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Abstract 
It this paper, we propose an auction design for a multi-commodity double auction where participants 
simultaneously submit their valuations (bids) for the commodities. We label this the Primal Auction (PA) 
mechanism. The auctioneer computes the prevailing market price as the average over the bids and allocates the 
goods over the bidders in accordance with the relative bid of each bidder compared to this market price. Under 
the assumption of money metric utility functions, we show convergence of this process to an efficient 
equilibrium, but only if truth telling by all participants can be enforced. Commitment of all players to pay the 
prevailing market price at each round of the auction for the commodities allocated to them provides a strong 
incentive for truthful revelation, since lying means that the bidder has to pay the market price for a non-optimal 
quantity. However, to address concerns on shill bidding and bid shielding, we implement a stronger test on truth 
telling by endowing the auctioneer with the power to inactivate bids that are inconsistent with Revealed 
Preference. If bids cannot be refuted under his rule, then this implies that the existence of a concave utility 
function cannot be ruled out, and this is a sufficient condition for convergence of the projected gradient path 
represented by the auction design. There is no need to actually estimate this utility function: it is sufficient that 
bids are rationalizable. The PA mechanism can be extended to include a learning phase after which automata 
can finish the auction, which makes it also a suitable design for Internet auctions such as eBay. Finally, we link 
the PA mechanism to general equilibrium theory by showing that it is the dual of Walrasian tatonnement 
procedures, with the important advantage that at each step, commodity balances are maintained. 
 
JEL codes: D44, D51, D58. 

1. Introduction 

Auction theory seeks to understand the mechanisms that govern actual trade. Theoretically, the 
framework for ‘mainstream’ analysis used is the game theoretical model of incomplete 
information, and research focuses on proving properties of equilibrium outcomes under different 
auction mechanisms and under relaxations of assumptions on players’ behavior and knowledge 
(see e.g. Klemperer, 2004, Milgrom, 2004, Maasland and Onderstal, 2006 for overviews of 
auction theory). Despite the direct involvement of auction theorists in the design of auctions for 
the sale of state assets from the 1990s onwards (Cameron et al., 1997; Cramton, 1995; Cramton et 
al., 2007; Bulow et al., 2009), the proposed designs not always proved to be successful (e.g. see 
Malvey et al. 1996, Reinhart and Belzer, 1996, Van Damme, 2002). Furthermore, critique on the 
game theoretic approach has been increasing from the side of practitioners (e.g. see Rothkopf and 
Harstad, 1994; Bapna et al., 2003), where, in particular, the assumptions being made on the 
abilities of the participants of the auctions are considered unrealistic, and the sensitivity of 
outcomes to specific assumptions is perceived to be an important hindrance to application, as 
much of the information needed to test such assumptions is not available (including the 
distribution of valuations across the bidders).  
 At the same time, since the launch of eBay in 1995, new issues have sprung up that were 
not or not adequately addressed in the mainstream auction literature. Specifically, the anonymous 
environment of the Internet made shill bidding and bid shielding much easier than it is in 
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traditional auction rooms, and this undermines the efficiency of traditional mechanism designs 
(e.g. see Lucking-Reiley, 2000; Pinker et al., 2003; Kauffman and Wood, 2003; Wang et al., 
2000). In addition, the fact that physical presence in a room is not required allows the bidders to 
participate in multiple auctions while setting at their desks, which boosted the study of 
combinatorial, multi-unit, and double auctions. Finally, the large amounts of data that are 
available from Internet auctions also make it possible to learn from auction data and this has 
given rise to a new, statistical, approach to auctions which may provide new insights into the 
auction process itself.  
 In this paper, we first review the literature related to Internet auctions, both empirical and 
theoretical.  
 Then, we present a new generalization of the Vickrey auction that we label the “Primal 
Auction” (PA). In deriving the results on efficiency and robustness against shill bidding and bid 
shielding, we rely heavily on the theory of Revealed Preference and in particular, we use the 
Afriat (1967) inequalities that link observed consumer choices to a possible underlying concave 
utility function.  
 We show that application of the Revealed Preference (RP)-rule is sufficient to ensure 
convergence of a specific auctioning process, where players simultaneously place their bids, the 
auctioneer computes the new market price as the average of these bids, and assigns quantities of 
commodities to the players in accordance with the relative magnitude of their bids. For the 
process to converge, the auctioneer does not have to estimate the underlying utility functions 
themselves, essentially because bids that are rationalizable through RP cannot rule out the 
existence of concave utility functions, even if, as Matzkin and Richter (1991) already noticed, this 
condition does not preclude very weak types of rational behavior such as maximization of pseudo 
transitive or semi transitive preferences. If this behavior is observationally equivalent to 
maximization of continuous, strictly concave and strictly monotonic utility functions, then 
convergence of the auction is guaranteed. Secondly, we show that the RP-rule for auctions is 
empirically implementable. Thirdly, we show how, after some initial learning phase, the bidding 
process can be finished by automata that are required to issue bids consistent with the RP-rule, 
which would provide an alternative to the procedures used now, for example, on eBay. Finally, 
we also link the PA to general equilibrium theory in showing that the PA is the dual of the 
Walrasian tatonnement procedure, and hence represents an alternative algorithm to solve social 
welfare programs, which is interpretable at every step and, in contrast to the Walrasian procedure, 
does not suffer from out-of-equilibrium infeasibility. 

1.1. Structure of the paper 

 The structure of the paper therefore is as follows. In section 2, we discuss the main 
concerns in designing auction mechanisms for Internet auctions and discuss the literature in this 
field. In section 3, we introduce the PA mechanism. For the most general case (multiple 
commodity double auctions), we show how the PA mechanism can be implemented and 
interpreted as a practical device and we prove the convergence of the process described by the 
algorithm to equilibrium. While section 3 assumes the existence of concave utility functions, 
section 4 concentrates on observed bids only and introduces RP as a test on the consistency of a 
sequence of bids made by a player. We show that convergence of the auction process is 
guaranteed under two mild assumptions: (1) if a player is offered an assignment of goods that is 
identical to an offer made earlier in the process, then his bids should also be the same, (2) not all 
participants in the auction are disqualified by the RP rule. We show how an initial learning phase 
in the auction process can be followed by a stage where automata bid for the participants in a 
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strictly consistent way. In section 5, we link the PA mechanism to general equilibrium theory by 
showing that the PA mechanism is the dual of Walrasian tatonnement. Finally, section 6 
concludes and provides directions for further research. 

2. Internet auctions: concerns and design issues 

The rise of Internet auctions has given a new impulse to the design of optimal auctions, as the 
special features of the Internet (anonymity, easy access, lack of geographical constraints etc) 
required rethinking auction designs, especially for multi-unit and double auctions. Already in 
2000, Lucking-Reilly observed that “Internet technology increases the feasibility of ascending-
bid multi-unit auctions” (Lucking-Reilly, p. 23), and Bapna et al (2000) actually observed that 
“the majority of on-line auctions are multi-item auctions” (Bapna et al., p. 2), who but many other 
types of auctions, including double auctions, are held via the Internet.. The sharp rise in the 
number of these auctions brought the question of designing efficient and robust multi-unit and 
double auctions back to the forefront. In addition, the large amount of data that has become 
available also spurred contributions that analyze auction processes in a statistical way. Although a 
full overview of the literature clearly is beyond the scope of the paper, we briefly discuss 
contributions made in the areas of multi-unit auctions, combinatorial auctions, and double 
auctions, in the areas of mechanism design as well as statistics. 

2.1. Multi-unit auctions 

For multi-unit auctions, the main issue is designing an auction that has a Pareto-efficient 
equilibrium, and that satisfies incentive compatibility and individual rationality. A major issue in 
the literature is to avoid ‘demand reduction’, where players are bidding lower than their true 
values in order to pay a lower equilibrium price. Especially uniform price auctions suffer from 
this problem (see e.g. Engelbrecht-Wiggans and Kahn, 1998 for a theoretical contribution and 
Engelbrecht-Wiggans et al., 2006 for an empirical analysis of the severity of the problem).  
 The (generalized) Vickrey Auction (GVA) (Vickrey, 1961; Varian, 1995) does not share 
this problem, as it is a dominant strategy for players to bid their true valuation. Yet, this auction is 
not seen much in practice, one of the main reasons being that the auction is too complex for 
bidders to understand. This led to the design of alternative auctions that share the desirable 
properties with the GVA, where the ascending bid auction (Ausubel and Cramton, 2002; 
Ausubel, 2004), that relies on the idea of “clinching” and the clock proxy auction (Ausubel et al., 
2006) are the best-known examples. Yet, especially the clock-proxy auction is also criticized for 
being too complex. In addition, the desirable properties of the GVA and related auctions are no 
longer maintained if bidders can submit bids under false names (shill bidding), a practice that is 
very difficult to detect in Internet auctions (Sakurai et al, 1999). In response to this, protocols 
were developed for Internet auctions that should prevent shill bidding (e.g. see Yokoo et al. 
(2001a, b), but these protocols place high demands on the auctioneer, since they rely on bundling 
the units in an optimal way. Even if the auctioneer has some knowledge of the distribution of 
agents’ evaluation values, the auctioneer must solve a very complicated optimization problem to 
find an appropriate division set. Summarizing, the main issue in multi-unit auctions seems to be 
to design a simple and implementable auction that is robust against shill bidding and demand 
reduction. 
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2.2. Double auctions 

For double auctions, the concern of designing an auction that has a Pareto-efficient equilibrium, 
and that satisfies incentive compatibility and individual rationality, is complemented by the need 
to prove that a (non-trivial) equilibrium exists. Many of the existence results rely on specific 
assumptions on symmetry (Milgrom and Weber, 1982), monotonicity (Athey, 2001; Maskin and 
Riley, 2000) and the number of players (Fudenberg et al., 2004). In a more general setting, 
Jackson and Swinkels (2005) prove existence of equilibrium, but for the solution to be non-
trivial, the introduction of a non-strategic agent is necessary. 
 With respect to efficiency, individual rationality and incentive compatibility, the most 
prominent concept is that of the k-double auction introduced by Chatterjee and Samuelson 
(1983), and many refinements and extensions were proposed since then (see e.g. Parsons et al., 
2006, for a recent overview of the literature). In this auction, sellers and buyers submit offers and 
bids that are aggregated to construct supply and demand curves. The crossing of the graphs 
determines a price interval from which a market clearing price can be selected as a linear 
combination. Trade occurs among buyers who bid at least this price and sellers who offer at no 
more than this price. Wilson (1985) extended the concept to a multilateral k-double auction by 
means of a clearing house construction where traders submit sealed bids. The main result of this 
paper is that the design is incentive efficient, but this result hinges on there being enough players 
in the market. McAfeee (1992) designed a double auction protocol where truth telling is an 
equilibrium strategy independent of the number of players, by introducing a specific pricing rule 
that deviates from that in Wilson (1985), and can also be viewed as a refinement of the Buyer’s 
Bid Double Auction (e.g. see Williams, 1991). However, using Internet auctions as the general 
setting, Yokoo et al (2005) show that Preston protocol is no longer dominant strategy incentive 
compatible when false bidding can occur. There “TPD” protocol relies on the auctioneer setting a 
threshold price, but it has the same weakness as the protocols developed for the multi-unit auction 
(Yokoo et al., 2001a,b), namely that very high demands are placed on the auctioneer, which 
makes actual implementation hard to imagine. 
 Summarizing, for double auctions, the main issues are to prove existence of equilibrium 
with as few assumptions on the players in the auction as possible and without introducing 
artificial constructs, and to design an implementable auction that is robust against shill bidding. 

2.3. Statistical analysis of auction data 

The rise of online auctions brought with it a very large amount of electronic data describing the 
auction process. Statistical analysis of these data has now become increasingly popular as a 
means to predict end-prices of auctions (e.g. Jank and Shmueli, 2003, Xuefeng et al, 2006, Wang 
et al., 2008, 2009) and to understand the influence of auction design on outcomes, including the 
condition for auctions to end (hard or soft end-time, e.g. Roth and Ockenfels, 2002; Ariely et al., 
2005, Ockenfels and Roth, 2006), and mechanisms to detect and deter shill bidding and bid 
shielding (Kauffman and Wood, 2003). Although general conclusions with respect to bidder’s 
behavior are drawn (e.g. see Bajari and Hortaçsu, 2003, 2004 for overviews), the spillover from 
this line of research to theoretical design of auctions seems to be limited yet. 
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3. Introducing the Primal Auction (PA) mechanism 

In this section, we introduce our generalization of the single good, single-side Vickrey auction. 
Contrary to the usual definition (e.g. see Friedman, 1993) of a double auction, we will assume 
first that goods are divisible, and then show how the principle can be extended to the case of 
indivisible goods. We largely follow Varian (1995) in assuming the following: 

1. There are I agents, indexed i and K+1 goods, indexed k, where the last commodity acts as a 
numeraire, with unit price. 

2. Goods are divisible 
3. Utility functions are quasi-linear, i.e. of the form 1( ,..., )i i iK i Ku x x x ++ , with the first term 

a concave, strictly quasi-concave and continuously differentiable function with p  as 
upper bound. 

4. At the start of the auction, agent i owns quantity ikω  of commodity k.  
 
Given that even large multicommodity auctions will only cover a limited set of the total goods 
traded in an economy, the assumption of a quasilinear utility function in this context seems very 
well defendable, and following Varian (1995) a reasonable objective is to allocate the goods 
among the consumers so as to maximize the sum of utilities: 
 

       (1) 
, 10; 1 , 1max ( ,..., )

, 1,..., 1 ( )

ik i K ix x i i iK i K

i iik ik k

     W u x x x

subject to
     x  k K     pω

+≥ += +∑

= = +∑ ∑

Where kp  denoted the Lagrange multiplies associated with the commodity balance.  
 
The specific contribution of this paper is to show that there exists an algorithm that can be 
interpreted as an auction, is sufficiently strategy-proof and can allow for an approximate solution 
of program 1 when terminated early. Auctioning is seen here as a procedure where agents express 
bids rather than desired net trade, and the auctioneer’s task is then to assign the available goods to 
the bidders in accordance with their bids. Formally, in discrete time, the procedure is as follows: 
given a positive step size factor μ small enough and exclusively under the control of the 
auctioneer, we consider the projected gradient process: 
 

       (2) 1 max( ( ),0), 0,1,...t t t t
ik ik ik kx x p    tμ π+ = + − =

 
Starting from given 0

ix iω= , for bids  

            (3) ' ( )t
ik ik iu xπ = t

And reference prices t
kp  set by the auctioneer so that, throughout the iterations, the following 

feasibility condition holds: 
 

         (4) max( ( ),0)t t t
i iik ik ik kx x pμ π= + −∑ ∑ t
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Through this restriction, the adjustment rule projects the gradient vectors t

iπ  of individual bids 

onto the compact and convex set { }1( ,..., ) 0 i iI iX x x x iω= ≥ =∑ ∑ . Hence, the procedure defines 
a specific step in a projected gradient algorithm. From this and the concavity of utility functions it 
follows, first, that convergence is assured for a step size μ small enough and, secondly, that all 
commodity balances are respected throughout the process that starts from autarky. Furthermore, 
given the bids of all the participants in a specific round of the auction, the auctioneer can compute 
the new reference price as the mean bid of the active participants and distribute the goods over 
the participants in accordance with their relative bids. Proposition 1 formalizes this: 
 

Proposition 1 (computing the reference price): the constraint set in (4) defines, for each 
commodity separately, reference prices t

kp  as continuous functions of bids 1( ,..., )t t
k Ikπ π  and 

current assignments 1( ,..., )t t
k Ikx x  that can be computed in a finite number of iterations. 

Proof. If all entries in 1( ,..., )t t
k Ikπ π  are identical, t

kp is also equal to this value and hence 

uniquely defined. Otherwise, at given 1( ,..., )t t
k Ikπ π  and 1( ,..., )t t

k Ikx x  the right-hand side of (4) is 

a continuous function of t
kp , that is larger that the fixed left-hand side at mint t

k k i ip p t
kπ= = , 

smaller at maxt t
k k i ip p t

kπ= =  and strictly increasing in between. Hence, t
kp  solves uniquely and 

is a continuous function of 1( ,..., )t t
k Ikπ π  and 1( ,..., )t t

k Ikx x . To compute its value a Newton-
Raphson procedure, or a bisection procedure, or a combination of both could be used. It would 
converge but not necessarily in a finite number of iterations. To obtain finite termination, we 
compute the target value as the mean bid of the active participants: 

 *
1

t
k

i
k

t
i I ikt

k
i I

p
π∈

∈

∑
=

∑
, where { }1,..., : 0t t

k kI i I x= = >       (5) 

If 1t t
k kI I −=  and *t t

k k
1p p −= , this exactly calculates the final price, and the algorithm terminates. 

If 1t t
k kI I −≠ , we evaluate excess demand and can apply standard bisection on t

kp , proving 
convergence in a finite number of iterations. 
 
Since (5) solves in a finite number of iterations, it is implementable and interpretable as a 
practical device. The resulting value is equal to the average bids over all the agents, except those 
with zero consumption and a private valuation below t

kp . The procedure allows for variable 
participation to the auctions and the non-participants who do not have any claim over goods and 
are not interested in getting one do not affect the price, as required. 
 Auctioning proceeds on a commodity-by-commodity basis but interdependence across 
commodities is accounted for via the full vector of goods possessed (demanded) at every iteration 
( )i

kx . The key difference from the regular auction is that, at each iteration, the algorithm asks 
every consumer for a bid reflecting what the bidder would be willing to pay to keep the given 
quantity, rather than to acquire it. Next, the mean bid t

kp  is calculated and each bid is separately 
compared to it. Finally, those willing to pay more than the mean receive an increased allocation, 
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the others a reduced one, and everyone has the assurance that the process will not end until one 
either leaves it without demand, or receives the amount one is willing to pay for. 
 Payments eventually take place at the last price T

kp  of the auction, although goods are 
actually being distributed at every iteration. The obligation on the part of the participants is to 
accept the quantity, without payment, but with the expectation that they will have to pay t

kp .   
 To highlight the basic operation of the adjustments, we will first describe them in a 
continuous time version: starting from (0)ix iω= , the continuous time procedure reads: 
 

 ( ( ))( ( ( )) ( ( )))ik ik ik i kx x t x t p x tκ π= −         (6a) 

For 
 '( ) ( )ik ik ix u xπ =            (6b) 

 ( ) ( )( )
( )

i ik ik i
k

i ik

x xp x
x

κ π
κ

∑=
∑

         (6c) 

Computed in a finite number of iterations (less than the number of agents), so that  
 { }( ) 0 0 ( ) ( ),ik ik k ik ix  if  x  and  p x x  and  1 otherwiseκ π= = >      (6d) 
 
We now show convergence of our auctioning process: 

Proposition 2 (Primal auction) Assume that utility functions  are continuously 
differentiable, concave and that  is increasing. Then, continuous time Primal auction mapping 
(6a-d) converges to the market equilibrium and there exists a positive 

: K
iu R R+ →

1u
μ  for which this also holds 

for discrete time auction (1-3). 

 
Proof. As long as 0ikx ≠  for some (and hence ,i k ( ) 1ik xκ =  for some , which is assured 
since  is increasing, monotonicity of the criterion follows since: 

,i k

1u

 , ' 2( )( ) ( ) 0i i k i i ki i k ik ik k ik ikw u u p x u p x xκ= = − − = >∑ ∑ ∑ ∑ ∑ ∑
Where the second equality holds because ( ) 0i ik ikx xκ =∑ , i.e. commodity balances hold 
throughout, while by continuity of the derivative switches in ( )ik xκ  can occur only finite number 
of times on any compact interval. Hence, social welfare rises monotonically along the path and 
since commodity balances hold and supply is bounded, it is bounded from above and must, 
therefore, converge to a stationary point. By concavity of the utility, this is a welfare optimum 
and hence a market equilibrium. This proves convergence for the continuous time process. 
Regarding convergence for the discrete time version, by continuity of the bids as function of t

ix , 
and continuity of the reference price (Proposition 1), (1-3) defines a projected gradient process 
for 1t

ix +  as function of 1( ,..., )t t
Ix x  ,which for step size μ small enough, by concavity of the 

underlying utility functions converges to a global optimum that solves the welfare program. 
 
A “corollary” of Proposition 2 is that it puts one of the main findings of empirical research on the 
performance of double auctions, the “surprising competitive properties” of the outcome (even for 
small groups of traders) in a clear theoretical perspective2: the Primal auction solution is a 

                                                   
2 Smith (1962), generally regarded as the start of this line of research, called this finding a “scientific mystery” 
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competitive market equilibrium, while the incentive for truth telling under the Primal auction 
design does not depend on the number of participants in the auction room (recall that in the 
Walrasian auction, strategic behavior is ruled out only if the number of participants is large). 
 So far, we have concentrated the discussion on the case of divisible goods. We now move 
to the more usual case of indivisible goods. Starting from a discrete choice model, we consider 
agent i faced with H indivisible objects, indexed h, with corresponding money metric utilities ihu , 
all different across objects and suppose that individual agents have additive utilities: 
 

 1( ,..., ) hi i iH ih ihu d d u d= ∑          (7) 

For binary valued . Free disposal can be represented via zero evaluation. The associated social 
planning problem reads: 

ihd

 
 { }{ }0,1max 1

ih i h iih ih ihd u d d∈ =∑ ∑ ∑  

 
We now drop the indivisibility of  replacing it by the real-valued non-negative ihd ihδ . We 
maintain the assumption that all ihu  are different across objects and agents, and hence, the 
solution of: 
 

 
0max

1

ih i h ih ih

i ih h

      u

subject to
                          (r )

δ δ

δ

≥ ∑ ∑

=∑

 

 
will be unaffected and hence binary-valued as required. The Primal auction updates the 
“ownership shares” t

ihδ  in each round of the auction as3:  
 
 ( )( )1 max ,0 ,t t t t

ih ih ih ir   t=0,1,...δ δ μ ρ+ = + −  

Starting from given 0
ihδ , for bids 

 t
ih ihuρ =  

And reference prices  set by the auctioneer so as to fulfill feasibility condition t
hr

 ( )( )max ,0t t t
i iih ih ih irδ δ μ ρ= + −∑ ∑ t  

 
Then, the allocation would for μ  small enough, converge to a binary valued solution. In case 
several agents have the same valuation for a commodity, convergence of the process is not 
affected, but the allocation will be non-binary in general, in some tie-breaking rule has to be 
imposed. The resulting binary allocation will still be Pareto-efficient. In the converse case, where 
one agent has the same valuation of different commodities with positive ihδ -values in the 
optimum, implies that some other agent(s) must also have a non-specialized outcome. This case 
can in general not be solved by a tie-breaking rule, because the price impacts will be different: 
                                                   
3 Note that this differs from the share auctions inspired by Wilson (1979) since in the PA, the players do not 
indicate the share themselves, but only issue a price bid. 
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only if the winners of the auction are willing to share the property over the object will an efficient 
outcome result. 

4. Revealed Preference as test on admissibility of bids 

Section 3 assumed the existence of a concave utility function from which the bids made by the 
players are derived as the marginal utilities. However, as was stated in the introduction, one of the 
main concerns in auction theory is to design procedures that will provide the participants with the 
correct incentives to behave in accordance with their true preferences.  
 If participants have no way to affect the price, they have no incentive to lie about the 
quantity they want and have to pay for as this would only leave them with the wrong quantity. In 
this sense, the Primal auction is truth telling device, since it makes it difficult, in the absence of 
collusion, to impact in a predictable manner on price, and at the same time, offers a means to 
signal at each iteration possible discontent about the prevailing allocation. However, as was 
explained in section 2, the incentive may be too weak, as in practice some individuals may be 
large enough to have an impact, or think they are, on in any other way destabilize the process 
through their bids or impair further on the (necessarily reduced) efficiency of the auction. Since 
bids are the only observed actions of the participants of the auction, a rule has to be devised that 
allows the auctioneer to judge the bids. Ausubel et al. (2006) propose an activity rule that is based 
on revealed preference, but in contrast to our approach, it evaluates quantity bids made by 
players, and is stated in a combinatorial auction setting, not in the context of double auction. 
Wilson (2006) introduces revealed preference as a guiding principle for activity rules in a double 
auction setting, also for quantity bids, but there is no formal development of the argument made, 
and no explicit link with convergence of the auction process. 
 Here, we provide a formal argument for an activity rule by which the auctioneer accepts the 
bid (price) of a participant if this bid is consistent with a rationalizing preference and to inactivate 
participants otherwise. For ease of exposition, we return to the case of divisible goods here. 
Operationally, this rule implies that the auctioneer tests whether the bids placed by a player obey 
RP. Hence, as is also mentioned by Wilson (2006) as time passes, the test on RP becomes stricter 
as the bidding progresses. If a player’s bids violate RP, there are essentially three possibilities. 
The first is to impose a fine and restart the auction, the second to continue without the 
perpetrators, while excluding them from further bidding and change in demand, but having them 
pay at the end of the auction for the quantity they possessed upon their disqualification. Hence, 
disqualified agents keep 1t

ik ikx x+ =  indefinitely from their disqualification onwards but they have 

to settle the eventual payment * ( t
k k ik ikp x )ω−∑  at the end of the auction. The third possibility is 

to neglect their bid and leave them with their current assignment while allowing them to bid again 
in the next iteration.4 We focus on the third possibility, since the other two can be shown to be 
special cases. First, we follow Ausubel et al. (2006) in defining RP for bids – note that the 
definition is different from that usually used in consumer theory. In fact, taking the Afriat 
conditions as reference, it adds a fourth condition for concavity of a function,  
 

                                                   
4 We note that in Ausubel et al. (2006), it is not explicitly stated what sanctions follow if a player violates the 
activity rule; it seems to be tacitly assumed that the player will, after receiving  a warning, revise his bid in 
accordance with the rule. In Wilson (2006), the portion of the submitted tender that violates the rules is 
discarded by the auctioneer. 
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Definition 1 (RP for bids) The bids of consumer i  satisfy Revealed Preference if 

 for any pair ' '( ( ) ( )) ( ) 0T
i i i i i ix x x xπ π− − '

0,i ix x D∈ . 

 
RP for bids stand in direct relation to the concavity of the associated utility function, as the 
following interpretation of Afriat (1967) for money metric utility functions shows 
 

Proposition 3 (concavity of utility functions) consider a convex set  and a 

differentiable money metric utility function  and let 

KD R+⊂

: , (i iu D R u x→ )i
( )( ) i i

i i
i

u xx
x

π
∂

=
∂

. Then, 

(1)  is concave on  if and only if it meets RP or . iu 0D ⊂ D
D

T

' '( ) ( ) ( ) ( )T T
i i i i i i i iu x u x x x xπ≤ + −

(2)  is strictly concave on  if RP is met with strict inequality or 

, whenever 
iu 0D ⊂

' '( ) ( ) ( ) ( )T
i i i i i i i iu x u x x x xπ< + − '

i ix x≠ . 
 
Proof. See e.g. Ortega and Rheinboldt (1970, p. 84-86) 
 
The far-reaching implications of RP for theory as well as for empirical work are well-known and 
it also proves effective here. In practical terms, the problem for the auctioneer is that he has no 
way of knowing a priori whether the bids made are expressions of true preference, let alone 
whether they are gradients of some well-behaved utility function. The key point that was not 
observed by Ausubel et al. (2006) or Wilson (2006)  is that the gradient algorithm does not have 
to know this either to converge. As long as the bids could be gradients, convergence is 
guaranteed. In other words, as long as the bids are rationalizable as being the derivatives of a 
utility function, the algorithm will converge to a welfare-maximizing solution. Formally: 
 

Proposition 4 (rationalizable bids) Any series  of consumer bids that satisfies RP 
is rationalizable as marginal valuation with the concave utility function, 

, 0,...,s
i  sπ = t

s− , { }0, ˆ( ) min ( ( ))t s sT
i i i i i is tu x u x xπ∈= +

For constants , estimated from the linear program: ˆt
iu

 { }1
0ˆ ˆ ˆmin ( )s s

i i

t s t s sT tt
i i i i i isuC u u xε

s s
i ixε π−

=≥= ≤ + −∑ ε+ , with outcome .  (8) 0t
iC =

 
Proof ***To be inserted***. 
 
We also remark that the utility functions estimated via this definition are not necessarily strictly 
concave or differentiable. Strict concavity is important for the uniqueness of consumer choice, 
and Proposition 3 already indicated that strict inequality is sufficient to ensure strict concavity. 
On an empirical data set, this inequality will in general hold and strict concavity cannot be 
rejected.  
 In addition to concavity, differentiability is essential for the uniqueness of bids and the 
continuity of the underlying differential equations. Along an auction path, it is (for divisible 
goods) unlikely that exactly the same t

ix -vector will be repeated. As long as these differ by more 
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( )

than a constant, differentiability of the underlying utility function cannot be ruled out. For now, 
the next proposition established in a constructive way that the differentiability requirement may 
not be too demanding, while showing at the same time that uncertainty be accounted for that may 
prevail in the individual’s mind about the utility level attainable from given x. Specifically, 
additive perturbation of utility according to a differentiable density generates an expected utility 
function that is concave as well as differentiable (Keyzer and Van Wesenbeeck, 2005): 
 

Proposition 5 (Mollifier mapping) Consider the concave function , the differentiable 
density function 

( )u x

: ,KR R ε+→ , and define the mollifier mapping 
( ) ( ) ( ) ( )u x Eu x u x dε ε ε ε= − = −∫ . Then the expected utility function ( )u x  is concave and 

differentiable. 

 
Proof Concavity follows because the integral is a linear operation, and the weighted sum of 
concave functions is concave. Differentiability is verified via the Sobolev (1963) averaging 
principle, i.e by substituting x qε− =  which gives: ( ) ( ) ( )u x u q x q dq= −∫ ,  showing that ( )u x  
inherits the differentiability properties of the likelihood density 
 
Since we are free in choosing a density, the perturbation it imposes can have arbitrary width as 
well. In applications, this is usually represented via a scalar window size θ : 

 ( ) ( ) ( )xu x u dε ε ε
θ
−

= ∫  

that can be shown to converge to the underlying function u for , confirming that RP 
compliant choices can for auctions that do not replicate the same 

0θ ↓
t
ix  more than once, be 

represented by an underlying concave and differentiable utility function, which if strict inequality 
holds, is also strictly concave. 
 While we have seen in Proposition 5 that the differentiability requirement may not be that 
demanding theoretically, in a real auction, discontinuity cannot be ruled out, It could be addressed 
by requiring the participant to stick to an earlier bid whenever the assignment is the same (or 
arbitrarily close) to an earlier one but since in numerical practice full replication will rarely occur, 
the continuity test defined here will rarely be activated as a safeguard. 
 

Definition 2 Continuity rule. Participants in the auction are entitled to express modified bids at 
iteration t as long as 0

t s
i ix x ε− ≥  with respect to all observations 0,1,..., 1s t= −  collected so far. 

For 0
t s
i ix x ε− < , the auctioneer assigns the earlier recorded bids t

i
s
iπ π=  and quantities 

t
i

s
ix x=  prior to all further allocations, for use in later RP tests. 

 
We take 0ε  to be chosen small enough not to disturb convergence via the shift from t

ikx  to t
ikx . 

We accordingly denote the set of agents with distinct bids by 

{ }01,..., , 0,1,..., 1t t s
i iI i I x x s tε= = − ≥ = − . This modifies the process for  as: 0,1,...t =

 1 max( ( ),0)t t t t t t
ik ik i k ikx x p  if i I  and x  otherwiseμ π+ = + − ∈      (9) 
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And reference prices t
kp  set by the auctioneer to meet feasibility condition: 

 max( ( ),0)tt t t t
i i I i Iik ik i k ikt tx x pμ π∈= + − +∑ ∑ ∑ x∉      (10) 

Now for the case that all bids satisfy RP, while the auctioneer applies the continuation rule, we 
can formulate the following proposition: 
 

Proposition 6 (bid functions satisfying RP under continuation) For bids t
iπ  satisfying RP 

across all observations  gathered throughout an auction conducted under the 
continuation rule (

0,1,...t =
Definition 2), there exist positive constants μ  and 0ε  small enough to ensure 

that the projected gradient algorithm (10,11) converges toward an equilibrium and ends after a 
finite number of steps at an approximate equilibrium, modulo 0ε . 

 
Proof. **to be inserted**  
 
The proposition confirms that only bids made in the course of the process matter. In other words, 
convergence holds as long as participants behave ‘as if” for the feasible allocations emerging in 
the course of the action. Moreover, operational estimates of utility functions used in the process 
can be obtained via Proposition 4. 

4.1. RP rule in practice: exclusion of participants and the possibility of learning 

 Finally, we now represent the case in which RP is not met by all participants at every 
iteration. As before, we specify an auctioning process that converges to an approximate 
equilibrium, but now, perpetrators may end up with an allocation they will not consider optimal. 
In the Primal auction, the new bids are the free choice variables of individual agents, signaling 
their marginal valuation of the goods currently assigned to them. Hence, surplus maximizing 
consumers would, under truthful revelation have to meet the RP rule: 
 

Definition 3 (RP rule) participants in the auction are entitled to receive modified assignments at 
iteration t only if their bid satisfies RP with respect to observations 1,2,... 1s t= −  collected so far 
that passed the RP test as well as the continuity test. 

 
Under the RP rule, the new observation is, at every iteration, checked against all previous ones on 
a grid of sufficiently distinct points. This is a fully individualized condition that can be evaluated 
irrespective of the fact that assignments s

ix will until equilibrium not be optimal at prices sp . The 
condition expresses that, like proximate bids that fail the continuity test, non-RP bids are not 
being tested against later on. The RP rule also has the advantage that it prevents agents from 
relying on seemingly independent intermediaries, say, to continue participation when one 
component has been disqualified, as this will only make the RP requirement on the collective 
more severe than under the consolidated requirement. At the same time, the condition also 
indicates that the auctioneer cannot make any decision on a commodity-by-commodity base. This 
is a disadvantage because it means that the need for coordination is important, and new 
assignments can only be made once all the bids have been collected. Yet, in practice it may be 
possible to achieve further decentralization when interdependencies in demand prove to be 
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limited. Specifically, it the utility function is additively separable into non-overlapping 
commodity groups, each group can under the prevailing quasilinearity assumption be treated as a 
separate consumer with respect to the RP rule. Incorporation of the RP rule can be effectuated by 
including a parameter s

iξ  in the process, which equals 1 when bids satisfy the RP rule and 0 
otherwise. Then, process (9,10) is reformulated as: 
 1 max( ( ),0)t t t t t t t

ik ik i ik k ikx x p  if i I  and x  otherwiseμξ π+ = + − ∈  

With reference prices t
kp  set by the auctioneer to maintain commodity balances: 

 max( ( ),0)t tt t t t t
i i I i Iik ik i ik k ik

tx x p +μξ π∈ ∉= + −∑ ∑ ∑ x . 
 
Finally, we recall that the earlier process required a step size μ  to be given and small enough. 
The RP rule offers as major advantage that it applies globally, irrespective of step size. This 
makes it possible for the auctioneer to infer from possible non-convergence, i.e. non-
increasingness of the estimated aggregated utility across from one iteration to the next, both 
estimated with the utility function of the latest iteration, that the step size is too large and has to 
be reduced, as oppose to suspecting participants of any false revelation. Clearly, discarding bids 
may lead to a situation where the auction ends prematurely due to lack of active participants. This 
possibility is ruled out by the following assumption: 
 

Definition 4 (nonstationarity) If 0 0tt t t t t
i k i I kik k i ik kp , then pπ ξ π∈− > −∑ ∑ ∑ ∑ >

.

. 

 
Under this nonstationary assumption, the process will roll on until the social optimum is reached: 
 

Proposition 7 Exchange with inactivation of bids If the auctioneer applies the continuity rule 
and the RP rule on the sequence of bids  there exist positive constants , 0,1,.t

i tπ = μ  and 0ε  
small enough to ensure that projected gradient algorithm (10,11) converges toward an equilibrium 
and ends after a finite number of iterations. If the nonstationarity assumption holds, throughout 
the iterations, this equilibrium is approximately (modulo 0ε ) Pareto optimal. 

 
Proof **to be inserted**. 
 
 In general, the Primal auction design can be modified to allow for a “learning” phase in the 
bidding process (that could include a feed back from the market price to the own valuation of the 
goods at auction), where failure of the RP test is accepted without concluding that bids are not 
rationalizable, analogous to tests on “goodness of fit” applied in the literature on testing for RP on 
given, finite datasets of consumer choice.5. Such a learning phase could precede the automated 

                                                   
5 Afriat’s 1967 “partial efficiency” measures how well a given set of data satisfies utility maximization. 
Different measures of the “goodness of fit” of the data are developed, including the number of violations 
(Whitney and Swofford, 1987), the fraction of violations (Famulari, 1995), and statistically testing the 
magnitude of the adjustment of the data needed to satisfy the Afriat inequalities (Varian, 1982; see e.g. De 
Peretti, 2005 for a recent contribution along this line). The central idea is that consumers should be allowed to 
make some “mistakes” without having to conclude that their observed behaviour is inconsistent with the 
existence of a concave utility function. Except for Forges and Minelli (2008), testing of consistency of decisions 
takes place after the data is collected and there is no explicit time dimension in the application of the RP test. 
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bidding common in Internet auctions, which would then be robust against shill bidding and bid 
shielding, as we have shown that the RP-rule induces truthful revelation by players. In our 
framework, the possibility of errors in the early stages of the auctions implies that Proposition 4 is 
reformulated as follows: 
 

Proposition 8 (weak rationalization of bids) Any series of bids , 0,...,s
i s tπ =  associated to 

assignments s
ix  in the linear program: 

 

1
ˆ ˆˆ, 0, , , 0

1

ˆ ˆmin ( ) ( )

ˆ ˆˆ ( ) ( )

ˆ ˆ 0

( )

s t s s s
i i i i i

t t tt
s ti iC u

t s s s s T t s s
i i i i i i i i
s s s
i i i
t t s st

s ti i

    C C

subject to

   u u x x

   

   C

ε η η γ β η η

π η η ε

π η η

β ε

+ −
s s s

i i
− + −−

=≥ ≥

+ −

+ −

−−
=

= + ∑

≤ + + − − +

+ − ≥

= ∑

+

s

     (11) 

For which  holds throughout, is weakly rationalizable as marginal valuation of the concave 
utility function: 

0t
iC =

 

 { }0, ˆ ˆˆ( ) min ( ( )( ))t s s s s
i i i i i i i is tu x u x xπ η η+ −

∈= + + − −      (12) 

And satisfies RP on the series ˆ ˆ( , ), 0,...,s s s s
i i i ix s tπ η η+ −+ − = . 

 
Proof The proof is along the same lines as for Proposition 4.**to be completed** 
 
We remark that because of the error, the subdifferential of  now becomes time dependent. 
This is the reason to impose discounting, so as to ensure that old bids gradually become discarded 
in (12) and higher precision is demanded of new bids. Therefore, as the auction progresses, 
eventually players’ bids will have to become fully compatible with RP in order to be accepted, 
and it also implies that from that point onwards, automata could take over the auction process. 

( )t
i iu x

5. PA and Walrasian tatonnement 

In the optimum, the program decentralizes to the competitive equilibrium where each consumer 
maximizes surplus according to: 
 
 0 1max ( ,..., )

ik kx i i iK k iku x x p x≥ − ∑ , 

 
which is equivalent to utility maximization subject to a budget constraint: 
 
 { }, 10, 1 , 1 , 1 , 1max ( ,..., )

ik i K k kx x i i iK i K k ik i K k ik i Ku x x x p x x p ω ω
+≥ + ++ + = +∑ ∑ + . 

 
Prices are such that markets clear: 
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ik

 
 0, 1,..., : i ik ikp  k K x ω≥ = ≤∑ ∑  
 
Because of quasilinearity of the underlying utility functions, the welfare program decentralizes as 
a competitive equilibrium and Walrasian auctioneering (with price adjustments done by a fictive 
auctioneer in the direction of excess demand) can be invoked as a process to reach the 
equilibrium price and associated quantities. This because clear when we consider the Lagrangean 
of the first K commodities: 
 

0 1( ) max ( ,..., ) ( )
ik i k ix i i iK k ik ikV p u x x p x ω≥= −∑ ∑ ∑ −       (13) 

 
Equilibrium prices emerge from the associated dual problem: , and the dual gradient 
algorithm operates on V’s derivative , which is unique because of the assumed strict 
quasiconcavity of utility and, by the Envelope Theorem, satisfies: 

0min ( )p V p≥

'( )V p

 
'( ) ( ( ) )i ik ikV p x p ω= −∑ , 

 
From which a Walrasian tatonnement rule for the stepwise adjustment of prices by the auctioneer 
in response to expressed trades by the market participants can be formulated as: 
 

1 min(max( ( ) ),0), ), 0,1,...t t t
ik k ik ik kp p x p p tλ ω+ = + − =∑ , given . Under this tatonnement, the 

commodities are auctioned in parallel and interdependencies between the goods are taken into 
account via the full price vector available and net demands are publicly known, as sealing of 
demands would take away relevant information from the other participants.  

0p

6. Concluding remarks 

This paper presented an auction design for the efficient allocation of commodities in multi-
commodity auctions with both sellers and buyers acting. It is clear that the one-sided auction is a 
special case of our set-up, and that for the buyers’ auction, it is very different from existing 
auction designs for multiple non-identical objects, in particular the Vickrey-Clarke-Groves 
(VCG) mechanism, which is the most well-known in this field. Under the VCG mechanism, each 
player announced his “type”, which is a vector of parameters of his (money-metric) utility 
function. Based on these announcements, an allocation of the commodities is made over the 
players, and the price to be paid by the participants is calculated as the externality the player 
imposes on the others. Although the VCG mechanism has an efficient equilibrium, bidding is 
complex as bidders have to specify a bid for all packages of objects they desire to win (have to 
specify their utility function for all possible combinations); more competition leads to lower 
prices; and the mechanism is not robust against “shill bidding”, the hiring by a real bidder of an 
additional player to affect prices in his advantage (Milgrom, 2004). In the Primal auction, 
increasing the number of participants in a buyers’ auction would lead to higher prices, as demand 
increases while supply is fixed, and shill bidding only leads to a tightening of the RP test for the 
player attempting it. Finally, as we have shown, the RP test only requires players to act as if their 
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bids are based on a concave utility function, thereby allowing players to have their own - simple 
or very complex - decision models to arrive at a bidding strategy. 
 In this paper, we have assumed throughout that the marginal utilities of the players (their 
private valuations of the goods) are independent of the observed bids of the other players, since 
we focused on the design of an efficient auction mechanism in a multi-commodity auction. Of 
course, a significant part of the auction literature assumes that such dependence exists, and hence 
views auctions as non-cooperative games, where subjective and objective probability assessments 
are made and optimal reactions to expected actions by the other players are defined. As this was 
not the approach taken in this paper, we only note that, for the single commodity auction, our 
results also hold in the situation where the private valuation of each player is an increasing 
(possibly discontinuous) function of the bids tπ  and non-decreasing in t. However, this does not 
imply that the process will converge to a socially efficient price.  
 Another assumption made throughout the paper was that the different commodities were 
not complementary to each other (e.g. see Milgrom, 2007 for a recent contribution in this field). 
Allowing for complementarity between markets implies that the assumption of fixed endowments 

iω  is replaced by an explicit description of the production process with associated input demand. 
Within Walrasian auctions, the inclusion of production and input demand is relatively 
straightforward, in particular when firm technologies can be represented by strictly convex 
production sets. Within the setting of the Primal auction, the explicit representation of production 
creates a difficulty in principle because the projection on the feasible space of commodity 
allocations involves the technology itself. A next step will therefore by to show that the Primal 
auction mechanism can be extended to allow for production, and convergence results even in the 
case of multiple production processes with constant returns to scale, where the Walrasian auction 
fails due to the set-valuedness of net supply, and in the presence of increasing returns to scale. 
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