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Abstract

A stochastic model describing the learning process and adaptive
behavior of finitely many users in a congested traffic network with
parallel links is used to prove convergence almost surely towards an
efficient equilibrium for a related game. To prove this result we as-
sume that the social planner charges on every route the marginal cost
pricing without knowing what is the efficient equilibrium. The result
is a dynamic version of Pigou’s solution, where the implementation is
made in a decentralized way and the information about players gath-
ered by the social planner is minimal. Our result and setting may be
extended to the general case of negative externalities.
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1 Introduction

Congestion in traffic networks is the classical problem of negative external-
ities, which is generated due to selfish routing of players. To solve this
problem-in order to improve the general performance of the network- an
economic solution was given in Pigou (1920), which is known as the Pigou-
vian solution for negative externalities. Pigou’s solution consists in charging
a toll on every route so that each player pays exactly the externality gener-
ated by its presence (in the specific route) to the other players. Once that
this solution is implemented the players must consider in their choices two
sources of cost: the cost due to delay in the route and the cost due to toll.
This idea was called as marginal cost pricing and an early formalization of
this one was given in Beckmann, McGuire & Winstein (1956), where the
main result says that if a social planner implements a tolls system such that
the players pay exactly for the externalities that they create and if the cost
functions are convex and increasing, then an “optimal solution”-from a so-
cial viewpoint- is reached. Despite being an effective mechanism to induce
an efficient equilibrium, the efficacy of Pigou’s principle rests on the assump-
tion that the social planner knows in a precisely way which is the efficient
equilibrium and according to this he can calculate the tolls necessaries to
attain that state. However, this assumption implies that the social planner
has information about players, mainly respect to their preferences, without
specifying how this is acquired. Behind these observations is the fact that
Pigou’s principle is thought as a equilibrium concept, omitting how this one
may be attained. Two articles that consider dynamical processes to explain
how and when the equilibrium may be reached, when the Pigouvian solu-
tion is used, are Sandholm (2005) and Sandholm (2007). Sandholm’s results
are built using evolutionary game theory at an aggregate population level in
Sandholm (2005) and for individual players in Sandholm (2007). The main
result of both articles is that if the social planner uses marginal cost pric-
ing to correct the externalities, then the game converges towards an efficient
Nash equilibrium. These results are based on the concept of potential games,
which was first introduced in Rosenthal (1973) and later generalized in Mon-
derer & Shapley (1996) and Sandholm (2001). Even though these articles
prove convergence toward an efficient equilibrium, the dynamics used are
postulated based on arguments of myopic behavior, which permit to get a
general process of adjustment used by players. On the other hand, a simple
procedure of learning used by individual players is considered in Marden,



Young, Arslan & Shamma (2007), which is applied to congestion games in
order to analyze the convergence towards the set of Nash equilibria when
players’ payoffs are modified by marginal cost pricing. The main character-
istic of this procedure is that players only observe their own payoff obtained
from the alternative chosen, i.e. from the alternatives they experiment. This
way of adjustment is inspired in ideas from Foster & Young (2006) and it is
worth noting that this learning rule needs to assume that there exist an ex-
ogenous rate of experimentation which permits that all players can know the
performance of all alternatives. Besides, the procedure works for a specific
class of games called weakly better reply, where potential games belongs to
this one. The main result given in Marden et al. (2007) is that in the long
run, it is possible to stay in a Nash (efficient) equilibrium with a probability
near to 1. Although the result just described is appealing, the learning pro-
cedure and its assumptions may still be considered as too restrictive in the
context of traffic games with finitely many users.

In this article a simpler learning procedure is considered. In particular, we
use the payoff-based learning procedure proposed in Cominetti, Melo & Sorin
(2009) to prove convergence towards an efficient equilibrium in the context of
traffic games. This learning rule works in the following way: each player has
a prior perception or estimate of the average payoff of alternative routes at
network and makes an “optimal” decision based on this rough information by
using a Logit choice rule. On this setting, we consider a social planner who
modifies players’ payoffs through marginal cost pricing, which is the economic
mechanism used by this planner to reach an efficient equilibrium. Consid-
ering this fact, the payoff of the chosen alternative is then observed and is
used to update the perception for that particular route. This procedure is
repeated day after day, generating a discrete time stochastic process which
we call the learning process. The basic ingredients are therefore: a state pa-
rameter; a decision rule from states to (mixed) actions; and an updating rule
on the state space. Although players observe only the payoff of the specific
route chosen on any given day, the observed values depend on the congestion
levels determined by everybody else’s choices revealing implicit information
on the system as a whole. Furthermore, in the setting just described, the
planner only needs to know the form of marginal cost pricing and the nat-
ural question is whether under such a simple learning mechanism based on
a minimal piece of information may be sufficient to induce coordination and
make the system stabilize to an efficient equilibrium.

It is necessary to make two important remarks about our paper. The first



remark is about the type of learning rule that we will use. We note that our
learning rule is similar to the reinforcement model. In fact, we use a learning
procedure which preserves the qualitative features of probabilistic choice and
sluggish adaptation (see §2 in Young (2004) for details). Despite this initial
similarity, our learning process induces a specific dynamics on perceptions
and strategies which appears to be structurally different from the previously
studied ones (see the discussion in Cominetti et al. (2009) and references
therein). The second remark is about the contribution of our paper, which
is mainly methodological, showing that a unified treatment is possible in
which a learning process, marginal cost pricing, and a corresponding notion
of equilibrium can be considered in a unified and self-consistent way, where
the efficient solution may be implemented in a decentralized way by the social
planner. A remarkable property of this result is that the social planner needs
to gather a minimal piece of information about the game, which is appealing
in the context of the traffic games with finitely many players. In addition,
in this article we prove our convergence result using a different Lyapunov
function which turns out to be different to the functional used by Cominetti
et al. (2009).

The article is organized as follows. Section §2 describes the learning
process in the setting of traffic games considering a social planner which
modifies the payoffs through marginal cost pricing. Section §3 is dedicated
to prove global convergence of the learning rule, where this result is based
on the fact that the social planner’s objective function is a potential for
players’ payoffs vector. Furthermore, we establish the link between the rest
point of the learning process and the Nash equilibrium for a related game.
In addition, in section §3 we study the symmetric players case and results
of local convergence are given. Finally in section §4 final comments and
additional extensions are considered.

2 Congestion pricing and payoff-based adap-
tive dynamic

The setting for the traffic game is as follows. Each day a set of N players,

i € P, choose one among M alternative routes from a set R. The combined

choices of all players determine the total route loads and the corresponding
travel times. Each player experiences only the cost of the route chosen on
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that day and uses this information to adjust the perception for that particular
route, affecting the mixed strategy to be played in the next stage.

More precisely, a route r € R is characterized by an increasing and convex
function ¢, which represents the average travel time of the route when it
carries a load of u users and according to this the congestion is captured by
the following inequality ¢f < --- < ). The set of pure strategies for each
player i € P is S* = R and we denote A’ as the set of mixed strategies over
S*, where we set A = [, A". Let G'(-) the payoff function for player i and
if ) € R denotes the route chosen by each player j at stage n, then player i’s
payoff is given as the negative of the experienced travel time ¢" = G'(r,) =
—c" with r=7" and u=#{j€P : 1l =r}.

We assume that the route ¢, is randomly chosen by player i according to
a mixed strategy 7, = o’(z") € A’, which depends on a vector 2, = (z77),er
that represents her perceptions about the payoffs of the routes available. In
particular, we use the Logit model with

exp(fiz™)

0’i7’ (.ZL'Z) - ZaeR eXp(ﬁifL’ia) )

(1)

where the parameter (; has a smoothing effect when 3; | 0 leading to an
uniform choice while 3; T oo the probability concentrates on the pure strat-
egy with the lower perception. As it is well known, in the traffic game just

described, players’ choices are made in a selfish way, i.e. they do not incor-
porate the effect of their decisions over payoffs of other players, what implies
that Nash equilibria are inefficient . This selfish routing is in opposition with
the social planner’s objective, who desires to maximize the aggregate welfare
considering the choices of all players. In traffic games this is equivalent to
minimize the total cost of the network. Formally, let H : [0,1]”*® — R be
defined as

H(m) = = B[}, pU"cl], (2)

with U"=Y", » X", where X" are independent non-homogeneous Bernoulli’s
random variables with parameters P(X?7 =1) =7,

In order to maximize (2) the planner charges a toll on every route, which
is given by

pp=(u—=1(¢,—c,1) YVreRr, (3)

where p! is the toll charged at the route » when it carries a load of u users.
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The expression (3) is a dynamic version of the classical solution of mar-
ginal cost pricing to correct the negative externalities generated by selfish
routing of independent and non cooperative players.

This tolls system modifies the payoffs for players, so at the stage n these

are given by 3 = Gi(r,) = G'(r,) — p, = —& for every r € R, where
¢ = c, +p.. As ¢ is increasing and convex, it is easy to see that the
inequality ¢} <¢§------ < &y it holds.

It is important to note that under (3) players pay for the externalities they
currently create. The reason of this fact is due to that the social planner does
not know what is the efficient equilibrium and consequently he is not able
to know what tolls should be charged to attain this result. Moreover, we
remark that the tolls system given by (3) is anonymous in the sense this one
does not depend on players’ identity.

Considering the previous setting and following to Cominetti et al. (2009),
we introduce the learning process as follows. At the stage n the perceptions
2" determine the choice probabilities 77" = ¢ (z!) which are used by each
player i to select a random route r, € R. These choices determine the load
u” of route 7 as the total (random) number of users i such that r’, = r. The
payoff of route r is then given by g’ = —¢" with v = u”. At the end of the
stage n, each player i observes only the cost of the chosen alternative 7! and
updates his/her perceptions by averaging

. (1 — yp)2 + v, ifrl =7
anrl =

x otherwise.

where 7, € (0,1) is a sequence of averaging factors with ) =, = oo and
.72 < oo (a typical choice is 7, = ). Schematically, the procedure just
described looks like

ir ir 7 r ~1 ir
Ty ~ Ty Wranntann—H?

which yields a discrete time stochastic process that represents the evolution
of player perceptions where the perceptions of pure strategies not played
at that stage remain unchanged. We call this the learning process and we
rewrite it in condensed form as

Tpt1 — Tp = ’Yn[wn - xn] (4)
. g, ifri=r
wy =9 . (5)
x otherwise.



An interesting characteristic of this learning process is that the informa-
tion gathered at every stage by each player is very limited-because only the
payoff of the movement realized is known- so the main question we address is
whether an iterative procedure based on such a minimal piece of information
can lead to coordination among the players on a steady state and how this
one can be related with the social planner problem’s given by (2).

Process (4) has the form of a stochastic algorithm (see Benaim (1999),
Benaim, Hofbauer & Sorin (2005)) with the distribution of the random vector
w, being determined by the individual Logit rules which depend upon the
prior perceptions x,. We remark that since the route costs are bounded,
the same holds for the sequences generated by (4). Hence the asymptotic
behavior of (4) can be studied by analyzing the continuous dynamics of the
expected movement, that is to say

d
d—j = E(w|r) — z. (6)
In order to make this equation more explicit we remark that if 77" =P(X" =
1), then we can define the quantity
F(m) = E[-¢ | X" = 1] = E[~(cfr 41 + Ppri1)]; (7)
with U] = >, 4i X" The expression (7) represents the average cost ob-
served by user ¢ when he chooses route 7 and the other users choose it with
probabilities 7" for j € P, j # i. Notice that F' () is a function of the
probabilities (77");.; only, and does not depend on the probabilities with
which the users choose the other arcs. Furthermore, we introduce the space
of perceptions = [], R” and the map C : © — Q which express the
vector payoff as a function of the state given by

C" (z) = F" (3(x)), (8)
where the Logit model is incorporated through the map ¥ : 2 — A defined
as

S(x) = (0'(2"))iep, (9)
where the latter represents the profile of mixed strategies at the state x and
F : A — Qis the vector payoff function defined on the strategy space by

F(r) = (F'(m))iep.



Lemma 1 Setting Uj; = > ;- X", we have
F'(m) = E(_CZI;H) + Z Ujr(xj)E(—ACE[jH)-
JF#i
Proof. As E(—(cpriy + ppria)) = E(=cfrin) + E(=ppri), we note that
E(—pfr,1) can be written as follows

E<_p7[}[+1) = E(_UZ(C;J;H - C?J;))-
= E(- Z XjrAC?an{H)-
J#
As > ki X I™ is the summation of independents non homogenous Bernoulli’s

random variables and using conditional expectation for all j # ¢, the preced-
ing expression can be expressed as Y., 07" (27 )E(=Acr ). O
ij

Proposition 2 The continuous dynamics(6) may be expressed as

d:L’W . S AT

o =@ (@) — 2", (10)

with U’LT(ZL‘) _ E(_qu«]l”_l) + Zj;éi O'jT(xj)E(_ACij+2)'

Proof. Taking (5) into account, the expected value E(w|z) is given by

r

E(w"|z) = o"(2")C" (x) + (1 —o"(2"))2"
E(w"|z) —a" = o"(a")[C" (z) — "],
which plugged into (6) and using Lemma 1 we get (10). OJ

We shall refer to the system of differential equations (10) as the adaptive
dynamics. As we have noted, the learning process and adaptive dynamics
have been proposed in Cominetti et al. (2009), and a distinguishing feature
with respect to previous work in this area, is that the dynamics are not
directly postulated as a mechanism of adaptive behavior, but they emerge
instead as a consequence of the learning process. Besides, we observe that
C" (x) does not depend on player i’s perceptions z* but it incorporates the
congestion induced by all the other players.
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3 Global convergence of the learning process

In the traffic game setting just described, the vector payoff map F(-) given
by (7) may also be expressed as the gradient of a potential function. As it is
well known the traffic game is also a potential game in the sense of Monderer
& Shapley (1996). However, the notion of potential that we used is closer
to the one introduced in Sandholm (2001). An interesting fact is that our

potential function is given by H ().

Proposition 3 F(r) = VH(r) for all T € A.

Proof. We note that H(w) = — >, 5 E[U"c},] and conditioning over the
variables {X™},cr we get

H(m) = = Syer 77 B(UL + 1)ep) + (1 - 7)) B(UL )],

which combined with (7) yields

aaTHirOT) = —E[(U] + 1)C1t}[+1] + E[U{C;fg] = E[_(C?J[-f—l +p7(}[+1>] = FWOT)-

O

To study convergence of the learning process we need some Lipschitz

estimates, which can be obtained directly from Proposition 3. The following

results are expressed in terms of a parameter that measures the congestion
induced by an additional player, namely

d=max{c, —c,_;:reRu=2,...,N}. (11)
Lemma 4 The second derivatives of H are all zero except for
0°H T T
%(W) = 2E[¢q;+1 - Cq;+2] € [—24,0], (12)

with j#i, where Uf =37, ., X*.

Proof. We have noted that gTﬁ”(w) = E[—(c{r41 + Ppr41)] depends only on
(%) k. Then using Lemma 1 and conditioning on X7" we get
oH
or'r ()

= WjTE[_C&}H] +(1- WjT>E[_C&f+1]

+ Z WkTE(—AcgirkH).
kiti



Taking partial derivative respect to 7" the result follows at once. O

Lemma 5 [|[V7" (2')||; < 35; for alli € P and 2' € R®.

Proof. Tt suffices to note that 2% = Bix'" (8, — 7'@) with d,, equal to 1 if

81’7;‘1
a = r and 0 otherwise, from which we get

V7 (@)1 = B e 6 — 7] = 267 (1 = 77) < 45,

O
Defining w = max;ep » i Bj» we get the following Corollary.
Corollary 6 For all z,y € 2, we have
IC(2) = C(y)]loo < willz = Ylloo- (13)

Proof. We note that for every ¢ € P and r € R equation (8) and Lemma 4
combined yield [C" () =C" (y)| = | 225 (S5()) = 225 (2(y))] < 265, 41077 (27)—

onir omir
" (y7)|, so using Lemma 5 we conclude . 0

We are ready to state our main theorem concerning the asymptotic con-
vergence of the learning process (4) and the adaptive dynamics (10).

Theorem 7 Assume in the traffic game that wd <1. Then the corresponding
adaptive dynamics (10) has a unique rest point T which is a global attractor
and the process (4) converges almost surely to .

Proof. Note that if wd < 1 by the Corollary 6 the existence and uniqueness
of z is assured, while almost sure convergence of (4) follows from global
attraction and well known results in stochastic approximation (c¢f. Benaim
(1999)). Hence, it suffices to show that Z is an attractor by exhibiting a
strict Lyapunov function with a unique minimum at Z. The next Lemma
describes a such function. We shall use the fact that a finite maximum of
smooth functions ¢(t) = max{y,(t) : j € J} is absolutely continuous with
derivative ¢(t) = max{¢;(t) : j € J(t)} where J(¢) is the set of j’s at which
the max is attained. U

Lemma 8 Ifwd < 1 then ®(z)=max;, || is a Lyapunov function for (10)
and T 1s a global attractor.

10



Proof. Let ir be an index where the max is attained and assume first & > 0
(recall that & = 22). Using the equality 2= = 3,7 (8, — 7) one gets

Ozt
7'I_ir — ﬁi,/.rir [xzr _ Zae’R ,/Tiaa';,ia] § 0’

while (12) gives %[Uw(x(t))] <n ®(z) with n = wd < 1 so that

—r

i = 707 (x) — 2] + 77 L[C (z) — 2]
< 7 —1] ().

d
l

A similar analysis holds for the case #™ < 0 so we deduce
4O (z) < —min; 7" [1 — ] O().

Now, since C" (z) € [—&, —&] it follows easily from (10) that z(t) remains
bounded and therefore 7" stays away from 0 so that 2®(z(t)) < —e ®(z(t))
for some € > 0. This implies that ® is a Lyapunov function which decreases
to 0 exponentially fast along the trajectories of (10), and since ¥ is the unique
point with ®(z) = 0 the conclusion follows. O

It is important to make some remarks about our result of convergence.
First, Theorem 7 establishes global convergence of the learning process with-
out consider the existence of a related game. As a matter of fact, to derive
the dynamic (10) we do not need to assume that players know that they
are involved in a game. Even more players do not need to gather informa-
tion about actions or payoff functions of other players. However, in the next
section we shall establish the link between the rest points of (10) and Nash
equilibrium for a related game. A second remark is about the condition of
convergence, where we note that in traffic games a standard assumption is
that an individual player has an effect negligible on the payoff of a specific
route, what in our model is represented by a small parameter §. Thus our
condition wéd < 1 can be considered as suitable in the context of traffic games
with finitely many players. Finally we must mention that an alternative proof
for Theorem 7 can be given using Corollary 6 combined with Theorem 4 in
Cominetti et al. (2009).

3.1 Rest Points and Nash Equilibrium

From general results on stochastic algorithms, we know that the rest points
of the continuous dynamics (10) are natural candidates to be limit points for
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the stochastic process (4). Since o (z') > 0 Vr € R, these rest points are
the fixed points of the map z +— C(x) whose existence follows easily from
Brouwer’s Theorem if one notes that this map is continuous with bounded
range. We denote £ as the set of rest points for (10). As was noted in
Cominetti et al. (2009), there is a correspondence one-to-one between rest
points and the associated 7’s which can be associated with the concept of
quantal response equilibria introduced in 7. Formally we get

Proposition 9 The map x — X(x) is on-to-one over the set €.

Proof. The proof is straightforward if we note that the fixed point equation
x = C(x) can be restated as a coupled system in (x, )

T =3(x)

r = F(r).
Then for x € £ the map z —— ¥ (x) has an inverse image given by 7 ——
F(n). d

We use the Proposition 9 to establish a link between the set £ and the
Nash equilibrium for a related N-person game G defined by strategy sets
St = A(R) for all i € P and payoff function G : Q,.p S* — R given by

G'(m) = (", F (7)) — 5 Xper ' [Ina” — 1],
which is a congestion game perturbed by an entropy term.

Theorem 10 Consider wé < 1. Then m = 3(E) is the Nash equilibrium of
the perturbed game G. Moreover, this equilibrium is unique.

Proof. By Proposition 3 in Cominetti et al. (2009) we know that ¥(&) is the
set of Nash equilibria for G. Furthermore if wé < 1, by Theorem 7 we get
E = {z}. Finally, as we just noted, there exist a correspondence one-to-
one between rest point T and the associated m, so the uniqueness of Nash
equilibrium for G it follows. U

An important consequence of the Theorem 10 is that the Nash equilibrium
corresponds to situation where each player considers the effect that his/her
decision has upon payoffs of other players. To reach this result, the planner
only needs to charge the current tolls which are given by (3). Furthermore,
it is worth to note that the efficient result is attained in a decentralized way,
where the planner does not need to take in account players’ identity.

12



3.2 The symmetric case

In this section we assume 3; = [ Vi € P and according to this (1) is given
by a common Logit function which we denote as o(-). Under this assumption
is reasonable to expect that a rest point is a situation where all players share
the same perceptions, i.e. : ' = 27 for all 4, € P. In fact, when (3§ is small,
then only and only one rest point is symmetric.

Lemma 11 For all x,y € ), each i,7 € P and every r € R, we have
[C" (2) = O ()] < 66 ||2"— 2] - (14)

Proof. We observe that the only difference between Fi’r and 7" is an ex-
change of 7% and 7", Besides, by Lemma 1 we know F' (7) = E(—c{ryq) +
D kot ar(mk)]E(—Ac}"ﬂk +2). Thus, Proposition 3 and Lemma 4 combined im-

ply that [F" (7) — F' (7)] < 20|7" — 79"| and then (14) follows from the
equality C(x) = F(X(z)) and Lemma 5. O

The existence and uniqueness of a symmetric rest point has been estab-
lished in Cominetti et al. (2009). The following proposition establishes the
symmetry of a rest point for (10) when 3§ < 1

Proposition 12 Let 3; = 3 for alli € P. If 36 < 1 then every rest point of
(10) is symmetric and unique.

Proof. As we just noted the existence and uniqueness of a symmetric rest
point it follows from Theorem 15 in Cominetti et al. (2009). To prove sym-
metry consider us that 0 < 1 and let x be any rest point. For any two
players i, 7 € P and all routes r € R, Lemma 11 gives

27" — 27| = [ (2) = C” (@)| < B]la’ ']
and then ||2! — 27| < B6||2" — 27| which implies 2? = 2. O

Corollary 13 If 3; = 3 for all i € P then the game G has a unique sym-
metric equilibrium. Moreover, if 30 < 1 then every equilibrium is symmetric
(hence unique).

It is interesting to note that in the symmetric case the condition of stability
of rest points given in Theorem 7 becomes in (36 < ﬁ, which is more and
more exigent as the number of players increase. However, we can obtain a
local result which only depends on 50 < 1. In fact, this result is a slight

variation of the Theorem 17 in Cominetti et al. (2009).
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Theorem 14 If 5; = ( for all i € P with 3§ < 1 then the unique rest point
T =(9,...,79) is symmetric and a local attractor for the adaptive dynamics

(10).

Proof. See proof of Theorem 17 in Cominetti et al. (2009) and considering
B < 1 instead of B0 < 2. U

4 Comments and final remarks

Two important remarks can be made for the specific model here consid-
ered . The first remark is based on the observation made in Cole, Dodis
& Roughgarden (2006) about the possibility of considering an alternative
tolls scheme which is not based on marginal cost pricing. The argument to
consider an alternative tolls scheme is because if the social planner has a
objective function as (2), then the disutility for players generated by mar-
ginal cost pricing is not considered (for details see §3 in Cole et al. (2006)).
This observation implies the study different forms of pricing which could be
better than marginal cost pricing. We can adapt our model to analyze this
issue. In fact, let us consider a non decreasing function p] which represents
the toll to be charged when route r € R carries a load of u players with
py < -+ < ply. So, this tolls system implies that players’ payoffs at the
stage n are given by g = Gi(r,) = Gi(r,) — pl, = —&, for all 7 € R,
where it follows ¢} < --- < ¢y. Under this tolls scheme the result in Propo-
sition 3 does not hold. However, we can recover the convergence results if
we define the function given by: H(w) = —E(}_, % 25;1 ér). This func-
tion is a potential for F(-), namely, VH(n) = F(7) V © € A, where the
argument to prove it is the same one used in the proof of Proposition 3. Al-
though we can not relate this potential function with social planner’s prob-
lem, this result permits to attain convergence of the learning process for the
case of a general non decreasing function pl. In terms of Cole et al. (2006),
we may study the case when the social planner has the objective function:
H(rn) = —EQQC,er Ulctr) = —E(3, e U (cpr +ppr)), i-e., the case when the
planner considers both the disutility due to delay and the disutility generated
by tolls.

The second remark is about the case when each player has private val-
uations for every route. More precisely, let us consider the following payoff
function: G'(r,) = v — ¢! for all i € P,r € R, where the parameter v*
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represents player i’s valuation for using route r, so it varies among players
and routes. Under this setting for payoffs, the adaptive dynamics (10) is
the same and (2) is still a potential function for F(-). Thus, the results of
convergence are invariant.

Finally, an interesting extension of our results would be to study the case
when each route is owned by a monopolist which must charge prices in an
optimal way (in order to maximize its profit). This issue raises the question
about how players and a monopolist could learn simultaneously and how the
equilibrium would be attained.

Acknowledgement: I warmly thank Roberto Cominetti by encourage me to
write this paper.
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