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Abstract: We study the dynamic stability of fidelity networks, which are networks that form in a

mating economy of agents of two types (say men and women), where each agent enjoys having direct

links with opposite type agents, while engaging in multiple partnerships is punished if detected by the

cheated partner. We assume that such a punishment is more severe for women than for men, which

results in that women’s optimal number of partners is smaller than men’s. We define two dynamic and

stochastic matching processes in which agents form and sever links based on the reward from doing

so, but possibly take actions that are not beneficial with small probability. In defining the probability

of such actions, the first process relies on the intuition that an individual who invests more time in

a relationship makes it stronger and harder to break by his/her partner, while in the second process,

such an individual is perceived as weak. We find that in the long run, only egalitarian pairwise stable

networks, in which all agents have the same number of partners, are stable under the first process;

while under the second process, only anti-egalitarian pairwise stable networks, in which all women

have their desired number of partners and are matched to a small number of men, are stable. Next,

we apply these results to find that under the first process, men and women are equally vulnerable to

HIV/AIDS, while under the second process, women are more vulnerable. The key implication is that

even if the prevalence of HIV/AIDS is lower among women compared to men at some point in time,

the number of infected women will grow over time to reach and possibly offset the number of infected

men. Our analysis lends support to the hypothesis that anti-female discrimination is a key factor in

the greater vulnerability of women to HIV/AIDS often observed in real data.
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1 Introduction

We study the dynamic stability of networks among agents of two types. Each agent enjoys having

direct links with opposite type agents —the benefit of each relationship—, but establishing each link

is costly in some dimension. In our leading application, which we shall refer to as fidelity networks,

the two sets of agents are men and women who may consider establishing relationships with agents of

the opposite sex. Each agent derives utility from having more direct links, but engaging in multiple

partnerships is an act of infidelity and is punished if detected by the cheated partner. If one assumes

that the benefit function is the same for all agents, but the punishment after detection of infidelity

is more severe for women than for men, this results in women having a smaller optimal number of

partners than do men. (As it turns out, this assumption on the asymmetry in the number of optimal

links for both sides is one of the keys for our analysis.)3

There may be other uses of fidelity networks. For instance, countries as purchasers of latest-

generation military equipment and their suppliers may want to keep the number of established links

small, fearful of information leakages. Here, while in principle one would like having more suppli-

ers/customers, having more links has the potential of undesired transmission of confidential informa-

tion. But our results extend to other non-fidelity networks as well. Buyers and sellers in a market can

be modeled in this way, and in this case, one can argue that typically the optimal number of buyers

for each seller exceeds the optimal number of stores each buyer purchases from. Graduate students

writing a doctoral dissertation and their faculty advisors is another example, in which the number of

optimal links for students is usually lower than it is for professors.

Apart from the theoretical interest of the dynamic analysis of such relationship networks, we also

use it to shed new light on the effects of the network on communication transmission. Since our leading

application will be the fidelity network among men and women, we will highlight the use of our results

3This asymmetry is supported by a long standing literature on gender discrimination in most societies (see, e.g.,
Wollstonecraft (1792), Sen (1999), Nussbaum and Glover (1995)). One of the manifestations of this asymmetric treat-
ment often appears in household surveys where it is claimed that women generally underreport their sexual activity
(Fenton et al (2001), Zaba et al (2004), Mensch, Hewett, and Erulkar (2003), Jaya et al (2008)), consistent with the
notion that women find it more difficult to admit having experienced sex outside a socially sanctioned relationship (Dare
and Cleland (1994)).
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in the understanding of the mechanisms of HIV/AIDS transmission due to different configurations of

sexual networks.4

1.1 Fidelity

Fidelity is an important quality and an ethical principle in most types of social and economic relation-

ships. In people’s private lives, partners’ faithfulness to each other is essential in sustaining a marriage

relationship. In a competitive economic and political environment, the security of confidential infor-

mation is crucial to the survival and success of such various organizations as firms, governments,

intelligence services, military, political parties, research labs, or financial institutions. In all these

cases, employees or members’ loyalty is essential, whereas improper leaks of vital information (regard-

ing technology, R&D programs, marketing strategy, political or military secrets, and so on) to rivals

or to the media by disloyal employees or members can be very damaging.5

Infidelity in intimate relationships is also prevalent, and has dramatic social and economic conse-

quences. According to Psychiatrist Frank Pittman, infidelity takes several forms, and is behind 90%

of first time divorces in the United States (Pitman (1990, 1999)). A study of DNA tests revealed

that 10-15% of children were conceived as a result of an affair in Australia (ALRC (2003)), and in

the United States, the father was not the true biological parent in 30% of paternity tests conducted

by the American Association of Blood Banks (AABB (2003)). Globally, 33 million people live with

the AIDS virus today, and infidelity in sexual relationships is advanced as the single most important

driver of this epidemic (UNAIDS (2008)).

Despite playing an essential role in the determination of crucial social, epidemiological and eco-

nomic outcomes, the notion of fidelity and its importance in the formation of links between self-

interested agents who otherwise have a prima facie duty of loyalty to each other have received little

attention in the economic literature.6

4The implications for the world of the spread of HIV/AIDS are dramatic and serious. Having said that, the epidemic
may have some unintended positive consequences in terms of a higher future per-capita output and consumption (the
“Black Death effect”), as argued in A. Young (2005) or Bloom and Mahal (1995); in contrast, Over (1992), Bell,
Devarajan and Gersbach (2003), and Arndt and Lewis (2000) offer a more pessimistic assessment, by not emphasizing
the drop in fertility rates.

5Employees’ loyalty has been identified as a major factor in a firm’s growth (Reichheld (2003)), while leakage of
technological information and its various economic consequences have been also documented (see, e.g., Mansfield et al.
(1982), Mansfield (1985), Helpman (1993), Aghion et al. (2001)).

6Note however that networks have been used to study a wide variety of topics including job search through contact
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We study bipartite graphs, which means that each link connects a member of one of the two sets of

agents (e.g., a man) with a member of the other set (e.g., a woman).7 Our contribution in this study

is twofold. First, we identify which networks are likely to arise in a bipartite environment in which

opposite type agents who desire fidelity from each other form and sever ties over time. Specifically, we

shall study the dynamic and long-run stability of these networks. A unique aspect of the networks we

study stems from the fact that a priori, agents do not know the other partners of their partners, and

do not gain anything from being indirectly linked to them.8 Thus, in particular, one can assume that

links are not observable. Second, we examine the implications of these networks for gender differences

in sexually transmitted diseases, with a focus on HIV/AIDS.

1.2 Overview of the Dynamic Model and Theoretical Results

Our economic environment consists of a finite population of two equal-size exogenously determined

sets of individuals, say men and women. Each individual derives utility from the number of direct

links with opposite sex agents, while engaging in multiple links is an act of infidelity, and is punished

if detected by the cheated partner. Detection occurs with positive probability, and it is assumed that

a woman whose infidelity is detected is more severely punished than a man in a similar situation.

These considerations result in each agent having a single-peaked utility function, which implies that

each agent has a desired or optimal number of partners. Due to gender asymmetry in the punishment

of infidelity, this number is strictly greater for each man than for each woman.

We characterize the pairwise stable or equilibrium networks of this mating economy. In a mating

economy such as the one we are describing, individuals form new links or sever existing links based

on the reward that the resulting network offers them relative to the current network. We say that a

network is pairwise stable or in equilibrium if (i) no individual has an incentive to sever an existing

information (Boorman (1975), Montgomery (1991), Calvó-Armengol (2004), Ioannides and Loury (2004)), purchasing
behavior and consumer products information (Frenzen and Davis (1990), Ellison and Fudenberg (1995)), technology
diffusion and adoption (Coleman (1966)), friendship (Jackson and Rogers (2007a)), and community insurance network
(Fafchamps and Lund (2000), Kohler and Hammel (2001)).

7There is a long tradition of using bipartite environments to study matching problems, including for instance the
marriage problem, the hospital-intern problem, the college admissions problem, buyer-seller networks, and the employee-
employer problem (see, e.g., Hall (1935), Gale and Shapley (1962), Roth and Sotomayor (1989), Echnique and Oviedo
(2006), Sotomayor (2003), Kranton and Minehart (2001)).

8The extension of our analysis to the case in which an agent’s well-being is affected by indirect links is important,
but beyond the scope of this paper.
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link he or she is involved in, and (ii) no pair of a man and a woman have an incentive to form a new

link while at the same time severing some of the existing links they are involved in.

We shall assume that our population is sufficiently large, which allows for a simple characterization

result of equilibrium networks.9 In particular, we find that a network is pairwise stable if and only

if each woman has exactly her optimal number of partners, and each man has at most his optimal

number of partners. Women supply a smaller number of links than the ones demanded by men, which

in turn results in only men competing for female partners while each woman is sure of having the

number of male partners she desires.

The center of our analysis is a dynamic matching process for this economy, more precisely a

Markov process, based on the incentive that agents have to form new links or sever existing ones.

The unperturbed Markov process assumes discrete time, and is defined as follows. In each period,

a male-female pair chosen at random with arbitrary positive probability is given the opportunity to

sever or add a link based on the improvement that the resulting network offers to each of them relative

to the current network. If they are already linked in the current network, the decision is whether to

sever the link; severance is a unilateral decision. Otherwise, the decision is whether to form a new

link. While forming a new link, for simplicity, each agent is allowed to sever at most one of the links

he/she is involved in in the current network. Link formation is a bilateral decision. The long run

predictions of this process coincide with the set of equilibrium networks, a very large set.

To gain determinacy in our analysis, the matching process is later on perturbed in two ways, each

perturbation consisting of allowing a small probability of forming new links or severing existing ones

when this action is not beneficial. We study the long-run predictions of these perturbed processes

—their stochastically stable networks—, these predictions being the networks that are visited a positive

proportion of time in the very long run.10

In both perturbed dynamic processes, if a link formation is mutually beneficial or if a link severance

9In a companion study of fidelity networks, Pongou (2009a) provides a full characterization of stable networks
without the “large populations” assumption made here. The basic static framework of that study has been extended
to multi-ethnic societies in Pongou (2009b), yielding testable predictions for the effects of ethnic diversity on multiple
sexual partnerships and the spread of HIV/AIDS.
10The notion of stochastic stability has been applied to studying a number of problems in the economic literature

(see, e.g., Freidlin and Wentzell (1984), Foster and H.P. Young (1989), Kandori, Mailath and Rob (1993), H.P. Young
(1993, 1998), Ellison (1993), Noldeke and Samuelson (1993), Vega-Redondo (1997), Hart (2002), Jackson and Watts
(2002), Alós-Ferrer and Weidenholzer (2007), etc.)
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is beneficial to its initiator, it occurs with probability 1. That is, this feature of the unperturbed

dynamics is retained. However, the perturbed processes allow for more transitions. In both, an action

that worsens its initiator, which we shall call a mistake, occurs with a small probability ε > 0. And

in between are actions that leave their initiators exactly indifferent. We shall refer to these as neutral

actions. Because neutral actions are not improving the well-being of their initiators, they are not

taken in the unperturbed dynamics, whereas they will be taken with a small positive probability in

the perturbed processes. In the spirit of papers assuming that more serious mistakes are less likely,

this probability will always exceed ε. We now explain how.

In our models, neutral actions uniquely correspond to situations in which an agent severs an

existing link with a current partner and forms a new link with another agent. We shall assume that

the probability of taking such a neutral action is εf(·) (a number strictly greater than ε because the

exponent will be smaller than 1), a function of the strength of the existing link f(·), so that stronger

links —f(·) closer to 1— are harder to break.

In the first perturbed process, from the point of view of the agent who initiates a neutral action

with the severance of an existing link, its strength f(·) is inversely proportional to the number of

partners that the old partner had in the existing network. The interpretation is that this link is as

strong as the amount of time invested in it by the other partner. We study the long-run predictions

of this perturbed process, and find that networks are visited a positive proportion of time in the very

long run if and only if they are pairwise stable egalitarian networks. In these networks, men and

women have the same number of partners, which is the optimal number of partners for women. A

salient particular case are the monogamous networks, if such a number is 1.

In contrast, the second perturbed process assumes that, in evaluating the probability of taking

a neutral action, and the consequent severance of an existing link, its strength f(·) is directly pro-

portional to the number of partners that the old partner had in the existing network. Here, the

interpretation is that in a relationship, the partner who invests more time is perceived as “weak” or

dominated by the other partner; and thus, it is easier for the dominant partner than for the dominated

partner to break the relationship. For this case, we find that pairwise stable anti-egalitarian networks,

which are networks in which each woman has her optimal number of partners, and a smallest possible
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set of men is matched, will be the only ones visited a positive proportion of time in the very long run.

Each non-isolated man is matched to his optimal number of partners (except for at most one man,

who will be matched to the remaining women).

Note how what was taken to define the strength of a link in the first perturbed process is in the

second process utilized to define the domination status of a party to a partnership. The key implication

is that, while in the first process it is harder for an agent to break a relationship in which his/her

partner invests too much time, in the second process it is much easier to break such a link. There are

several advantages to considering both approaches. From a theoretical view point, both approaches,

being polar opposites in the assumptions behind neutral actions, offer a more complete study of the

problem being investigated. From an empirical view point, the two approaches correspond to different

sociological realities.

1.3 HIV/AIDS

Our findings allow us to shed new light on the origins of gender differences in HIV/AIDS. Globally,

the share of women among HIV infected adults has grown from 43% in 1990 to 50% in 2001 when it

stabilized. In sub-Saharan Africa, this figure has grown from 53% in 1990 to 60% in 2007 (UNAIDS

(2008)). A recent study based on Demographic and Health Surveys and AIDS Indicator Surveys,

which are household surveys commissioned by the United States Agency for International Development

through the MEASURE DHS, shows that in most developing countries, women bear a disproportionate

share of the HIV/AIDS burden (Mishra et al. (2009)).

Early on, it was hypothesized that the male-to-female transmission rate of the AIDS virus is

greater than the female-to-male transmission rate, which was proposed as an explanation for the

higher prevalence of HIV/AIDS among women. The argument generally put forth to support this

hypothesis is speculative, and rests on the claim that women have larger exposed surface area of

mucous membrane during sexual intercourse, as well as a larger quantity of potentially infectious

fluids than men (WHO (2003)). But as pointed out in the same report by the WHO (2003), the

evidence on this subject is incomplete. In fact, the hypothesis advanced for higher female vulnerability

received its first empirical tests in the African context in two ground-breaking studies conducted in
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Uganda among a sample of monogamous heterosexual, HIV-discordant couples (Quin et al. (2000),

Gray et al. (2001)). These couples were identified retrospectively from a population cohort in Rakai,

Uganda. Frequency of intercourse within couples and HIV-1 seroconversion in the uninfected partners

were assessed prospectively. Men and women independently reported similar frequencies of sexual

intercourse.11 The first study found that the male-to-female transmission rate of the AIDS virus was

12.0 per 100 person-years, while the female-to-male transmission rate was 11.6 per 100 person-years.

But both figures were not found to be significantly different from each other. The second study found

that the probability of the virus transmission per coital act from infected women to their initially

uninfected male partners was 0.0013, compared with a transmission probability of 0.0009 per act

from infected men to their initially uninfected female partners,but these figures were not statistically

different from each other either. This finding runs contrary to the early hypothesis and explanation

for gender asymmetry in transmission rate. Also, in several Western countries where the prevalence

of HIV/AIDS is low, women are not significantly more infected than men. The question of the origins

of gender differences in HIV infections therefore remains open.

Despite an increasing interest in understanding the role of gender discrimination in the higher

vulnerability of women (WHO (2003)), how discrimination really plays out is still not well understood.

The complexity of this topic partly stems from the fact that discrimination does not necessary lead

to women being more vulnerable from a static point of view (Pongou (2009a)). The current study,

however, offers a possible explanation: we show that anti-female discrimination always causes societies

to progress from an HIV-male prevalent infection rates toward ones in which women are more at risk,

which means that in such societies, the proportion of infected women grows over time.

A theoretical framework useful to the study of gender differences in HIV infection is proposed in

Pongou (2009a). Assume that an agent is drawn at random from a network to receive a piece of

information (interpreted here as an instance of getting infected by the HIV virus due to a random

event). He/she then communicates it to his/her partners, who in turn communicate it to their other

partners, and so on. If that agent has no partner, the information does not spread. Under the

assumption that each agent is drawn with equal probability, Pongou (2009a) defines the communication

11This is a good feature of these data, as it seems to reflect that partners were faithful to each other, and thus
infected individuals who were initially uninfected contracted the AIDS virus through intercourse with their initially
infected partners. This makes it possible to assess gender differential transmission rates.
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or contagion potential of that network, which is the expected proportion of agents who will receive

the information, and provides a formula for this notion. The study also derives a formula for gender

difference in contagion potential in a network.

We show that under the first stochastic process, gender difference in contagion potential in any

of the stochastically stable networks is zero, which implies that gender difference in HIV infection is

small. Under the second stochastic process, women’s contagion potential is greater than men’s, which

shows the higher vulnerability of women to HIV/AIDS.

When it comes to understanding HIV/AIDS spread, there are two key messages of the current

study. (i) In the long run, men do not bear a higher burden of HIV/AIDS under neither process.

And, (ii) in the second process, women are more severely affected by HIV/AIDS than men. The

first explanation that underlies both facts, which seem to suggest that women are the “weak side”,

is our assumption of the greater punishment for infidelity that we pose holds for women. But to

understand the second finding is slightly more subtle. Theoretically, the “female subjugation” in

the stochastically stable networks of the second process is surprising, given that the definition of the

stochastic process itself is “gender neutral”. Indeed, that it is easier for the dominant partner than for

a dominated partner to break the relationship always applies, whether the dominant partner is a man

or a woman. However, in combination with our infidelity punishment gender asymmetry assumption,

societies under the second perturbed process can be termed male dominant. Given the structure of our

long run predictions, all the key transitions involve a woman severing a link to form a new one, and in

doing so, the cost of breaking that link is a direct function of the dominant role of her old male partner,

measured by the number of his links. The result is then that in such male-dominant societies, the

long run predictions are pairwise stable anti-egalitarian networks, which lead to a contagion potential

that is always greater for women than for men.

1.4 Related Literature

In the literature on strategic network formation, our study is close in methodology to Jackson and

Wolinsky (1996) and Jackson and Watts (2002), and in motivation to Pongou (2009a, b).

Jackson and Wolinsky (1996) were among the first to propose a general framework for the study
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of the stability and efficiency of social and economic networks, taking into account the incentive that

self-interested agents have to form and sever links with each other.12 They develop a notion of pairwise

stability of networks, and study its relationship with efficiency. The analysis in the Jackson-Wolinsky

paper is however based on a static approach of stability, leaving unanswered the questions pertaining

to dynamics. Such questions are subsequently addressed in Jackson and Watts (2002) using the notion

of dynamic and stochastic stability.

Our study shares several features with these two papers. First, our analysis of statically stable

networks is based on a notion of pairwise stability that allows for simultaneous link formation and

severance. While this definition of stability differs from the one proposed in Jackson and Wolinsky

(1996), it is close to the one underlying the analysis of the marriage problem in Jackson and Watts

(2002). It can however be shown that the set of stable networks is the same under the two definitions.

Second, our analysis of the dynamic stability of fidelity networks draws on the theoretical framework

proposed in Jackson and Watts (2002). But our study differs from theirs in some important respects.

First, our focus is on analyzing fidelity networks; and second, our dynamic analysis rests on the

notion that more severe mistakes in link formation or severance are less likely (our distinction between

mistakes proper and neutral actions).13

Our study also shares the idea underlying Bala and Goyal (2000) in that both papers study the

dynamics of network formation. The focus in Bala and Goyal (2000) is however on directed networks,

in which an agent can connect to another agent without the consent of the latter, whereas we study

undirected networks where forming a link requires the mutual consent of the two parties involved.

Our models therefore end up having very different applications. Second, the dynamic analysis of

network formation used in Bala and Goyal is based on a repeated game to which learning is applied to

12This important study was preceded by Aumann andMyerson (1988). Aumann and Myerson (1988) study a two-stage
game in which in the first stage, players form bilateral links resulting in a communication and cooperative structure,
to which the Myerson value (Myerson (1977)) is applied to determine the payoff to each player in the second stage.
Extensions and variants of this game have been considered in Dutta, van den Nouweland and Tijs (1996), Slikker and
van den Nouweland (2001a), and Slikker and van den Nouweland (2001b). Following the pioneering works of Aumann
and Myerson (1988) and Jackson and Wolinsky (1996), a number of studies on strategic network formation have been
conducted (see, e.g., Dutta and Mutuswami (1997), Bala and Goyal (2000), Watts (2001), Jackson and Watts (2002),
Jackson and van den Nouweland (2005), Page, Wooders and Kamat (2005), Dutta, Ghosal and Ray (2005), Bloch and
Jackson (2007)).
13In this regard, we draw on a recent literature that has used stochastic stability and the “more serious mistakes are

less likely” assumption in other problems: see, e.g., Blume (1993, 1997), Durlauf (1997), H.P. Young and Burke (2001),
Ben-Shoham, Serrano and Volij (2004), Sandholm (2007), Kandori, Serrano and Volij (2008), Serrano and Volij (2008),
Myatt and Wallace (2006).
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characterizing equilibrium networks, an approach which is quite different from the stochastic stability

approach adopted here.

Finally, we have acknowledged that the analysis of gender difference in information concentration

relies on the theoretical framework proposed in Pongou (2009a). In that paper, the computation of

information concentration in a given network relies on the assumption that information travels the

network via word-of-mouth or neighbors’ contagion, and so does not spread if received by an isolated

agent. This assumption also underlies some analyses of how network structure affects the diffusion

of certain diseases or behaviors (see, e.g., Pastor-Satorras and Vespignani (2000, 2001), Jackson and

Rogers (2007b), Jackson and Yariv (2007), and Lopez-Pintado (2008)). The different approaches

used in these studies to analyzing diffusion generally assume a distribution of links or connections in

the population, and/or a payoff function whose arguments include an individual’s and her neighbors’

choice of a certain behavior, and often rely on the mean-field approximation theory, which consists of

solving a particular differential equation, to identify equilibria. Our approach makes no assumptions

on the connectivity distribution of the population, but relies only on the knowledge of the number of

components and their size.

1.5 Plan of the Paper

The remaining of this paper unfolds as follows. Section 2 introduces the model that forms the basis

for our analysis. We characterize pairwise stable networks in Section 3. In Section 4, we define the

unperturbed Markov process and characterize its recurrent states. This process is perturbed in Section

5 and Section 6 respectively, and a characterization result of stochastically stable networks is provided

for each of the two perturbed systems. In section 7, we study the implications of our results for gender

difference in HIV/AIDS, which is followed by the conclusion in Section 8.

2 The Model

The economic environment consists of a finite set of individuals N = {1, 2, . . . , n}, partitioned into a

set of men M and a set of women W , each of equal size. Each individual derives utility from direct

links with opposite sex agents, but engaging in multiple links is an act of infidelity, and is punished
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if detected by the cheated partner. Detection occurs with positive probability. It is assumed that

a woman whose infidelity is detected is more severely punished than a man in a similar situation.

Networks that arise from this environment are called fidelity networks.

2.1 Utility Functions

Let M ×W denote the cartesian product of M and W . A network is a subset of M ×W . Let g

be a network. Since we are dealing with undirected graphs, if (i, j) ∈ g, we will abuse notation and

consider that (j, i) ∈ g (in fact, (i, j) and (j, i) represent the same relationship). Let i ∈ N be an

individual, and si(g) the number of opposite sex partners that i has in the network g. The utility

that i derives from g is expressed by the following function:

ui(g) = v(si(g))− c(si(g))

where v(si(g)) is the utility derived from direct links with opposite sex partners in g, and is concave

and strictly increasing in si(g); and c(si(g)) the cost of infidelity.

Let us define the cost function more precisely. Let j, k ∈ N be such that (i, j) ∈ g and (i, k) ∈ g.

Let π be the probability that j detects the liaison (i, k), and c the cost incurred by i if j detects that

liaison. Because i has si(g) partners, he/she will be detected si(g)(si(g) − 1) times with probability

π, incurring an average cost of si(g)(si(g)− 1)πc. So we define the cost function as:

c(si(g)) = si(g)(si(g)− 1)πc

Assuming that i is an expected utility maximizer, he/she will thus maximize the following utility

function:

ui(g) = v(si(g))− si(g)(si(g)− 1)πc

We denote the extension of ui to the non-negative reals as ui(si). Without loss of generality, let

ui be twice continuously differentiable. The following remark is straightforward:
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Remark 1 (1) ∃s∗ ∈ [1,+∞[ such that u0(s∗) = 0, ∀s ∈ [0, s∗[, u0(s) > 0, and ∀s ∈]s∗,+∞[,

u0(s) < 0.

(2) ∂s∗

∂c ≤ 0

Remark 1 implies that ui is single-peaked. Given that the cost incurred per detection is equal for

all individuals of the same sex, they have the same optimal number of partners. Further, the optimal

number of partners for women is smaller than the optimal number of partners for men because the

former are more severely punished than the latter if their infidelity is detected. Note that if s∗ is not an

integer, then the optimal number of partners will be either the largest integer smaller than s∗ bs∗c or

the smallest integer greater than s∗ ds∗e. We also postulate that for no s ≥ 0, ui(s) = ui(s + 1).

These considerations motivate our first assumption, which we make explicit as follows:

Assumption A1. Denoting by s∗m and s∗w the unique optimal integer number of partners for men

and women, respectively, we assume that s∗m > s
∗
w.

In order to derive our results, we will make a “large populations” assumption. As it turns out,

this will be a strenghthening of Assumption A1. Specifically:

Assumption A2. We assume |M | to be large enough so that |M|−(s∗w−1)
|M| >

s∗w
s∗m
.

Note how A2 is stronger than A1 whenever s∗w > 1. If the optimal number of partners for women

is exactly 1, A2 reduces to A1. For the kinds of applications we have in mind, this is an appropriate

assumption. On the other hand, Pongou (2009a) studies a related problem without assuming this.

2.2 Fidelity Networks

Let g be a fidelity network. The elements of N are called vertices. A path in g connecting two

vertices i1 and in is a set of distinct nodes in {i1, i2, . . . , in} ⊂ N such that for any k, 1 ≤ k ≤ n− 1,

(ik, ik+1) ∈ g.

Let i be an individual. We denote by g(i) = {j ∈ N : (i, j) ∈ g} the set of individuals who have i

as a partner in the network g. The cardinality of g(i) is called the degree of i. If a set A is included

either in M or W , then the image of A in the network g is g(A) =
[
i∈A
g(i).

We denote respectively by M(g) = {i ∈ M : ∃j ∈ W, (i, j) ∈ g} and by W (g) = {i ∈ W :

∃j ∈ M, (i, j) ∈ g} the set of men and women who are matched in the network g. We pose N(g) =
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M(g) ∪W (g).

A subgraph g0 ⊂ g is a component of g if for any i ∈ N(g0) and j ∈ N(g0) such that i 6= j, there

is a path in g0 connecting i and j, and for any i ∈ N(g0) and j ∈ N(g) such that (i, j) ∈ g, (i, j) ∈ g0.

A network g can always be partitioned into its components. This means that if C(g) is the set of all

components of g, then g =
[

g0∈C(g)
g0, and for any g0 ∈ C(g) and g00 ∈ C(g), g0 ∩ g00 = ∅.

3 Equilibrium Networks

In a society such as the one we are describing, individuals form new links or sever existing links based

on the improvement that the resulting network offers them relative to the current network. We say

that a network g is pairwise stable or in equilibrium if (i) no individual has an incentive to sever an

existing link she is involved in, and (ii) no pair of a man and a woman have an incentive to form a

new link while at the same time severing some of the existing links they are involved in.

More formally, given a profile of utility functions u = (ui)i∈N , a network g is pairwise stable with

respect to u if:

(i) ∀i ∈ N , ∀(i, j) ∈ g, ui(g) > ui(g \ {(i, j)})

(ii) ∀(i, j) ∈ (M ×W ) \ g, if network g0 is obtained from g by adding the link (i, j) and perhaps

severing other links involving i or j, ui(g
0) > ui(g) =⇒ uj(g

0) ≤ uj(g) and uj(g0) > uj(g) =⇒ ui(g
0) ≤

ui(g).

To illustrate this definition, consider the following examples. A network in which a woman is

matched to s > s∗w men is not an equilibrium as she can unilaterally sever s− s∗w links. A network in

which a man is matched to s∗m+2 women and a woman not matched to him is matched to fewer than

s∗w men is not stable, as they could form a link while the man could sever three of his former links.

Finally, a network in which a man and a woman who are unmatched have fewer than their optimal

partners is not pairwise stable either, as they could form a link without severing any other.

3.1 Characterization of the equilibrium networks

In this subsection, under our “large populations” assumption, we characterize the equilibrium net-

works. This characterization will be useful in our dynamic analysis later on.
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Theorem 1 Assume A2, and let g be a network. Then, (1) and (2) are equivalent.

(1) g is pairwise stable

(2) ∀(m,w) ∈M ×W , 0 ≤ sm ≤ s∗m and sw = s
∗
w.

Proof. (1) =⇒ (2) : Let g be a pairwise stable network. It is straightforward that ∀(m,w) ∈

M ∗W , 0 ≤ sm ≤ s∗m and 0 ≤ sw ≤ s∗w. In fact, if an agent has more than his/her optimal number

of partners, he/she will be better off by unilaterally severing one link, thus implying that g is not

pairwise stable, a contradiction.

Therefore, it only remains to show that ∀w ∈ W , sw = s∗w. By contradiction, suppose that there

exists a woman w0 with sw0 < s
∗
w. First, it should be clear that for every manm not matched with w0,

sm = s
∗
m. This is because, if at least one such man were matched with fewer women, that man and w0

would improve by forming a new link, implying that g is not pairwise stable, which is a contradiction.

It then follows that the number of links coming from the men side is at least (|M |−sw0)s∗m, which is

greater than or equal to [|M |− (s∗w−1)]s∗m, which by Assumption A2 is greater than |M |s∗w = |W |s∗w,

an upper bound on the number of links coming from the women side. Since the number of links

coming from the men side must exactly equal the number of links coming from the women side, this

is impossible. We conclude that ∀w ∈W , sw = s∗w.

(2) =⇒ (1): Let g be a network. Assume that ∀(m,w) ∈M ∗W , 0 ≤ sm ≤ s∗m and sw = s
∗
w, and

let us show that g is pairwise stable. A man alone cannot improve by severing a link since he is at

the upward sloping part of his utility function. He cannot form a new link with another woman since

each woman has her optimal number of partners. And a woman cannot be part of any blocking move

(either by herself or with a man) since she is at her peak. Therefore, g is a pairwise stable network.

¤

Let us illustrate Theorem 1 with the following examples.

Example 1: Consider a mating economy in which there are 10 men and 10 women. Assume that

their utility functions are such that s∗w = 2 and s
∗
m = 4. The three networks represented respectively

by Figure 1-1, Figure 1-2 and Figure 1-3 are pairwise stable. In fact, in each graph, each woman

has 2 partners (the optimal number for each woman), and each man has at most 4 partners. In the
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first network [(2, 2); (5, 5); (3, 3)]14, all agents have 2 partners, thus this network is egalitarian; in the

second network [(7, 6); (2, 4); (1, 0)], 2 men have 1 partner each, 5 men have 2 partners each, 2 men

have 4 partners each, and 1 man has no partner; in the third network [(2, 4); (2, 2); (2, 4)], 2 men have

2 partners each, and 8 men have 4 partners each. An interesting feature of the last two graphs is the

uneven share of female partners among men, which reveals a sharp competition in the latter group.

In Example 1, note that the ”large populations” condition (Assumption A2) is met. Now, consider

the following example in which that condition is violated. We show that our characterization does

not hold then.

Example 2: Consider a mating economy in which there are 7 men and 7 women; s∗w = 4 and

s∗m = 5. Assumption 2 clearly does not hold. The network [(3, 2); (4, 5)] represented by Figure 2-1

is pairwise stable. In it, the first component has 3 men and 2 women, each woman is matched to 3

men (that is less than s∗w) and each man is matched to 3 women (also less than s
∗
m). The second

component has 4 men and 5 women, each women matched to s∗w = 4 men, and each man matched to

s∗m = 5 women. Note that although there exists a woman w0 such that sw0 < s
∗
w, men who are linked

to fewer than s∗m = 5 women are already matched to her in the first component. The argument is

similar for men who have fewer partners than their optimal number. It follows that this network is

pairwise stable.

We also note that the network [(7, 7)] represented by Figure 2-2 is pairwise stable. In this network,

each woman has 4 partners, 6 men have 4 partners each, and 1 man has 3 partners. This network

therefore meets the characterization of Theorem 1. One can show that even if Assumption 2 does not

hold, all networks that meet the characterization of Theorem 1 are pairwise stable (Pongou (2009a)),

which implies that in small populations, the set of such networks is included in the set of all pairwise

stable networks.

14Note that [(2, 2); (5, 5); (3, 3)] refers to a network with 3 components, the first component containing 2 men and
2 women, the second component 5 men and 5 women, and the third component 3 men and 3 women. This notation
however does not show the complete of the network as represented by the graph.
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4 A Dynamic Network Formation Process

In this section we turn to dynamics. First, we shall define a Markov process for any given mating

economy as previously defined, to describe the formation and severance of links over time. Later on,

given the lack of predictive power of this process, we shall resort to perturbing it in two different ways,

leading to two perturbed Markov processes.

The unperturbed Markov process P 0 is as follows. Time is discrete. In each period, a male-female

pair chosen at random with arbitrary positive probability is given the opportunity to sever or add

a link based on the improvement that the resulting network offers to them relative to the current

network. If they are already linked in the current network, the decision is whether to sever the link.

Otherwise, the decision is whether to form a new link. While forming a new link, for simplicity, each

agent is allowed to sever at most one of the links he/she is involved in in the current network. Link

severance is unilateral, while link formation is bilateral.

Let g and g0 be two networks. They are said to be adjacent if there exist i ∈ M and j ∈ W such

that g0 ∈ {g + ij, g + ij − ik, g + ij − ik − jm, g + ij − jm, g − ij}.15 Let x and y be two networks.

An (x, y)− path is a finite sequence of networks (g0, g1, . . . , gk) such that g0 = x, gk = y and for any

t ∈ {0, 1, . . . , k − 1}, gt and gt+1 are adjacent.

An improving path from x to y is a finite sequence g0, g1, . . . , gk such that for any t ∈ {0, 1, . . . , k−

1}:

• (i) gt+1 = gt − ij for some ij such that ui(gt+1) > ui(gt) or uj(gt+1) > uj(gt); or

• (ii) gt+1 ∈ {gt+ij, gt+ij−ik, gt+ij−ik−jm, gt+ij−jm} for some ij such that ui(gt+1) > ui(gt)

and uj(g
t+1) > uj(g

t).

Recurrent classes of a Markov process are those sets of states such that, if reached, the process

cannot get out of them. We next characterize the recurrent classes of the unperturbed markov process

P 0:

Theorem 2 The recurrent classes of the unperturbed markov process P 0 are singletons, each of which

containing each pairwise stable network.
15We simplify notation here and write ij instead of (i, j), etc.
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Proof. The proof is straightforward and left to the reader.

Thus, the set of long run predictions of the unperturbed dynamics is quite large (recall the charac-

terization in Theorem 1). We proceed by perturbing this process in the sequel. We shall define below

two such perturbed processes.

5 The First Perturbed Markov Process P ε
1

or “If You Have Many Partners, I May Leave You”

In each period, the revision opportunity offered at random to a male-female pair is the same as

described in the process P 0. However, now agents may make decisions that do not necessarily lead to

an immediate individual improvement. We describe these events in detail.

• If the two agents are linked in the current network:

— Link severance takes place with probability 1 if it benefits either of the two agents, just as

before.

— Otherwise, while in the unperturbed process no severance of this link was taking place, now

if it makes the two agents worse off, severance takes place with probability ε (note that in

our model, link severance cannot make an agent indifferent). Recall that link severance is

a unilateral decision, and thus it takes one “mistake” to sever such a good link: an agent

making a mistake with probability ε > 0.

• If the two agents are not linked in the current network, the decision is whether to form a new

link:

— This link formation takes place with probability 1 if it is mutually beneficial, just as before.

All other transitions did not happen in the unperturbed process, while now they will.

— If forming the link makes one agent worse off and the other better off —one “mistake”—, it

occurs with probability ε.

— If the link formation makes the two agents worse off —two “mistakes”—, it occurs with

probability ε2.
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— If the transition makes one agent better off and the other agent, say j, indiffirent, agent j

may take this “neutral action” and looks at considerations other than his/her well-being.

Indifference in the transition happens because, while forming a new link with i, j severs

an existing link, say with agent k in the current network. Then, the resistance of this

transition amounts essentially to the strenghth of the severed link. Specifically, we assume

that the transition occurs with probability ε
f( 1

Sk
)
where the link strength f is a strictly

increasing function of 1
Sk
mapping into (0, 1). Here, Sk is the number of partners that k

has in the current network. We offer an interpretation below, at the end of the description

of the process.

— If the transition makes one agent worse off and the other agent indifferent (one “mistake”

and one “neutral action”), the transition occurs with probability ε ∗ εf(
1
Sk
)
= ε

1+f( 1
Sk
)
.

— Finally, if it makes the two agents indifferent (two “neutral actions”), meaning that while

forming a new link, i and j severed links with, say h and k, respectively in the current

network, it occurs with probability ε
f( 1

Sh
)∗ εf(

1
Sk
)
= ε

f( 1
Sh
)+f( 1

Sk
)
.

We emphasize our assumption on the resistance of transitions involving indifferences or “neutral

actions.” The function f( 1Sk ) can be viewed as the strength of the link that is being severed by

j. If we assume for instance that each agent is endowed with 1 unit of time that he/she splits

equally among all his/her partners, then it makes sense to assume that the strength of a link is

inversely proportional to the number of partners.

5.1 Resistance of a Path

For any adjacent networks g and g0, the resistance of the transition from g to g0 , r(g, g0), is

the weighted number of agents directly involved in the transition who do not find this change

profitable; it is the exponent of ε in the corresponding transition probability. We explicitly

define r(g, g0) in the table below, as a function of the possible frictions —“mistakes” or “neutral

actions”— found in a random chosen pair (i, j). To read the table, note that there are only three

actions that either i or j can take, some combinations of which might not be possible:

19



— A- Forming a new link without severing an existing link.

— B- Forming a new link while severing an existing link.

— C- Severing an existing link.

Let (ai, aj) be the pair of actions taken by i and j respectively. Then (ai, aj) ∈ {(A,A), (A,B), (B,B), (C,C)}.

A pair of actions (ai, aj) might made either agent better off (b), lose (l), or indifferent (i). Tran-

sition probabilities and resistances are summarized in Table 1 below.

Table 1

(ai, aj) Outcomes Probability r(g, g0)

(A,A) (b, b) 1 0

(A,A) (b, l) ε 1

(A,A) (l, l) ε2 2

(A,B) (b, i) ε
f( 1

Sk
)

f( 1Sk )

(A,B) (l, i) ε
1+f( 1

Sk
)

1 + f( 1Sk )

(B,B) (i, i) ε
f( 1

Sh
)+f( 1

Sk
)
f( 1Sh ) + f(

1
Sk
)

(C,C) (b, b) 1 0

(C,C) (b, l) 1 0

(C,C) (l, l) ε2 2

The resistance of an (x, y)-path q = (g0, g1, . . . , gk) is the sum of the resistances of its transitions:

r(q) =
Pk−1

t=0 r(g
t, gt+1).

Let Z0 = {g0, g1, . . . , gl} be the set of absorbing states of the unperturbed process.16 Consider

the complete directed graph with vertex set Z0, denoted ∇. The resistance of the edge (gi, gj)

in ∇ is the minimum resistance over all the resistances of the (gi, gj) − paths : r(gi, gj) =

minimum{r(q) | q is an (gi, gj)-path}.

Let g be an absorbing state. A g-tree is a tree whose vertex set is Z0 and such that from any

vertex g0 different from g, there is a unique directed path in the tree to g. The resistance of a

g-tree is the sum of the resistances of the edges that compose it. The stochastic potential of g,

denoted r(g), is the minimum resistance over all the g − trees.
16Absorbing states are those in singleton recurrent classes.
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The set of stochastically stable networks is the set {g | r(g) ≤ r(g0) for all g0} (H.P. Young

(1993); Kandori, Mailath and Rob (1993)).

5.2 The Result

We shall now characterize the set of stochastically stable states of the perturbed process P ε
1 .

The following definitions and lemmas are needed.

Let g be a network. We shall say that g is egalitarian if all vertices have the same degree.

Pose I(g) = {i ∈ M : si(g) ≥ sj(g) ∀j ∈ M}, i.e., the set of men that are matched with the

highest number of women in the network g.

Let J(g) = {i ∈ M : si(g) ≤ sj(g) ∀j ∈ M}, i.e., the set of men who are matched with the

smallest number of women in the network g.

And call I∗(g) = {i ∈ M : si(g) ≥ s∗w}, i.e., the set of men who have at least a number of

partners no less than the women’s optimal number.

It is obvious that, if g is pairwise stable, I(g), J(g) and I∗(g) are non-empty. Let L(g) =P
i∈I∗(g)(si(g)− s∗w).

Lemma 1 Assume A2, and let g be a non-egalitarian pairwise stable network. Then, ∀(i, j) ∈

I(g)× J(g), si(g) > s∗w > sj(g) (and therefore, si(g) ≥ sj(g) + 2).

Proof. Appealing to the characterization of pairwise stable networks in Theorem 1 and using

the definition of egalitarian networks, the proof is straightforward and left to the reader.

The following lemma describes a simple way to reach egalitarian networks:

Lemma 2 Let g be a pairwise stable network. Then, there exists a finite sequence of pairwise

stable networks (g0, g1, . . . , gk) such that g0 = g, gk = gL(g), and gk is egalitarian.

Proof. Let g be a pairwise stable network. Pose g0 = g. If g is egalitarian, then ∀i ∈ M ∪W ,

si(g) = s
∗
w. Thus L(g) =

P
i∈I∗(g)(si(g) − s∗w) = 0, implying that the sequence searched for is
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(g). If g is non-egalitarian, then it is obvious that L(g) > 0 since from Lemma 1, at least one man

has more than s∗w partners. There exists a pair of men (i0, j0) ∈ I(g) ∗ J(g). Again by Lemma

1, since si0(g) ≥ sj0(g) + 2, there exists a woman k0 such that (i0, k0) ∈ g and (j0, k0) /∈ g.

Sever the link (i0, k0), and add the link (j0, k0); call the resulting network g
1. It is easy to check

that g1 is pairwise stable and that L(g1) = L(g)− 1. Then, either g1 is egalitarian and we are

done, or not. That is, repeating the same operation L(g) − 1 more times induces a sequence

(g1, . . . , gL(g)) of pairwise stable networks. We have L(gL(g)) = L(g) − L(g) = 0. Therefore,

in the network gL(g), no man has more than s∗w partners. But given that each woman has s
∗
w

partners in gL(g), that |M | = |W |, and that
P
i∈M si(g

L(g)) =
P
j∈W sj(g

L(g)) = s∗w|W |, it is

necessarily the case that ∀i ∈ M , si(gL(g)) = s∗w. Thus gL(g) is pairwise stable and egalitarian.

In addition, any two egalitarian pairwise stable networks are “connected.” This is shown in the

following connectivity lemma:

Lemma 3 Let g and g0 be two distinct egalitarian pairwise stable networks. Then, there exists

a finite sequence of pairwise stable networks (g0, g1, . . . , g2k) such that g0 = g, g2k = g0, and for

any t such that 0 ≤ t ≤ k, g2t is egalitarian.

Proof. Let g and g0 be two distinct egalitarian pairwise stable networks. Pose g0 = g. Pose

g0 \ g = {(m,w) : (m,w) ∈ g0 and (m,w) /∈ g}. Since g and g0 are different, g0 \ g is non-empty.

Thus, there exists a pair (m0, w0) such that (m0, w0) ∈ g0 and (m0, w0) /∈ g. Since g and g0 are

egalitarian, this implies that there exists a manm0
0 such that (m

0
0, w0) ∈ g and (m0

0, w0) /∈ g0. (In

fact, if we assumed by contradiction that the latter statement were wrong, then it would mean

that for any pair (m0
0, w0) ∈ g, then (m0

0, w0) ∈ g0; and since (m0, w0) ∈ g0 and (m0, w0) /∈ g,

this would imply that w0 has more than s
∗
w in the network g

0, contradicting the fact that g0 is

egalitarian and pairwise stable.)

Then, in g, add the link (m0, w0) and delete the link (m
0
0, w0) (this is equivalent to woman w0

severing her link with m0
0 to form a new link with m0), and call the resulting network g

1. In g1,

m0 and m
0
0 have respectively s

∗
w + 1 and s

∗
w − 1 partners, and each woman has s∗w partners as
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in g. Thus g1 is pairwise stable, but it is not egalitarian. Also, note that g1 is one step closer

to g0 than g0 = g (that is, g0 \ g1 ⊂ g0 \ g).

We now want to construct g2. Let g1(m0) = {w ∈ W : (m0, w) ∈ g1}. There exists a woman

w00 ∈ g1(m0) such that w
0
0 6= w0, (m0

0, w
0
0) /∈ g1 and (m0, w

0
0) /∈ g0 (in fact, since |g1(m0)| = s∗w+

1 > 1 and w0 ∈ g1(m0), there exists w
0
0 ∈ g1(m0) such that w

0
0 6= w0; now, if by contradiction,

we assume that for any such w00, (m
0
0, w

0
0) ∈ g1, then it will turn out that |g1(m0

0)| = s∗w, which

is a contradiction since we know from the last paragraph that m0
0 has exactly s

∗
w − 1 partners

in g1; finally, if by contradiction, we assume that for any such w00, (m0, w
0
0) ∈ g0, then it will

turn out that g0(m0) = g
1(m0), implying that |g0(m0)| = s∗w + 1, thereby contradicting the fact

that g0 is egalitarian). Therefore, sever the link (m0, w
0
0), add the link (m

0
0, w

0
0), and call the

resulting network g2. It is easy to check that in g2, each man and each woman has exactly s∗w

partners. Thus g2 is egalitarian and pairwise stable.

We also note that g2 is at least 1 step closer to g0 (in fact, since (m0, w
0
0) /∈ g0, severing this link

in g1 does not take us 1 step further from g0; also, if possible, one can choose w00 in such a way

that (m0
0, w

0
0) ∈ g0, and in that case, g2 will be 2 steps closer to g0; if not, g2 will be 1 step closer

to g0).

If g2 = g0, we are done; if not, repeat the same operation as previously by replacing g0 with g2.

That will induce g3 and g4, and will take us at least one step closer to g0. In general, since |g0 \g|

is finite, repeating this operation a finite number of times (at most
l
|g0\g|
2

m
times) induces a

finite sequence of pairwise stable networks (g0, g1, . . . , g2k) that ends at g2k = g0 and satisfying

that for any t such that 0 ≤ t ≤ k, g2t is egalitarian.

We are now ready to state and prove the main result of the section:

Theorem 3 Assume A2. A network is stochastically stable in the perturbed process P ε
1 if and

only if it is egalitarian and pairwise stable.

Proof. The proof is divided in two steps, as follows:

Step 1: Let g be a non-egalitarian pairwise stable network. We shall show that g is not stochas-

tically stable. It suffices to show that there exists a network g0 such that r(g0) < r(g).
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Call T (g) the g-tree on which the calculation of r(g) is based. There exists a pair of men

(i0, j0) ∈ I(g) ∗ J(g). Since from Lemma 1, si0(g) ≥ sj0(g) + 2, there exists a woman k0 such

that (i0, k0) ∈ g and (j0, k0) /∈ g. Sever the link (i0, k0), and add the link (j0, k0), and call the

resulting network g1.

Consider now the tree T (g). Let S(g1, T (g)) be the successor of g1 in the tree. Now, in T (g),

delete the edge (g1, S(g1, T (g))) that leads away from g1 and add the edge (g, g1). This results

in a g1-tree that we denote by T (g1).

Since T (g1) is not necessarily optimal for g1, we have r(g1) ≤ r(g)−r(g1, S(g1, T (g)))+r(g, g1).

Because ∀i ∈ I(g1) , si(g) ≤ si0(g), we have r(g
1, S(g1, T (g))) ≥ f( 1

si0 (g)
) = r(g, g1). This

is because the cheapest way of getting away from g1 (which is pairwise stable) is for a pair of

a man and a woman to undertake an action that benefits one of them and leaves the other

indifferent; such an action is taken with probability at least equal to ε
f( 1

si0
(g) ). This implies that

r(g1) ≤ r(g).

If g1 is egalitarian, then r(g1, S(g1, T (g))) = f( 1s∗w
) > r(g, g1), implying r(g1) < r(g). If g1 is

non-egalitarian, repeat the same operation L(g)−1 more times. From lemma 2, that will induce

a sequence of pairwise stable networks (g1, . . . , gL(g)) where gL(g) is an egalitarian network.

The induced sequence of g`-trees, 1 ≤ ` ≤ L(g), (T (g1), . . . , T (gL(g))) will be such that for

any ` ∈ {2, . . . , L(g)}, r(g`) ≤ r(g`−1) with r(gL(g)) < r(gL(g)−1). This obviously implies

r(gL(g)) < r(g), and therefore, g is not stochastically stable.

Recall that in any perturbed finite Markov process the set of stochastically stable states is always

non-empty. Step 1 has therefore established that the set of stochastically stable networks of the

perturbed process P ε
1 is a non-empty subset of the set of egalitarian pairwise stable networks.

Step 2: We shall next show that the set of stochastically stable networks of P ε
1 coincides with

the set of egalitarian pairwise stable networks. It suffices to show that all egalitarian pairwise

stable networks have the same stochastic potential.

Let g and g0 be any two egalitarian pairwise stable networks, and r(g) and r(g0) their respective

stochastic potentials. Call T (g) the g-tree on which the calculation of r(g) is based. From Lemma
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3, we know that there exists a finite sequence of pairwise stable networks (g0, g1, . . . , g2k) such

that g0 = g, g2k = g0, and for any t such that 0 ≤ t ≤ k, g2t is egalitarian.

Construct g1 from g as in the proof of Lemma 3, and consider the g-tree T (g). In it, delete the

edge (g1, S(g1, T (g))) that leads away from g1 and add the edge (g, g1). This results in a g1-tree

that we denote by T (g1). Note that r(g1, S(g1, T (g))) ≥ f( 1
s∗w+1

) and r(g, g1) = f( 1s∗w
).

Next, construct g2 from g1 as in the proof of Lemma 3, and consider the g1-tree T (g1). In it,

delete the edge (g2, S(g2, T (g1))) and add the edge (g1, g2). This results in a g2-tree that we

denote by T (g2). We have r(g2, S(g2, T (g1))) = f( 1s∗w
) and r(g1, g2) = f( 1

s∗w+1
).

Therefore, noting that T (g2) is not necessarily optimal as a g2-tree, we have that r(g2) ≤

r(g)− r(g1, S(g1, T (g))) + r(g, g1)− r(g2, S(g2, T (g1))) + r(g1, g2) = r(g)− r(g1, S(g1, T (g))) +

f( 1
s∗w+1

) ≤ r(g) since r(g1, S(g1, T (g))) ≥ f( 1
s∗w+1

). This establishes that r(g2) ≤ r(g), and by

symmetry, going back from g2 to g, that r(g) ≤ r(g2). Therefore, r(g) = r(g2).

If g0 = g2, then we have shown that r(g0) = r(g). If g0 6= g2, repeat the same exercise as

previously, constructing g` from g`−1 as in Lemma 3, until g0 is obtained. This induces a

sequence of gt − trees (T (g), T (g1), T (g2), T (g3), . . . , T (g2k) = T (g0)) satisfying that for any t

such that 1 ≤ t ≤ k, r(g2t) ≤ r(g2(t−2)). This implies r(g0) ≤ r(g). By symmetry, going back in

the opposite direction, we also have r(g) ≤ r(g0), thus implying r(g) = r(g0), which completes

the proof.

6 The Second Perturbed Process P ε
2

or “If You Have Few Partners, I May Leave You”

The second perturbed process is defined as the first one, the only difference being the definition

of the probability of a “neutral action,” an action that leaves an agent indifferent. Recall that

that probability was based on the strength of the link to be broken to form the new link. Now,

the strength of such a link is inversely proportional to the amount of time invested in it. This

corresponds to a situation in which an agent who invests too much time in a relationship might
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be perceived as weak or dominated in that relationship. We describe next more formally the

only change in assumptions with respect to the previous perturbed process:

— A person who is indifferent in a particular transition, and in it, breaks an existing link with

another person who has sk partners in order to form a new link looks at the strength of

the link he/hse severs. That strength f(sk) is strictly increasing in sk and strictly bounded

between 0 and 1.

6.1 Resistance of a Path

All the definitions of resistance provided earlier apply to this section as well. For completeness,

for each adjacent transition in the perturbed process P ε
2 , its probability and resistance are

summarized in Table 2 below. It uses the same notation employed in Table 1:

Table 2

(ai, aj) Outcomes Probability r(g, g0)

(A,A) (b, b) 1 0

(A,A) (b, l) ε 1

(A,A) (l, l) ε2 2

(A,B) (b, i) εf(sk) f(sk)

(A,B) (l, i) ε1+f(sk) 1 + f(sk)

(B,B) (i, i) εf(sh)+f(sk) f(sh) + f(sk)

(C,C) (b, b) 1 0

(C,C) (b, l) 1 0

(C,C) (l, l) ε2 2

6.2 The Result

We shall now characterize the set of stochastically stable states of the perturbed process P ε
2 .

The following definition is needed.
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Let g be a network. We shall say that g is anti-egalitarian if
j
s∗w
s∗m
|M |

k
men are matched to s∗m

women each, at most one man is matched to the remaining women (if there is such a remaining),

and all other men have no partner.

To understand this definition, the idea is that all women are matched to a set of men that is

as small as possible; hence the name “anti-egalitarian.” Thus, if (s∗w/s
∗
m)|M | happens to be an

integer, each of those men is matched to s∗m women and the rest of men are unmatched. Note

that if (s∗w/s
∗
m)|M | is not an integer, one can assign the remaining women to only one man

and have a pairwise stable network. This is because, if one calls K to the integer part of that

fraction, the total number of links from the set of men not matched to their optimal number

must be less than s∗m: otherwise, the number of links coming from the men side would be at

least Ks∗m + s
∗
m, but this number is strictly greater than s

∗
w|M |, the number of links coming

from the women side, and both numbers must always be equal.

Equipped with this definition, we state our next result:

Theorem 4 Assume A2. A network is stochastically stable in the perturbed process P ε
2 if and

only if it is anti-egalitarian and pairwise stable.

Proof. The proof is again organized in two steps, as follows:

Step 1: Let g be a pairwise stable network that is not anti-egalitarian. We shall show that g is

not stochastically stable. It suffices to show that there exists a network g0 such that r(g0) < r(g).

Consider T (g), the g-tree on which the calculation of r(g) is based. We claim that, if gλ and

gλ+1 are two pairwise stable networks such that for some m,m0, w, gλ \ gλ+1 = {(m,w)} and

gλ+1 \ gλ = {(m0, w)}, the underlying transition does not involve non-pairwise stable networks:

if it did, at least one agent directly involved in it would decrease his or her utility, which

implies that the resistance of such a transition would exceed 1, whereas the resistance of the

direct transition between the two (being adjacent) is strictly less than 1. A simple induction

argument shows that this is still true even if two pairwise stable networks are not adjacent (by

constructing a path going from one to the other consisting of direct transitions between pairs of

adjacent networks).
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Therefore, in any transition described in T (g), only pairwise stable networks are visited. By

Theorem 1, we know that each pairwise stable network contains exactly the same number of

links, i.e., s∗w|W |. It follows that each transition described in the tree involves a woman w who

severs a link with a man m and replaces it with another link with man m0. Specifically, the

pair (m0, w) is offered the opportunity to revise their situation, and as a result, woman w severs

(m,w) and gets matched with m0.

But then, in describing the transition between any two pairwise networks in T (g), one can,

without loss of generality, list the transitions that are required going through each individual

woman. That is, starting with the woman with the lowest index who has a different set of men

to which she is matched in the two networks, one can describe the required severance/creation

of links that takes her from her configuration of men in the original network to the one in the

final network, and one can proceed like these with each such woman until the full transition is

complete.

Consider then the network g, and recall it is not anti-egalitarian. We propose the following

algorithm. Without loss of generality, label the men so that sm1(g) ≥ sm2(g) ≥ . . . ≥ sm|M|(g).

Let m be the lowest index such that sm(g) < s∗m. If there exists w who is matched in g to

m0 > m, sever the link (m0, w) and replace it with (m,w). Call the resulting network g1. We

can have two cases. Either g1 is anti-egalitarian, or not. If it is, let g0 = g1. If not, repeat

the same step. Note how this algorithm always ends after a finite number of steps, say k, in a

network g0 = gk that is anti-egalitarian.

Consider the g-tree T (g), and without loss of generality (as the first paragraphs of the proof

showed), suppose that the transition g0 = gk → gk−1 → . . . → g1 → g0 = g constitutes a

path of directed links in T (g). Change the direction of this path and consider the transition

g = g0 → g1 → . . . → gk−1 → gk = g0. It is obvious that the rest of edges of T (g), along with

these new edges (in which the only change introduced is the direction change of previous links

in T (g)), constitute a g0-tree, which we call T (g0).

We claim that r(g0) < r(g). Indeed, r(g0) is no greater than the resistance of T (g0), which is

equal to r(g)+
Pk−1

α=0[r(g
α, gα+1)−r(gα+1, gα)]. And note that, by construction of the algorithm
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described, each bracketed term is negative. Indeed, in the transition gα → gα+1, let m0 be the

man who loses a link in favor of man m. We know that sm0(gα) < sm(g
α+1), and therefore,

r(gα, gα+1) = f(sm0(gα)) < f(sm(g
α+1)) = r(gα+1, gα).

We have therefore established that, if g is pairwise stable but it is not anti-egalitarian, it is not

stochastically stable in the perturbed process P ε
2 . Given that the set of stochastically stable

networks is non-empty, we just proved that this set is a non-empty subset of the set of pairwise

stable and anti-egalitarian networks.

Step 2: We shall now prove that the set of stochastically stable networks of P ε
2 coincides with

the set of pairwise stable and anti-egalitarian networks. It suffices to prove that all of them have

the same stochastic potential.

Let g and g0 be any two such networks. Assume for simplicity that, in each of them, exactly

| s
∗
w

s∗m
|M | men are matched with s∗m each. Obviously, this must hold for both g and g0.17

It is easy to see that there must exist m,m0 ∈ M,m 6= m0 and w,w0 ∈ W,w 6= w0 such that

(m,w) ∈ g \ g0 and (m0, w0) ∈ g0 \ g. We propose the following algorithm that transforms g into

g0. For each such pair of links, we describe the following steps:

— First, woman w severs her link to man m and gets matched to man m0, where sm0(g) = 0

—we know such a man exists in g.

— Second, woman w0 severs her link to man m0 and gets matched to man m.

— And third, woman w severs her link to man m0 and gets matched to man m
0.

And to go back, travel the same steps in reverse.

Consider now an optimal g0-tree, and call it T (g0). In it, focus on the collection of directed edges

connecting g to g0. By arguments similar to those at the beginning of Step 1 of this proof, one

can argue that the transition outlined in the previous algorithm must be part of any optimal

tree. (We know that transitions in optimal trees do not go through non-pairwise stable networks.

17If, instead, the number | s
∗
w
s∗m
|M | is not an integer, and one man is matched to the remaining women, the argument

is the same, but the notation slightly more complicated. Again, in this case, both g and g0 have the same structure of
having only one man matched to the remaining women.
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In addition, a resistance of f(s∗m) must be paid every time a link with a man matched to his

optimal number is broken, and aside from that, a resistance of f(1) that comes from breaking a

link with a man who was unmatched in g and remains unmatched in g0 is the smallest possible

positive resistance in this perturbed process.)

Thus, without loss of generality, let the directed path from g to g0 in T (g0) be the set of transitions

outlined. Now, change the direction of the edges in this path, and let that be the only change

introduced to the directed edges of T (g0). Observe that the result is a g-tree, which we call T (g).

We will now argue that the stochastic potentials of g and g0 are the same:

r(g) = r(g0)+
Pk−1

β=0[r(g
β , gβ+1)−r(gβ+1, gβ)] = r(g0) because

Pk−1
β=0[r(g

β, gβ+1)−r(gβ+1, gβ)] =

0. This can be easily established, by induction on the number of links that are different between

g and g0.

Indeed, suppose that g and g0 differ in the smallest possible number of links, which is two, i.e.,

there exist m 6= m0 and w 6= w0 such that g \ g0 = {(m,w)} and g0 \ g = {(m0, w0)}. Consider

the transition g → g0 in T (g0). By our previous arguments, such a transition is as follows:

— First, woman w severs her link to man m and gets matched to man m0, where sm0
(g) = 0

—we know such a man exists in g; the resistance of this step is f(s∗m).

— Second, woman w0 severs her link to man m0 and gets matched to man m; again, the

resistance of this step is f(s∗m).

— And third, woman w severs her link to man m0 and gets matched to man m
0; the resistance

of this step being f(1).

The resistance of the whole transition is thus 2f(s∗m)+f(1). But notice that travelling the same

steps backwards takes us back from g0 to g, with exactly the same resistance.

If g and g0 differ by more links (note this must always be an even number), we use the fact that

the path going from g to g0 and the same path travelled in the opposite direction are “mirror

images” of one another. Thus, since the cheapeast transition must always involve establishing

links with unmatched men —like m0 in the previous paragraph, because f(1) is the smallest
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resistance to be added to the f(sm), coming from the men who are becoming unmatched when

they were matched before, which must always be there, a replication of the argument detailed in

the previous paragraph establishes that the total resistance of travelling from g to g0 is exactly

the same as the one travelling backwards on the same path. This completes the proof.

To illustrate how Theorem 4 works, consider the following example:

Example 3: there are 13 men and 13 women. Let s∗m = 4 and s∗w = 3. The anti-egalitarian

network component configuration represented by Figure 3-5 is as follows:

[(3, 4), (3, 4), (4, 5), (1, 0), (1, 0), (1, 0)].

For instance, the following network g is in this class: menm1−m3 are matched each to women w1−w4

in the first component; men m4 −m6 are matched each to women w5 −w8 in the second component;

men m11 −m13 are isolated; and the matches in the third component are as follows:

• m7 is linked with w9, w10, w11, w12;

• m8 with w10, w11, w12, w13;

• m9 with w11, w12, w13, w9;

• and m10 with w13, w9, w10.

That is, only one man (m10 in this case) gets matched to some women, but not to his optimal

number.

Consider next the following alternative component configuration represented by Figure 3-1:

[(3, 4), (3, 4), (3, 4), (3, 1), (1, 0)].

For instance, the following network g0 is in this class: as before, men m1 −m3 are matched each to

women w1 − w4 in the first component; men m4 −m6 are matched each to women w5 − w8 in the

second component; man m13 is isolated; and the matches in the third and fourth components are as

follows:
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• m7 −m9 are linked each with w9, w10, w11, w12;

• and m10 −m12 are matched each with w13.

Note that g0 is pairwise stable, but it is not anti-egalitarian. In it, there is one non-isolated

component in which the number of men exceeds the number of women. We explain why g0 is not

stochastically stable in the perturbed process of this section by constructing a path between g and g0

such that the overall resistance of going from g0 to g is smaller than the resistance of going back from

g to g0.

We replicate some of the steps of the proof of Theorem 4. Going woman by woman, the only

women that have different matches in g and g0 are w9, w10 and w13. To be precise, we list the links

that are different below:

• W9 is linked to m8 in g
0 and to m10 in g;

• w10 is linked to m9 in g
0 and to m10 in g;

• and w13 is linked to m11 and m12 in g
0, and to m8 and m9 in g.

Then, we describe the transitions, from g0 to g (and we can travel back the same way), and without

loss of generality, we measure the strength of an existing link with the function f(sk) = sk/n:

• First, w9 severs her link with m8 and links with m10 (with a resistance of 4/n, and 2/n in the

opposite direction) (the resulting network is represented in Figure 3-2).

• Second, w10 severs her link with m9 and links with m10 (resistance of 4/n, and 3/n in the

opposite direction — Figure 3-3).

• And third, w13 severs her link with m11 and links with m8 (resistance of 1/n, and 4/n in the

opposite direction— Figure 3-4) and then severs her link with m12 and links with m9 (resistance

of 1/n, and 4/n in the opposite direction — Figure 3-5).

Adding up, (4/n)+(4/n)+(1/n)+(1/n) < (2/n)+(3/n)+(4/n)+(4/n). Thus, given this section’s

assumption on the cost of taking “neutral actions,” the system gravitates towards the anti-egalitarian

pairwise stable networks.
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Note also how the characterization in Theorem 4 is in terms of the number of partners that each

matched man has, but not in terms of the component configuration, which is not unique within

anti-egalitarian networks. For example, the following component configuration is consistent with

anti-egalitarian pairwise stable networks in the example (Figure 4):

[(10, 13), (1, 0), (1, 0), (1, 0)].

That is, there is a single non-isolated component in which nine men are matched each to four women,

and the tenth is matched to only three. It can be shown that such a network is also stochastically

stable in the process of this section. Complexities like these are responsible for making the proof of

Theorem 4 far from trivial.

7 Gender and HIV/AIDS

In this section, we study the implication of our analysis for gender difference in communication or

contagion potential in stochastically stable networks, with a particular focus on HIV/AIDS. In doing

so, we draw on the theoretical framework proposed in Pongou (2009a).

Let g be a network. Assume that an agent i ∈ N is drawn at random to receive a piece of

information γ that he/she communicates to his/her partners in g(i), who in turn communicate it to

their other partners, and so on. This “piece of information” might also be becoming infected with

the HIV/AIDS virus through blood transfusion or any other random event. If i is not matched with

any agent, the information does not spread. Suppose that with equal probability, 1/|N |, each agent

receives the information (i.e., is infected due to a random event). We define the communication or

contagion potential of g as the expected proportion of agents who will receive the information. We

also define gender difference in contagion potential as the difference in the expected proportion of men

and women who will receive the information. To formally define these notions, we first need a few

definitions.

Let i ∈ N be an agent such that g(i) = ∅. We say that i is isolated in the network g. We abuse

language and call {i} an isolated component of g, thus consisting only of one agent. We denote by
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I(g) and J (g) respectively the set of isolated and non-isolated components of g. Clearly, the set of

components of g C(g) = I(g) ∪ J (g).

Assume that g is a k-component network, and let C(g) = {g1, . . . , gk} be the set of its components.

Pose Ik = {1, . . . , k}. To simplify notation, we write N(gi) = Ni, M(gi) = Mi, W (gi) = Wi, and

|Ni| = ni, |Mi| = mi, and |Wi| = wi for i ∈ Ik. We associate each component gi with the number ni

and its bipartite component vector (mi, wi), and g with the vector [(ni)]i∈Ik and its bipartite vector

[(mi, wi)]i∈Ik . Also, if gi is an isolated component, its associated vector is either (1, 0) or (0, 1).

Denote by ρ(z, γ) the status of an agent z with respect to the information γ. We pose ρ(z, γ) = 1

if z has received the information and 0 if he/she has not. For any set B = N,M,W , let Pr(γ|B) =
|{z∈B:ρ(z,γ)=1}|

|B| be the proportion of agents who have received the information in the population B.

We provide below a formula for the expected value of Pr(γ|N) and Pr(γ|M)−Pr(γ|W ). We have the

following result.

Claim 1 (Pongou 2009a): (1) E[Pr(γ|N)] = 1
n2

P
i∈Ik n

2
i .

(2) E[Pr(γ|M)− Pr(γ|W )] = 2
n2

P
i∈Ik(m

2
i − w2i ).

This result provides the foundation for the following definition:

Definition 1 Let g be a k-component network with the corresponding component vector [(ni)]i∈Ik .

• (1) The communication or contagion potential of g is defined as

P(g) = 1

n2

X
i∈Ik

n2i .

• (2) If g is a bipartite graph with the corresponding component vector [(mi, wi)]i∈Ik , the gender

difference in the contagion potential in g is defined as

F(g) = 2

n2

X
i∈Ik

(m2
i − w2i ).

Consider the following illustrative example of this definition.

Example 4: Consider the networks given in Example 1 and represented respectively by Figure

1-1, Figure 1-2 and Figure 1-3. Call them respectively g, g0 and g00. The contagion potential of these
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networks is: P(g) = 1
202 (4

2 + 102 + 62) = 152
400 = 0.38; P(g0) = 0.515; and P(g00) = 0.2.

The gender difference in the contagion potential of these networks is: F(g) = 2
202 [(2

2−22)+(52−

52) + (32 − 32)] = 0; F(g0) = 0.01; and F(g00) = −0.12.

Note how the contagion potential varies across networks despite the fact that the number of links

supplied by women and received by men is the same in all networks. This clearly shows the effect of

network structure in the propagation of sexually channeled diseases. We also note that network g is

gender neutral in contagion potential; but in network g0, men are more vulnerable to infection than

women, while in network g00, it is the opposite. This again shows how network structure may cause a

particular gender to be more vulnerable.

This example also shows that anti-female discrimination does not necessarily cause women to be

more vulnerable to infection, when one considers only statically stable networks. But we will show

that in long run equilibrium networks, the ones we are concerned with in the current paper, men are

never more vulnerable than women.

We have the following useful Lemma:

Lemma 4 (Pongou (2009a)) Let g be a network.

(i) If ∀g0 ∈ J (g), |M(g0)| = |W (g0)|, then F(g) = 0.

(ii) If ∀g0 ∈ J (g), |M(g0)| ≤ |W (g0)|, then F(g) ≤ 0 with strict inequality if there exists some

g0 ∈ J (g) such that |M(g0)| < |W (g0)|.

We can now state the following, which is the main result of this section:

Theorem 5 Assume A2.

(1) For any stochastically stable network g of the perturbed process P ε
1 , F(g) = 0.

(2) For any stochastically stable network g of the perturbed process P ε
2 , F(g) < 0.

Proof. (1) The proof follows from the fact that in any egalitarian pairwise stable network g, there

is an equal number of men and women in each component of g, from which it follows from Lemma 5

that F(g) = 0.
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(2) In any anti-egalitarian pairwise stable network g, it can be shown that the number of women

strictly exceeds the number of men in each non-isolated component, from which it follows from Lemma

5 that F(g) < 0.

Assuming that information is the AIDS virus, Theorem 5 implies that any initial network g will

progress toward a network g0 in which HIV prevalence is at least as high among women than among

men, even if in the initial network g, the prevalence was higher among men. Furthermore, in the case

of the second process, which together with our basic assumption A1, may be viewed as a description

of male-dominant societies, the contagion potential for women exceeds that of men. This is exactly

what is happening in all parts of the world. In all regions, the number of women with HIV/AIDS is

increasing, and the gap between the two genders in this respect seems to be higher in societies where

men have many more sexual partners than do women.

8 Conclusion

We have studied in this paper the dynamic stability of fidelity networks, which are networks that form

in a mating economy of agents of two types (say men and women), where each agent derives satisfaction

from the number of direct links with opposite type agents, while engaging in multiple partnerships is

an act of infidelity and is punished if detected by the cheated partner. We have assumed that a woman

whose infidelity is detected is more severely punished than a man in a similar situation. This results

in that women’s optimal number of partners is smaller than men’s. In statically stable networks,

each woman obtains her desired number of male partners while each man obtains at most his desired

number of female partners, which reveals that the anti-female bias in infidelity punishment leads to

only men competing for female partners. We have defined two dynamic and stochastic matching

processes in which agents form new links and sever existing ones based on the reward from doing

so, but possibly take actions that are not beneficial with small probability. Under the first process,

only pairwise stable egalitarian networks, in which all agents have the same number of partners (the

optimal for each woman), are stable in the long run; while under the second process, which is more

plausible in certain male-dominant societies, only pairwise stable anti-egalitarian networks are stable.

In them, all women have their desired number of partners and are shared by a small number of men,
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each of which has his optimal number of partners except for possibly one man.

Relying on a novel approach to studying the diffusion of information in networks, we have found

that under the first process, men and women are equally vulnerable to HIV/AIDS. Under the second

process, women are more vulnerable. The key implication is that even if the prevalence of HIV/AIDS is

lower among women compared to men at some point in time, the number of infected women will grow

over time to reach and possibly offset the number of infected men. This is what is observed in data

across countries, from Africa to the United States. Our analysis has thus revealed that anti-female

discrimination is a key factor in the greater vulnerability of women to HIV/AIDS often observed in

real data.

One other observation on our results may be of interest. In the first process, when women’s optimal

number of partners is 1, the model predicts a situation of serial monogamy. Theorem 3 shows for this

case that only monogamous networks are stable in the long run. But note that this notion of stability

does not mean that if the process reaches a monogamous network, it will stay there, since people

might still make mistakes or be tempted by other potential partners. Indeed, if a woman moves from

her only partner to another one, creating a non-monogamous network, the latter network will transit

to another monogamous network which is not necessarily the initial one, and so on. Serial monogamy

is associated with a high divorce rate. In this light, the model may be suggesting union formation

patterns in Western societies (e.g., the divorce rate in the US is above 30%). Also, serial monogamy is

associated with low HIV prevalence, especially as population grows large (in fact, it is easy to see that

the contagion potential of such a network is 4/n, which tends to 0 as n tends to infinity). In contrast,

under the second process, divorce rates are low. Consider the following example. There are 3 men

and 3 women, s∗w = 1 and s∗m = 3. Theorem 4 tells us that the only stochastically stable network

(up to permutations) is the one in which the first man is matched to all three women. Assume that

the process reaches that network. Assume that a woman moves from the first man to another man.

Then, if we consider that networks evolve following the path of least resistance, it is easy to see that

that woman will return to the first man (so, there is reconciliation, no divorce; we observe that for

example in Cameroon the divorce rate is 2%).

Finally, we note that a distinctive feature of the fidelity networks is that a priori, individuals
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do not know their partners’ other partners, and do not gain anything from being indirectly related

to them. A natural extension of our analysis will be to consider the case in which an individual’s

well-being is affected by indirect links. This case is only partially considered in our analysis here.

In fact, consider an individual who is cheated upon and at some point detects the unfaithfulness

of his/her partner and punishes him/her. It is natural to assume that this individual loses some

utility through the indirect connection. He is however unconscious of this loss before detection, but

transfers it partially or totally to the cheater in the form of punishment after detection occurs. Thus,

by allowing for infidelity punishment in our model, we partially account for the case in which an

individual’s well-being is affected by indirect links. But only indirect links between an individual

and the other partners of his/her partners are considered. In future analysis, it will be interesting

to consider the incentive that an individual has to engage in a relationship taking into account the

potential presence of negative externalities that he/she might suffer from the entire network structure,

given for instance that a piece of information such as the AIDS virus could travel from a more distant

individual to infect him/her. A difficulty in undertaking such an analysis will clearly stem from the

fact that fidelity networks are unobservable networks in which links are only visible to the persons

that they connect, and are a priori invisible to the rest of the population.
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