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Abstract

We model a game similar to the interaction between an academic advisor and advisee.

Like the classic cheap talk setup, an informed player sends information to an uninformed

receiver who is to take an action which a¤ects the payo¤s of both sender and receiver. How-

ever, unlike the classic cheap talk setup, the preferences regarding the receiver�s actions

are identical for both sender and receiver. Additionally, the sender incurs a communica-

tion cost which is increasing in the complexity of the message sent. We characterize the

resulting equilibria. We show that if communication is costly then there is no equilibrium

in which communication is complete. Under one out-of-equilibrium condition, our equilib-

rium is analogous to that found in Crawford and Sobel (1982). Under a more restrictive

out-of-equilibrium condition, our equilibrium is analogous to that under the No Incentive

to Separate (NITS) condition as discussed in Chen, Kartik and Sobel (2008). Finally,

we model the competency of the advisee by the probability that the action is selected by

mistake. We show that the informativeness of the sender is decreasing in the likelihood of

the mistake. Therefore, we expect the informativeness of the relationship to be increasing

in the competency of the advisee.
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1 Introduction

Consider the interaction between advisor and advisee in the preparation of a job market paper.

The advisor takes a look at the current state of the paper and has a signi�cantly better idea

of its shortcomings than does the advisee. Further, the advisor prefers that the advisee

correct these shortcomings so that the paper is successful on the job market. The advisor

prefers success because either this will re�ect well on the advisor or perhaps the advisor might

have an intrinsic preference for the success of the advisee. The advisee obviously prefers to

correct those shortcomings in order to secure employment, however the nature of the necessary

corrections are not known to the advisee. Although there are material incentives for both

advisee and advisor to correct the shortcomings, accomplishing this requires the advisor to

take time to communicate the nature of these shortcomings. Such communication is costly

for the advisor as it would take time out of her busy schedule. Therefore, the advisor decides

on the optimal level of detail to communicate to the advisee: more detail increases the quality

of the paper but also implies greater communication costs borne by the advisor.

In this paper we analyze the strategic interaction between an informed sender and an

uninformed receiver. In our model, the sender learns the state of the world and transmits a

message to the receiver. Based on the message, the receiver is to take an action which a¤ects

the payo¤s of both sender and receiver. We deviate from the classic cheap talk setup in that

the sender and the receiver have identical preferences regarding the action of the receiver.

However, the sender faces communication costs which are increasing in the complexity of the

message.

We assume that the sender has an in�nite number of messages mi where i 2 f0; 1; 2; :::g

available for transmission. We assume that the complexity of the message is increasing in the

subscript and that a more complex message is more costly to send. Speci�cally, we assume

that the cost of transmitting message mi is equal to ci, where c > 0. For instance, one

can interpret the costless message m0 as the empty message, ?., the message m1 as a single

element, f0g, the message m2 as two elements, f0; 0g and so on. We view this as the simplest
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way to model complex communication.

Analogous to the cheap talk literature, equilibrium is partitional: a unique action is induced

on connected intervals of the state space. We show that the equilibrium is e¢ cient in that no

signal is used in equilibrium when there is an unused, cheaper one available. We show that

under a relatively permissive out-of-equilibrium condition (Condition M) the equilibrium is

analogous to the multiplicity found in the original cheap talk model. We show that under

a relatively restrictive out-of-equilibrium condition (Condition L), only the most informative

class of equilibria survives. This result is analogous to No Incentive to Seperate (NITS)

re�nement of the cheap talk model. Finally, we model the competence of the advisee by

the probability that the advisee makes a mistake in selecting an action. We show that the

informativeness of the sender is decreasing in the probability of a mistake. We interpret this

result as suggesting that the informativeness of the advising relationship is increasing in the

competency of the advisee.

2 Related Literature

Despite that every economist has negotiated a relationship with their advisor in graduate

school and that many continue to perform the complementary role of advisor, this relationship

has garnered relatively little attention in the literature. There are however three related

strands of literature, each of which focuses on di¤erent issues than we do here. For instance

the cheap talk literature examines settings in which communication is costless and the players

have di¤erent preferences over the action taken. However, we focus on a setting in which

preferences over the action taken are identical and communication is costly. The existing costly

communication literature tends to focus on cases where information is either understood or

not. However, in our model there can be shades of understanding. Finally, we discuss the

empirical literature on the academic advising relationship.

2.1 Cheap Talk and Related Models

The large strand of cheap talk literature was initiated by Crawford and Sobel (1982), hereafter

referred to as CS. In the CS model, an informed sender learns the state of the world and
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decides to communicate some information to an uninformed receiver where the receiver is

to take an action which a¤ects the payo¤s of both sender and receiver. However, given

any state of the world, the sender and receiver have di¤erent preferences over the action of

the receiver. The authors show that for mild di¤erences in the preferences of receiver and

sender, meaningful communication can occur. Additionally, the authors show that there is no

equilibrium in which communication is complete. CS shows that equilibrium always takes the

form that the state space is partitioned and the messages are sent such that a unique action is

induced within each element of the partition. Our equilibrium is analogous in that a unique

message is sent on an interval. We also �nd that for any nonzero communication costs, the

communication is never complete.

A number of papers have extended the original CS model. Morgan and Stocken (2003)

extend the CS model to the case where there is uncertainty regarding the degree of diver-

gence between the preferences of the sender and receiver. Fischer and Stocken (2001) model

a situation where receiver has imperfect information about the state. Blume, Board and

Kawamura (2007) modify the CS setup where communication errors (or noise) can occur. We

view our paper in the spirit of these papers, as we wish to learn the importance of a particular

assumption: the presence of communication costs which are increasing in the complexity of

the message sent.

The original CS model exhibits a large number of possible equilibria. Speci�cally, CS

shows that for a given di¤erence in the preferences of the sender and receiver, if there is an

equilibrium where the state space is partitioned into a �nite number of partitions (say n) then

there are equilibria which partition the state space into 1, 2,.. and n � 1 elements. Our

out-of-equilibrium Condition M leads to a similar result in that, for a given set of parameter

values, there exists a maximum number of messages (again say n) which could constitute

an equilibria. Additionally under Condition M , there are equilibria where the number of

messages equals 1, 2,... and n� 1.

As is often the case for multiple equilibria, researchers have sought to reduce the number

of cheap talk equilibria through re�nements.1 A recent innovation in this regard is the
1For instance, see Farrell (1993), Banks and Sobel (1987), Kohlberg and Mertens (1987), Matthews, Okuno-

Fujiwara and Postlewaite (1991).
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Condition No Incentive to Seperate (NITS) as discussed in Chen, Kartik and Sobel (2008).

This condition restricts attention to equilibria in which it is not the case that the sender

type who receives the lowest possible state (s = 0) does not prefer to perfectly reveal the

state. In their Proposition 3, the authors show that if the monotonicity condition holds in

the CS model (as it does in the commonly used "uniform-quadratic" case) then NITS selects a

unique equilibrium which is the most informative, i.e. contains the largest possible number of

partitions. In our paper, the equilibria under Condition L is similar to NITS in that if an out

of equilibrium message is observed then the beliefs of the receiver are such that that the state

which is worst o¤ in the equilibrium. In our model, for a given equilibrium, several states

qualify as the worst and so as a matter of convention we select the smallest of these, state

s = 0. In other words, Condition L speci�es that if the receiver sees an out-of-equilibrium

message then the receiver believes that the state is certain to be s = 0. And similar to NITS,

Condition L rules out each equilibria except the most informative class of equilibria.

Morris (2001) presents a model where an informed sender and uninformed receiver have

identical preferences over the action of the receiver but due to reputation e¤ects, the sender

might not truthfully reveal the state of the world. To our knowledge, Morris is the only other

communication paper to assume that the sender and receiver have identical preferences over

the receiver�s action.

2.2 Costly Communication

Dewatripont and Tirole (2005) present a communication model where the sender incurs costs

of e¤ectively communicating the information and the receiver incurs costs in better absorbing

the information. In Dewatripont and Tirole information is either understood or not, by

contrast the states in our model are better characterized by the degree to which they are

learned.

In Austin-Smith (1994), information acquisition comes at a cost to the sender. Although

the receiver cannot verify that the sender is uninformed, the receiver can verify that sender

is informed. Austin-Smith shows that the ex-ante uncertainty about the receiver being in-

formed enlarges the set of parameters in which there is an informative equilibrium in the CS
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model. However, by contrast to our model the sender is completely informed or completely

uninformed.

To our knowledge, Calvo-Armengol et. al. (2009) is the only example of a costly com-

munication paper in which with there can be shades of understanding. There the sender

transmits a necessarily noisy signal but can a¤ect the precision of the communication by a

incurring larger communication cost. In our view this assumption is less appropriate when

modeling complex communication as the signal actually sent is not necessarily less complex

than the sender�s most preferred signal.

2.3 Empirical Literature

Relevant aspects of our model appear in the academic advising literature. For instance, Knox

et. al. (2006) discuss the costs and bene�ts of being an academic advisor.2 The bene�ts

of advising include the personal satisfaction involved in guiding a student. Hence, we �nd

support for our assumption that advisor and advisee have identical preferences over the action

of the advisee. The costs of advising are primarily composed of the time and energy required

by the relationship. Therefore, we regard these as supporting our speci�cation of the payo¤s

of the advisor.

Schlosser and Kahn (2007) �nd that advisor and advisee often share the same impression

of quality of relationship and of the advisee�s competency. We interpret this as con�rming

the appropriateness of our information assumptions. Additionally, Green and Bauer (1995)

�nd that more capable students receive more supervisory attention than less capable students.

Corcoran and Clark (1984) �nd that more successful researchers received better sponsorship

from graduate school advisors than less successful researchers.3 These �ndings are in line

with Proposition 5, which shows that the informativeness of the sender is decreasing in the

probability that the receiver makes a mistake in selecting an action.

2See Schlosser et. al. (2003) and Schlosser and Gelso (2001) for more on the measurement of the advisee�s
preferences.

3Also see Hollingsworth and Fassinger (2002).
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3 Model

A sender S and receiver R play a communication game in a single period. Payo¤s for both

players depend on the receiver�s action a, as well as the state of the world s. A state is an

element of the closed interval S =[0; 1]. The receiver�s action space A = [0; 1] is equal to the

state space S. The receiver�s utility from action a when the state is s is:

uR(a; s) = s� (a� s)2:

States are not payo¤ equivalent: it is better to be accurate with state s than state s0 < s.

The receiver has ex-ante beliefs that the state is uniformly distributed on S. The sender,

observes the state and can communicate some information about the state to S, by sending

a message m where m 2 M = [m0;m1; :::]. We interpret message mi as more complex, and

therefore more costly send, than mj if i > j. Speci�cally, communication costs (c :M)R)

are such that c(mj) = jc. The sender has the same preferences over actions as R, however

incurs a cost of communication. Therefore, her utility is:

uS(a;m; s) = s� (a� s)2 � c(m)

Note that unlike the cheap talk literature, both S and R have identical preferences over the

action of R: both prefer a = s.

The sender�s strategy is then � : S !M. The receiver�s strategy is then � :M!A. We

seek an equilibrium where S chooses the optimal action, given beliefs R chooses the optimal

action and R�s beliefs are derived from Bayes�Rule wherever possible. R�s beliefs are denoted

�(sjm). Speci�cally, we require that

� such that for each s 2 [0; 1], m solves max
m
uS(a;m; s) (1)

� such that for each m 2M , a(m) solves max
a

Z
uR(a; s)�(sjm)ds (2)

and R�s beliefs are derived from S�s strategy.
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As stated earlier, R uses Bayes�Rule whenever possible, however we have yet to specify

the out-of-equilibrium beliefs. We will use one of the following two out-of-equilibrium spec-

i�cations of beliefs. The �rst, Condition L, speci�es that if an out-of-equilibrium message

is observed then R believes that among the states which are farthest from the ideal (s which

has the largest (a � s)2 + c(m)), the state is the smallest of these. E¤ectively, if an out-of-

equilibrium message is observed then under Contidion L the receiver believes that the state

is s = 0.

Condition L: Given (�; �; c), if there does not exist an bs such that �(bs) = bm and R

observes bm then R believes that S is certain to be the smallest state s0 among those states

where s = argmaxs(a� s0)2 + c(m0).

For a given equilibrium with n messages there will be n + 1 states4 which will satisfy

argmaxs(a(m
0)� s0)2+ c(m0), so as a matter of convention, R has beliefs that the state is the

smallest of these. In practice, this means that Contition L speci�es that after observing an

out-of-equilibruim message, R believes the state is certain to be s = 0. Therefore, to check for

a deviation using an out-of-equilibrium signal, Condition L speci�es that it su¢ ces to check

for s = 0. Note that Condition L is very close in spirit to NITS.

The second condition which we consider, ConditionM , speci�es that if an out-of-equilibrium

message is observed then R believes that the state is, among those which are identical to an

action induced, has the largest communication cost.

Condition M : Given (�; �; c), if there does not exist an bs such that �(bs) = bm and R

observes bm then R believes with certainty that the state s0 with the largest c(m0) among those

states where a(m0) = s0.

ConditionM supports "more" equilibria and Condition L supports "less." This is because

under Condition M an out-of-equilibrium message does not induce an a which is not used in

equilibrium and it is therefore relatively di¢ cult to �nd a deviation from an equilibrium.

However, under Condition L an out-of-equilibrium message does induce an a which is not

used in equilibrium and so it is relatively easy to �nd a deviation.

4See Lemma 5.
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Before we proceed to the results, we brie�y discuss some of our modeling choices. First,

we designed the model in order to avoid the issue of misrepresentation therefore we model

the message space and state space as distinct (M 6= S). There exists evidence that in

experimental settings, meaningful communicion can occur even when there is no a priori

meaningful language.5 Second, the state space is designed to be more rich than the message

space. Our state space is uncountably in�nite and our message space is countably in�nite.

In fact, when communication is costly the only equilibria which exist involve a �nite number

of messages. We believe that this captures an important aspect of reality: it is impossible to

completely communicate the complexity of the real world, one may only increase the precision

of communication by expending more costly e¤ort.

As mentioned earlier, one could imagine that our messages m0, m1, m2, ...correspond to

?, f0g, f0; 0g, ... An alternate formulation of the message space would be ?� f0; 1gn where

the cost of communication c (m) = cn. For instance, the message (0; 1; 1) would cost 3c as

would every other message with three digits. However, our formulation is a reduced form of

this speci�cation. The equilibria in this alternate formulation would be more complicated

but would not provide more insight.

4 Results

Although our equilibria share some of the familiar characteristics of the cheap talk literature,

the additional results which emerge require the �exibility provided by the notation which we

now de�ne. Like the CS equilibria, messages are sent on disjoint intervals. Therefore, we may

characterize an equilibrium by a set of cuto¤ states where we denote the number of messages

used in equilibrium as n+1: m0; :::; mn. When listing the cuto¤ states, a superscript indicates

the rank of the cuto¤ state. Speci�cally, si indicates the state which is the ith cuto¤, where

0 = s0 � s1 � s2 � ::: � si � ::: � sn � 1 = sn+1 (3)

When denoting a cuto¤ state, a subscript indicates the smallest state associated with the

message. Speci�cally, state si indicates �(s) = mi for s 2 [sg(i)i ; sg(i)+1). The function g is a

5See Blume et. al. (1998) and Blume et. al. (2001).

9



one-to-one mapping from messages used into the the rank of the smallest state associated with

that message (g : f0; ::; ng ! f0; ::; ng). In other words, g relates each message to elements

of expression (3).

Equilibrium is such that S�s messages are sent as intervals on the state space:6

�(s) = mi for s 2 [sg(i)i ; sg(i)+1) (4)

and R best responds in a straightforward manner:

�(mi) = a(s
g(i)
i ; sg(i)+1) = argmax

a

Z sg(i)+1

s
g(i)
i

uR(a; s)�(sjm)ds

where a(s; s) is the best response of R if the state is known to be between s and s.

The arbitrage equation, also standard in the cheap talk literature, characterizes the equi-

librium set of cuto¤ states:

uS(a(s
g(i)
i ; sg(i)+1);mi; s) = u

S(a(s
g(j)
j ; sg(j)+1);mj ; s) for i and j where sg(i)+1 = s

g(j)
j (A)

We de�ne �i to be the mass of states such that �(s) = mi. Since the messages are sent

on an interval of the state space and the states are distributed uniformly, �i = sg(i)+1 � sg(i)i

when �(s) = mi for s 2 [sg(i)i ; sg(i)+1] and �(s) 6= mi for s =2 [sg(i)i ; sg(i)+1].

All equilibria are e¢ cient in the sense that there are no unused, cheaper signals available.

This is the content of our "no holes" result. We demonstrate that, in equilibrium, there is no

unused message which is cheaper than any of the used messages.

Proposition 1 Consider mi and mj where i > j. Under Condition M , there is no equilib-

rium where there is an si such that �(si) = mi but there is no sj such that �(sj) = mj.

Proof: Suppose that there is a equilibrium (�; �; c) where there exists si such that

�(si) = mi and there does not exist an sj such that �(sj) = mj. We denote the largest signal

6See the appendix for proof of the results that only one message gets sent for any particular state and
the proof of the result that the equilibrium strategy for S entails sending a message m0 for states which are
conntected intervals.
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used in equilibrium as mv such that �(s) = mv for s 2 [s
g(v)
v ; sg(v)+1). When the signal

mj is observed, R believes that the state is certain to be state s
g(v)
v +sg(v)+1

2 . A pro�table

deviation for s 2 [sg(v)v ; sg(v)+1) is �( s
g(v)
v +sg(v)+1

2 ) = mj , therefore (�; �; c) cannot constitute

an equilibrium.

�

The above proposition suggests that each of our equilibria will have no holes: if message

mi is used in equilibrium then so is every mj such that i > j. Also note that we only required

Condition M in the proof and therefore the result also applies to Condition L. As a result of

Proposition 1, we can denote an equilibrium by the most complex message used. Therefore,

if mn is the most complex message used in equilibrium then we will say that we have an

n-equilibrium.

De�nition 1 An n-equilibrium is one in which messages m0, m1, ..., mn are used.

We will use � to rewrite expression (A). Consider an n-equilibrium. Message m0 is

associated with a mass of �0 = sg(0)+1 � sg(0)0 , message m1 is associated with a mass of

�1 = s
g(1)+1�sg(1)1 ,..., message mn is associated with a mass �n = sg(n)+1�sg(n)n . We require

that

�i � 0 for every i 2 f0; :::; ng

and

�1 + �2 + :::+ �n = 1 (5)

In our notation, a monotonic n-equilibrium would be such that g(n0) = n0 for n0 2 f0; :::; ng.

In other words, a monotonic n-equilibrium would be characterized by:

�0 = s1 � 0

�1 = s2 � s1

:::

�n�1 = sn � sn�1

�n = 1� sn:
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This monotonic n-equilibrium is a special case of the more general notation developed above.

Lemma 1 The necessary conditions for an n-equilibrium are:

�2j � �2i = 4c(i� j)

where n � i > j � 0.

Proof: As there are n + 1 messages used in equilibrium (m0, m1, ...,mn), it must be

that there are n equations in expression (A). A typical such expression would be the cuto¤

state between message mi and mj where �(s0) = mi for s0 2 [sg(i)i ; sg(i)+1), �(s00) = mj for

s00 2 [sg(j)j ; sg(j)+1) and sg(i)+1 = sg(j)j :

�
 
s
g(i)
i + sg(i)+1

2
� sg(i)+1

!2
� c(i) = �

 
s
g(j)
j + sg(j)+1

2
� sg(j)j

!2
� c(j):

Without loss of generality, we can write

�
 
s
g(i)
i � sg(i)+1

2

!2
� c(i) = �

 
sg(j)+1 � sg(j)j

2

!2
� c(j)

�
�
��i
2

�2
= �

�
�j
2

�2
+ c(i� j)

�2j � �2i = 4c(i� j)

�

The Lemma above establishes the relationship between the mass of states for any two

signals which are adjacent in the state space. If adjacent messages are also adjacent in terms

of complexity, then the less complex message has a mass of 4c larger than the more complex

message.

If an n-equilibrium is to exist then it must be that expression (A) is satis�ed for each of

the n cuto¤ states. We de�ne the highest possible value of c such that it is still possible, to

satisfy expression (A) in an n-equilibrium as c�(n).
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Lemma 2 The cuto¤ cost c�(n) =

0@ 1

2
nP
i=0

p
i

1A2 for n � 1.
Proof: At the largest c such that signal n is feasible, it must be that �2n = 0. By Lemma

1 it must be that, �2n�1 = 4c, �
2
n�2 = 8c, ..., �

2
1 = 4(n � 1)c, �20 = 4nc. Therefore, we may

write expression (5) as

2
p
nc+ 2

p
(n� 1)c+ :::+ 2

p
2c+ 2

p
c = 1

and so the lemma is proved.

�

As the result of Lemma 2, if c < c�(n) we will describe an n-equilibrium as feasible.

If c > c�(q) then we will describe an n-equilibrium as not feasible. Therefore, for c 2

(c�(n + 1); c�(n)) an n-equilibrium is feasible but it an n + 1-equilibrium is not feasible. As

is apparent from the expression for c�(n), there is a decreasing sequence of cuto¤s costs: the

cheaper the communication costs, n-equilibria with a larger n become feasible.

As a result of Lemma 2 we have the following corollary.

Corollary 1 For any c > 0 there exists a �nite n� such that c�(n�) � c > c�(n� + 1)

Corollary 1 implies that for any nonzero communication costs, there will be at most n�

signals used in equilibrium and so communication is never complete.

We now present two positive results. The �rst is that under Condition L, we are guar-

anteed at least one equilibrium. The proof consists in demonstrating that in any candidate

n-equilibrium it is not pro�table for any s 2 [0; 1] to send message n+ 1.

Proposition 2 If c 2 (c�(n+1); c�(n)) then under Condition L there exists an n-equilibrium.

Proof: Suppose that c 2 (c�(n + 1); c�(n)). We need to check that it is not pro�table

for the sender who received s = 0, to send message mn+1. Because c < c�(n) it must be that

�2i � �2i+1 = 4c for every i 2 f0; ng
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and

�n > 0:

Therefore, �0 =
q
4nc+ �2n. And so the equilibrium payo¤s for the S who received signal

s = 0 is:

�
�
�0
2
� 0
�2
= �

�
�1
2
� 0
�2
� c = ::: = �

�
�n
2
� 0
�2
� nc

All of the messages used in equilibrium will not provide a pro�table deviation, therefore we

must use an out-of-equilibrium message to �nd a deviation. Any deviation accomplished by

message n+ z where z > 1 can be accomplished with a lower communication cost by sending

message mn+1. Therefore, the cheapest (and therefore best candidate) out-of-equilibruim

message is then the message mn+1. If mn+1 is sent, R would have beliefs that the message

was sent by state s = 0. Sending this signal yields a payo¤ of �(n + 1)c. Therefore, the

signal mn+1 will be pro�table when �2n > 4c. At c = c
�(n+ 1) it must be that �n+1 = 0 and

so

�0 + �1 + :::+ �n + �n+1 = 1q
4nc+ �2n +

q
4(n� 1)c+ �2n + :::+

q
�2n + 0 = 1

Therefore, �2n = 4c. However at c > c�(n + 1), it must be that �2n < 4c and there is no

pro�table deviation.

�

Therefore, Proposition 2 suggests that under Condition L there is no pro�table deviation

from an equilibrium which uses the largest number of signals which are feasible. Since

Proposition 2 holds under Condition L, the result will also hold under Condition M . To

see this, note that under Condition L an out-of-equilibrium message induces an action which

was not induced in equilibrium, therefore a deviation possibly bene�ts the sender at s = 0.

Condition M does not induce a new action, therefore a deviation is not pro�table and the

above result also holds under Condition M .

The second positive result is that under Condition L we are guaranteed a unique pro�le

of � for any c. Since Proposition 2 demonstrated that there was no pro�table deviation from
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an equilibrium involving the most complex, feasible equilibrium, we now show that there is

not an equilibrium using any pro�le of signals less than the most complex, feasible one.

Proposition 3 Under Condition L, if c 2 (c�(n + 1); c�(n)) then � = (�0; �1; :::; �n) which

constitute an n-equilibrium is unique.

Proof: Suppose that c 2 (c�(n+1); c�(n)). Consider a candidate equilibrium where only

n� 1 messages are sent. This candidate n� 1-equilibrium is characterized by:

e�2j � e�2i = 4(i� j)c for n� 1 � i > j � 0

e�2n�1 > 0

e�0 + e�1 + :::+ e�n�1 = 1

At c = c�(n) an n-equilibrium would require:

�0 + �1 + :::+ �n = 1:

where �n = 0 and �n�1 = 4c. At c < c�(n) an n-equilibrium would require:

�0 + �1 + :::+ �n = 1:

where �n > 0 and �n�1 = 4c + �2n > 4c. Therefore, it must be that e�2n�1 > 4c and thate�20 > 4nc. So we can write the equilibrium payo¤s as:

US = �
 e�20
2
� 0
!2

< �nc

Deviation payo¤s are �nc, therefore equilibrium payo¤s are less than deviation payo¤s and

so an n� 1-equilibrium cannot exist.

To see that each n-equilibria uniquely determines the values of �, we can rewrite

�0 + �1 + :::+ �n�1 + �n = 1
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as q
4nc+ �2n + :::+

q
4c+ �2n + �n = 1 (6)

Expression (6) is strictly increasing in �n and therefore must only hold for a single value of

�n. And so the proposition is proved.

�

Together Propositions 2 and 3 demonstrate that under Condition L there is only one class

of equilibria: only the most complex, feasible equilibria does not have a pro�table deviation.

Additionally, Proposition 3 shows that, although monotonicity of the equilibrium as found in

CS does not hold in our setting, the equilibrium is unique in the sense that in each equilibrium,

signals of a given complexity are sent on identical mass. These Propositions are reminiscent

of Proposition 3 in Chen, Kartik and Sobel (2008), as they show that in the CS model where

monotonicity holds, NITS admits only the most informative equilibrium.

To provide an antidote for the abstract nature of the above discussion, we now provide an

example of the possible equilibria under Condition M and Condition L.

Example 1 Consider the case where c(mi) = 0:01i. Note that:

c�(4) = 0:00662 < 0:01 < c�(3) = 0:0428:

Under Condition M , there are four classes of equilibria, n 2 f0; 1; 2; 3g. For the n = 0

equilibrium, m0 gets sent for all states. For the n = 1 case, there are two equilibria. There

is an equilibrium where m0 is sent for states [0; 0:52) and m1 for states [0:52; 1]. There is

another equilibrium where m1 is sent for states [0; 0:48) and m0 for states [0:48; 1]. Note

that in each of the n = 1 equilibria �0 = 0:52 and �1 = 0:48. For the n = 2 case, there

are six equilibria. There is a monotonic equilibria where m0 is sent for states [0; 0:392),

m1 for states [0:392; 0:729) and m2 for [0:729; 1]. The remaining 5 equilibria require that

�0 = 0:392, �1 = 0:337, and �2 = 0:271. For the n = 3 case, there are 24 equilibria. There is

a monotonic equilibria where m0 is sent for states [0; 0:363), m1 for states [0:363; 0:665), m2

for [0:665; 0:892) and m3 for [0:892; 1]. The remaining 23 equilibria require that �0 = 0:363,

�1 = 0:302, �2 = 0:227 and �3 = 0:108. For Condition L, only the 24, n = 3 equilibria are
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possible.

Note that we have identi�ed equilibria which the values of �i are neither increasing nor

decreasing. In other words, Monotonicity (Condition M in CS) does not hold in our setting

(unlike the quadratic preferences, uniform state case in CS.) Also since monotonicity fails in

this model we should not be surprised that Condition L does not lead to a unique equilibrium

as Proposition 1 in Chen, Kartik and Sobel demonstrates that when monotonicity fails in their

model, NITS fails to lead to a unique equilibrium.

Proposition 4 In each n-equilibrium the expected utility of R and S is the same.

Proof: For an equilibrium (s1; :::; sn) the ex-ante expected utility of R can be written as

EUR(s1; :::; sn) =

s1Z
0

(s� (a� s)2)ds+
s2Z
s1

(s� (a� s)2)ds+ :::+
1Z

sn

(s� (a� s)2)ds

= 0:5�
s1Z
0

(
s1

2
� s)2ds�

s2Z
s1

(
s1 + s2

2
� s)2ds� :::�

1Z
sn

(
sn + 1

2
� s)2ds (7)

By Proposition 3 each equilibria with n+1 signals has an identical pro�le of � = (�1; :::; �n)

and so we may rewrite expression (7) as

EUR =

0:5�
sg(0)+1Z
s
g(0)
0

(
s
g(0)
0 + sg(0)+1

2
� s)2ds�

sg(1)+1Z
s
g(1)
1

(
s
g(1)
1 + sg(1)+1

2
� s)2ds

�:::�
sg(n)+1Z
s
g(n)
n

(
s
g(n)
n + sg(n)+1

2
� s)2)ds

and so for any equilibria with n+ 1 signals it must be that

EUR(s1; :::; sn) = EUR( bs1; :::; bsn) for any equilibria (s1; :::; sn) and ( bs1; :::; bsn)
17



Therefore, we may write EUR(n) for the expected utility of R in an equilibrium when the

message n is used. Since we can write EUR(n), and by Proposition 3 each of the equilibria

with n signals has an identical pro�le of � = (�1; :::; �n), we can also write EUS(n) for as:

EUS(n) = EUR(n)� �1 � 2�2 � 3�3 � :::� n�n:

and so the proposition is proved.

�

4.1 Competency of the Advisee

In any relationship involving advice, the advisor has beliefs regarding ability of the advisee to

execute the advice. It would seem that this competency would in�uence e¤ort supplied by the

advisor. To analyze these issues, we supplement the model to allow for the possibility that

the sender might make a mistake in the execution of the action. Speci�cally, with probability

p the receiver perfectly executes the most preferred action:

�(mi) = a(s
g(i)
i ; sg(i)+1) = argmax

a

Z sg(i)+1

s
g(i)
i

uR(a; s)�(sjm)ds:

With probability 1�p, the action a is distributed uniformly on the action space (U [0; 1]).7 We

interpret p as the competency of the advisee. We now state our result, which demonstrates

that the informativeness of the relationship is increasing in the competency of the advisee.

Proposition 5 The informativeness of the sender is increasing in p

Proof: In the presence of the possibility of mistakes, the new arbitrage expression can

be written:

�p
 
s
g(i)
i � sg(i)+1

2

!2
� (1� p)

Z 1

0
(s� (x� s)2)dx� c(mi)

= �p
 
s
g(j)
j � sg(j)+1

2

!2
� (1� p)

Z 1

0
(s� (y � s)2)dy � c(mj)

7Note that we assume that p is unrelated to the message. We could have allowed p to be decreasing in the
comlexity of the message, however this would only strenghten our result below.
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Therefore, the necessary conditions for equilibrium can be written:

�2j � �2i =
4c

p
(i� j):

So for any n-equilibrium, a decrease in p will lead to a decrease in E[(a� s)2]. Additionally a

decrease in p can lead to an equilibrium with a smaller number of signals, as the cuto¤ costs

can be written:

c�(n; p) =
p�

2
nP
i=0

p
i

�2 :
�

Proposition 5 suggests that in equilibrium S will expend less e¤ort on communication when

R exhibits a larger probability of making a mistake in executing the action. We interpret

this result as indicating that in equilibrium, advisors will provide more attention to capable

advisees.

5 Conclusions

We have modeled an interaction between an informed sender and uninformed receiver, as

in relationship between academic advisor and advisee. Advisor and advisee have identical

preferences over the action of the advisee, however the advisor faces a cost of communication

which is increasing in the complexity of the message sent. We have characterized the equilibria

where a unique message is sent on an interval of the state space. There exists a cuto¤ cost,

which determines the number of messages sent in the most informative equilibria. We have

demonstrated that under Condition L only the most informative class of equilibria exists.

This result is analogous to the �ndings of the No Incentive to Seperate (NITS). Finally, we

have also provided a result which demonstrates that the more competent advisee will enjoy a

more informative advising relationship.

There however remain important questions which are unanswered. For instance, it is not

known what happens when sender and receiver have di¤erent preferences over actions of the

receiver. For instance, it is possible to imagine a case where the advisor and advisee have

di¤erent preferences over the content of the paper. Also, we have modeled the interaction as
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a single repetition. However, there might be interesting to model the relationship when the

interaction is repeated. There are three possibilities as perhaps the relationship is �nitely

repeated, in�nitely repeated or is repeated until the project attains some threshold. An

additional issue which arises only in the repeated version of the game relates to learning on

the part of the advisee. Presumably there is a relationship between some publicly observable

signal and the optimal action for the advisee and also that the advisor wishes to teach the

advisee this relationship.

We are also eager to learn the validity of the results in an experimental setting. Like most

communication games, the equilibria here is rather complicated and this fact makes experi-

mental investigation rather di¢ cult. On the other hand, experimental papers (for instance

Cai and Wang (2006) and Kawagoe and Takizawa (2008)) have found suitable simpli�cations

of the theoretical papers which they test. We are con�dent that a similar such a simpli�cation

can be found in our setting.
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6 Appendix

Together the below two propositions demonstrate that equilibrium messages are sent only on

connected disjoint intervals.

Lemma 3 For any state bs, there can only be one message bm sent in equilibrium.

Proof: Suppose that �((s1; s2)) = m0 and �((s3; s4)) = m00 where (s1; s2) 6= (s3; s4) and

(s1; s2) \ (s3; s4) 6= ;. The sender S can transmit the same information by sending only

the least costly of the two, argmin(c(m0); c(m00)) and so �((s4; s2)) = fm0;m00g cannot be

equilibrium.

�

Lemma 4 The equilibria must be connected intervals.

Proof : Now suppose there exists m such that ��1(m) = [s1; s2) [ [s3; s4) with [s1; s2) 6=

[s3; s4); [s1; s2) \ [s3; s4) = ; where s2 < s3:

Case 1: Suppose a(m) 2 (s2; s3): De�ne �(a(m)) = m0, where m 6= m0. If a(m) = a(m0);

either c(m) 6= c(m0) and there exists a pro�table deviation for S in choosing the cheaper

message, or c(m) = c(m0); and there exists a payo¤-equivalent equilibrium in which we send

the same message at ��1(m); ��1(m0): Therefore, suppose a(m) 6= a(m0): If c(m) � c(m0);

the sender strictly prefers to send m on (a(m) � "; a(m) + ") 2 ��1(m0). If c(m) > c(m0)

and a(m) < a(m0); the sender strictly prefers to send m0 on [s3; s4). If c(m) > c(m0) and

a(m) > a(m0); the sender strictly prefers to send m0 on [s1; s2).

Case 2: Suppose a(m) 2 [s1; s2). If there exists m0 2 �((s2; s3)) with c(m0) � c(m); such

that a(m0) 2 (s2; s3) then the sender strictly prefers to send m0 on [s3; s4). If c(m0) > c(m)

for m0 2 �((s2; s3)) then the sender strictly prefers to send m on [s2; s3).

Case 3: a(m) 2 [s3; s4). The proof is analogous to Case 2 and the lemma is proved.

�

Hence, the inverse of � is a collection of disjoint intervals with the property that if s; s0 2

��1(m) for some m; so is s00 2 (s; s; ). Unless S indi¤erent between sending two signals at

state s, then the same message is sent for some (s� "; s+ ") for some " > 0.
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Lemma 5 There are n+ 1 solutions to maxs(a(m0)� s0)2 + c(m0).

Proof: Suppose that US(a; bm; s) > US(a; bm; s) where �([s; s)) = bm. As the distribution
is uniform, a = s+s

2 . This implies that
�
s+s
2 � s

�2
>
�
s+s
2 � s

�2
, which cannot be the case.

Combined with expression (A), we have n+ 1 such solutions.

�

22



7 References

Austin-Smith, David (1994): "Strategic Transmission of Costly Information," Econometrica,

62(4): 955-963.

Banks, Je¤rey and Sobel, Joel (1987): "Equilibrium Selection in Signalling Games," Econo-

metrica, 55, 647-661.

Blume, Andreas, Board, Oliver and Kawamura, Kohei (2007) "Noisy talk," Theoretical

Economics, 2: 395-440.

Blume, Andreas, DeJong, Douglas, Kim, Yong-Gwan and Sprinkle, Je¤rey (1998): "Exper-

imental evidence on the evolution of meaning of messages in sender-reciever games," American

Economic Review, 88: 1323-1340.

Blume, Andreas, DeJong, Douglas, Kim, Yong-Gwan and Sprinkle, Je¤rey (2001): "Evo-

lution of Communication with Partial Common Interest," Games and Economic Behavior, 37:

79-120.

Cai, Hongbin and Wang, Joseph Tao-Yi (2006): "Overcommunication in strategic infor-

mation transmission games," Games and Economic Behavior, 56: 7-36.

Calvo-Armengol, Antoni, de Marti, Joan and Prat, Andrea (2009): "Endogenous Commu-

nication in Complex Organizations," Working paper, Autonoma de Barcelona, Pompeu Fabra

and London School of Economics.

Chen, Ying, Kartik, Navin and Sobel, Joel (2008): "Selecting Cheap-Talk Equilibria,"

Econometrica, 76(1): 117-136.

Corcoran, Mary and Clark, Shirley (1984): "Professional Socialization and Contemporary

Career Attitudes of Three Faculty Generations," Research in Higher Education, 20(2): 131-

153.

Crawford, Vincent and Sobel, Joel (1982): "Strategic Information Transmission," Econo-

metrica, 50(6): 1431-1451.

23



Dewatripoint, Mathias and Tirole, Jean (2005): "Modes of Communication," Journal of

Political Economy, 113(6): 1217-1238.

Farrell, Joseph (1993): "Meaning and Credibility in Cheap-Talk Games," Games and

Economic Behavior, 5, 514-531.

Fischer, Paul and Stocken, Phillip (2001): "Imperfect Information and Credible Commu-

nication," Journal of Accounting Research, 39(1): 119-134.

Green, Steven and Bauer, Talya (1995): "Supervisory Mentoring by Advisors: Relation-

ships with Doctoral Student Potential, Productivity and Commitment," Personnel Psychology,

48(3): 537-561.

Hollingsworth, Merris and Fassinger, Ruth (2002): "The Role of Faculty Mentors in the

Research Training of Counceling Psychology Doctoral Students," Journal of Counceling Psy-

chology, 49(3): 324-330.

Kawagoe, Toshiji and Takizawa, Hirokazu (2008): "Equilibrium re�nement vs.level-k analy-

sis: An experimental study of cheap-talk games with private information," Games and Eco-

nomic Behavior, forthcoming.

Kohlberg, Elon and Mertens, Jean-Francois (1987): "On the Strategic Stability of Equi-

libria," Econometrica, 54, 1003-1037.

Knox, Sarah, Schlosser, Lewis, Pruitt, Nathan and Hill, Clara (2006): "A Qualitative

Examination of Graduate Advising Relationships: the Advisor Perspective," Counceling Psy-

chologist, 34(4): 489-518.

Matthews, Steven, Okuno-Fujiwara, Masahiro and Postlewaite, Andrew (1991): "Re�ning

Cheap-Talk Equilibria," Journal of Economic Theory, 55: 247-273.

Morgan, John and Stocken, Phillip (2003): "An Analysis of Stock Recommendations,"

RAND Journal of Economics, 34(1): 183-203.

Morris, Steven (2001): "Political Correctness," Journal of Political Economy, 109(2): 231-

265.

24



Schlosser, Lewis and Gelso, Charles (2001): "Measuring the Working Alliance in Advisor-

Advisee Relationships in Graduate School," Journal of Counceling Psychology, 48(2): 157-167.

Schlosser, Lewis and Kahn, Je¤rey (2007): "Dyadic Perspectives on Advisor-Advisee Re-

lationships in Counceling Psychology Doctoral Programs," Journal of Counceling Psychology,

54(2): 211-217.

Schlosser, Lewis, Knox, Sara, Moskovitz, Alissa and Hill, Clara (2003): "A Qualitative Ex-

amination of Graduate Advising Relationships: The Advisee Perspective," Journal of Councel-

ing Psychology, 50(2): 178-188.

25


