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Abstract

The aim of this paper is to explore the role of a pragmatic Language with
a universal grammar as a coordination device under communication misunder-
standings. Such a language plays a key role in achieving efficient outcomes in
those sender-receiver games, where there may exist noisy information tranmis-
sion. The Language is pragmatic in the sense that the Receiver’ best response
depends on the context, i.e, on the payoffs and on the initial probability dis-
tribution of the states of nature of Γ. The Language has a universal grammar
because the Sender’s coding rule does not depend on such specific parameters
of Γ and can then be applied to any sender-receiver game with noisy communi-
cation.
The common knowledge "corpus" or set of standard prototypes designed

by the Sender and the Receiver’s "pragmatic variations" around the standard
prototypes, generate an equilibrium pragmatic Language. Furthermore, such a
Language is efficient: in spite of initial misunderstandings, the Receiver is able
to infer with a high probability the Sender’s meaning and thus expected payoffs
are close to those of communication without noise.

1 Introduction

The aim of this paper is to explore the role of a pragmatic Language with a univer-
sal grammar as an equilibrium coordination device under communication misunder-
standings. Such a language plays a key role in achieving efficient outcomes in those
sender-receiver games, where there may exist noisy information tranmission and the
length of communication is finite. The Language is pragmatic in the sense that the
Receiver’ best response depends on the context, i.e, on the payoffs and on the initial
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probability distribution of the states of nature of Γ. The Language has a universal
grammar because the Sender’s grammar does not depend on such specific parameters
of Γ and can then be applied to any sender-receiver game with noisy communication.
The common knowledge "corpus" or set of "standard prototypes" designed by the
Sender and the Receiver’s "pragmatic variations" around the standard prototypes,
generate an equilibrium pragmatic Language.

One of the advantages of human language is that it conveys information and
makes it possible to cooperate about future goals (Gärdenfors, 2002). When com-
munication first appeared, the most important issue was the communicative act in
itself and the context it occurred in, not the expressive form of the act. When com-
municative acts (later speech acts) in due time became more varied and eventually
conventionalized and detached from the immediate context, one could start ana-
lyzing the different meanings of the acts. Thus, when we nowadays communicate
by language, our utterances (signals conveying information whithin a context) have
meaning. Language is therefore a symbolic system of communication making it pos-
sible the inference of meaning. In fact, the meaning of a linguistic utterance is not
transmitted directly, but is inferred indirectly by the hearer, through pragmatic in-
sights and the social context in which the utterance is received. Furthermore, when
linguistic communication becomes even more conventionalized and combinatorially
richer, certain markers, alias syntax, are used to disambiguate the communicative
context.

These considerations lead naturally to queries about the efficiency of language
to communicate and learn, inference models of creation of meanings and the role
of grammar and categorization in linguistic structures. Several answers have come
from Linguistics (Grice, 1969,1975; Gärdenfors, 2000, 2002; Azrieli and Lehrer, 2007;
Jäger, 2007, etc. ), Mathematics and Computer Science (Batali, 1998; Nowak and
Krakauer, 1999; Smith, 2003, 2003a; Kirby, 2001, 2002,2007; Voght, 2000, 2005, etc).
Nevertheless the importance of language in Economics has not been yet sufficiently
stressed with the exception of a handful papers such as Rubinstein (1996, 2000),
Blume (2000, 2005), Blume and Board (2008), Segal (2001), Selten and Warglien
(2007), Balinski and Laraki (2007a,b) among others.

Coordination takes place many times in different environments and in diverse
contexts and here human "natural" languages may experience some difficulties in
trying to reduce inefficient outcomes. For instance, empirical analyses have revealed
that the use of non-standard or non-native grammatical variants only rarely leads
to any communication breakdown, whereas most breakdowns occur due to lexical
or phonetic obstacles1. To explore the role of languages as a coordination devices
under communication misunderstandings, we study the design and use of a sym-
bolic language leading to coordination. The language that we propose is pragmatic

1 In fact, as reported in Reiter and Sripada (2002), linguists have acknowledged that people may
associate different meanings with the same word.
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in the sense of Grice (1975). Pragmatics examines the influence of context2 on the
interpretation of an utterance. Our context is a sender-receiver game with noisy
information transmission. We find that communication by such a pragmatic lan-
guage is an equilibrium outcome of the noisy communication game. Furthermore,
the grammar of our language is universal because it only depends on the number of
the meanings and the length of the communication episode, and not on the rewards
of each meaning. Our encoding rule (the syntax language) ensures the successful
transmission of language itself and universality guarantees the language implementa-
tion in very different contexts. Thus, our work stresses that of Nowak and Krakauer
(1999) who argue that grammar can be seen as a simplified rule system that reduces
the chances of mistakes in implementation and comprehension and it is therefore
favored by natural selection in a world where mistakes are possible. Our results also
theoretically match those of Selten and Warglien (2007), who show in a series of lab-
oratory experiments that in an environment with novelty compositional grammar
offer considerable coordination advantages and therefore is more likely to arise.

It is assumed that the context, the set of public signals, the grammar rules (en-
coding rule) and the length of the communication are common knowledge but there
may be communication misunderstandings. For instance, though native English
speakers may remember 80.000 words, very few of them will use more than 7500
English words in their communication and even in this case communication mis-
understandings may appear3. To develop this idea formally, we consider a sender-
receiver game with aligned interests, where the costs of miscoordination are different
in distinct states of nature. When an individual communicates with another one,
the former has a precise purpose in mind ("a meaning"), that has to be expressed
by a common language. Thus, the informed Sender, has to tell the uninformed one,
the Receiver, which action to choose. The set of the Sender’s meanings is the set of
the Receiver’s actions. To communicate the Sender encodes her meanings in a set of
public signals which are sent to the Receiver. Each signal can, in principle, be any-
thing, for example, letters or merely symbols in an alphabet of salient features which
is used to create signals. Signals could be subject to extraneous factors that would
distort or interfere with its reception. This unplanned distortion or interference is
known as noise4. The noise we are concerned with is such that the messages are

2 In Linguistics, a context comprises the speaker, the hearer, the place, the time and so forth.
How the hearer views the intentions of the speaker and how the speaker views the presuppositions
of the hearer are relevant to the understanding of an utterance.

3These misunderstandings can even be worse due to the fact that English is the most frequent
language in business conversations between people with different mother tongues. Most of the times,
non-native are faced with non-native English (in conversation with non-natives) or non-standard
English (e.g. when reading CNN headlines).

4Noise refers to anything introduced into messages that is not included in them by the Sender.
Noise may range from mechanical noise, such as the distortion of a voice in the telephone or the
interference with a television signal producing "snow" on the TV screen, to any noise generated
in human communications. A more general and basic situation is where the noise underlies the
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always received by the Receiver but they can differ from those sent by the Sender,
that is, signals may be distorted in the communication process. We model this noise
by assuming that each signal can randomly be mapped to the whole set of possible
signals5. We assume that the set of signals is a discrete alphabet and that the lan-
guage dictionary is a combination of elements of this set. More precisely, given a
communication length, an input sequence is a concatenation of signals. The Sender
utters one of these sequences and the Receiver hears an output sequence, which is a
probabilistic transformation of the signal string.

The encoding rule or grammar is used to design a communication device between
the Sender and the Receiver. From a given and common knowledge set of public
signals and a communication length, the Sender defines a dictionary or "corpus"
of sequences which generates the set of standard prototypes which are a one-to one
mapping into the set of Receiver’s actions. The structure or grammar specifies that
each prototype sequence is positionally arranged and maximally separated from any
other sequence. The Receiver has to infer a meaning from each heard sequence or, in
other words, to assign an action to each received sequence. Without any noise, the
Receiver would accurately infer the action to play from any received prototype. With
noise each received sequence belongs to the whole set of possible language sequences
and could have been generated from any prototype. Then, the Receiver’s criterion
is a best-response decoding which partitions the set of possible language sequences
into subsets, with a unique action assignment to each of them. In linguistic terms,
each of these subset is called the pragmatic variation of a given prototype. The way
in which each sequence is assigned to a particular pragmatic variation instead of
the others, is given by some measure of vicinity or "distance" between the sequence
and each one of the other standard prototypes. The bound on such distance from a
given prototype is called "the vicinity bound".

The partition of the output space in the pragmatic variations of the standard
prototypes is related to the work on categorization based on prototypes (see Azrieli
and Lehrer, 2007, Jäger, 2007 and references herein). In particular, Jäger inves-
tigates communication in a partnership signaling game where the set of meanings
is equipped with a Euclidean geometrical structure. Perfect communication is not
possible because the number of meanings exceeds the number of signals. Under an

information transmission technology. This setting refers to information transmission situations
where the signals can be garbled or corrupted in their transmission

5 In economics there are many situations where "rational" agents have erroneous perceptions,
there are signaling models with noise, and, in general, information transmission models with incom-
plete information such as those of Crawford and Sobel (1982), Lipman and Seppi (1995), Koessler
(2000, 2001, 2004), among others. In many of these models the noise mainly refers to the strategic
uncertainty of the agents about the relevant parameters of the strategic situation under study rather
than communication misunderstandings. Blume, Board and Kawamura (2007) examines the possi-
bilities for communication in the Crawford and Sobel’s model in a noisy environment. In linguistics,
Nowak, Krakauer and Dress (1999) investigate the evolution of communication in the presence of
noise: individual may mistake one signal for another
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evolutionary approach, he shows that the sender’s strategy partitions the meaning
space into quasi-convex categories. In our noisy communication game, the receiver’s
best reply to any pure sender’s strategy induces a categorization of the underlying
set of public signals around the standard protoypes. This partition is due to an
inference process rather than to an evolutionary dynamics.

On the other hand, the structure of a language helps to enhance efficiency in
communication. In Linguistics Kirby (2001, 2002, 2007) focuses on the emergence
of composition and recursion in languages. In Economics, Rubinstein (1996, 2000) is
concerned with the structure of binary relations appearing in natural language and
Blume (2000, 2005) explores the use of structure in languages and how such efficient
structures facilitate coordination and learning in repeated coordination games. Fur-
thermore, Blume and Board (2008) take it as given that language is an imperfect
technology that leaves messages subject to interpretation. Contrary to us, they in-
vestigate the strategic use of interpretable messages. Crémer, Garicano and Prat
(2007), characterize efficient technical languages and study their interaction with the
scope and structure of organizations. A recent paper on the evolution of language
is Demichelis and Weibull (2008), were two parties have a common language and
agree on its meaning. They show that such a shared culture -language and honesty
code- facilitates coordination on socially efficient equilibrium outcomes in strategic
interactions.

A Language is defined as the pair corpus and pragmatic variations: the way in
which the Sender transmits the meanings and that of the Receiver’s understandings.
An equilibrium pragmatic Language is that for which the players’ strategies are a
best response to each other. We show that to communicate by such a Language
is an equilibrium of the noisy communication game: the pragmatic Language is a
coordination device under interpretation failures. In fact, it performs quite well
as an inference of meaning model, that is, in spite of initial misunderstandings,
the Receiver is able to infer with a high probability the Sender’s meaning. This
result guarantees expected payoffs close to those of communication without noise.
Alternatively, we characterize the time needed to span the pragmatic variations in
order to reduce the chances of misunderstandings and increase expected payoffs. The
pragmatic Language facilitating coordination shares the spirit of Balinski and Laraki
(2007)’s work in the Theory of Social Choice. They show that a more "realistic"
model in this field, in the sense that messages are grades expressed in a common
language, allows preferences to be aggregated.

The paper is organized as follows. Section 2 presents the one-shot game, and
the extended communication game. The existence of a language supporting play-
ers’ coordination is presented in section 3, where the equilibrium pure (separating)
strategies for the Sender and the Receiver are constructed. To highlight the main
features of our construction we offer some examples in section 4. In section 5, the
efficiency of our equilibrium for finite communication length is measured and the

5



speed of convergence of ex-ante payoffs is characterized. Some concluding remarks
close the paper.

2 The Model

2.1 The coordination game

Consider the possibilities of communication between two players, called the Sender
(S) and the Receiver (R) in an incomplete information game Γ: there is a finite
set of feasible states of nature Ω = {ω0, . . . , ω|Ω|−1}. Nature chooses first randomly
ωj ∈ Ω with probability qj and then the sender is informed of such state ωj , the
receiver must take some action in some finite action space A, and payoffs are realized.
The agents’ payoffs depend on the sender’s information or type ω and the receiver’s
action a. Let u : A×Ω→ R be the (common) players’ payoff function, i.e., u(at, ωj),
j = 0, 1, ..., |Ω| − 1. Assume that for each realization of ω, there exists a unique
receiver’s action with positive payoffs: for each state ωj ∈ Ω, there exists a unique
action (baj) ∈ A such that:

u(at, ωj) =

½
Mj if (at) = (baj)
0 otherwise

The sender observes the value of ω and then sends a message or string of signals
from some message space6. In sender-receiver games, players try to share their
private information to achieve coordination. Hence, they usually communicate using
a human or an artificially constructed language. More precisely, the Sender has a
precise purpose in mind or meaning, that has to be expressed in the form of a signal
or a message. The Receiver has to decode the message to infer the original Sender’s
purpose, jointly with the context. In our setting the context is the coordination
game and the Sender meanings are the Receiver actions. To communicate the Sender
encodes the meanings to be transmitted in a set of public signals, from the underlying
common language, which are sent to the Receiver. Each signal or utterance can, in
principle, be represented in any form, for example, letters or merely symbols in an
alphabet of salient features which is used to create signals. To simplify the model it
is assumed that the set of basic signals is the binary alphabet and that the Sender
combines elements of this set to communicate. Signals may be distorted in the
communication process (the Receiver may misunderstand phonemes, emphasize the

6Suppose that R plays according to the mixed strategy α = (α1, . . . , α|A|) that assigns probability
αt to action at, then the payoffs obtained by both players are ωj∈Ω qjαMj . Notice that, since
this expression is linear on α, then the optimal election of the probabilities of α (from the viewpoint
of R) corresponds to a pure strategy (the one corresponding to the vertex j∗ such that j∗ =
argmax{qjMj}j). Therefore, the most that players can get without any communication is the
max{qjMj}j . On the other hand, if noiseless communication were possible, then both players
would achieve at each state ωj the corresponding payoff Mj .
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wrong part of the message, among others). This distortion or interference is known
as noise. The noise is such that while messages are always received by the Receiver,
they may differ from those sent by the Sender. We model this noise by assuming
that each signal can randomly be mapped to the whole set of possible signals.

We follow a unifying approach to this noisy information transmission and con-
sider that agents communicate through a discrete noisy channel: a system consisting
of input and output alphabets, and a probability transition matrix7. Formally, a
noisy binary channel υ is defined by:

• Two sets X = Y = {0, 1} as the input and the output basic signal sets respec-
tively

• A transition probability p: an input signal s ∈ X is transformed by the channel
in an output signal r ∈ Y with a probability p(r|s). Let εl be the probability of
a mistransmission of input signal l, then since the channel is binary p(1|0) = ε0
and p(0|1) = ε1 and the noisy communication channel is denoted by υ(ε0, ε1).

A procedure of meaning inference allows, in general, a partial probabilistic re-
covering of the original meaning associated to the prototype sent by the Sender.
However, in some specific situations, communication episodes are not informative
and no meaning at all can be recovered from the received signal. For instance, if
the Receiver cannot probabilistically decide that two signals are different, and every
signal is essentially the same as the next, then there is no way a meaning (an action)
can emerge. In this section we define what is an informative noisy channel. The key
point is that the ’informativeness’ of the channel is not related to the probability of
properly understanding each basic signal 0 and 1, but the relation between these two
probabilities, i. e. to the probability of discriminating between input basic signals
once an output basic signal is observed.

Let s be an input signal belonging to some space X, and r a realized output
signal in space Y . Let p(s) be the a prior probability that signal s and is delivered
through the channel. The channel transforms s into r according to p(r|s). From
the observed r, any input signal s is updated by Bayes’ rule yielding the posterior
probability of each s given r. Given two output signals r and br and two input signals
s and bs, it is said that r is more favorable than br for s, whenever the posterior odds of
inputs s and bs given the output r are at least as high as those of inputs s and bs given
the output br. Therefore, the noisy channel υ(ε0, ε1) is informative whenever for any
realized output signal r and any pair of input signals s, bs: p(s|r)

p(s|r) =
p(r|s)p(s)
p(r|s)p(s) 6=

p(s)
p(s) .

7The introduction of noise into a defined channel is well understood in another strand of litera-
ture. Such information transmission has been mainly tackled by Information Theory tools. Tradi-
tional Information Theory, pioneered by Shannon (1948) abstracts away from equilibrium queries,
and focuses on the process of information transmission itself.
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How informative is the channel and which output signals are more favorable than
others are crucial to design the Sender’s set of input sequences and the Receiver’s
decodification procedure. Applying the above concepts to channel υ(ε0, ε1), where
s ∈ {0, 1} and r ∈ {0, 1} it is obtained8:

Lemma 1 If ε0 + ε1 6= 1, then υ(ε0, ε1) is informative. Moreover:

• If ε0 + ε1 < 1, then for input signal 0, output signal 0 is more favorable than
output signal 1, and for input signal 1, output signal 1 is more favorable than
output signal 0.

• If ε0 + ε1 > 1, then for input signal 1 output signal 0 is more favorable than
output signal 1, and for input signal 0, output signal 1 is more favorable than
output signal 0.

The proof is given in Appendix A.

Communication goes on for n periods. It is also assumed that the channel is
memoryless, i.e., the probability distribution of the output depends only on the input
at that time and is conditionally independent of previous channel inputs or outputs.
Then, given a communication length n, the Sender utters to the channel an input
sequence, x ∈ Xn = {0, 1}n, which is a concatenation of basic binary signals and
the Receiver hears an output sequence, y ∈ Y n = {0, 1}n, which is an independent
probabilistic transformation of the signal string. Thus Γ is extended by a pre-play
phase of communication where the Sender uses n times the channel υ(ε0, ε1). Let Γnυ
denote this extended communication game, where after the communication episode
S chooses an action and the uninformed player R associates an action (infers a
meaning from y and the game context) to the received sequence and payoffs are
realized.

Since the Sender encodes the meanings in a set of public signals, his strategy in
Γnυ is a rule suggesting the message to be sent at each ωj : a sequence σSj ∈ Xn sent

8Noisy channel are only characterized by their levels of aggregate noise. Firstly, if channel
υ(ε0, ε1) is informative with low levels of aggregate noise (ε0 + ε1 < 1) and output signal 0 is
observed, then it will be more likely that it comes from input signal 0 than from input signal 1
and viceversa. Thus, the matching between the output and the input signal yields a more accurate
posterior odds. Notice that for symmetric channels, i.e. ε0 = ε1 = ε, this condition implies that the
misunderstandings are not too high, i.e. ε < 1

2
. Nevertheless, ε0 = 0.2 and ε1 = 0.7 in asymmetric

channels also fulfil the condition. Secondly, when channel υ(ε0, ε1) is informative with high levels
of aggregate noise (ε0 + ε1 > 1) and the output signal 1 is observed, then it will be more likely
that it comes from input signal 0 than from input signal 1 and viceversa. Here, the unmatching
between the output and the input signal yields a more accurate posterior odds. For symmetric
channels the above condition is equivalent to ε > 1

2
, or for instance to ε0 = 0.3 and ε1 = 0.9 for

asymmetric ones. Finally, when ε0 + ε1 = 1, there is no way to discriminate between input signals
once an output signal is observed and the channel is not-informative. This happens when ε = 1

2 in
symmetric channels, or, for instance, when ε0 = 0.1 and ε1 = 0.9 in asymmetric ones.
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by S given that the true state of nature is ωj . Each sequence σSj is called a standard
prototype. The set of standard prototypes {σSj }j is the corpus.

A strategy of R is a 2n-tuple
©
σRy
ª
y
, where σRy specifies an action choice as

a response to the realized output sequence y ∈ {0, 1}n. The action associated
by R to each sequence, jointly with the context, is the meaning decodification .
Then, a Receiver’s strategy is the inference of a meaning for any sequence in the
language, even for those not included in the corpus. An univocal construction of
meanings partitions the set Y n into |Ω| subsets, each of them bringing together all
the sequences whose meaning is an action baj , j = 1, .., |Ω|. Each subset of this
partition represents the pragmatic variations associated to a particular standard
prototype.

A Language was defined as the pair corpus and pragmatic variations: the way in
which the Sender transmits the meanings and that of the Receiver’s understandings.
An equilibrium Language is that for which the players’ strategies are a best response
to each other.

Expected payoffs in Γnυ are defined in the usual way. Let the tuple of the Sender’s
payoffs be denoted by {πSj }j = {πSj (σSj ,

©
σRy
ª
y
)}j , where for each ωj ,

πSj = πSj (σ
S
j ,
©
σRy
ª
y
) =

X
y∈Y n

p(y|σSj )u(σRy , ωj)

and where p(y|σSj ) is the Sender’s probability about the realization of the output
sequence y ∈ {0, 1}n conditional on having sent sequence σSj in state ωj .

Let the tuple of the Receiver’s payoffs be denoted by {πRy }y = {πRy ({σSj }j , σRy )}y,
where for each output sequence y ∈ {0, 1}n,

πRy = πRy ({σSj }j , σRy ) =
|Ω|X
j=1

p(σSj |y)u(σRy , ωj)

and where p(σSj |y) is the Receiver’s probability about input sequence σSj in state ωj
conditional on having received the output sequence y.

A pure strategy perfect Bayesian equilibrium of the communication game is a pair
of tuples ({bσSj }j , {bσRy }y), i. e. a Sender’s corpus and a Receiver’s sets of pragmatic
variations, and a set of probabilities {p(σSj |y)}j for the Receiver such that for each
ωj , and for any other strategy eσSj of the Sender,

bπSj = πSj (bσSj , {bσRy }y) ≥ πSj (eσSj , {bσRy }y)
and for each y ∈ {0, 1}n and for any other Receiver’s strategy eσRy ,
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bπRy = πRy ({bσSj }j , bσRy ) ≥ πRy ({bσSj }j , eσRy ) where by Bayes rule each p(σSj |y) is given
by: p(σSj |y) =

p(y|σSj )p(σSj )
p(y) .

The ex-ante payoffs of this communication game are given by

ΠS({σSj }j ,
©
σRy
ª
y
) =

|Ω|X
j=1

qjπ
S
j (σ

S
j , {σRy }y) =

|Ω|X
j=1

qj
X
y∈Y n

p(y|σSj )u(σRy , ωj)

for the Sender an those of the Receiver are defined by,

ΠR({σSj }j ,
©
σRy
ª
y
) =

X
y∈Y n

p(y)πRy ({σSj }j , σRy ) =
X
y∈Y n

p(y)

|Ω|X
j=1

p(σSj |y)u(σRy , ωj)

Notice that ΠS({σSj }j ,
©
σRy
ª
y
) = ΠR({σSj }j ,

©
σRy
ª
y
), since Γ is symmetric andP|Ω|

j=1

P
y∈Y n qjp(y|σSj ) =

P
y∈Y n

P|Ω|
j=1 p(y)p(σ

S
j |y). Denote this common ex-ante

payoffs by Πυ.

In order to distinguish among sequences, a distance function among them has
to be defined. A natural and intuitive function is the Hamming distance. Formally,
consider two n-dimensional sequence x = (x1, . . . , xn) and y = (y1, . . . , yn). Let
I stands for the indicator function. The Hamming distance between two sequences
x, y, denoted h(x, y), is defined as h(x, y) =

Pn
t=1 Ixt 6=yt .

Suppose that n = m |Ω|. For 1 ≤ l ≤ |Ω|, the l−block of length m of x =
(x1, . . . , xn) is the subsequence (xlm+1, . . . , x(l+1)m). The Hamming distance in the
l-th block between x and y, denoted by hl(x, y) is equal to the Hamming distance
between the l-th block of x and l-th block of y. Formally,

hl(x, y) = h((xlm+1, . . . , x(l+1)m), (ylm+1, . . . , y(l+1)m)) =
mX
t=1

Ixlm+t 6=ylm+t

By additivity, the Hamming distance between x and y coincides with the sum of the
Hamming distances of the |Ω|−blocks between x and y: h(x, y) =

P|Ω|
l=1 hl(x, y).

3 Pure equilibrium strategies under informative noisy
channels.

Our main finding shows the existence of a pragmatic equilibrium Language, with a
universal structure or grammar. In fact, we show how to construct such a Language.
Language is pragmatic in the sense that the Receiver’ decoding rule depends on the
context, i.e, on the payoffs and on the initial probability distribution of the states of
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nature of Γ. Language has a universal grammar because the Sender’s corpus coding
rule does not depend on such specific parameters of Γ and can then be applied to
any sender-receiver game. Both rules are a best response to each other, generating
an equilibrim Language

In the noisy communication game Γnυ , the cardinality of the set of communication
sequences exceeds that of the set of states of nature. Then, given the set of basic
signals {0, 1} and n, the Sender constructs a dictionary or "corpus" of sequences
from {0, 1}n, the underlying set of meanings, by selecting |Ω| of them, one for each
state of nature. Each selected sequence is a standard prototype. For each realized
state of nature, the Sender utters to the channel a standard prototype. A Sender’s
pure strategy is then the standard prototype to be sent at each ωj . Recall that {σSj }j
is the set of the Sender’s pure strategies. We propose pure strategies that divide any
input sequence (x1j , . . . , x

n
j ) in |Ω| blocks of length m in such a way that all blocks

but the j-th consist of repetitions of signal 1 and the j-th block is composed of m
repetitions of signal 0.

For each prototype, the noise induces any output sequence in Y n = {0, 1}n,
say y. Once y is observed, the Receiver chooses her best response. Her choice is
based on the following meaning inference procedure: given the noisy information
transmission, she partitions the set of all possible received sequences {0, 1}n in a
collection of subsets which are called "the pragmatic variation classes", denoted
by {σRy }y. Each pragmatic variation class is associated to a particular standard
prototype and hence to a particular action. Therefore, the Receiver will play the
action dictated by the pragmatic variation including output sequence y. Since the
Receiver maps the observed output sequence into prototypes, his best reply to any
pure Sender’s strategy induces a categorization9 of the output space, Y n = {0, 1}n,
around the standard protoypes. Thus, at equilibrium the output space is partitioned
in a finite number of sets.

The main result states that the transmission of the corresponding standard pro-
totype (for a given state of nature) by the Sender, and the choice of the action
suggested by the classes of pragmatic variations (for a realized output sequence)
by the Receiver are a pure strategy Bayesian Nash equilibrium of Γnυ . Firstly, we
present the Theorem, proven in Appendix A, and then we show how to construct
such strategies.

Theorem 1 There exists an n0 ∈ N such that for all n ≥ n0, the pair of tuples

({bσSj }j , {bσRy }y) and the set of probabilities {p(σSj |y)}j, where p(bσSj |y) = p(y|σSj )p(σSj )
p(y) ,

9Categorization is the way by which a set of entities, identified with some finite dimensional
Euclidean space, is partitioned into a finite number of categories. Categories are sets of entities to
which we react in an identical or similar way. Partitions of the space that are generated by a set of
center points are well known as Voronoi diagrams or Dirichlet tessellations. In its simplest form, a
Voronoi diagram is a partition of some Euclidean space into a finite number of sets.
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for each bσSj , j = 1, . . . , |Ω|, is a pure strategy Bayesian Nash equilibrium of Γnυ.

The partition of the output space in the pragmatic variations of the standard
prototypes is related to the work on categorization based on prototypes (see Azrieli
and Lehrer, 2007, Jäger, 2007 and references herein). Azrieli and Lehrer(2007),
suggest a categorization model based on prototypes. They formulate the notion of
categorization by a geometrical notion of partitions of a finite dimensional Euclidean
space. They study a special kind of such categorizations: those that are generated
by extended prototypes.

Jäger (2007) analyzes the class of sender-receiver games, where the cardinality
of the set of meanings exceeds the size of the set of signals by several orders of
magnitude. Under these conditions, communication cannot be guaranteed to be
perfect because the number of signals provides an upper bound to the number of
meanings that can be communicated in a precise and unambiguous way. The players
should still strive to maximize the similarity between the meaning that the sender
wants to express and the interpretation that the receiver assigns to the transmitted
signal. The similarity function is a two-place function that measures the similarity
between two points of the meaning space and only depends on the Euclidean distance
(the maximal similarity is 1 and each point is maximally similar to itself). The utility
function is the expected similarity of the meanings and therefore it is inversely related
to the distance between the meaning that the sender tries to communicate and the
interpretation that the receiver assigns to the transmitted message. He shows that
under the replicator dynamics, a strict equilibrium set (the static characterization
of asymptotically stable sets of rest points for the asymmetric replicator dynamics)
is such that for each receiver’s pure strategy r, the inverse image of any s in the
sender’s best reply to r is consistent with the Voronoi tesselation of the meaning
space that is induced by the image of r.

On the contrary, in our noisy communication game, the receiver’s best reply to
any pure sender’s strategy induces a categorization of the underlying meaning space
around the standard protoypes. Our similarity function is the Hammig distance
between sequences. This partition is due to an inference process rather than to
an evolutionary dynamics. Thus, noisy communication processes induce pragmatic
categorizations of the meaning space. Unlike Jäger, the players’ utility function
reflects different payoffs under different standard prototypes, this meaning that it is
the weighted (by expected payoffs) distance what matters for categorization. Our
categorization takes then into account not only the pure similarity or distance to
the standard prototypes but also the expected payoffs of game Γ.

In the sequel, we offer the construction of the pure equilibrium strategies for the
Sender and the Receiver, i.e. {bσSj }j and {bσRy }y, respectively, in Γnυ when the noisy
channel υ(ε0, ε1) is informative with low levels of aggregate noise, i.e., ε0 + ε1 < 1.
The remaining case is similar and we omit it.
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3.1 The corpus and the pragmatic variations of the standard pro-
totypes.

One is tempted to look at Information Theory10 to design the players’ coding and
decoding strategies in our noisy communication game Γnυ . More specifically, Coding
Theory is concerned with the design of practical encoding and decoding systems to
achieve reliable communication over a noisy channel. The cardinality of the set of
messages is here the same than that of the original source vector. The general idea
is that the encoding system introduces systematic redundancy into the transmitted
message, while the decoding system uses this known redundancy to deduce from
the received message both the original source vector and the noise introduced by
the channel11. The basic Theorem of Information Theory is then the achievabil-
ity of the channel capacity by a communication protocol (based on encoding and
decoding rules) under the implicit assumption that the two communicating agents
commit ex-ante to following a particular encoding and decoding strategies before
the communication stage.

In game theoretical analysis players are required to take actions when they are
called upon to do so, therefore given a common knowledge encoding rule and an
output message, the receiver’s equilibrium conditions summarizes to choosing the
action corresponding to that state of nature for which expected payoffs are higher.
Furthermore, the cardinality of the set of messages exceeds in our case that of the
set of the original source. Thus, unlike Information Theory, the role of a decod-
ing rule in our problem is not that of recovering a string potentially perturbed by
the noise channel but instead that of inferring at equilibrium which of the actual
|Ω| valid messages was actually sent through the channel. Since we are interested
in encoding systems supporting equilibria, there is only one feasible decoding rule
which is given by the ’best response’ decoding rule12. Obviuosly, not all coding and
decoding rules from Information Theory can generate the conditions to satisfy the
Nash equilibrium conditions. This is so even when players’ strategies come from a
well-established theory guaranteeing a good rate of information transmission (see,
Hernandez, Urbano and Vila, 2009. By this reason the application of standard en-
coding systems, which are more efficient in terms of transmission rates for blocks

10 Information Theory is concerned with the theoretical limitations and potential of noisy commu-
nication systems. It deals with the problem of transmitting a block of bits of a given length k over a
binary noisy channel. To this end, the encoding rule is a rule that transforms each of the 2k vectors
of bits of some original source into a new vector of length k + l to be sent over the channel. The
extra l bits generate redundancies that will help the receiver to recover the original vector. The key
question is then the analysis of the trade off between the probability or error and the information
transmission rate that is achieved over the channel by the use of a specific coding system.
11There are mainly two different families of encoding rules for binary noisy channels: repetition

codes and linear block codes (where the most known are the Hamming codes).
12Decoding rules associated to standard code systems as Hamming (7,4) or random codes are

not, in general, best responses to the received string.
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of k bits, may not be too apropriate when designing simple and universal encoding
systems supporting equilibria.

The next step is to design a Sender’s encoding13 rule (the corpus of the standard
prototypes) which is a best response to the Receiver’s best response decoding. A
coding rule for our problem is a rule assigning a string of n symbols in {0, 1} to
each state of nature. We will use a variation of a repetition14 code: the block coding
rule. In the Appendix B, we offer a general characterization of the Receiver’s best
response decoding rule, for any feasible Sender’s corpus. Obviuosly, it depends of
the game parameters, the noise and the encoding parameters. To leave apart the
encoding parameters, and focus on the game theoretical aspects of the problem, we
construct an easy and universal encoding rule allowing a simple characterization
(for instance, in terms of the Hamming distance) of the best response decoding rule,
only depending on both the game and the noise parameters of any sender-receiver
game with noisy communication. As it will become clear in the sequel the block
coding rule will be independent of the game payoffs and of the initial probabilities
of the sates of nature.

3.1.1 The Corpus: Block Coding

The Sender construct the grammar of the Language from the set of basic signals
{0, 1} and the communication length. For a given length n, the set of possible
utterances is then {0, 1}n. Since each state ωj is associated with a receiver’s op-
timal action baj , then, the corpus consists of the |Ω| sequences in {0, 1}n given by
{bσS1 , .., bσS|Ω|} and each of the |Ω| sequences bσSj is the standard prototype encoding
the meaning "take the action baj". The Sender’s pure strategy assigns to each state
ωj a tuple bσSj = (x1j , . . . , xnj ). Assume that the number of states of nature |Ω| is a
multiple15 of n, i.e., there exists an integer m such that n = m |Ω|.

Since many sequences in {0, 1}n are possible, some grammar is needed to iso-
late structural regularities. In particular, our language grammar is based on a
block structure which allows us to construct a corpus as follows: each bσSj ∈ Xn =
(x1j , . . . , x

n
j ) where the element

xij =

½
0 if (j − 1)m− 1 ≤ i ≤ jm
1 otherwise

13The framework in our paper is quite different from that of Coding Theory. In particular, the
number of states of nature (the cardinality of Ω), from which one has to be transmitted, is fixed
and usually small.
14Repetition codes generate redundancy by the repetition of every bit of the message a pre-

arranged number of times. This family of codes can achieve arbitrarily small probability of error
only by decreasing the rate of transmission. However, they are useful for many practical purposes
as, for instance, when universality is required.
15 If n is not a multiple of m, one may consider m as the integer part of n

[Ω] . The remainder
elements would be considered without meaning.
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In other words, the input sequence (x1j , . . . , x
n
j ) is divided in |Ω| blocks of length

m in such a way that all blocks but the j-th consist of repetitions of signal 1 and
the j-th block is composed of m repetitions of signal 0.

Each standard prototype sequence is mapped one-to-one into one of the Re-
ceiver’s set of actions. Thus, the structure or grammar specifies that each prototype
sequence is positionally arranged, that is, in blocks. A first property of this grammar
is that prototypes have the maximal separation among them.

This property of the grammar is related to the way to compare any output se-
quence y to all prototypes. The block structure permits us to compare any sequence
y block by block. Thus, the relevant information when comparing y with prototypebσSl is only contained in the corresponding block l. Moreover, in this block l all
the remaining prototypes give the same information with respect to σSl . The fol-
lowing lemma formalizes this property, where the block Hamming distance between
sequences is the measure distance.

Lemma 2 For all k, k0 = 1, 2, . . . , |Ω|, k 6= k0we have that
1. hl(bσSk , y) = hl(bσSk0 , y) if k 6= l 6= k0

2. hk(bσSk , y) + hk(bσSk0 , y) = m if k 6= k0

The players’ strategies can be understood as a communication protocol. One of
the most desired properties in communication protocol design is universality. The
corpus satisfies this property since it does not depend on the specific parameters
of Γ, that is, on the payoffs and the initial probability distribution of the states of
nature.

In summary, the corpus consists of |Ω| different standard prototypes such that
each prototype reserves m locations for the signal 0 and the remainder locations
contain the signal 1. Thus, the Sender’s pure strategy assigns to each state ωj the
standard prototype bσSj = (1, 1, . . . , 1, . . . , 0, 0, . . . , 0| {z }

j

, . . . , 1, 1, . . . , 1| {z }
|Ω|

).

3.1.2 The Receiver’s best response: The pragmatic variations of the
standard prototypes.

The Receiver has to take an action in Γ after hearing an output sequence y maxi-
mizing her expected payoffs. Equivalently, for each y she chooses the action bal(y)
such that

|Ω|X
j=1

p(bσSj )|y)u(bal|ωj) ≥ |Ω|X
j=1

p(bσSj )|y)u(ak|ωj),
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for any other k 6= l which, given both the linearity of the Receiver’s payoff func-
tions in probabilities {p(σSl |y)}l, l = 1, ..., |Ω| and the matrix payoffs, is equal to,
p(bσSl |y)Ml ≥ p(bσSk |y)Mk, or

p(σSl |y)
p(σSk |y)

≥ Mk
Ml
.

To solve this problem the Receiver computes the corresponding p(bσSj |y). By
Bayes’ rule, such conditional probability is p(σSj |y) =

p(y|σSj )p(σSj )
p(y) and the likelihood

ratio of messages bσSj and bσSk , conditional to the observed y is

p(bσSl |y)
p(bσSk |y) =

p(y|σSl )p(σSl )
p(y)

p(y|σSk )p(σSk )
p(y)

=
ql
qk

p(y|bσSl )
p(y|bσSk )

where p(y|bσSj ) is given by the channel’s errors probabilities and by the Sender’s
standard prototypes.

The next proposition states that given a noisy communication channel υ =
{ε0, ε1} and the set of standard prototypes, the likelihood ratio of input signalsbσSj and bσSk can be written in terms of the noisy parameters and the block ham-
ming distance between the output signal y and the specific Sender’s strategies. In
Appendix A some easy but cumbersome calculations show that.

Proposition 1 For all k, l = 1, . . . , |Ω|, k 6= l and for all y ∈ Y,

p(bσSl |y)
p(bσSk |y) = ql

qk

µ
ε0

1− ε0

ε1
1− ε1

¶hl(σ
S
l ,y)+hk(σ

S
l ,y)−m

(1)

The Receiver has to infer a meaning (to take an action) from the received se-
quence. To do so she has to assign the received sequence to one of the standard
prototypes. This assignment is based on both the number of different elements (er-
rors) that each two standard prototype sequences bσSl and bσSk may have with respect
to the observed output sequence y and on the ratio of expected payoffs Mkqk

Mlql
. More

precisely, the Receiver’s pure equilibrium strategy generates a partition of output
set Y n based on both the above likelihood ratio and expected payoffs.

For each l ∈ {1, . . . , |Ω|}, compute first the parameters {Clk}l 6=k as: Clk =

ln
Mkqk
Mlql

ln ε0
1−ε0

ε1
1−ε1

+m, and denoted "vicinity bounds", where we take the integer approxi-

mation of the numbers. There are |Ω| × (|Ω| − 1) of such parameters Clk that can
be arranged in the following matrix,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ C21 C31 · · · Cl1 · · · C|Ω|1
C12 ∗ C32 · · · Cl2 · · · C|Ω|2
C13 C23 ∗ · · · Cl3 · · · C|Ω|3
· · · · · · · · · · · · · · · · · · · · ·
C1l C2l C3l · · · ∗ · · · C|Ω|l
· · · · · · · · · · · · · · · · · · · · ·
C1|Ω| C2|Ω| C3|Ω| · · · Cl|Ω| · · · ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where each column gives the constraints defining subsets of Y n and with typical
element Clk. This parameter is an upper bound on the distance between blocks l and
k in y and the corresponding ones in bσSl . Thus, Clk bounds the number of permitted
mistakes to ensure that output sequence y comes from bσSl instead of coming frombσSk .

The properties16 of the vicinity bounds Clk are the key to characterize the Re-
ceiver’s strategy. Namely, the sign of the Clk establishes when an action will be
played. Secondly, the pair Clk and Ckl determines the condition under which a
partition is generated. Finally, parameters Clk are an increasing function of n. For-
mally,

1. The expression ln( ε0
1−ε0

ε1
1−ε1 ) is negative for informative channels with low

levels of aggregate noise and since m is the integer part of n
|Ω| we may have negative

Clk. This will give rise to either a degenerate partition or, in case that a complete
column is negative, to the not playing at all the corresponding action. We will come
back to this case when tackling efficiency.

2. Since Clk =
ln
Mkqk
Mlql

ln ε0
1−ε0

ε1
1−ε1

+m and Ckl =
ln

Mlql
Mkqk

ln ε0
1−ε0

ε1
1−ε1

+m, and both are integer

approximations, then either Clk+Ckl = 2m−1 whenever qlMl 6= qkMk or Clk+Ckl =
2m whenever qlMl = qkMk.

3. Let us specify the size of the standard prototype block, m, in parameters
{Clk}l,k by denoting any of them as Cm

lk . If the length of the input sequence increases

up to n+ |Ω|, then m = n+|Ω|
|Ω| = m+ 1, and Cm+1

lk =
ln

Mkqk
Mlql

ln ε0
1−ε0

ε1
1−ε1

+m+ 1, and thus,

Cm+1
lk = Cm

lk + 1.

Output set Y n is next partitioned in subsets Yl with l = {1, . . . , |Ω|}, the prag-
matic variation of σSl , whose specific expression depends on the noisy nature of the
communication channel, the odds of expected payoff and the length of the commu-
nication. To define each subset Yl, we divide the set of states of nature in states
16Sets Yl, l = {1, . . . , |Ω|} do not merely recover the information sent by the Sender. Notice that

by Bayesian updating, whenever input sequence σSl is more likely than input sequence σ
S
k for any

observed output signal y, then the conditional probability ratio p(σSl |y)
p(σS

k
|y) is bigger than 1. Take for

instance ε0+ ε1 < 1 and let Yl denote all output sequences y ∈ Y n such that σSl is more likely than
σSk , then by expression (2) of Proposition 1, this implies that

Yl = {y ∈ Y n|hl(σSl , y)) + hk(σ
S
l , y)) <

ln qk
ql

ln ε0
1−ε0

ε1
1−ε1

+m, for all k 6= l, and k = {1, . . . , |Ω|}}

which is different from the above partition Yl. Moreover when input sequences are uniformly
distributed, i.e., ql = qk, for all k 6= l, and k = {1, . . . , |Ω|}, then

Yl = {y ∈ Y n|hl(σSl , y)) + hk(σ
S
l , y)) < m, for all k 6= l, and k = {1, . . . , |Ω|}}
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k, different from states l in expected payoffs, that is, qlMl 6= qkMk, and the other
states where their expected payoffs coincide. In this (symmetric) later case, a rule
to break tyings is needed. Our rule is the same for every pragmatic variation, coin-
cides with the length of the block and is independent of both the noise and expected
payoffs payoffs. Let Ω̃l = {k ∈ {1, . . . , |Ω|} such that qlMl 6= qkMk}. Set Ω̃l could
be empty when, for instance, Γ had the same payoffs at each state and the priors
were uniformly distributed.

As already said, we are considering informative channel with low levels of ag-
gregate noise, ε0 + ε1 < 1. Here, the matching between the output and the input
signal yields a more accurate posterior odds. Then, the elements of the partition are
determined by a vicinity bound by above on the number of the permitted block ham-
ming distances (errors) between a standard prototype bσSl and the realized output
sequence y.

Yl = {y ∈ Y n| hl(bσSl , y)) + hk(bσSl , y)) ≤ Clk, for all k ∈ Ω̃l
hl(bσSl , y)) + hk0 (bσSl , y)) ≤ Clk0 , for all k

0
� /∈ Ω̃l , k

0
< l

hl(bσSl , y)) + hk0 (bσSl , y)) < Clk0 , for all k
0
/∈ Ω̃l , k

0
> l}

Finally, for each realized y, the Receiver’s pure equilibrium strategy is

bσRy = bal ⇔ y ∈ Yl

Given the above description of Yl, and as shown in the Appendix A, sets Yl,
l = {1, . . . , |Ω|}, are a true partition of Y n. Therefore, the Receiver’s best reply to
any pure Sender’s strategy induces a categorization of the potential meaning space,
Y n = {0, 1}n, around the standard protoypes.

The process to construct the specific sequences belonging to each Yl is a little
cumbersome but the following example nicely illustrate the whole construction.

4 Examples

Example 1. Consider the incomplete information two-player game Γ with three states
of nature where nature chooses ωj , j = 1, 2, 3 according to law q = (q1, q2, q3) =
(0.5, 0.25, 0.25). The set of actions for player R is A = {a1, a2, a3}, and payoffs for
the three states of nature are M1 = 1, M2 = 7 and M3 = 43, or in matrix form:

a1 a2 a3
ω1
ω2
ω3

⎛⎝ (1, 1) (0, 0) (0, 0)
(0, 0) (7, 7) (0, 0)
(0, 0) (0, 0) (43, 43)

⎞⎠
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Suppose that the players communicate through the noisy channel υ(ε0, ε1) with
associated transition probabilities p(1 | 0) = ε0 = 0.1 and p(0 | 1) = ε1 = 0.6, and
that players can only communicate up to n times. Thus, the communication channel
is υ = {0.1, 0.6} and Γnυ is the associated extended communication game.

Suppose that n = 6, then for each state ωj , j = 1, 2, 3, the Sender divides the
standard prototype sequences (x1j , . . . , x

6
j ) ∈ X6, in 3 blocks of length m = n

|Ω| = 2,
where the j-th block, consists of two consecutive 0’s and the other blocks of two
consecutive 1’s. Thus, then the corpus consists of the Sender’s 3-tuple of standard
prototypes: bσS1 = 001111, bσS2 = 110011 and bσS3 = 111100.

To construct the matrix of parameters Clk, the Receiver considers first the matrix
of elements

lnMkqk
Mlql

ln ε0
1−ε0

ε1
1−ε1

= Clk −m

⎛⎝ ∗ 0.70 1.71
−0.70 ∗ 1.01
−1.71 −1.01 ∗

⎞⎠
Next, the output set Y = {0, 1}6 is partitioned by the Receiver in subsets Yl =

{y|hl(bσSl , y)) + hk(bσSl , y)) ≤ Clk,∀k, l = 1, 2, k 6= l}, where {Y1, Y2, Y3} are defined
by the above matrix as follows:

Y1 = {y ∈ {0, 1}6 |h1(001111, y) + h2(001111, y) ≤ 1 = C12
|h1(001111, y) + h3(001111, y) = 0 = C13 }

Y2 = {y ∈ {0, 1}6 |h2(110011, y) + h1(110011, y) ≤ 2 = C21
|h2(110011, y) + h3(110011, y) = 0 = C23 }

Y3 = {y ∈ {0, 1}6 |h3(111100, y) + h1(111100, y) ≤ 3 = C31
|h3(111100, y) + h2(111100, y) ≤ 3 = C32 }

Note that the worse expected payoffs in states 1 and 2 as compared to those in
state 3, makes that both C13 = C23 = 0, i.e., no Hamming distance (mistake) will
be permitted between the observed y and the standard prototype bσS1 , if the Receiver
has to assess that y comes from bσS1 instead of coming from bσS3 , and similarly for the
standard prototype bσS2 .

How to construct the pragmatic variations around the standard prototypes?
Take the minimum of the Clk’s. In our example consider, for instance, Y1, where
this minimum is given by the Hamming distance of any output sequence y to blocks
1 and 3, i.e. h1(001111, y) + h3(001111, y) = 0. Parameter C13 = 0 implies that no
error is permitted in blocks 1 and 3 together and hence these blocks in all sequences
belonging to Y1 have to be equal to the first and third blocks, respectively, of bσS1 =
001111, i.e. sequences of the form {00 ∗ ∗11}. This means that the pragmatic
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variation associated to σS1 does not permit any variation between blocks 1 and 3,
thus fixing the elements of these two blocks in Y1. Now, let us consider the elements
of block 2 of Y1, where C12 = 1. This implies that at most one error is permitted in
blocks 1 and 2 together, but since C13 = 0, this error can only be in block 2. Hence
block 2 in all sequences in Y1 is composed of the sequences {(1, 1), (0, 1), (1, 0)}.
Thus, block 2 permits all the variations around bσS1 . The distance asymmetries
among blocks reflects the expected payoffs asymmetries of Γ. Similar reasoning
will give us the set of sequences in Y = {0, 1}6 belonging to Y2. Finally, notice
that by lemma 2 and by the integer approximation C32 + C23 = 2m − 1 ≤ 2m
and C31 + C13 = 2m − 1 ≤ 2m, and the sequences belonging to Y3 can be easily
characterized.

Thus, the set17 Y = {0, 1}6 is partitioned in three sets of sequences18 Y1, Y2 and
Y3. where

Y1 =

⎧⎨⎩
{(0, 0) (1, 1) (1, 1)}
{(0, 0) (0, 1) (1, 1)}
{(0, 0) (1, 0) (1, 1)}

⎫⎬⎭ Y2 =

⎧⎪⎪⎨⎪⎪⎩
{(1, 1) (0, 0) (1, 1)}
{(1, 0) (0, 0) (1, 1)}
{(0, 1) (0, 0) (1, 1)}
{(0, 0) (0, 0) (1, 1)}

⎫⎪⎪⎬⎪⎪⎭
and Y3 = {0, 1}6 − Y1 − Y2.

Then, for each y the Receiver’s pure equilibrium strategy is:

bσRy = baj ⇐⇒ y ∈ Yj , j = 1, 2, 3

and equilibrium expected payoff are:

ΠS({bσSj }j ,nbσRy o
y
) = ΠR({bσSj }j ,nbσRy o

y
) = Πυ =

3X
j=1

X
y∈Y n

qjp(y|bσSj )u(bσR(y), ωj)
=

3X
j=1

qjMj

X
y∈Y n

qjp(y|bσSj ) = 3X
j=1

qjp(Yj |bσSj )Mj

17Notice also that the corresponding sets Yl only coming from Bayesian updating are by point 2)
in the main properties of Yl:

Y1 = {y ∈ {0, 1}6 |h1(001111, y) + h2(001111, y) ≤ 2 = m
|h1(001111, y) + h3(001111, y) ≤ 2 = m

Y2 = {y ∈ {0, 1}6 |h2(110011, y) + h1(110011, y) ≤ 1 = m
|h2(110011, y) + h3(110011, y) ≤ 0 < m

Y3 = {y ∈ {0, 1}6 |h3(111100, y) + h1(111100, y) ≤ 1 = m
|h3(111100, y) + h2(111100, y) ≤ 0 = m

Take for instance the sequence y = 111111, y ∈ Y1 but y /∈ Y1.
18Notice that sets Y1,Y2 and Y3 are a partition of Y . For in order a sequence of Y3 is also in Y1,

it is needed a Hamming distance of 2m. But the maximum distance is 2m− 1.

20



where p(Yj |bσSj ) = P
y∈Yj p(y|bσSj ). The value of these probabilities in our example

are given by: p(Y1|bσS1 ) = 0.083; p(Y2|bσS2 ) = 0.130 and p(Y3|bσS3 ) = 0.994, and then
Πυ = 10.96. The ex-ante payoffs of noiseless communication are

P3
j=1 qjMj = 13

and the maximum payoffs of the silent game are q3M3 = 10, 75. Then, Πυ is between
them.

Example 2. A symmetric game: Consider the game of example 1, but with
q1M1 = q2M2 = q3M3 =

1
3 instead. This game is equivalent to one with q1 = q2 =

q3 =
1
3 and payoffs M1 =M2 =M3 = 1. All the pragmatic variations are now,

Y1 = {y ∈ {0, 1}6 |h1(001111, y) + h2(001111, y) < 2 = m
|h1(001111, y) + h3(001111, y) < 2 = m

Y2 = {y ∈ {0, 1}6 |h2(110011, y) + h1(110011, y) ≤ 2 = m
|h2(110011, y) + h3(110011, y) < 2 = m }

Y3 = {y ∈ {0, 1}6 |h3(111100, y) + h1(111100, y) ≤ 2 = m
|h3(111100, y) + h2(111100, y) ≤ 2 = m }

In this symmetric case, the rule to break tyings is the same for every pragmatic
variation, coincides with the length of the blocks and is independent of both the
noise and payoffs.

Example 3. Let us come back to the particular case |Ω| = 2, with n = 4, where
an alternative corpus and standard could be bσS1 = 0000 and bσS2 = 1111. Further
assume that ε0 = ε1 = ε.

Applying our best-reply reasoning to the above corpus, the Receiver’s pragmatic
variations for any received sequence y, when q1M1 6= q2M2 are:

Y1 = {y ∈ {0, 1}4 |h1(0000, y) + h2(0000, y) ≤ C12 }
Y2 = {y ∈ {0, 1}4 |h2(1111, y) + h1(1111, y) ≤ C21 }

and the Receiver’s pure strategy is as before:

bσRy = baj ⇐⇒ y ∈ Yj , j = 1, 2

Notice that: 1) If Γ has symmetric expected payoffs, i.e., q1M1 = q2M2, then
C12 = C21 = m = n

2 , and the Receiver’s best response when she hears a y is the
well-known majority rule: playing ba1 whenever the number of 0́s is strictly greater
than the number of 1́s and ba2 whenever the number of 1́s is greater than or equal
to the number of 0́s. Nevertheless, when q1M1 6= q2M2, the majority rule is not a
best-response. 2) The set of pragmatic variations has the same structure than ours,
bur referred to the alternative standard prototypes.
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5 Efficiency Analysis

This section analyzes the power of our pragmatic Language as a coordination device
under noisy communication. This analysis entails to first assessing its performance
as a meaning inference model, i.e., to bound the size of the potential wrong inferences
of meaning as a function of the parameters ε and n. Then, efficiency is analyzed
by comparing, for each communication length n, how close ex-ante payoffs are to
those of reliable communication, thus providing, for a given payoff-approximation
parameter, the communication threshold length.

Let Γυ0 be the game where the Sender communicates the realized state of nature
with no mistake, i.e., ε0 = ε1 = 0, and let Πυ0 be the associated Nash equilibrium
ex-ante payoffs where agents play the action pair with positive payoffs, at each state
of nature,

Πυ0 =

|Ω|X
j=1

qjMj

Alternatively, the common ex-ante expected payoffs of our extended communi-
cation game Γnυ were denoted by Πυ. To stress the dependence of such payoffs on
the communication length n, let us denote them as Πnυ . Then,

Πnυ = Π
n
υ({bσSj }j , {bσRy }y) = |Ω|X

j=1

qjMjp(Y
n
j |bσSj )

where p(Y n
j |bσSj ) =Py∈Y n

j
p(y|bσSj ).

Then

Πυ0 −Πnυ =
|Ω|X
j=1

qjMj(1− p(Y n
j |bσSj ))

The difference between the above expected payoffs depends on probabilities
p(Y n

j |bσSj ). Each of this quantities measures the probability mass of the pragmatic
variation of each standard prototype bσSj : the Receiver’s probability of playing baRj
when the Sender utters bσSj in a communication episode of length n. Thus, a prob-
ability p(Y n

j |bσSj ) close to one means that in spite of initial misunderstandings, the
Receiver is able to properly infer the Sender’s meaning from bσSj .

The first finding is that our pragmatic Language performs (probabilistically)
quite well as an inference meaning device, under noisy communication. To show
this, we construct an upper bound on 1 − p(Y n

j |bσSj ) = p(Y n − Y n
j |bσSj ), i.e. the

probability of not inferring the action baRj by the Receiver when the Sender utters
sequence bσSj . By definition of each Yj , this wrong inference takes place whenever
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some vicinity bounds are not fulfilled, i.e., whenever hj(bσSj , y) + hk(bσSk , y) > Cjk for
k ∈ K, where K is any non-empty subset in {1, 2, .., j − 1, j + 1, ...|Ω|}. Then, we
partition the event Y n − Y n

j into a series of disjoint events EK , where each of them
is formed by the output sequences not satisfying the corresponding vicinity bounds
Cjk for k ∈ K. In Appendix A it is proven that the probability of such events,
p(EK |bσSj ), and then p(Y n − Y n

j |bσSj ), can be written as a polynomial of the bigger
noise parameter, say ε1, and the smallest vicinity bound (which depends on n). The
next Proposition states this result:

Proposition 2 Given a noisy communication channel υ(ε0, ε1) with ε0 < ε1 and
game Γnυ, for any n ≥ |Ω|, then

p(Y n − Y n
j |bσSj ) = 1− p(Yj |bσSj ) ≤ ε

cj+1
1 φj(ε0, ε1)

where Cj = min{Cjl|l = 1, ..., |Ω|; j 6= l} and φ(ε0, ε1) is a function on ε0 and ε1
such that 0 ≤ φj(ε0, ε1) ≤ 1, for each j.

The above Proposition says that there is an (small) upper bound on the proba-
bility of wrong inferences. The formula precisely measures such a bound19.

We turn next to the efficiency issue. For a fixed communication length n, a pair
of equilibrium strategies ({bσSj }j , {bσRy }y) is η-efficient if

Πυ0 −Πnυ < η

For any η > 0, we offer a threshold length bn such that both the associated corpus
and set of pragmatic variations support η-efficient equilibrium strategies.

By Proposition 2 and since 0 ≤ φj(ε0, ε1) ≤ 1, the difference between reliable
and noisy communication expected payoffs is given by

Πυ0 −Πnυ =
|Ω|X
j=1

(1− p(Y n
j |bσSj ))qjMj =

|Ω|X
j=1

ε
cj+1
1 φj(ε0, ε1)qjMj ≤

|Ω|X
j=1

ε
cj+1
1 qjMj

19This bound allow us to obtain asymptotic properties of the proposed equilibrium strategies.

By the above proposition, 1 ≥ p(Yj |σSj ) ≥ 1 − ε
cmj +1

1 φn(ε0, ε1), where c
m
j is a function of n, since

m = n
|Ω| and polynomials φn(ε0, ε1) also depend on n. By the properties of the Clk parameters,

cmj grows by a unit whenever the block length m = n
|Ω| increases by one. Since ε0, ε1 < 1, then

limn→∞ ε
cj+1

1 = 0 and limn→∞ φn(ε0, ε1) is a constant, hence:

lim
n→∞

p(Y n
j |σSj ) ≥ 1− lim

n→∞
ε
cmj +1

1 φn(ε0, ε1) = 1

Therefore, the limit of (Πυ0 − {Πn
υ}n) is 0 when n goes to infinity, since this limit is qjMj −

limn→∞ qjMj{p(Y n
j |σSj )}n and it is zero, for all j = 1, . . . , |Ω|, whenever limn→∞{p(Y n

j |σSj )}n = 1
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where ecj = min{Cjl|l = 1, ..., |Ω|; j 6= l}. Denote ec = min{ecj |j = 1, ..., |Ω|}, and
assuming, without loss of generality, that q1M1 ≤ ... ≤ q|Ω|M|Ω|, then the vicinity
bound ec is

ec = ln
q|Ω|M|Ω|
q1M1

ln ε0ε1
(1−ε0)(1−ε1)

+
n

|Ω|

Therefore, to get an η-approximation,

Πυ0 −Πnυ ≤ εc+11

|Ω|X
j=1

qjMj < η

Or, in other words,
εc+11 <

ηP|Ω|
j=1 qjMj

And, since ln ε1 < 0,

ec > 1

ln ε1
ln

ηP|Ω|
j=1 qjMj

>
1

ln ε1
ln

ηP|Ω|
j=1 qjMj

− 1

and bn is bounded by the expression
bn > |Ω|

⎛⎝ 1

ln ε1
ln

ηP|Ω|
j=1 qjMj

−
ln

q|Ω|M|Ω|
q1M1

ln ε0ε1
(1−ε0)(1−ε1)

⎞⎠
The minimum length of the communication episode that allows η-efficiency de-

pends on the relative approximation level, the biggest amount of noise and the
maximum payoff-range. Notice that if the first term of the right hand side of the
above equation were negligible, then the length bn would coincide with the minimal
length guaranteeing a positive matrix of the Clk’s. Therefore, the second term of the
right hand side is a necessary condition to generate non-empty pragmatic variations
for all the prototypes. The first term adds then the time needed to span such prag-
matic variations in order to reduce the chances of misunderstandings and increase
expected payoffs according to the η-efficiency.

Theorem 2 Let η > 0, for any communication length n ∈ [ bn, ∞),
Πυ0 −Πnυ < η

24



We would like to remark that although the corpus works quite efficiently in most
of the cases, there may exist situations where communication is so short that some
prototypes may be enable to generate a meaning. This create inefficiencies that
could be easily avoided by a reassignment of the signals. More precisely, in the
corpus construction, n

|Ω| out of the available n signals, those equal to 0, are used to
distinguish each standard prototype from any other one. If there exists a state ωj
such that Cjk < 0 for any k = 1, ..., |Ω|, k 6= j, then Yj = ∅ and p(Yj | σSj ) = 0. In
this case, the Receiver’s action baj will never be chosen and the n

|Ω| signals devoted

to distinguish σSj from the other prototypes are wasted. To avoid this inefficiency,
the corpus is modified such that the 0’ signals used in those prototypes sequences
such that p(Yj | σSj ) = 0 are reassigned to the other prototypes.

Example 4. Consider the incomplete information two-player game Γ = {Γ1,Γ2,Γ3},
where nature chooses ωj according to law q = (q1, q2, q3) = (0.1, 0.3, 0.6). Payoffs
for the three states of nature are M1 = 3, M2 = 20 and M3 = 100.

The matrix of parameters Clk −m is ,⎛⎝ ∗ 1.67 2.95
−1.67 ∗ 1.29
−2.95 −1.29 ∗

⎞⎠
For n = 3, then m = n

|Ω| = 1, and the sets of pragmatic variations Y1 and Y2 are
empty, the corresponding actions ba1 , ba2 will never be chosen and the communication
game is equivalent to the silent game, where no-communication takes place. On the
other hand, for n ≥ 9, and then m ≥ 3, all the pragmatic variations are non-empty
and the Receiver’s three actions will be played with ex-ante positive probability.

For the intermediate value of n = 6 (m = 2), the matrix of vicinity bounds, Clk,
after the integer approximations, is:⎛⎝ ∗ 3 4

0 ∗ 3
−1 0 ∗

⎞⎠
In this case the prototype σS1 = 001111 is enable to generate a meaning (the

corresponding Receiver’s action ba1 ) and the two 0-signals of the sequence devoted
to distinguish it from the others are wasted. To avoid this inefficiency, players could
act as if they were playing another (truncated) game, with only two states of nature
ω2 and ω3, each of them taking place with probabilities eq2 = q2 + q1

q2
q2+q3

andeq3 = q3 + q1
q3

q2+q3
, respectively. In this case the new corpus consists of the two

standard prototypes eσS2 = 000111, eσS3 = 111000 and no signal is wasted now.
To formalize this idea, consider the game Γ = {Γ1, ...,Γ|Ω|} , where Γj is chosen

by nature with probability qj , and its communication extension by adding n uses of
the noisy channel υ, denoted by Γnυ . Let as assume, without loss of generality, that
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p(Y1|σS1 ) ≥ p(Y2|σS2 ) ≥ ... ≥ p(Y|Ω|| σS|Ω|) and let j0 = min{j = 1, ..., |Ω||p(Yj |σSj ) >
0}.

Given Γ and Γnυ , define the auxiliary truncated game Γ = {Γ1, ....,Γj0} where
nature chooses state ωj (and the the game Γj) with probability

eqj = qj +
qjPj0
l=0 ql

|Ω|X
k=j0+1

qk ≥ qj

for j = 1, . . . , j0.

Let eΓnυ the corresponding extended game and eσSj , j = 1, . . . , j0, the standard
prototypes of the new corpus. Since p(Yj |eσSj ) ≥ p(Yj |σSj ) for j = 1, . . . , j0 and
p(Yj |σSj ) = 0 for j = j0 + 1, . . . , |Ω|, we have that

eΠnυ = j0X
j=1

eqjMjp(Y
n
j |eσSj ) ≥ j0X

j=1

qjMjp(Y
n
j |σSj ) =

|Ω|X
j=1

qjMjp(Y
n
j |σSj ) = Πnυ

and no message is wasted trying to distinguish among actions that will never be
chosen.

6 Concluding Remarks

We have shown that pragmatic Languages with a universal grammar are a power-
ful coordination device when there may exists communication misunderstandings.
Reduced dictionaries20, common knowledge simple grammars and standard proto-
types help individuals to coordinate in spite of initial misunderstandings. This is
accomplished by facilitating the inference of meaning and thus generating the prag-
matic variations around each standard prototype. Our approach sheds light to the
formation not only of target-oriented languages, but also to specific "organization"
languages, professional languages, etc. .

When considering real life time-constraints, a language with structure based on
different orderings of the enumerations turns out to be more useful for learning
purposes rather than for meaning inference. Nevertheless, languages with universal
grammars appear to have emerged because they ensure the successful transmission
of languages themselves. The Chinese Language is an example of how the successful
20Nowak, Krakauer and Dress (1999) argue that, because of the noise, the fitness of a language

cannot be increased arbitrarily by just adding more signals. On the contrary, the fitness can be
increased by combining a small number of signal into words. This is called "phonemes" by linguists.
Modern human languages have a limited number of phonemes: as reported by Nowak, Krakauer and
Dress, all of 317 languages in the University of California Los Angeles Segment Inventory Database
(UPSID) have between 11 and 141 phonemes, but 70% of these languages have between 20 and 37
phonemes.
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transmission of information shapes some language characteristics. Spoken Chinese
is distinguished by its high level of internal diversity (it is pragmatic and very local)
though all spoken varieties of Chinese21 are tonal and analytic; dictionaries are
small with 6 vowels and 15 consonants and the grammar is compositional. On the
contrary, written Chinese is highly complex: it comprises the written symbols used
to represent spoken Chinese. Chinese characters do not constitute an alphabet or a
compact syllabary; they are instead built up from simple parts representing objects
or abstracts notions. There are around 47.035 ideograms or hanzy, but Chinese
people do not manage more than 8000 of them.

One of the frequently asked questions in studies on language origins and evolution
is how universal grammar structures in human languages could have emerged. One
line of research assumes that such structures emerged from exploiting regularities
found in protolanguages. Universal structures in language could have emerge when
the learning examples do not cover the entire language (i.e., there was a bottleneck
on the transmission of language). Other researchers have assumed that the ability to
use syntax has evolved as a biological adaptation. In their seminal article which re-
ignited much of recent burgeoning interest in language evolution, Pinker and Bloom
(1990) argue persuasively that "a specialization for grammar evolved by a conven-
tional neo-Darwinian process" (page 707), suggesting that human have evolved an
innate, genetically specified module in the brain, which specifies a formal coding of
the principles of Universal Grammar. These authors are firmly of the opinion that
the selective advantage of the communicative function of language can explain the
evolution of the language faculty itself. But, Chomsky (1988), perhaps somewhat
surprisingly, given his introduction of the very idea of Universal Grammar, argues
that the role of natural selection in language evolution is very limited. Much effort
is in computer simulations of language evolution is been done to give more precise
answers.

To conclude, we would like to call the attention about the way of precisely
defining the notions of a language and a "common language", from an economic
viewpoint. As stressed in Balinski and Laraki (2007,b) different models need different
notions of both languages and common knowledge languages but some unifying rules
are still lacking.
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8 Appendix A

Proof of Lemma 1: If ε0 + ε1 < 1, then p(1|0) = ε0 < 1 − ε1 = p(1|1) and
p(0|1) = ε1 < 1 − ε0 = p(0|0). Clearly, the conditional probability of receiving a
0, when a 0 was sent is higher than the one of receiving a 0 when a 1 was sent,
therefore, p(0|0)p(0|1)1. And similarly for the conditional probability of receiving a 1, i.e.,
p(1|1)
p(1|0) 6= 1. Thus, information transmission is informative since p(r|s) 6= p(r|bs) for
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any r ∈ {0, 1} and s, bs ∈ {0, 1} and thus,
p(s|r)
p(bs|r) = p(r|s)p(s)

p(r|bs)p(bs) 6= p(s)

p(bs)
Now, let r = 0 and br = 1, s = 0 and bs = 1, then p(r|s) = p(0|0) = 1 − ε0,

p(br|bs) = p(1|1) = 1− ε1, p(r|bs) = p(0|1) = ε1 and p(br|s) = p(1|0) = ε0. Let us check
that output signal 0 is more favorable than output signal 1, for input signal 0:

p(r|s)
p(r|bs) = p(0|0)

p(0|1) =
(1− ε0)

ε1
>

ε0
(1− ε1)

=
p(1|0)
p(1|1) =

p(br|s)
p(br|bs)

Similarly, letting now r = 1 and br = 0, s = 1 and bs = 0, then p(r|s) = p(1|1) =
1 − ε1, p(br|bs) = p(0|0) = 1 − ε0, p(r|bs) = p(1|0) = ε0 and p(br|s) = p(0|1) = ε1. As
above, since (1 − ε0)(1 − ε1) > ε1ε0, then p(r|s)p(br|bs) > p(r|bs)p(br|s) and output
signal 1 is more favorable than output signal 0, for input signal 1.

If ε0+ε1 > 1, then p(1|0) = ε0 > 1−ε1 = p(1|1) and p(0|1) = ε1 > 1−ε0 = p(0|0).
In words, the conditional probability of receiving a 0, when a 0 was sent is lower
than the one of receiving a 0 when a 1 was sent. And similarly for the conditional
probability of receiving a 1. Information transmission is informative again since
p(r|s) 6= p(r|bs) for any r ∈ {0, 1} and s, bs ∈ {0, 1}, and then

p(s|r)
p(bs|r) = p(r|s)p(s)

p(r|bs)p(bs) 6= p(s)

p(bs)
Moreover, let r = 1 and br = 0, s = 0 and bs = 1 then output signal 1 is now more

favorable than output signal 0, for input signal 0, since p(r|s) = ε0 > (1 − ε1) =
p(r|bs) and p(br|bs) = ε1 > (1 − ε0) = p(br|s) and then ε1ε0 > (1 − ε0)(1 − ε1), or
p(r|s)p(br|bs) ≥ p(r|bs)p(br|s). For the same reason, taking now r = 0 and br = 1, s = 1
and bs = 0, output signal 0 is now more favorable than output signal 1, for input
signal 1.

Finally notice that when ε0 + ε1 = 1, then p(1|0) = ε0 = 1 − ε1 = p(1|1) and
p(0|1) = ε1 = 1 − ε0 = p(0|0). Now input signals are not informative at all, since
the conditional probability of receiving a 0, when a 0 was sent is equal to the one
of receiving a 0 when a 1 was sent. And similarly for the conditional probability of
receiving a 1. In other words, p(r|s) = p(r|bs), for any r ∈ {0, 1} and s, bs ∈ {0, 1}
and then information transmission is useless since

p(s|r)
p(bs|r) = p(r|s)p(s)

p(r|bs)p(bs) = p(s)

p(bs)
Finally, if ε1 = (1 − ε0) and ε0 = (1 − ε1), then for any s ∈ {0, 1} and any

r ∈ {0, 1}, ε1ε0 = (1 − ε0)(1 − ε1), or p(r|bs)p(br|s) = p(r|s)p(br|bs) and then output
signal 0 (or 1) is as informative as output signal 1 (or 0), for input signal 0 (or 1),
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i.e., when output signal 0 (or 1) is observed, then it is equally likely that it comes
from input signal 0 (or 1) than from input signal 1 (or 0).

Proof of Lemma 2: 1) Recall that bσSk = {xjk}j∈{1,...,n} and bσSk0 = {xjk0}j∈{1,...,n}
where xjk = xjk0 = 1 but the blocks k and k0 (i.e. j such that (i− 1)m− 1 ≤ j ≤ im
for i ∈ {k, k0}). Therefore, the Hamming distance in the block l is:

hl(bσSk , y) =
mX
j=1

Iylm+j 6=(σSk )lm+j
=

mX
j=1

Iylm+j 6=1

=
mX
j=1

Iylm+j 6=(σSk0)lm+j
= hl(bσSk0 , y)

2) Let us compute hk(bσSk , y)+hk(bσSk0 , y) if k 6= k0. Notice that {xjk}j∈{km+1,...,(k+1)m} =
0 and {xjk0}j∈{km+1,...,(k+1)m} = 1

hk(bσSk , y) + hk(bσSk0 , y) = h((0, . . . , 0), (ykm+1, . . . , y(k+1)m))

+ h((1, . . . , 1), (ykm+1, . . . , y(k+1)m))

= h((0, . . . , 0), (ykm+1, . . . , y(k+1)m))

+ m− h((0, . . . , 0), (ykm+1, . . . , y(k+1)m))

= m

Proof that: Sets Yl, l = {1, . . . , |Ω|}, are a true partition of Y n, given the above
description of Yl.

1) Without loss of generality, suppose on the contrary that Y1 ∩ Y2 6= ∅.
a. Let 1 ∈ Ω̃2 and y ∈ Y1 ∩ Y2. Then,

h1(bσS1 , y) + h2(bσS1 , y) ≤ C12, and

h2(bσS2 , y) + h1(bσS2 , y) ≤ C21

and adding h1(bσS1 , y)+h1(bσS2 , y)+h2(bσS1 , y)+h2(bσS2 , y) ≤ C12+C21, that by Lemma
1(2) is m+m ≤ 2m− 1, a contradiction.

b. Let 1 /∈ Ω̃2 and y ∈ Y1 ∩ Y2.

h1(bσS1 , y) + h2(bσS1 , y) ≤ C12, and

h2(bσS2 , y) + h1(bσS2 , y) < C21

and adding h1(bσS1 , y)+h1(bσS2 , y)+h2(bσS1 , y)+h2(bσS2 , y) < C12+C21, that by Lemma
1(2) is 2m < 2m, a contradiction again.
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Proof of Proposition 1: By Bayes’s Theorem,

p(bσSl |y)
p(bσSk |y) =

p(y|σSl )c(σSl )
p(y)

p(y|σSk )p(σSk )
p(y)

=
ql
qk

p(y|bσSl )
p(y|bσSk )

The conditional probability of the channel to generate output y if message bσSl is
sent can be written as:

p(y|bσSl ) =
nY
t=1

p(yt|(bσSl )t)
=

lmY
t=1

p(yt|1)
(l+1)mY
t=lm+1

p(yt|0)
nY

t=(l+1)m+1

p(yt|1)

= ε
hl(σ

S
l ,y)

0 (1− ε0)
m−hl(σSl ,y))

|Ω|Y
α=1
α6=l

h
ε
hα(σ

S
l ,y)

1 (1− ε1)
m−hα(σSl ,y)

i

and the conditional probability to generate the same y if message bσSk is sent instead
is:

p(y|bσSk ) = ε
hk(σ

S
k ,y)

0 (1− ε0)
m−hk(σSk ,y)

|Ω|Y
α=1
α6=k

h
ε
hα(σ

S
k ,y)

1 (1− ε1)
m−hα(σSk ,y)

i

Consider the likelihood ratio of messages bσSl and bσSk , when y is realized, p(σ
S
l |y)

p(σSk |y)
.

It is not difficult to show by some cumbersome algebra that this ratio can be splitted
in three separated terms.

p(bσSl |y)
p(bσSk |y) = ql

qk
×Ratio1 ×Ratio2 ×Ratio3

where:
Ratio1: Measures the probability of transformation of the 0’s bits in block l with

respect to the corresponding probability in block k. By lemma 2, part 2,

Ratio1 =
ε
hl(σ

S
l ,y)

0 (1− ε0)
m−hl(σSl ,y)

ε
hk(σ

S
k ,y)

0 (1− ε0)m−hk(σ
S
k ,y)

=
ε
hl(σ

S
l ,y)

0 (1− ε0)
m−hl(σSl ,y)

ε
m−hk(σSl ,y)
0 (1− ε0)hk(σ

S
l ,y)

=

µ
ε0

1− ε0

¶hl(σ
S
l ,y)+hk(σ

S
l ,y)−m
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Ratio2: Refers to the probability of transformation of the 1’s bits in block k with
respect to the corresponding probability in block l. Then, by lemma 2, part 2:

Ratio2 =
ε
hk(σ

S
l ,y)

1 (1− ε1)
m−hk(σSl ,y)

ε
hl(σ

S
k ,y)

1 (1− ε1)m−hl(σ
S
k ,y)

=
ε
m−hl(σSl ,y)
1 (1− ε1)

hk(σ
S
l ,y)

ε
hl(σ

S
k ,y)

1 (1− ε1)m−hl(σ
S
k ,y)

=

µ
ε1

1− ε1

¶hl(σ
S
l ,y)+hk(σ

S
l ,y)−m

Ratio3: Refers to the probability of transformation of the 1’s bits in the remain-
ing blocks (all the blocks but l and k), then, using lemma 2, part 1

Ratio3 =

|Ω|Y
α=1
α6=l,k

ε
hα(σ

S
l ,y)

1 (1− ε1)
m−hα(σSl ,y)

ε
hα(σ

S
k ,y)

1 (1− ε1)m−hα(σ
S
k ,y)

= 1

Putting these three ratios together, we have that

p(bσSl |y)
p(bσSk |y) =

ql
qk
×Ratio1 ×Ratio2 ×Ratio3

=
ql
qk

µ
ε0

1− ε0

¶hl(σ
S
l ,y)+hk(σ

S
l ,y)−mµ ε1

1− ε1

¶hl(σ
S
l ,y)+hk(σ

S
l ,y)−m

=
ql
qk

µ
ε0

1− ε0

ε1
1− ε1

¶hl(σ
S
l ,y)+hk(σ

S
l ,y)−m

and the proposition holds.

Proof of the Theorem 1: The Receiver’s condition:
Given the Sender equilibrium strategy {bσSj }j , and the Receiver’s information set

Y n, consider the realization y ∈ Y n. The Receiver’s strategy is defined by

bσRy = bal ⇔ y ∈ Yl

where for each l ∈ {1, . . . , |Ω|} , and Ω̃l = {k ∈ {1, . . . , |Ω|} such that qlMl 6= qkMk},

Yl = {y ∈ Y n| hl(bσSl , y)) + hk(bσSl , y)) ≤ Clk, for all k ∈ Ω̃l
hl(bσSl , y)) + hk0 (bσSl , y)) ≤ Clk0 , for all k

0
� /∈ Ω̃l , k

0
< l

hl(bσSl , y)) + hk0 (bσSl , y)) < Clk0 , for all k
0
/∈ Ω̃l , k

0
> l}
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The parameters {Clk}l 6=k are given by:

Clk =
LnMkqk

Mlql

Ln ε0
1−ε0

ε1
1−ε1

+m

with associated payoff πRy ({bσSj }j ,bal) =P|Ω|
j=1 p(bσSj |y)u(bal, ωj) = p(bσSl )|y)Ml.

Consider any other strategy aα 6= bal and suppose that its associated payoff is
higher than bal. Then,

πRy ({{bσSj }j , aα) > πRy ({bσSj }j ,bal)
|Ω|X
j=1

p(bσSj )|y)u(baα, ωj) >

|Ω|X
j=1

p(bσSj |y)u(baRl , ωj),
which by the linearity of πRy in probabilities p(bσSj )|y), is equal to,

p(bσSα|y)Mα > p(bσSl |y)Ml

or

Mα

Ml
>

p(bσSl )|y)
p(bσSα|y)

By Proposition 1, these inequalities can be written as

Mα

Ml
>

ql
qα

µ
ε0

1− ε0

ε1
1− ε1

¶hl(σ
S
l ,y))+hα(σ

S
l ,y))−m

or
qαMα

qlMl
>

µ
ε0

1− ε0

ε1
1− ε1

¶hl(σ
S
l ,y))+hα(σ

S
l ,y))−m

We write this condition with the Logarithm operator:

ln

µ
qαMα

qlMl

¶
> (hl(bσSl , y)) + hα(bσSl , y))−m) ln

µ
ε0

1− ε0

ε1
1− ε1

¶
Since ε0 + ε1 < 1, then ε0

1−ε0
ε1
1−ε1 < 1 and ln

³
ε0
1−ε0

ε1
1−ε1

´
< 0. Then, the above

inequality is equivalent to:

hl(bσSl , y)) + hα(bσSl , y) >
ln
³
qαMα

qlMl

´
ln
³

ε0
1−ε0

ε1
1−ε1

´ +m, or

hl(bσSl , y)) + hα(bσSl , y) > Clα
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by the definition of Clα. But this contradicts that y ∈ Yl, since by definition Yl =
{y ∈ Y n| hl(σSl , y)) + hk(σ

S
l , y)) ≤ Clk, for all k 6= l}, in particular for k = α.

Therefore for each y ∈ Y n there is no profitable deviation from bσRy , and bσRy is a best
response to {baSj }j .

The Sender’s condition. Truth-telling: The Sender’s strategy at state ωj consists
of sending a message and thus it suffices to show that there is no profitable deviation
by sending another message different from bσSj , when R plays {bσRy }y. The associated
payoff of bσSj at state ωj when the Receiver plays his equilibrium strategy {bσRy }y is

πSj (bσSj , {bσRy }y) = X
y∈Y n

p(y|bσSj )u(bσRy , ωj) =Mj

X
y∈Yj

p(y|bσSj )
since u(at, ωj) = 0 for all at 6= baRj .

Consider the associated payoff of sending any other message x ∈ Xn,X
y∈Y n

p(y|x)u(bσRy , ωj) =Mj

X
y∈Yj

p(y|x)

Let f = h(bσSj , x) be the Hamming distance between messages bσSj and x. We can
construct a sequence of messages {θ0, θ1, . . . , θf} such that θi ∈ Xn, θ0 = bσSj , θf = x
satisfying that, for all d = 0, . . . , f − 1,

h(bσSj , θd+1) = h(bσSj , θd) + 1
h(θd, θd+1) = 1

This sequence transforms message bσSj into message x by only changing one ele-
ment at each step. Let us show that, for all d = 0, . . . , f − 1,X

y∈Yj

p(y|θd)
p(y|θd+1)

≥ 1

Let id be the location of the (unique) mismatch between θd and θd+1. Then,X
y∈Y j

p(y|θd)
p(y|θd+1)

=
X
y∈Yj

Q
i=1,...,n p(y

i|θid)Q
i=1,...,n p(y

i|θid+1)

=
X
y∈Yj

p(yid |θidd )
p(yid |θidd+1)

=
X

y∈Yj |yid=0

p(0|θidd )
p(0|θidd+1)

+
X

y∈Yj |yid=1

p(1|θidd )
p(1|θidd+1)

Let us consider two different cases:
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Case 1: (j−1)m−1 ≤ id ≤ jm. The mismatch occurs at block j and as y ∈ Yj ,
then the element θidd coincides with the element yid = 0 and θidd+1 = 1. The above
expression is now given by:X

y∈Yj

p(y|θd)
p(y|θd+1)

=
X

y∈Yj |yid=0

p(0|0)
p(0|1) +

X
y∈Yj |yid=1

p(1|0)
p(1|1)

=
X

y∈Yj |yid=0

1− ε0
ε1

+
X

y∈Yj |yid=1

ε0
1− ε1

≥ 1

Notice that there exists at least an element y ∈ Yj with yid = 0 and the ratio
1−ε0
ε1
≥ 1 because ε0 + ε1 < 1. Therefore

P
y∈Yj |yid=0

1−ε0
ε1
≥ 1.

Case 2: id < (j− 1)m−1 or id > jm. The mismatch occurs in a different block
of j and as above y ∈ Yj , then the element θ

id
d coincides with the element yid = 1

and θidd+1 = 0. The above expression is now given by:X
y∈Yj

p(y|θd)
p(y|θd+1)

=
X

y∈Yj |yid=0

p(0|1)
p(0|0) +

X
y∈Yd|yid=1

p(1|1)
p(1|0)

=
X

y∈Yj |yid=0

ε1
1− ε0

+
X

y∈Yj |yid=1

1− ε1
ε0

≥ 1

The set of elements in Yj such that yid = 1 has cardinality greater or equal
than 1. Therefore

P
y∈Yj |yid=1

1−ε1
ε0
≥ 1. From the above reasoning, the probability

p(y|θd) decreases at each step of the deviation chain {bσSj , θ1, . . . , x}. We conclude
that

P
y∈Yj p(y|bσSj )) ≥ Py∈Yj p(y|x) and the associated payoffs for both messagesbσSj and x verify the condition Mj

P
y∈Yj p(y|bσSj )) ≥Mj

P
y∈Yj p(y|x) that closes the

proof. Hence, for each bσSj is a best response to {bσRy }y.
Since at each state ωj , the Sender pure strategy bσSj is a best response to {bσRy }y

and for each y ∈ Y n, the Receiver pure strategy bσRy is a best response to {bσSj }j ,
then the pair of tuples ({bσSj }j , {bσRy }y) is a pure strategy Nash equilibrium of Γnυ .

Proof of proposition 2: Without loss of generality, let us assume that j = 1
and C12 ≤ C13 ≤ ... ≤ C1|Ω|. Under these assumptions the theorem is proved
provided that:

p(Y1|bσS1 ) ≥ 1− εc12+11 φ(ε0, ε1)

where φ(ε0, ε1) is a function on ε0 and ε1 such that 0≤ φ(ε0, ε1) ≤ 1. The probability
p(Y1|bσS1 ) can be written as

p(Y1|bσS1 ) = 1− p(Y n − Y1|bσS1 )
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Let J ⊆ {2, 3, . . . , |Ω|} and let us EJ denote the event

EJ = {y ∈ Y n−Y1|h1(bσS1 , y)+hj(bσS1 , y) > C1j if j ∈ J and h1(bσS1 , y)+hl(bσS1 , y) ≤ C1l if l /∈ J}

We have that:

EJ1 ∩EJ2 = ∅ if J1, J2 ⊆ {2, 3, ..|Ω|}, J1 6= J2

Y n − Y1 =
[

J⊆{2,3,..|Ω|}
J 6=∅

EJ

In other words, {EJ}J⊆{2,3,..|Ω|}
J 6=∅

is a partition of Y n − Y1 formed by disjoint

events. In such a case, the probability p(y ∈ Y n − Y1|bσS1 ) can be written as:
p(y ∈ Y n − Y1|bσS1 ) = p(

[
J⊆{2,3,..|Ω|}

J 6=∅

EJ |bσS1 ) = X
J⊆{2,3,..|Ω|}

J 6=∅

p(EJ |bσS1 )
Similarly, for each J ⊆ {2, 3, ..|Ω|}, define the event

FJ = {y ∈ EJ |h1(bσS1 , y) + hj(bσS1 , y) = C12 + 1}

Since

p(FJ |bσS1 ) = ε
h1(σ

S
1 ,y)

0 ε
hj(σ

S
1 ,y)

1 ≤ ε
h1(σ

S
1 ,y)

1 ε
hj(σ

S
1 ,y)

1 = εC12+11

We have then

p(y ∈ Y n − Y1|bσS1 ) = X
J⊆{2,3,..|Ω|}

J 6=∅

p(EJ |FJ , bσS1 )p(FJ |bσS1 )
≤ εC12+11

X
J⊆{2,3,..|Ω|}

J 6=∅

p(EJ |FJ , bσS1 ) = εC12+11 p(
[

J⊆{2,3,..|Ω|}
J 6=∅

EJ |FJ , bσS1 )
Let

φ(ε0, ε1) = p(
[

J⊆{2,3,..|Ω|}
J 6=∅

EJ |FJ , bσS1 )
then

p(Y1|bσS1 ) ≥ 1− εc12+11 φ(ε0, ε1)

and the theorem holds.
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9 Appendix B

The Receiver’s best response for any feasible corpus or encoding rule:
Notations:
To make easier the comparison between any observed output sequence y and any

pair of standar prototypes bσSi = (x1i , ..., x
n
i ) and bσSj = (x1j , ..., x

n
j ), let us split the

sequences bσSi , bσSj in four different blocks or subsequences. Each block is formed by
the elements of the sequences with subindexes in the following sets:

T ij
00 = {l | 1 ≤ l ≤ n and xli = 0 and xlj = 0}

T ij
01 = {l | 1 ≤ l ≤ n and xli = 0 and xlj = 1}

T ij
10 = {l | 1 ≤ l ≤ n and xli = 1 and xlj = 0}

T ij
11 = {l | 1 ≤ l ≤ n and xli = 1 and xlj = 1}

For instance, l ∈ T ij
10 means that the element of bσSi placed in position l is a 1,

while the same element in the l-position in bσSj is a 0. Moreover, some of the sets T ij
αβ

may be empty, for α, β = 0, 1. Notice that this subdivision of any two sequences in
four blocks may be differente for each pair of prototypes to be compared (the use of
superindexes ij is then needed to distinguish among each pair of prototyopes).

To further proceed, we need to introduce some additional notation representing
the cardinality of these subsets and the Hamming distance among the four subse-
quences of the output and prototypes to be compared. Formally, for α, β = 0, 1,
define:

nijαβ = |T
ij
αβ|

hijαβ(y, bσSi ) = X
l∈T ijαβ

Iyl 6=xli and hijαβ(y, bσSj ) = X
l∈T ijαβ

Iyl 6=xlj

where I stands for the indicator function.
Example. For instance, T ij

01 is the subset of indexes l = 1, ..., n corresponding to
those position ocupied by zeros in bσSi and by ones in bσSj (i. e., xli = 0 and xlj = 1).

If n = 6 and bσSi = (1, 1, 0, 0, 1, 0) and bσSj = (1, 0, 0, 1, 0, 1) we have that T ij
01 = {4, 6}

and nij01 = 2. Additionally hij01(bσSi , y) = h((0, 0), (y4, y6)) is the number of elements
of y located in positions 4 and 6 that are not zero and hij01(bσSj , y) = h((1, 1), (y4, y6))
is the number of elements of y located in positions 4 and 6 that are not one. Notice
that each sequence y is splitted if four separate blocks whose elements are placed at
positions T ij

00 = {3}, T
ij
01 = {4, 6}, T

ij
10 = {2, 5} and T ij

11 = {1}.
It is straightforward to check that:

Lemma 3 For all i, j = 1, 2, . . . , |Ω|, i 6= j and for all y ∈ {0, 1}n we have that
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1. nij00 + nij01 + nij10 + nij11 = n

2. nij00 = nji00;n
ij
11 = nji11;n

ij
01 = nji10

3. hij00(y, bσSi ) = hij00(y, bσSj )
4. hij11(y, bσSi ) = hij11(y, bσSj )
5. hij01(y, bσSi ) = nij01 − hij01(y, bσSj )
6. hij10(y, bσSi ) = nij10 − hij10(y, bσSj )

Proposition 3 For all l, k = 1, . . . , |Ω|, l 6= k and for all y ∈ Y,

p(bσSl |y)
p(bσSk |y) = ql

qk

µ
ε0

1− ε0

ε1
1− ε1

¶hlk10(σ
S
l ,y)+h

lk
01(σ

S
l ,y)

µ
1− ε1
ε0

¶nlk10
µ
1− ε0
ε1

¶nlk01

Proof: Given any k 6= l, all the elements of bσSl in each block T lk
αβ (α, β = 0, 1) are

constant and equal to α. Then, hlkαβ(bσSl , y) is just the number of the nlkαβ elements
with value α in bσSl (placed at positions T lk

αβ) misstransmited by the channel, where

misstransmision takes place with probability εα. Alternatively, nlkαβ − hlkαβ(bσSl , y) is
the number of elements α sent properly (each of them with probability 1 − εα ).
Since the channel transforms elements independently, the nlkαβ elements of bσSl in T lk

αβ

become the corresponding nlkαβ of y with probality

(1− εα)
nlkαβ−hlkαβ(σ

S
l ,y)ε

hlkαβ(σ
S
l ,y)

α

Applying this reasoning to the four blocks T lk
αβ, we can write the probability of the

noisy channel generating output y when the prototype bσSl was sent as:
p(y|bσSl ) = (1− ε0)

nlk00−hlk00(σSl ,y)ε
hlk00(σ

S
l ,y)

0 × (1− ε0)
nlk01−hlk01(σSl ,y)ε

hlk01(σ
S
l ,y)

0 ×

(1− ε1)
nlk11−hlk11(σSl ,y)ε

hlk11(σ
S
l ,y)

1 × (1− ε1)
nlk10−hlk10(σSl ,y)ε

hlk10(σ
S
l ,y)

1

Similarly:

p(y|bσSk ) = (1− ε0)
nlk00−hlk00(σSk ,y)ε

hlk00(σ
S
k ,y)

0 × (1− ε0)
nlk01−hlk01(σSk ,y)ε

hlk01(σ
S
k ,y)

0 ×

(1− ε1)
nlk11−hlk11(σ

S
k ,y)ε

hlk11(σ
S
k ,y)

1 × (1− ε1)
nlk10−hlk10(σ

S
k ,y)ε

hlk10(σ
S
k ,y)

1
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and then:

p(y|bσSl )
p(y|bσSk ) =

(1− ε0)
nlk00−hlk00(σSl ,y)ε

hlk00(σ
S
l ,y)

0

(1− ε0)n
lk
00−hlk00(σ

S
k ,y)ε

hlk00(σ
S
k ,y)

0

× (1− ε0)
nlk01−hlk01(σSl ,y)ε

hlk01(σ
S
l ,y)

0

(1− ε0)n
lk
01−hlk01(σ

S
k ,y)ε

hlk01(σ
S
k ,y)

0

×

(1− ε1)
nlk11−hlk11(σSl ,y)ε

hlk11(σ
S
l ,y)

1

(1− ε1)n
lk
11−hlk11(σ

S
k ,y)ε

hlk11(σ
S
k ,y)

1

× (1− ε1)
nlk10−hlk10(σSl ,y)ε

hlk10(σ
S
l ,y)

1

(1− ε1)n
lk
10−hlk10(σ

S
k ,y)ε

hlk10(σ
S
k ,y)

1

By the above Lemma, hlk00(bσSl , y) = hlk00(bσSk , y) and hlk11(bσSl , y) = hlk11(bσSk , y), then
the first and third ratio of the above expression are 1. Hence

p(y|bσSl )
p(y|bσSk ) = (1− ε0)

nlk01−hlk01(σSl ,y)ε
hlk01(σ

S
l ,y)

0

(1− ε0)n
lk
01−hlk01(σ

S
k ,y)ε

hlk01(σ
S
k ,y)

0

(1− ε1)
nlk10−hlk10(σSl ,y)ε

hlk10(σ
S
l ,y)

1

(1− ε1)n
lk
10−hlk10(σ

S
k ,y)ε

hlk10(σ
S
k ,y)

1

In addition, the above lemma also expresses the Hamming distances to bσSk in
terms of those to bσSl and then:

p(y|bσSl )
p(y|bσSk ) =

(1− ε0)
nlk01−hlk01(σSl ,y)ε

hlk01(σ
S
l ,y)

0

(1− ε0)h
lk
01(σ

S
l ,y)ε

nlk01−hlk01(σ
S
l ,y)

0

(1− ε1)
nlk10−hlk10(σSl ,y)ε

hlk10(σ
S
l ,y)

1

(1− ε1)h
lk
10(σ

S
l ,y)ε

nlk10−hlk10(σ
S
l ,y)

1

=

µ
ε1

1− ε0

¶hlk01(σ
S
l ,y)+h

lk
01(σ

S
l ,y)−nlk01 µ ε0

1− ε1

¶hlk01(σ
S
l ,y)+h

lk
01(σ

S
l ,y)−nlk10

=

µ
ε0

1− ε0

ε1
1− ε1

¶hlk01(σ
S
l ,y)+h

lk
01(σ

S
l ,y)

µ
1− ε1
ε0

¶nlk10
µ
1− ε0
ε1

¶nlk01

and since

p(bσSl |y)
p(bσSk |y) = ql

qk

p(y|bσSl )
p(y|bσSk )

the Proposition holds.

The next proposition characterizes the best response ofR to any received message
y in terms of the Hamming distances among subsequences of y and the standard
prototypes of any corpus, the noisy parameters and the payoffs:

Proposition 4 Given any corpus {bσS1 , .., bσS|Ω|} and any output sequence y ∈ {0, 1}n ,
the action bal is a best response to y if and only if, the following system of |Ω| − 1
inequalities is satisfied:

{hlk01(bσSl , y) + hlk10(bσSl , y)} ≤ Ln qkMk
qlMl

Ln ε0
1−ε0

ε1
1−ε1

+
nlk10Ln

ε0
1−ε1 + nlk01Ln

ε1
1−ε0

Ln ε0
1−ε0

ε1
1−ε1

, for all k 6= l}
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Proof: Given y,bal is best response to y if and only if
p(bσSl |y)
p(bσSk |y) ≥ Mk

Ml

By Proposition 1, the best response condition can be written as

ql
qk

µ
ε0

1− ε0

ε1
1− ε1

¶hlk01(σ
S
l ,y)+h

lk
10(σ

S
l ,y)

µ
1− ε1
ε0

¶nlk10
µ
1− ε0
ε1

¶nlk01

≥ Mk

Mlµ
ε0

1− ε0

ε1
1− ε1

¶hlk01(σ
S
l ,y)+h

lk
10(σ

S
l ,y)

µ
1− ε1
ε0

¶nlk10
µ
1− ε0
ε1

¶nlk01

≥ qkMk

qlMl

(hlk01(bσSl , y) + hlk10(bσSl , y))Lnµ ε0
1− ε0

ε1
1− ε1

¶
+ nlk10Ln

µ
1− ε1
ε0

¶
+ nlk01

µ
1− ε0
ε1

¶
≥ Ln

qkMk

qlMl

(hlk01(bσSl , y)+hlk10(bσSl , y))Lnµ ε0
1− ε0

ε1
1− ε1

¶
≥ Ln

qkMk

qlMl
−nlk10Ln

µ
1− ε1
ε0

¶
−nlk01

µ
1− ε0
ε1

¶

(hlk01(bσSl , y) + hlk10(bσSl , y)) ≤ Ln qkMk
qlMl

− nlk10Ln
³
1−ε1
ε0

´
− nlk01

³
1−ε0
ε1

´
Ln
³

ε0
1−ε0

ε1
1−ε1

´
and the proposition holds.

The characterization of the proposition applies to any feasible corpus (i. e.
encoding rule) used by the sender. In words, bal is chosen whenever the distances
of y and prototype bσSl in blocks T lk

01 and T lk
10, for all k 6= l, k = {1, 2, ...,Ω}\l, are

smaller than some bounds involving both game parameters and encoding parameters.
Specifically the first part of the bound for the Hamming distance between y and bσSl :

Ln qkMk
qlMl

Ln ε0
1−ε0

ε1
1−ε1

refers only to the ratio of expected payoffs and the noise parameters, and is not
related to any specific corpus. Meanwhile, the second part

nlk10Ln
ε0
1−ε1 + nlk01Ln

ε1
1−ε0

Ln ε0
1−ε0

ε1
1−ε1

depends on the particular encoding rule, specifically on parameters nlk10 and nlk01.
Notice that if the encoding rule or corpus satisfies that nlk10 = nlk01 = m for all
l, k = 1, ..., |Ω|, then
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nlk10Ln
ε0
1−ε1 + nlk01Ln

ε1
1−ε0

Ln ε0
1−ε0

ε1
1−ε1

=
mLn ε0

1−ε1 +mLn ε1
1−ε0

Ln ε0
1−ε0

ε1
1−ε1

= m

It is clear that the block coding rule satisfies this property.
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