let, for each µ1 ∈ ∆(S × C), h−1
1 (µ1) ≡ {v1 ∈ V1 : h1

1(v1) = µ1}. As
we have shown, the function h1

1 : V1 → ∆(S × C) is injection. Therefore
h−1

1 : h1
1(V1)→ V1 is the well defined inverse bĳection.

Then we can derive the agent 2’s second order belief over S × C.5

Note that

∀E ∈ Σ(S), ∀Q ∈ Σ(∆(S × C))
h2

2[v2](E × {0} ×Q) = φ2(v2)[E × {0} × h−1
1 (Q)]

= λ2(p−1
2 (v2)) ◦ [idS, p1]−1[E × h−1

1 (Q)].

Since λ2 : T2 → ∆(S × T1) is a bimeasurable injection, λ2(p−1
2 (v2)) 6=

λ2(p−1
2 (v′2)). By Dynkin’s lemma6, there exists a rectangle F ≡ Ŝ × T̂1

such that Ŝ ∈ Σ(S), T̂1 ∈ Σ(T1), and λ2(p−1
2 (v2))[F ] 6= λ2(p−1

2 (v′2))[F ]. Let
V̂1 ≡ p1(T̂1). Then, V̂1 ∈ Σ(V1) and h1

1(V̂1) ∈ Σ(∆(S × C)). Therefore

h2
2(v2)(Ŝ × {0} × h1

1(V̂1)) = φ2(v2)[Ŝ × {0} × h−1
1 (h1

1(V̂1))]
= φ2(v2)[Ŝ × {0} × V̂1]
= λ2[p−1

2 (v2)] ◦ [idS, p−1
1 ](Ŝ × V̂1)

= λ2(p−1
2 (v2))(Ŝ × T̂1) = λ2(p−1

2 (v2))[F ]
6= λ2(p−1

2 (v′2))[F ]
= h2

2(v′2)[Ŝ × {0} × h1
1(V̂1)].

It means that h2(v2) 6= h2(v′2). Therefore, h2 is injection. �

5Concerning the bimeasurablity of h1
1, see appendix.

6See Theorem 10-10 in [1]
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So far we did not consider topological structures of Harsanyi type spaces
except that they are Polish. As it plays a crucial role in Weistein-Yildiz [29],
etc, it is widely considered to be nice if each agent’s type space Vi is homeo-
morphic to the belief space ∆(S × C × V−i).

Definition : A Harsanyi type space X = 〈X,T, (xi)i∈N〉 is a continuous
type space if, for all i ∈ N , xi : Ti → ∆(X × T−i) is homeomorphic embed-
ding.

Next we show that the embedded image on U(S ×C) of each Harsanyi type
by the hierarchy mapping is a continuous Harsanyi type space.

Lemma 3.5. Let Φ be a type space and H(S ×C) be the space of sequential
belief over S × C as we defined before. The function hi : Vi → H(S × C) is
the full hierarchy mapping. Now let f : hi(Vi)→ ∆(S×C ×hi(V−i)) be such
that f(hi(vi)) ≡ φ(vi) ◦ [id(S×C), h−i]−1. Then, f is homeomorphism.

Proof. Since S × C is a Polish space, there exists a unique homeomorphism
ψ : H(S × C)→ ∆(S × C ×H(S × C)) such that, for each m ∈ H(S × C),
ψ(m) is the Kolmogorov extension of m.7. So it is enough to show that, for
all i ∈ {1, 2} and vi ∈ Vi, fi(hi(vi)) is the Kolmogorov extension of hi(vi)

Let mi ∈ hi(Vi). First, for all E ∈ Σ(S × C × H(S × C)), by letting
fi(mi)(E) ≡ fi(mi)[E

⋂(S × C × h−i(V−i))], we can extend fi(mi) so that
fi(mi) ∈ ∆(S × C ×H(S × C)). And as we defined before,

Z1 ≡ S × C,
∀k ≥ 2, Zk ≡ ∆(Πn=k−1

n=1 Zn),

Hk(S × C) = ∆(Πn=k
n=1Zk)

= Zk+1,

7See Prop 1 and Prop 2 in Brandenburger-Dekel [7]
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and

H(S × C) = Πk=∞
k=1 H

k(S × C)
= Πk=∞

k=1 ∆(Zk).

The equations above also implies that

H(S × C) = Πn=∞
n=2 Zn.

Therefore,

S × C ×H(S × C) = Πn=∞
n=1 Zn.

From these equalities, we have fi(mi) ∈ ∆(Πn=∞
n=1 Zn), and mi ∈ H(S ×C) =

Πk=∞
k=1 ∆(Zk).

To show that fi(mi) is the Kolmogorov extension of mi, it is enough to
show that the next property holds:

∀k, Marg(Πn=k
n=1Zn)

fi(mi) = Projkmi.

Let E ∈ Σ(Πn=k
n=1Zn) and Ê = E × Πn=∞

n=k+1Zn. Then,

f(mi)(Ê) = φ[vi] ◦ [id(S×C), h−i]−1(Ê
⋂
h−i(V−i))

= φ(vi)(E1 × V̂ k
−i),

where V̂ k
−i = {v−i ∈ V−i : hk−i(v−i) ∈ Πn=k

n=2En}.

On the other hand, from the kth order belief of the agent i,

∃vi ∈ Vi, P rojkmi[E] = hki [vi](E)
= φi[vi](E1 × V̂−i).

This equation means that fi(mi)[Ê] = Projk(mi)(E). Consequently, fi(mi)
is the Kolmogorov extension of mi. �

As a consequence, we have the next theorem.
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Theorem 3.6. For any Harsanyi type space Λ = 〈S, T, (λi)i∈{1,2}〉, there
exists a continuous BL-subspace in U(S × C) which is S-isomorphic to Λ.

Proof. Let a Harsanyi type space Φ = 〈S × C, V, φ〉 be an S-isomorphic ex-
tension of Λ, and let Ei = hi(Vi) for all i ∈ N . Let E = 〈S × C,E, (fi)i∈N〉,
where fi is defined as in the lemma. Since hi is bimeasurable injection, E is
S-isomorphic to Φ by construction. As a direct result of the lemma, E is a
continuous Harsanyi type space. �

3.4 Extension to the N-person game
We can extend the above theorems to the N -person game. Let N be the
finite set of the agents and |N | = n. Consider an N-person Harsanyi type
space Λ ≡ 〈S, T, (λi)i∈N〉 as before. We maintain the same assumptions on
S, T , C and λi.

We can define an extension of Λ on S × C, Φ = 〈S × C, V, (φi)i∈N〉, as
follows. For all i ∈ N , let pi : Ti → [0, 1] be a Borel equivalence. Let Φ be
such that

∀i ∈ N, Vi = [0, 1].
∀i ∈ N\{1}, ∀vi ∈ Vi, ∀E ∈ Σ(S × V−i),

φi(vi)[E × {0}] = vi{λi(p−1
i (vi)) ◦ [ids, p−1

−i ](E)}.
Marg(S × V−i)φi(vi) = λi(p−1

i (vi)) ◦ [ids, p−1
−i ].

And,

∀v1 ∈ V1, ∀E ∈ Σ(S × V−1),
φ1(v1)[E × {0}] = λ1(p−1

1 (v1)) ◦ [ids, p−1
−1](E).

Marg(S × V−1)φ1(v1) = λ1(p−1
1 (v1)) ◦ [ids, p−1

−1].

In the same way as we did above, we can show that Φ is S-isomorphic to Λ
and the resulting hierarchy mapping is injection.
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4 Universal type space on S × C

In the above sections, we have shown that Harsanyi type spaces can be em-
bedded isomorphically to a continuous type space on U(S × C) even if they
include redundant types. However, the embedding is not unique. For exam-
ple, we can embed a Harsanyi type space to a different subspace of U(S×C)
by changing the roles of the agent 1 and 2. It means that U(S×C) is larger
than we needs. According to Heifetz-Samet [20], the unique embedding is
one of the axioms characterizing the universal type space. Therefore we try
to find an appropriate subspace of U(S×C) which is small enough to embed
any Harsanyi type space uniquely.

For this purpose, we deal with a kind of “proper” Harsanyi type spaces.
We give the formal definition of the “proper” type space below.

Based on the previous sections, we can focus on the subspaces of U(S × C).
We define a sub type space of U(S × C) formally.

Definition: A Harsanyi type space Λ = 〈S × C, T, λ : S × C × T →
∆(S × C × T )〉 is a sub type space of U(S × C) if (1), for each i ∈ N ,
Ti ⊂ H(S×C), (2) Ti is endowed with the relative Borel σ-algebra, and (3) λi
is the natural homeomorphism and, for each ti ∈ Ti, λi(ti)[S×C×Πi 6=jTi] = 1.

Let T = {Λ : Λ is a sub type space of U(S × C)}. Hereafter we use TΛ to
represent the product space of the agents’ type spaces of an arbitrary Λ ∈ T .

Definition : For any Λ,Λ′ ∈ T , Λ ⊃H Λ′ if TΛ ⊃ TΛ′ .

Definition : A sub type space Λ ∈ T is proper if there are no measur-
able sub-type spaces E,E ′ ⊂H Λ such that E 6= E ′ and E ∼ E ′.
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We define a class of sub type spaces as follows.

M ={Λ ∈ T : h1
1(t1) = µ1(t1)× p̃(t1), and h1

2(t2) = µ2(t2)× ν},
where µi : Ti → ∆(S × T−i), and µ2 ∈ ∆(C) s.t. µ2({0}) = 1,
and p̃(t1) : T1 → ∆(C) is injection.

And then,

L ≡ {Λ ∈ T : Λ is a proper sub type space.} ∩M

We postulate that if L has a maximal element, it would be a smallest Harsanyi
type space where any proper Harsanyi type space has its isomorphic image
as a subset. To show the existence of such a maximal element, we apply
Zorn’s lemma. Let C ⊂ L be a chain. Then we have the next lemma.

Lemma 4.1. Any chain C ⊂ L have a upper bound in L.

Proof. Let C ⊂ L be a chain. Let Λ∗ ≡ 〈S × C, T ∗, (λi)i∈N〉, where T ∗ =⋃
Λ∈C T

Λ. We show that Λ∗ is an upper bound of C. All we have to show is
that Λ∗ is proper.

Suppose that Λ∗ is not proper. Then there exists at least two measurable
sub-type spaces E 6= E ′ ⊂ Λ∗ such that E ∼ E ′. Let the isomorphism be
h : E → E ′. Since E 6= E ′, there exists ti ∈ Ei such that ti /∈ E ′. We know
that ti ∈ Λ∗ and so there exists Λ ∈ C such that ti ∈ Λi.

Let E ∩ Λ ≡ 〈S × C, TE ∩ TΛ, λ〉. By the same way, there exists Λ′ ∈ C
such that h(ti) ∈ Λ′i, and E ′∩Λ′ is a sub-type space. We define two sub-type
spaces such that

H ≡ E ∩ Λ ∩ h−1(Λ′ ∩ E ′),
H ′ ≡ E ′ ∩ Λ′ ∩ h(Λ ∩ E).

Then we have that H ⊂ Λ and H ′ ⊂ Λ′, and they are sub-type spaces. Also
we can easily show that H ∼ H ′. Since ti ∈ H and ti /∈ H ′, H 6= H ′. Since C
is a chain, without loss of generality, Λ ⊂ Λ′. Then, H ′ ⊂ Λ. It contradicts
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the fact that Λ is proper. Thus, Λ∗ is a proper and an upper bound of C. �

Lemma 4.2. There exists a maximal Harsanyi type space in L.

Proof. It is shown by the previous lemma and Zorn’s lemma. �

In the next proposition, we state that this maximal element is the universal
type space where any Harsanyi type space is uniquely embedded.

Proposition 4.3. There exists a proper Harsanyi type space M∗ such that,
for any proper Harsanyi type space Λ ∈ L, M∗ has an unique sub-type space
which is isomorphic to Λ.

Note: The following proof is under revision and subject to change.

Proof. Suppose that there is no such proper space. Let M∗ be the maximal
proper type space derived by the preceding lemma. Then there exists Λ ∈ L
and there is no E ⊂M∗ such that E ∼ Λ. Let

R ≡ {E ⊂M∗ : E is a sub type space s.t. ∃E ′ ⊂ Λ
and E ′ ∼ E.}

R′ ≡ {E ′ ⊂ Λ : E ′ is a sub type space s.t. ∃E ⊂M∗

and E ′ ∼ E.}

Let V ≡ ∪E∈RE. Since V ⊂ M∗ and M∗ is proper, V is also proper and
the largest sub type space which has the isomorphic image in Λ. We can
pick Λ′ ∈ L such that (1) Λ′ ∼ Λ, and (2) Λ′ ⊃ V . By the construction
of Λ′, M∗ ∪ Λ′ is proper. Since V is not isomorphic to Λ, we have Λ′ 6= V .
Therefore M∗ ∪Λ′ ) M∗. It contradicts with the fact that M∗ is a maximal
element in L. �
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By the theorem in the previous section and this proposition, we can show
the existence of the universal type space over S × C.

Theorem 4.4. There exists a type space U∗(S × C) ⊂ U(S × C) where
any proper Harsanyi type space on S can be S-isomorphically embedded in a
unique way.

5 Application to intrinsic correlation
We have shown that any Harsanyi type space can be mapped isomorphically
to a sub-space of U(S × C). One application of this theorem is the intrin-
sic correlation of beliefs proposed by Brandenburger-Friedenberg [8]. They
showed that, in some complete information games, we cannot achieve all
correlated rationalizable actions without any external mediator. They also
showed that we can achieve all correlated rationalizable actions as intrinsic
ones by adding a coin-flip to the basic uncertainty. In fact, their results are
closely related to redundant types. In this section, we show the results of
Brandenburger-Friedenberg in a different way; using redundant types and
our theorems above.

5.1 Bayesian representation of correlated equilibrium
Consider a complete information game. Let G ≡ 〈(Si)i∈N , (πi)i∈N〉 be a
game, where Si is the strategy space of the agent i and πi : S → R+ is a
payoff function. We assume that, for all i ∈ N , Si is finite.8 To define the
correlated equilibrium of the game G, we introduce the Bayesian framework
a la Aumann. Let the basic uncertainty space be Ω, the information parti-
tion of the agent be Hi, and the interim belief systems be P (.|Hi) ∈ ∆(Ω).
Since S is finite, we can assume that Ω is finite without loss of generality.

Definition (Aumann [2]): For all i ∈ N , Let fi : Ω → Si be measur-
able with regard to Hi. Then f ≡ (fi)i∈N is an a posteriori equilibrium

8This is the same assumption as Brandenburger-Friedenberg.
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iff

∀i ∈ N, ∀ω ∈ Ω, ∀si ∈ Si,∑
ω∈Ω

πi(fi(ω), f−i(ω)) · P (ω|Hi(ω)) ≥
∑
ω∈Ω

πi(si, f−i(ω)) · P (ω|Hi(ω)).

Definition (Bernheim [5], Pearce [25]): A set of strategies R∞ ⊂ Πi∈NSi
is the set of the correlated rationalizable actions if (1)for each i ∈ N and each
si ∈ R∞i , there exists µ ∈ ∆(R∞−i) such that si is a best response to µ, and
(2) there is no set F ⊂ Πi∈NSi such that it satisfies (1) and F ) R∞.

Concerning a posteriori equilibria and correlated rationalizable actions, we
have the next equivalence result.

Proposition 5.1. (Epstein [17] 9) For any s∗ ∈ R∞, there exists a posterior
equilibrium 〈S, (Hi)i∈N , (P (.|Hi))i∈N , f〉 such that, for all i ∈ N , Hi = Si,
for all s ∈ S, f(s) = s, and f(s∗) = s∗.

From 〈S, (Hi)i∈N , (P (.|Hi))i∈N , f〉, where Hi = Si, we can construct a Harsanyi
type space on S. For all i ∈ N , let Ti ≡ Hi. and λi : Ti → ∆(S × T ) be as
follows;

λi(si)[(s−i, s−i)] =P (s−i|si) if s−i = f−i(s−i)
0 otherwise.

Let Λ ≡ 〈S, T, λ〉. We can easily confirm that Λ is a Harsanyi type space on S.

Let G′ ≡ 〈π,Λ〉 be a Bayesian game. For i ∈ N , let a strategy βi : Ti → Si be
such that βi(ti) = fi(ω) where ω ∈ ti. Then β ≡ (β)i∈N becomes a Bayesian
Nash equilibrium of the game G′. The a posterior equilibrium of the original
game G is a Bayesian Nash equilibrium of G′.

9Aumann [3] and Brandenburger-Dekel [6] showed the same result.
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5.2 Conditional independence and rationality and com-
mon certainty of rationality

Brandenburger-Friedenberg characterized intrinsic correlation by two condi-
tions on Harsanyi types.

Definition: A Harsanyi type ti ∈ Ti satisfies conditional independence if
λi(ti)[s−i|h(t−i)] = Πj∈N\{i}λi(ti)[sj|h(t−i)], where h is the hierarchy map-
ping from T → U(S).

For the definition of another condition, rationality and common certainty
of rationality, we need some preliminary definitions.

Definition: For each i ∈ N , a pair (si, ti) ∈ Si × Ti satisfies rationality
if si is a best response to Marg(S−i)λi(ti).

We use Ri to denote the set of the pairs that satisfies rationality.

Definition: For any E ⊂ S−i × T−i, ti ∈ Ki(E) if λi(ti)[E] = 1.

Definition: For each i ∈ N , ti ∈ Ti satisfies rationality and common cer-
tainty of rationality if ti ∈ Ri ∩

⋂∞
k=1K

k(R), where Kk is the kth iteration
of the operator K.

Since β is a BNE, it is almost clear that, for all ti ∈ Ti, (ti, βi(ti))i∈N
satisfies RCBR. Polak [26] showed that RCBR is not sufficient condition for
Nash equilibrium as shown in Aumann-Brandenburger [4], but Nash equilib-
rium satisfies RCBR under complete information about the payoffs. And he
showed that the same thing applies to BNE. Here is a brief sketch of the proof.
By construction, it is clear that, for all i ∈ N , (ti, βi(ti)) ∈ R1

i . Suppose that,
for all i ∈ N and ti ∈ Ti, (ti, βi(ti)) ∈ Rk

i . Then, since λi(ti)[{(t−i, s−i) :
s−i = β−i(t−i)}] = 1 and {(t−i, s−i) : s−i = β−i(t−i)} ⊂ Rk

i , we have
ti ∈ B(Rk

−i). By the induction hypothesis, (ti, βi(ti)) ∈ Rk
i ∩ [Si × B(Rk

−i)].
Thus, (ti, βi(ti)) ∈ R∞i .
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5.3 Conditional independence and redundancy
Note that conditional independence defined above is conditional on the se-
quential beliefs of the other agents’ types. Therefore, when there are redun-
dant types in Λ, it is hard for CI to be satisfied. However, the results that
we have shown allows us to get rid of redundant types without affecting re-
sulting equilibria.

In this section, we show first that, for any s∗ ∈ R∞, there exists a Harsanyi
type space Φ such that s∗ is a realization of a BNE, and Φ has no purely
redundant types except for one agent. As a result, we get the result that, for
any s∗ ∈ R∞, there exists a Bayesian formulation where s∗ satisfies RCBR
at a type which satisfies CI.

Proposition 5.2. For any s∗ ∈ R∞, there exists a posterior equilibrium
such that, for some ω ∈ Ω, f(ω) = s∗, and, for all i 6= 1, if Hi 6= H ′i,
P ([sj]j 6=i|Hi) 6= P ([sj]j 6=i|H ′i) for some s−i.

Proof. By the proposition above, there exists a posterior equilibrium such
that Ω = S, for all i ∈ N , Hi = {si × S−i : si ∈ Si} and fi(s) = si.
Let this a posteriori equilibrium be F and [si] ≡ si × S−i. For notational
convenience, we denote each class in the agent i’s information partition as
[si]. Now it is possible that there exists [si] 6= [s′i] such that, for all H−i,
P (H−i|[si]) = P (H−i|[s′i]). Then we can duplicate the agent 1’s information
partition.

Suppose that, for a a1 ∈ S1, P ([a1]|[si]) > 0. We add another set of
states so that the states of the world Ω̂ = (S1 ∪ {s2

1}) × S−1 and associate
another information partition [s2

1] to the agent 1. We define a new a posterior
equilibrium F̂ ≡ 〈S, Ω̂, P̂ , f̂〉 such that

For j = 1, f̂1([s2
1]) = a1

∀s1 ∈ S1, f̂1([s1]) = f1([s1]).
∀j 6= 1,∀sj ∈ Sj, f̂j([sj]) = fj([sj]).
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The new sequence of conditional beliefs is defined in the following way;

For j = 1, P̂ (.|[s2
1]) = P (.|[s1])

P̂ (.|[s1]) = P (.|[s1]) otherwise.
∀ j 6= 1,∀sj 6= [s′i], P̂ (.|[sj]) = P (.|[sj])
For j = i and s′i, ∀s−1,i ∈ S−1,i, P̂ ((s2

1, s−1,i)|[s′i]) = P ((a1, s−1,i)|[s′i])
P̂ (.|[s′i]) = P (.|[s′i]) otherwise.

It is easy to show that F̂ ≡ 〈S, Ω̂, P̂ , f̂〉 is an a posterior equilibrium, and
f̂(s∗) = s∗. Note that, in this a posterior equilibrium, P̂ (.|[si]) and P̂ (.|[s′i])
are distinguishable at the event [ai].

Since N and S are finite, we can iterating this process until every pair
of each agent’s, except for the agent 1, information states [sj] 6= [s′j] have
different conditional beliefs over the other players’ information states. �

Corollary 5.3. For any s∗ ∈ R∞, there exists a Harsanyi type space Λ =
〈S, T, λ〉 and a pair of Bayesian equilibrium strategy β = (βi)i∈N such that
s∗ = β(t) , and, for all i 6= 1, Ti has no purely redundant types.

Then we can apply the theorem to find an S-isomorphic Harsanyi type space
Φ on S×C which has no redundant types. And, in Φ, no types result in the
same sequential belief. Therefore, each type and its action associated by the
equilibrium strategy β satisfy CI. Therefore we have the next result, which
is the same result shown in a different way by Brandenburger-Friedenberg.

Theorem 5.4. For any s∗ ∈ R∞, there exists a Harsanyi type space Φ =
〈S×C, V, φ〉 such that s∗ satisfies RCBR at some state v ∈ V which satisfies
CI.
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6 Conclusion

In this paper, we showed it possible to embed Harsanyi type spaces isomor-
phically onto the space of sequential beliefs over an augmented uncertainty,
even if they have redundant types. The technique to introduce a payoff ir-
relevant parameter is an extension of Liu. However distinctions are; (1) our
payoff irrelevant parameter is an exogenous, and (2) it is enough that the
parameter has at least two possible values. The latter finding is remarkable.
Any correlation of types in Bayesian frameworks which cannot be explained
by the basic uncertainty is resolved by adding a coin flip to the uncertainty.
Concerning the first finding, the exogeneity of the parameter allowed us to
show the existence of the universal type space where the vast majority of
Harsanyi type spaces are uniquely embedded.

The result provided here has many contributions. One of them is an in-
terpretation of the intrinsic correlation that we showed. Another is to enable
us to include the redundant types to the topological arguments on the uni-
versal type space. The existence of redundancy has been an obstacle to the
topological approaches. Dekel-Fudenberg-Morris [13] had to adopt interim
correlated rationalizability (ICR) instead of interim independent rationaliz-
ability (IIR) when they defined the strategic topology. Ely-Peski [15] could
identify Harsanyi types only up to IIR in the ∆-hierarchies. Our finding
would eliminate the obstacle and allow us to argue more complicated solu-
tion concepts such as Bayesian equilibrium on the "universal type space".

7 Appendix

7.1 Bimeasurability of the function φ

Let Φ = 〈S × C, V1 × V2, (φi)i∈{1,2}〉 be a Harsanyi type space, V1 = V2 =
[0, 1], and C = {0, 1} as defined in the section 3. First we show that
φ1 : V1 → ∆(S × V2 × C) is bimeasurable. It is worth while to notice
that φ1 maps each element in V1 to a product measure on the measurable
space ( S × V2 × C, Σ(S × V2 × C) ).
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We define the following functions.

f1 : V1 → ∆(S × V2) such that f1(v1) = λ1(p−1
1 ) ◦ [IdS, p2]−1.

g1 : V1 → ∆(C) such that g1(v1)(0) = v1.

You can see that both f1 and g1 are bimeasurable functions. Then we have
that φ1(v1) = f1(v1) × g1(v1), where f1(v1) × g1(v1) is the product measure
on the Borel measure space ( S × V2 × C, Σ(S × V2 × C) ).10 Since S × V2
and C are both second countable, Σ(S × V2)× Σ(C) = Σ(S × V2 × C).

Lemma 7.1. The Borel σ-algebra Σ(S × V2 × C) = {E : ∃A ∈ Σ(S ×
V2), ∃B ∈ Σ(C), E = A×B}.

Proof. Let Σ̂ ≡ {E : ∃A ∈ Σ(S × V2), ∃B ∈ Σ(C), E = A × B}. We only
have to show that Σ̂ is a σ-algebra. It is clear that ∅, S × V2 × C ∈ Σ̂. Let
E ∈ Σ̂. Then there exists A ∈ Σ(S×V2) and B ∈ Σ(C) such that E = A×B.
Therefore Ec = Ac × C ∪ A×Bc.

Let ∆P (S × V2 × C) ⊂ ∆(S × V2 × C) be the set of the product measures
over S × V2 and C.

Lemma 7.2. The subspace ∆P (S×V2×C) is homeomorphic to the product
space ∆(S × V2)×∆(C).

Proof. By Caratheodory’s extension theorem, the function d : ∆(S × V2) ×
∆(C)→ ∆P (S × V2 × C) such that (η, µ) 7→ η × µ is bĳection.

First we want to show that d is a continuous function. The topological
base of S×V2×C is t = {G×a : G is an open subset of S×V2, and a ∈ 2C}.
Therefore any open set G′ ⊂ S × V2 × C takes the form of

G′ = G̃1 × {0} ∪ G̃2 × {1} ∪ G̃3 × {0, 1},

10By Caratheodory’s extension theorem, the product measure is uniquely determined.
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where, for i = 1, 2, 3, G̃i is an open set in S × V2. It is reduced to

G′ = G1 × {0} ∪G2 × {1},

where, for i = 1, 2, Gi is an open set in S × V2.

Let {ηα} be a net in ∆(S × V2) such that ηα → η. And let {µα} be a
net in ∆(C) such that µα → µ. Then,

∀G : open, lim inf ηα(G) ≥ η(G),
∀a ∈ 2C , lim inf µα(a) ≥ µ(a).

Let να ≡ ηα × µα, and ν = η × µ. Then, for each open set G′ ⊂ S × V2 × C,

να(G′) = να(G1 × {0}) + να(G2 × {1})
= ηα(G1)µα({0}) + ηα(G2)µα({1}).

In the same way,

ν(G′) = η(G1)µ({0}) + η(G2)µ({1}).

Since ηα → η and µα → µ,

lim inf ηα(G1)µα({0}) ≥ η(G1)µ({0}).
lim inf ηα(G2)µα({1}) ≥ η(G2)µ({1}).

And,

lim inf να(G′) = lim inf{ηα(G1)µα({0}) + ηα(G2)µα({1})}
≥ lim inf ηα(G1)µα({0}) + lim inf ηα(G2)µα({1})
≥ η(G1)µ({0}) + η(G2)µ({1})
= ν(G′).

Therefore, να → ν. Therefore d is a continuous function.

Next, we show that d−1 is a continuous function. Let {να} ≡ {ηα×µα} be a
net of product measures such that να → ν = η × µ. Then, να(S × V2 × a) =
µα(a), and ν(S×V2×a) = µ(a). Since lim inf να(S×V2×a) ≥ ν(S×V2×a),
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lim inf µα(a) ≥ µ(a). In the symmetric way, lim inf ηα(G) ≥ η(G). It
means that (ηα, µα)→ (η, µ). Therefore d−1 is a continuous function. �

Corollary 7.3. The subspace ∆P (S × V2 × C) is closed.

Since ∆(S × V2) × ∆(C) is second countable, Σ(∆(S × V2) × ∆(C)) =
Σ(∆(S × V2))× Σ(∆(C))

Proposition 7.4. The function φ1 : V1 → ∆(S×V2)×∆(C) is a bimeasurable
function.

Proof. (Inverse measurability) Let φ1 = (f1, g1). The space of the probability
measures ∆(C) is homeomorphic to V1, and g1 is its homeomorphism. We
consider that φ1 : V1 → ∆(S×V2)×V1 and φ1 = (f1, Id). It allows us to con-
sider that φ1(V1) ⊂ ∆(S×V2)×V1 is a graph of the function f−1

1 . Since f−1
1

is a measurable function, the graph φ1(V1) is a Borel set in the product mea-
sure space ∆(S×V2)×V1.11 For each E ∈ Σ(V1), φ1(E) = f1(E)×E∩φ(V1).
We know that both f1(E)× E and φ(V1) are measurable. Therefore, φ1(E)
is measurable.

(Measurablity) Let E ⊂ ∆(S × V2) × V1 be a rectangle. Let π1 and π2
be the projection onto V1 and ∆(S×V2) respectively. Let F2 ≡ f1 ◦ π1(E) ⊂
∆(S × V2). Since f1 is bimeasurable, F2 is also Borel. For each y ∈ π2(E),
f−1

1 (y) ∈ π1(E) if and only if y ∈ π2(E) ∩ F2. Let Therefore, the intersec-
tion of the rectangle E and the entire graph φ1(V1) ≡ {(x, f1(x)) : x ∈ V1}
becomes G ≡ {(f−1

1 (y), y) : y ∈ π2(E) ∩ F2}. Since π2(E) and F2 are both
Borel, π2(E) ∩ F2 is also Borel. We can see that φ−1

1 (E) = π1(G). Since f1
is measurable, π1(G) is also Borel. Therefore φ−1

1 (E) is Borel. �

11See Halmos [19] pp143.
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Proposition 7.5. The function φ2 : V2 → ∆(S×V1×∆(C)) is a bimeasurable
function.

Proof. Let

∆0 ≡ {µ ∈ ∆(S × V1 × C) : ∀E ∈ Σ(S × V1), µ(E × {1}) = 0}.

Let f : S × V1 × C → R such that

∀e ∈ S × V1, f(e, 0) = a,

f(e, 1) = b.

Then, f ∈ Cb(S × V1 × C). Therefore, when a net {µα} converges to some
probability measure, it must be in ∆0. Therefore, ∆0 is a closed set. Since λ2
is bimeasurable between V2 and ∆(S × V1) and ∆(S × V1) is homeomorphic
to ∆0, φ2 is bimeasurable between V2 and ∆0. �

I use the term “bimeasurable” in a slightly different way.

Definition: A function f : X → Y is bimeasurable if f is measurable
and , for each measurable set E ⊂ X, f(E) is also measurable.

Lemma 7.6. Let X and Y be Polish, and f1 : X → ∆(X) and g1 : X → Y
be both bimeasurable. Let f2 : X → ∆(Y ) be such that, for each x ∈ X,
f2(x) = f1(x) ◦ g−1

1 . Then, the function f2 is bimeasurable.

Proof. The measurability of f2 is shown by Liu.12 We only show that, for all
E ∈ Σ(X), f2(E) ∈ Σ(∆(Y )).

Let g2 : ∆(X) → ∆(Y ) such that, for all µ ∈ ∆(X), g2 : µ 7→ µ ◦ g−1
1 .

Let A ≡ {µ ∈ ∆(X) : µ(E) ≥ p}, where E ∈ Σ(X) and p ∈ [0, 1]. Then,
g2(A) = {ν ∈ ∆(Y ) : v(g1(E)) ≥ p} ∩ {ν ∈ ∆(Y ) : ν(g1(X)) = 1}. Notice

12See Lemma 5 in Liu [22]
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that g1(X) ∈ Σ(Y ). The both sets in the right hand side of the equation are
measurable. Therefore g2(A) ∈ Σ(Y ).

Since f2 = g2 ◦ f1, we have that, for each E ∈ Σ(X), f2(E) ∈ Σ(∆(Y )). �

Lemma 7.7. For each k ≥ 1, the kth order hierarchy mapping hki is bimea-
surable.

Proof. Without loss of generality, we only have to show that hk1 is bimeasur-
able.

For k = 1, letX ≡ S×V ×C, Y ≡ S×C, f1 ≡ φ̃i, and g1 ≡ proj(S×C), where,
for all (s, c, v1, v2) ∈ S × V × C, φ̃i(s, c, v1, v2) ≡ φ1(v1). It is easy to see
that f1 and g1 are bimeasurable. By the lemma, h̃1

1 : S×V ×C → ∆(S×C)
is bimeasurable. We can just restrict the domain from S × V × C to V1 to
get the h1

1 which is measurable.

For k ≥ 2, we assume that, for i = 1, 2, hk−1
i is bimeasurable as the

induction hypothesis. Let X ≡ S × V × C, Y ≡ S × C × Hk(S × C),
f1 ≡ φ̃1, and g1 ≡ h̃k−1

2 , where h̃k−1
2 (s, c, v1, v2) ≡ hk−1

2 (v2). By the lemma,
h̃k1 : S×V ×C → ∆(S×C) is bimeasurable. We can just restrict the domain
from S × V × C to V1 to get the hk1 which is measurable. �

Proposition 7.8. The full hierarchy mapping hi is bimeasurable.

Proof. First, we show that hi is measurable. The σ-algebra on Π∞k=1H
k is

the σ-algebra generated by

F ≡ {F = Πk/∈IEk × Πk∈IH
k : I ⊂ N is finite, and Ek ∈ Σ(Hk)}.

Since hi ≡ (h1
i , . . . , ), for each F ∈ F , h−1

i (F ) ∈ Σ(Vi). By Theorem 4-1-6
in Dudley [14], hi is measurable.

Next, we show that, for each E ∈ Σ(Vi), hi(E) is measurable. Let E ∈ Σ(Vi).
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Since h1
i and h2

i are bimeasurable injection, h2
i ◦ (h1

i )−1 is bimeasurable bi-
jection from h1

i (E) to h2
i (E). Let the image of E by (h1

i , h
2
i ) be Γ2(E). It

means Γ2(E) ≡ {(h1
i (vi), h2

i (vi)) ∈ H1 × H2 : vi ∈ E}. We can see that it
is the graph of h2

i ◦ (h1
i )−1. Therefore, Γ2(E) is measurable in the product

measurable space H1 ×H2. By the mathematical induction, for each k ≥ 1,
Γk(E) ⊂ Πk

l=1H
l, the image of E by (h1

i , · · · , hki ), is measurable. The image
of the full hierarchy hi(E) is the projective limit of (Γk(E))k∈N, and as we
saw, each Γk(E) is measurable. Therefore hi(E) is measurable. �
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