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Abstract

We study the problem of how to allocate m identical items among
n > m agents, assuming each agent desires exactly one item and has a
private value for consuming the item. We assume the items are jointly
owned by the agents, not by one uninformed center, so an auction cannot
be used to solve our problem. Instead, the agents who receive items
compensate those who do not.

This problem has been studied by others recently, and their solutions
have modified the classic VCG mechanism. Advantages of this approach
include strategy-proofness and allocative efficiency. Further, in an auction
setting, VCG guarantees budget balance, because payments are absorbed
by the center. In our setting, however, where payments are redistributed
to the agents, some money must be burned in order to retain strategy-
proofness.

However, there is no reason to restrict attention to VCG mechanisms.
In fact, allocative efficiency (allocating the m items to those that desire
them most) is not necessarily an appropriate goal in our setting. Rather,
we contend that maximizing social surplus is. In service of this goal, we
study a class of mechanisms that may burn not only money but destroy
items as well. Our key finding is that destroying items can save money,
and hence lead to greater social surplus.

More specifically, our first observation is that a mechanism is strategy-
proof iff it admits a threshold representation. Given this observation, we
restrict attention to specific threshold and payment functions for which
we can numerically solve for an optimal mechanism. Whereas the worst-
case ratio of the realized social surplus to the maximum possible is close
to 1 when m = 1 and 0 when m = n− 1 under the VCG mechanism, the
best mechanism we find coincides with VCG when m = 1 but has a ratio
approaching 1 when m = n− 1 as n increases.
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1 Introduction

Suppose five roommates jointly own a car that seats four people. They decide
to take a weekend trip to the countryside. While they all would like to go,
there is not room for all of them. Some really need the fresh country air while
others would not mind staying home. The roommates don’t necessarily know
one another’s desires, but each of them knows her own true value of getting out
of the city. How should they decide who gets to go?

More generally, we study a class of resource allocation problems, in which n
agents commonly own m < n identical items that they wish to distribute among
themselves, assuming each agent wants exactly one item, and has a value for
that item which is known to her alone. As further examples, one could think of
the allocation of free tickets for a sport event among club members, or seats on
an overbooked plane. This kind of problem is often discussed in the literature
on social choice where the goal is fairness, often under the assumption that the
agents’ values are commonly known. Yet this assumption is rarely satisfied, and
self-interested agents will misreport their private values if doing so would be
profitable. This is why our primary focus is incentives, instead of fairness.

Significant progress has been made in the field of mechanism design on the
general topic of incentives since the seventies. Most research efforts have been
devoted to understanding what is achievable in the presence of informational
constraints (e.g., revelation principles in mechanism design). Professors Hur-
wicz, Maskin and Myerson received the 2007 Sveriges Riksbank Prize in Eco-
nomic Sciences in Memory of Alfred Nobel for their groundbreaking contribu-
tions in this direction. Much less is known, however, about how to select a
mechanism that is socially optimal, among those that are incentive compatible.
In other words, the extension of social choice theory to problems characterized
by asymmetric information remains an important avenue of further exploration.

In this work we will focus on strategy-proof mechanisms, which require that
it is a dominant strategy for each agent to report her value truthfully. This
requirement is less permissive, but more robust than Bayesian implementation.
In particular, agents are more likely to play a dominant strategy than a strategy
that is optimal only when other agents play their part of the truthful equilibrium.
Perhaps even more importantly, dominant-strategy implementation does not
require any assumptions about the distribution of the agents’ values (or their
beliefs), nor their attitude towards risk.

As for measuring the appeal of various strategy-proof mechanisms, we will
apply a worst-case measure. More specifically, if one fixes the agents’ profile
of values, one can compute the ratio of the total social surplus realized by
the mechanism over the maximal total social surplus that could be achieved,
should these values be publicly known. Since these values are not known, nor
is their probabilistic distribution, the appeal of a strategy-proof mechanism will
be measured by the minimum of this ratio over all possible value profiles. We
call this ratio a social surplus index, and we use it to determine a mechanism’s
worst-case (i.e., guaranteed) level of social surplus: reaching a level α ∈ [0, 1]
means that a mechanism realizes at least a proportion α of the maximal social
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surplus for every possible profile of the agents’ values.
We assume that the agents can make monetary payments, and further that

they have quasi-linear utilities. Our problem is different from those studied in
auction theory. There, any monetary payments go to the auctioneer, who is
usually assumed to have no private information. The presence of such “residual
claimants” makes it easy to achieve budget balance. In our problem, however,
the objective is to redistribute as much as possible of the payments among the
agents themselves without negatively impacting the incentives (agents may have
an incentive to misreport their values to receive higher compensation).

In addition to strategy-proofness, we also impose the following natural con-
straints 1) feasibility: no more than m items can be allocated, and monetary
deficits are not allowed (i.e., no external subsidy), 2) individual rationality: each
agent’s total utility is nonnegative, and 3) anonymity: the allocation and pay-
ment decision applied to each agent does not depend on her identity. The
question we are interested in can now be stated formally:

Find a mechanism that maximizes the worst-case social surplus index
among all those that are strategy-proof, feasible, individually ratio-
nal, and anonymous.

Recently, two sets of authors (Moulin [11] and Guo/Conitzer [6]) solved the
above question under the additional assumption that the items be allocated to
the m agents who value them most, at each possible profile of values. Both
their solutions (derived independently) involved a class of mechanisms called
VCG1 mechanisms, which has received special attention in the economic liter-
ature because they admit a simple functional form (cf. Green and Laffont’s [5]
characterization). Using a VCG mechanism guarantees an efficient allocation of
the m items available, but not necessarily a good level of overall efficiency (as
measured for instance by the worst-case social surplus index), because allocative
efficiency may come at the cost of “burning” quite a bit of money to meet the
incentive constraints (when m ≥ 2). So it may be better, in terms of overall
efficiency, to destroy some items in order to save money. Indeed it is. It is not
difficult to check that it is impossible to guarantee a strictly positive ratio using
a VCG mechanism when m = n−1. On the other hand, applying the best VCG
mechanism after destroying one item would secure a strictly positive ratio.

Still, applying a VCG mechanism after destroying some fixed number of
items is not a general strategy for optimizing overall efficiency. As a first step
towards solving the general question, we offer a characterization of all strategy-
proof mechanisms in terms of threshold mechanisms: i.e., an agent receives an
item if and only if her reported value is larger than a threshold value that may
depend on other agents’ reports.2 Although we don’t believe that this result has
been stated explicitly in previous papers discussing the very same model as ours,
it is reminiscent of previous characterizations of VCG and other strategy-proof

1VCG stands for Vickrey, Clarke, and Groves, who independently defined and studied some
of these mechanisms in various contexts.

2This is a key distinction between our work and [7], where destroying the same number of
items regardless of reported values was considered.
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mechanisms that have been proposed in more general contexts (see, e.g., Green
and Laffont [5]).

Though helpful in understanding the question, this characterization result
does not immediately allow us to solve it, because the feasibility and individ-
ual rationality constraints are nontrivial. When restricting attention to VCG
mechanisms, Guo and Conitzer [6] and Moulin [11] managed to solve the re-
sulting constrained optimization problem by uncovering the linear structure of
the problem on the cone obtained by sorting the agents’ values in nonincreasing
order. This approach does not apply when considering more general thresh-
old mechanisms, because the allocation function is more intricate: allocation
to agent i is determined by a threshold function that depends on the values of
the other agents. We haven’t found yet a way of solving the general question.
But we have managed to identify specific classes of threshold and compensa-
tion functions that allow us to partition the set of value profiles into regions for
which the resulting constrained optimization problem is linear in values. We
then solve this LP problem numerically.

Our approach is designed to strike the right balance between tractability,
and showing that one can obtain a significant improvement of overall efficiency
if one does not rely on the technical convenience of VCG mechanisms. Perhaps
most striking is the case where m = n − 1. As already pointed out, VCG
mechanisms cannot guarantee any strictly positive ratio in this case. Further,
applying the best VCG mechanism after destroying a fixed number of items does
not guarantee a ratio larger than 1/2 (see numerical computations in Guo and
Conitzer [7]). Our method of “contingent destruction” will identify a mechanism
that guarantees a ratio 1− 2

n2−n , which rapidly approaches 1 as n increases.
We conclude this introduction by discussing some related literature. En-

hancing VCG mechanisms with payment redistribution has been studied in var-
ious settings. Bailey [1] proposes a way to redistribute some of the VCG tax
in a public good domain. Cavallo [2] designs a redistribution mechanism for
single-item allocation problems, and provides a characterization of redistribu-
tion mechanisms for more general allocation problems. As already mentioned,
Guo and Conitzer [6] and Moulin [11] independently discover the optimal VCG
redistribution mechanism for the allocation domain studied here. In [8], Guo
and Conitzer derive a linear redistribution VCG mechanism to maximize the
expected social surplus when the distribution of agents’ values is known. Porter
et al. [12] study the problem of allocating undesirable goods (e.g., tasks) to
agents in a fair manner.

Most related to our paper is Guo and Conitzer [7]. Starting from the same
observation as ours that applying a VCG mechanism after destroying a fixed
number of items may increase the worst-case social surplus index, they study
mechanisms where the number of items destroyed may be a random variable.
Introducing lotteries implies that one must take into account the agents’ atti-
tude towards risk. Guo and Conitzer’s analysis requires the agents to be risk
neutral. Also, the feasibility and individual rationality constraints hold only in
expectation. Perhaps most importantly, the lottery that determines how many
items to destroy does not vary with the players’ reports. The key insight we offer
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in the present paper is that one can improve upon the optimal VCG redistri-
bution mechanism without using lotteries, if one applies contingent destruction
rules. If one is willing to use lotteries, then it may be of interest to combine
the insights from our two papers, making Guo and Conitzer’s random variables
vary with reported values.

Other directions have also been followed when allowing for lotteries. Falt-
ings [3], for instance, proposes a mechanism that picks an agent at random, and
makes him the recipient of the VCG payments. The mechanism, which applies
to domains more general than our allocation domain, achieves budget balance.
However, if one applies this mechanism to our allocation domain, one sees that
the resulting allocation is not efficient (unless the chosen recipient happens to
value the item less than those who are allocated an item).

This paper unfolds as follows. Section 2 formally states the problem we
are studying. applied to the allocation problem studied here and show the
limitations of the VCG redistribution mechanisms. We characterize strategy-
proof mechanisms for the allocation domain in Section 3. A computational
method of searching for an optimal mechanism in a restricted setting is proposed
in Section 4. Numerical results in this setting are presented in Section 5.

2 Definitions

An allocation problem is a triple < n,m, v >, where n is the number of agents,
m < n is the number of (identical) items available to allocate, and v ∈ Rn+ rep-
resents the agents’ satisfaction from consuming one item (agents do not care for
consuming multiple units). Monetary compensations are possible, and utilities
are quasi-linear. An allocation is a pair (a, t) ∈ {0, 1}n × Rn, where ai = 1 if
and only if agent i gets one item, and ti represents the amount of money that
agent i receives (this number can be negative, of course, in which case agent i
pays that amount). Hence the total utility of agent i when implementing the
allocation (a, t) is aivi + ti, if her value for the item is vi. A mechanism is a
pair of functions f : Rn+ → {0, 1}n and t : Rn+ → Rn. Thus it determines an
allocation for each possible report from the agents regarding their value for the
item. We focus on mechanisms that satisfy the following constraints:

• Feasibility: no more than m items should be allocated, and the sum of
payments to the agents should be less than or equal to zero, for all value
vectors v. In other words,

n∑
i=1

fi(v) ≤ m and
n∑
i=1

ti(v) ≤ 0 ∀v ∈ Rn+

• Strategy-proofness: It is a dominant strategy for each agent to report her
value truthfully. Formally,

fi(vi, v−i)vi + ti(vi, v−i) ≥ fi(v′i, v−i)vi + ti(v′i, v−i) ∀v ∈ Rn+, i, v′i (1)
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• Individual Rationality: It is in each agent’s interest to participate in the
mechanism, for all value vectors v, i.e.

fi(v)vi + ti(v) ≥ 0 ∀v ∈ Rn+, i

We now define the index that we will use to measure the overall efficiency of
a mechanism (f, t) that is implemented truthfully (an equivalent index was used
in [11, 6, 7]). If the true value vector is v, then the (utilitarian) surplus realized
by the mechanism is equal to

∑n
i=1[vifi(v) + ti(v)]. This absolute number is

less interesting than knowing how far it is from the first-best solution, i.e. the
maximal surplus one could achieve if the agents’ values were known. In order
to have an index that is unit-free (i.e. homogenous of degree zero), it is natural
to consider a ratio. Finally, since the agents’ values are not known, nor their
probabilistic distribution, it is natural to consider the worst-case index. To sum-
marize, the index that we will use to measure the performance of a mechanism
(f, t) that is truthfully implemented is given by the following number:

min
v∈Rn

+\{0}n

∑n
i=1[fi(v)vi + ti(v)]

maxa∈F(m)

∑n
i=1 aivi

,

where F(m) = {a ∈ {0, 1}n|
∑n
i=1 ai ≤ m}. Finding a mechanism whose in-

dex is α means that a proportion α of the maximal total surplus is achieved,
independently of what the true values are.

The formal content of the question stated in the Introduction can thus be
summarized by the following optimization problem:

max
(f,t)

min
v∈Rn

+

∑n
i=1[fi(v)vi + ti(v)]

maxa∈F(m)

∑n
i=1 aivi

(2)

n∑
i=1

fi(v) ≤ m ∀v ∈ Rn+ (3)

n∑
i=1

ti(v) ≤ 0 ∀v ∈ Rn+ (4)

fi(vi, v−i)vi + ti(vi, v−i) ≥ fi(v′i, v−i)vi + ti(v′i, v−i) ∀v ∈ Rn+, i, v′i (5)
fi(v)vi + ti(v) ≥ 0 ∀v ∈ Rn+, i (6)

3 Characterization of Strategy-Proofness: the
Threshold Mechanisms

The allocation domain places strong restrictions on value functions of the agents.
Specifically, an agent’s value is zero in all outcomes where the agent is not
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allocated an item and the private value vi > 0 in all outcomes where the agent is
allocated an item. We use this restriction on the values to characterize strategy-
proof mechanisms in the following proposition.3

Proposition 1 An allocation mechanism (f, t) is strategy-proof if and only if
it is a “threshold mechanism,” meaning that, for each i = 1, . . . , n, there exist
a threshold function τi : Rn−1

+ → R ∪ {∞} and a compensation function ci :
Rn−1

+ → R such that{
fi(v) = 1 and ti(v) = ci(v−i)− τi(v−i) if vi ≥ τi(v−i)
fi(v) = 0 and ti(v) = ci(v−i) if vi < τi(v−i),

or {
fi(v) = 1 and ti(v) = ci(v−i)− τi(v−i) if vi > τi(v−i)
fi(v) = 0 and ti(v) = ci(v−i) if vi ≤ τi(v−i).

Remark The threshold mechanisms are easy to interpret. Each agent faces
a personalized price (the threshold) that is determined by the reports of the
other agents. She gets the good if and only if her reported value is (strictly)
larger than this price, and must pay it in exchange. The collected money can
be redistributed to some extent to the agents via the compensation function.
The VCG mechanisms form a special case, where i’s threshold is the mth largest
component of v−i.

Proof The sufficient condition is straightforward to check. So we provide an
argument only for the necessary part. Fix i and the reports v−i from the other
agents. Strategy-proofness implies that

fi(v) = fi(v′i, v−i)⇒ ti(v) = ti(v′i, v−i), (7)

for all vi, v′i. It is easy to write (f, t) as a threshold mechanism if fi(v) = 0, for
all vi, or fi(v) = 1, for all vi. Suppose thus that there exists vi, v′i such that
fi(v) = 1 and fi(v′i, v−i) = 0. For any such pair, strategy-proofness implies that
vi + ti(v) ≥ ti(v′i, v−i) ≥ v′i + ti(v). Hence vi ≥ v′i. The space of agent’s values
vi ∈ R+ can be partitioned in two intervals based on the mapping to either
fi(vi, v−i) = 0 or fi(vi, v−i) = 1: there exists a threshold, denoted τi(v−i),
such that fi(v) = 1 if and only if vi ≥ τ(v−i) (or fi(v) = 1 if and only if
vi > τ(v−i)). Given (7), let t1i (v−i) (resp. t0i (v−i)) be the payment made by i
when she receives (resp. does not receive) the item. Strategy-proofness implies
that τ(v−i) + ε + t1i (v−i) ≥ t0i (v−i) ≥ τ(v−i) − ε + t1i (v−i), for each ε > 0.
Making ε tend to zero, we conclude that t1i (v−i) = t0i (v−i) − τ(v−i), and the
result follows by taking c = t0i .

If we add anonymity to strategy-proofness in Proposition 1, the mechanism
will change only in dropping indexes i from τ and c. For notational convenience

3We thank Yves Sprumont for pointing out this simple result to us.
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from now on we will restrict our attention to generic profiles v where all com-
ponents are distinct. This restriction is introduced without loss of generality
as we can extend the mechanism to all value profiles (including vectors with
equal components) by using uniform lotteries4 to break ties, as is usually done
in papers on auctions.

This characterization of strategy-proofness is reminiscent of other well-known
results for VCG and other more general strategy-proof mechanisms (see [10, 9]).
A slightly weaker version of the result showing that any strategy-proof mecha-
nism can be expressed as an equivalent threshold mechanism appears in [4].

We restrict our attention to the first class of mechanisms identified in Propo-
sition 1 (the one with vi ≥ τi(v−i)) and restate the constrained optimization
problem (2)-(5) using the threshold characterization:

max
(c,τ)

min
v∈Rn

+

∑
i|vi≥τ(v−i)

(vi − τ(v−i)) +
∑n
i=1 c(v−i)

maxa∈F(m)

∑n
i=1 aivi

#{i|vi ≥ τ(v−i)} ≤ m ∀v ∈ Rn+
n∑
i=1

c(v−i) ≤
∑

i|vi≥τ(v−i)

τ(v−i) ∀v ∈ Rn+

c(v−i) ≥ 0 ∀v ∈ Rn+, i

The first constraint is the feasibility constraint with respect to the items
being allocated, while the second constraint is the feasibility constraint with
respect to money (the sum of all compensations or rebates should be no more
than the sum of the money collected from the agents that get an item). The
third constraint is the individual rationality constraint (remember that a agent’s
value must be larger than the threshold when she gets an item, and so the IR
constraint is trivially satisfied for her as well).

We now propose a last formulation of our optimization problem. We remove
the minimization over v by introducing a variable r ∈ R denoting the best ratio
that holds for any profile of values. The resulting optimization program is:

4Suppose for instance that agent i should receive an item, and that more than m other
agents have the same value as i. Anonymity would then come in conflict with feasibility. A
uniform lottery will then be used to determine which subset of agents will receive the item,
among all those that have the same value. Even so, the way agents react to risk is irrelevant
because all the outcomes of the lottery are equivalent in terms of utility. Specifically, the
lottery is between receiving the item worth vi at the price pi and receiving compensation ci
such that ci = vi − pi.
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max
r,c,τ

r (8)

∑
i|vi≥τ(v−i)

(vi − τ(v−i)) +
n∑
i=1

c(v−i) ≥ r max
a∈F(m)

n∑
i=1

aivi ∀v ∈ Rn+ (9)

#{i|vi ≥ τ(v−i)} ≤ m ∀v ∈ Rn+ (10)
n∑
i=1

c(v−i) ≤
∑

i|vi≥τ(v−i)

τ(v−i) ∀v ∈ Rn+ (11)

c(v−i) ≥ 0 ∀v ∈ Rn+, i (12)

A solution to the mathematical program above is the optimal mechanism
for the allocation domain. However the program is hard to solve for different
reasons. Firstly, maximization is over arbitrary functions c and τ , and there
is little hope in optimizing over the space of arbitrary functions. Secondly,
the program has an infinite number of constraints as the set of possible value
vectors v ∈ Rn+ is infinite. We address these problems in the next section where
we make assumptions about the form of the functions c and τ , show that it
is sufficient to consider a finite number of constraints, and solve the resulting
problem computationally.

4 A Simpler Problem

There are infinitely many constraints in our optimization problem, since they are
indexed by the value profiles v. Our main insight for dealing with this difficulty
comes from the simple observation that linear constraints are satisfied by all the
elements of a convex polytope if and only if they are satisfied by its extreme
points. So we will restrict attention to the threshold and compensation functions
that add some linearity to the general problem. The main difference with [11,
6] is that the number of items allocated, and thereby the constraints in the
optimization problem, will vary with v when considering non-VCG mechanisms.
So we will have to decompose the optimization problem into different regions
of value profiles where the number of items allocated remains constant. To
guarantee that these regions are convex (to be able to apply our insight), we
will focus on threshold functions that are linear on regions partitioning Rn+. We
chose a class of functions that is rich enough, but also that allows a simple
characterization of these regions. Notice first that from now on we will restrict
attention to value profiles v such that v1 ≥ v2 ≥ . . . ≥ vn ≥ 0. This is without
loss of generality since our problem involves only anonymous mechanisms. With
this convention in mind, we are ready to define the class of threshold functions
we will consider:

Assumption 1 The threshold function is of the form τ(v−i) = max(kvp−i, v
m
−i),

with k ∈ [0, 1] and p ∈ {1, 2, . . . , (m− 1)}.
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Adding vm−i-component in the max operator guarantees that no more that m
items will be allocated, as required by the feasibility constraint. The p parameter
determines how many items are guaranteed to be allocated, independently of
the agents’ reports. The k parameter controls how large lower values should be
compared to larger values for the items (p+ 1), . . . ,m to be allocated. Taking
k = 0 brings us back to VCG mechanisms, while setting of k = 1 means that
items p+ 1, . . . ,m are always destroyed.

Similarly we will focus on compensation functions that are linear on con-
vex subsets of the set of value profiles. Here too we face a trade-off between
tractability and generality. A finer partition enlarges the set of functions being
considered, but also increases the number of constraints in the linear program
to be solved. The simplest choice would be to choose functions that are linear
on the whole cone characterized by v1 ≥ v2 ≥ . . . ≥ vn ≥ 0. Focusing on VCG
mechanisms, [11, 6] proved that the optimal compensation function actually
falls in that class. This is not necessarily the case anymore when considering
non-VCG mechanisms, as we came to realize after running some simulations.
Another simple choice would be to take compensation functions that are linear
on the regions where the number of items being allocated is constant. This
choice is not permitted, though, because these regions depend on the values of
all the agents, while the compensation function can depend only on the values
of the agents different from the one receiving the compensation. We decided
to choose the closest match, imposing a condition that mimics the definition of
these regions while using only the right values.

Assumption 2 The compensation function c is linear in values on two regions:

c(v−i; a, b) =

{
av−i if kvp−i ≥ vm−i
bv−i otherwise

where a, b ∈ Rn−1.

The approach we will follow to find a mechanism that achieves a large index
within the class of mechanisms that are feasible, strategy-proof, individually
rational, and anonymous is summarized in Figure 1.

Our next goal is to characterize the regions where the compensation function
is linear and the number of allocated items is constant. To do this, it is helpful
to state explicitly the mechanisms satisfying Assumptions 1 and 2:

• i ∈ {1 . . . p} : fi = 1, ti = −max(kvp+1, vm+1)+

{
av−i if kvp+1 ≥ vm+1

bv−i otherwise

• i ∈ {(p+ 1) . . .m}

if vi ≥ kvp: fi = 1, ti = −max(kvp, vm+1) +

{
av−i if kvp ≥ vm+1

bv−i otherwise

otherwise: fi = 0, ti =

{
av−i if kvp ≥ vm+1

bv−i otherwise
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For the allocation problem with m items and n agents

1. Choose k and p to select a threshold function satisfying Assumption 1

2. For each such threshold function τkp

(a) find the optimal compensation function ckp that satisfies Assumption
2

3. Choose the mechanism (τkp, ckp) that obtains the highest percentage of
the optimal utility

Figure 1: Algorithm for finding an approximate solution to the mechanism
design problem

• i ∈ {(m+ 1) . . . n} : fi = 0, ti =

{
av−i if kvp ≥ vm
bv−i otherwise

By the definition of the threshold function τ = max(kvp−i, v
m
−i), there are

m − p + 1 possible allocations (the first p agents get the items, the first p + 1
agents get the items, . . . , the first m agents get the items) determined by the
position of kvp among vp . . . vm. The compensation function c is resolved to one
of the two linear functions (av−i or bv−i) when the position of kvp relative to
vm and vm+1 and the position of kvp+1 relative to vm+1 are determined. Each
region below is defined to have a constant number of allocated items and a linear
compensation function (i.e., resolved to either av−i or bv−i).

Vj,j′ = {v ∈ Rn+|v1 ≥ . . . ≥ vp ≥ . . . ≥ vj ≥ kvp ≥ vj+1 ≥ . . . ≥ vj′ ≥
kvp+1 ≥ vj′+1 ≥ . . . ≥ vm ≥ . . . ≥ vn} ∀j ∈ {p . . .m}, j′ ∈ {max(p+ 1, j) . . .m}

Vj,m+1 = {v ∈ Rn+|v1 ≥ . . . ≥ vp ≥ . . . ≥ vj ≥ kvp ≥ vj+1 ≥ . . . ≥
vm ≥ . . . ≥ vn AND vm+1 ≥ kvp+1} ∀j ∈ {p . . .m}

Vm+1,m+1 = {v ∈ Rn+|v1 ≥ . . . ≥ vn AND vm+1 ≥ kvp AND vm+1 ≥ kvp+1}

The collection of regions above partitions the space {v ∈ Rn+| v1 ≥ v2 ≥ . . . ≥
vn ≥ 0}. We group constraints by the regions and state the optimization prob-
lem in Figure 2.5 Notice that on each region the constraints are of the form
dv ≥ 0 for some d ∈ Rn, which means that they are satisfied at λv (∀λ > 0) as
soon as they are satisfied at v. Hence we can assume without loss of generality
that v1 = 1 and focus on polytopes of vectors (v2, . . . , vn) ∈ Rn−1 characterized
by (n+ 2) inequalities:

5Recall, that v1 ≥ v2 ≥ . . . ≥ vn ≥ 0 and therefore maxa∈F(m)

∑n
i=1 aivi =

∑m
i=1 vi.
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1 ≥ v2
v2 ≥ v3
. . .

vj ≥ kvp
kvp ≥ vj+1

. . .

vj′ ≥ kvp+1

kvp+1 ≥ vj′+1

. . .

vn−1 ≥ vn
vn ≥ 0

Extreme points of these polytopes have the property that n− 1 of these in-
equalities are binding. It is easy to check that this is possible only is the variables
v2, . . . , vn take the values 1, k, k2, 0. Therefore all of the extreme points are of
the form (1, . . . , 1, k, . . . , k, k2 . . . , k2, 0 . . . , 0). Making sure the constraints hold
on all such vectors guarantees that the constraints hold everywhere on Vj,j′ .
Now the linear program in Figure 2 can be stated with a finite number of con-
straints.

Example As an example consider the allocation problem with n = 3, m = 2
and the threshold function with k = .5, p = 1: τ = max(.5v1

−i, v
2
−i). The thresh-

old function for agent 1 is max(.5v2, v3) < v1. So agent 1 is always allocated an
item. The threshold for agent 2 is max(.5v1, v3). Agent 2 is allocated an item
only when v2 > .5v1. Agent 3 is never allocated an item as the threshold for
agent 3 is max(.5v1, v2) > v3.

The compensation function is linear when in addition to the allocation the
position of .5v1 and .5v2 relative to v3 is determined. Taking v1 = 1 we can
represent this on a 2-dimensional graph (Figure 3). The space is divided into
5 regions, with each region having a linear compensation function and a fixed
allocation. To make sure the constraints hold for all {v ∈ Rn+| v1 ≥ v2 ≥ v3},
we just need to enforce each region’s constraints on its extreme points. For
example, the extreme points of the right bottom region after adding v1 = 1 as
the first component are (1,.5,0), (1,.5,.25), (1,1,.5), (1,1,0).

5 Results

We find mechanisms for different values of n and m using the computational
approach described in Figure 1. The class of threshold functions we consider is
given by all pairs (k, p) where k takes values in {0, .025, .05, . . . , .975} and p in
{1, 2, . . . ,m− 1}. We used CPLEX 11.2.0 as a linear program solver.
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max
a,b∈Rn−1,r∈R

r

∀j ∈ {p . . .m}, j′ ∈ {max(p+ 1, j) . . .m}
j∑
i=1

vi −
p∑
i=1

kvp+1 −
j∑

i=p+1

kvp +
n∑
i=1

c(v−i; a, b) ≥ r
m∑
i=1

vi ∀v ∈ Vj,j′

n∑
i=1

c(v−i; a, b) ≤
p∑
i=1

kvp+1 +
j∑

i=p+1

kvp ∀v ∈ Vj,j′

c(v−i; a, b) ≥ 0 ∀v ∈ Vj,j′ , i
∀j ∈ {p . . .m}

j∑
i=1

vi −
p∑
i=1

vm+1 −
j∑

i=p+1

kvp +
n∑
i=1

c(v−i; a, b) ≥ r
m∑
i=1

vi ∀v ∈ Vj,m+1

n∑
i=1

c(v−i; a, b) ≤
p∑
i=1

vm+1 +
j∑

i=p+1

kvp ∀v ∈ Vj,m+1

c(v−i; a, b) ≥ 0 ∀v ∈ Vj,m+1, i

m∑
i=1

vi −
m∑
i=1

vm+1 +
n∑
i=1

c(v−i; a, b) ≥ r
m∑
i=1

vi ∀v ∈ Vm+1,m+1

n∑
i=1

c(v−i; a, b) ≤
m∑
i=1

vm+1 ∀v ∈ Vm+1,m+1

c(v−i; a, b) ≥ 0 ∀v ∈ Vm+1,m+1, i

Figure 2: Linear program with constraints grouped by regions Vj,j′ .

Figure 4 illustrates the results we generate for each setting of n, m, and p.
The value for the parameter k is varied along the horizontal axis. For each value
of k, the corresponding threshold function is τ = max(kvp−i, v

m
−i), and we can

solve the linear program from Figure 2 to find an optimal compensation function
ckp. The ratio for each mechanism (τkp, ckp) is plotted for the corresponding k
value. We refer to the resulting graph as the performance curve.

We scan the values of k for the one that has the highest ratio. In Figure 4,
the best ratio is for k = .20. Notice that the shape of the curve suggests that
there is only one peak. We try other values of k around .175 to find the peak at
k = 1

6 . In all of our results we noticed that the performance curve as a function
of k is single-peaked.

The threshold function with k = 0 corresponds to the efficient allocation
function and the mechanism we find for k = 0 is the best VCG mechanism. The
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Figure 3: (v1 = 1) Regions where the number of allocated items remains con-
stant and the compensation function is linear for 3 agents and 2 items. Each
region is labeled with the number of items allocated and the coefficients used
in the compensation function for each agent, e.g. (1:b,a,a) means that 1 item is
allocated and the compensation functions for agents 1,2, and 3 are bv−1, av−2,
and av−3 respectively.
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Figure 4: Performance curve

Figure 5: Performance curves for different settings of p

ratio of the best VCG mechanism appears at k = 0 and as argued before is zero
when n = m+ 1.

For any fixed values of n and m we found that a mechanism with p set
to m − 1 achieves the highest ratio. This setting of p means that at most
one item is destroyed. This result is consistent with the one obtained by Guo
and Conitzer [7] for randomized VCG mechanisms. They find that the best
mechanism randomizes between destroying one item and not destroying any
items. The performance curves for different values of p are shown in Figure 5.
Notice that the highest ratio is obtained on the graph for p = m−1 = 8 (k = .1).

The mechanisms we find provide the most improvement when the number
of items is close to the number of agents. In the extreme case when n = m+ 1
our mechanism achieves the ratio of6 1 − 2

n2−n , while the VCG mechanisms
have the ratio of 0. Our ratio becomes closer to the VCG ratio as the number
of items becomes smaller and approximately around m = n

2 the ratios and
the mechanisms coincide. Figure 6 shows this trend for 10 agents and varying
number of items.

In our threshold algorithm the parameter p is set to m−1 allocating at least
6It is not difficult to check that this ratio is achieved by the following mechanism that meet

the requirements of strategy-proofness, feasibility and anonymity: τ(v−i) = max( 1
n
vm−1
−i , vm

−i)

and c(v−i) = (0, 0, . . . , 0, [max( 1
n
vm−1
−i , vm

−i)−
1
n
vm−1
−i ], 0).
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Figure 6: Performance of the mechanisms as a function of the number of items.

m−1 items. Also plotted are the ratios achieved by the best VCG mechanism as
well as the ratio achieved by the mechanism that first destroys a fixed number of
items and then applies an optimal VCG mechanism (see deterministic burning
mechanism in [7]). All mechanisms coincide when the number of items is 4 or
fewer.

We now illustrate the kind of mechanisms we find. The best mechanism we
find for 6 agents and 5 items is given by the following parameters: k = 1

6 , p = 4,
a = b = (0, 0, 0,− 1

6 , 1). Under the mechanism, the first 4 agents always get
items and each of them pays 1

6v5. Allocation and payment for agents 5 and 6
is determined as follows:

• if v5 ≥ 1
6v4

◦ roommate 5 goes and pays 1
6v4

◦ roommate 6 does not go and gets (v5 − 1
6v4)

• if v5 < 1
6v4

◦ roommate 5 does not go and gets 0

◦ roommate 6 does not go and gets 0
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6 Conclusion

Finding the solution to the general optimization problem (2) remains an impor-
tant open question. Taking a step in that direction, we developed a practical
methodology that improves upon previous contributions which were restrict-
ing attention to VCG mechanisms for technical convenience. Motivated by our
characterization of strategy-proofness in terms of threshold and compensation
functions (see Proposition 1), we imposed some restrictions on those functions
which guarantee that the optimization problem can be solved via linear pro-
gramming techniques. The key observation for this simplification is that linear
inequalities hold at all points in a polytope if and only if they hold at its extreme
points. Though it is possible that more intricate mechanisms would achieve an
even greater social surplus, we observed that our approach already significantly
improves upon the previous VCG analysis. The reason is that the combina-
tion of allocative efficiency, a characteristic feature of VCG mechanisms, and
strategy-proofness may come at the cost of “burning” a lot of money. This
insight is likely to prove helpful in other contexts as well.

The most striking illustration of the benefits of our approach in our problem
is the allocation of n − 1 items among n agents. No redistribution of VCG
payments is possible in that case, and for some value profiles the amount of
VCG payments is as high as the sum of the n− 1 highest values. We find that
destroying one item for some profiles of values significantly reduces the degree of
payments. For example, the mechanism that destroys one item if the (n− 1)th

highest value is less than 1
n of the (n − 2)th highest value guarantees that the

amount of payment is less than 2
n2−n of the sum of n− 1 highest values.

At this time, we are experimenting with more flexible threshold and com-
pensation functions in attempts to find a provably optimal mechanism. In the
process, we are gathering intuition about the binding constraints for different
threshold and compensation functions. In the future, we plan to investigate
more general allocation settings characterized by allocation of non-identical
items, agents desiring more than one item, agents with utilities that depend
on whether other agents receive the items (externalities), and common-value
models.
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