
Designing Stable Mechanisms for Economic Environments

Paul J. Healy∗ Laurent Mathevet†

Abstract

We study the design of mechanisms that Nash-implement Walrasian or Lindahl allocations
and induce supermodular games for a wide class of economies. Such mechanisms are robust to
the presence of myopic agents who use adaptive learning rules to choose their strategies. We
proceed in three steps: First, we identify strong necessary conditions on the functional form of
any mechanism that implement Walrasian or Lindahl equilibria. Second, we use these necessary
conditions to identify impossibility results for mechanisms with small strategy spaces. Finally,
we show how to use additional dimensions in the strategy space to turn any Walrasian or Lindahl
mechanism into a supermodular mechanism.
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1 Introduction

In economic environments, the equilibrium concepts of Léon Walras and Erik Lindahl represent

normatively appealing selections from the space of possible consumption bundles. A major criticism

of any equilibrium-based concept, however, is that it lacks a foundation for how agents arrive at

the equilibrium and, in the case of multiplicity, to which equilibrium they will converge. Much of

the criticism lies in the lack of an explicit price formation process; Lindahl’s concept additionally

suffers from the fact that individuals must treat their individualized prices as given even though

they exercise monopsony power in their own consumption of the public good.

Mechanism design (as formulated by Hurwicz, 1972) circumvents much of this criticism. Here,

a central planner chooses a mechanism that consists of a set of allowable strategies and a map-

ping from strategies to outcomes. Agents, given their preferences, choose equilibrium strategies of

this mechanism. Since mechanisms can be designed such that (Nash) equilibrium strategies map

into Walrasian or Lindahl allocations, the ambiguities regarding a price formation process can be

completely circumvented.

This shift from price-taking competitive environments to non-cooperative games, however, in-

troduces a new ambiguity regarding equilibration: How do agents arrive at the (Nash) equilibrium

of the chosen mechanism? If we lack of a theory of equilibration to Nash equilibrium, we still lack

a complete description of how economies can arrive at Walrasian or Lindahl equilibria.

Fortunately, past theoretical and experimental work has provided some insight into the equili-

bration process for non-cooperative games; many models of ‘adaptive’ learning have been proposed

and tested (see Fudenberg and Levine, 1998 for a review of the theoretical literature and Camerer,

2003 for a survey of experimental results). Most of the proposed models are ‘adaptive learning

rules’ in which agents myopically move towards strategies that yield higher payoffs (see Milgrom

and Roberts, 1990 for a formal definition). Examples of adaptive learning rules include Cournot

dynamics, fictitious play and Bayesian learning.

Milgrom and Roberts (1990) show that if a game is supermodular (see Topkis, 1998) then myopic

agents who use adaptive learning rules will eventually converge to choosing strategies from a set

formed by the smallest and largest equilibria of the game (Milgrom and Roberts, 1990); if a game

has a unique equilibrium then agents who use these rules will eventually converge to equilibrium

play.

Using laboratory experiments to study convergence properties of mechanisms, Chen and Plott

(1996), Chen and Tang (1998), Cabrales and Ponti (2000), Chen and Gazzale (2004), and Healy

(2006) find that actual play converges to equilibrium in those mechanisms in which adaptive learning

rules are predicted to converge to equilibrium. These results suggest that if a mechanism were to

always induce a supermodular game then play would always converge toward Nash equilibrium

and, consequently, Walrasian or Lindahl allocations would result.

Using these insights, Chen (2002) develops a family of mechanisms that always induce a super-
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modular game over a class of quadratic, quasilinear preferences. This proves that such mechanisms

can be constructed.

Our goal with this paper is to step back from Chen’s ‘proof of concept’ result and show how

to develop supermodular mechanisms. We proceed in three steps: First, in Section 3 we show that

there are fairly strong restrictions on what a continuously differentiable mechanism must look like

if it is to implement Walrasian or Lindahl allocations. Second, in Section 5 we use these strong

necessary conditions to provide certain impossibility results, such as the impossibility of finding a

mechanism with one-dimensional strategy spaces that implements Walrasian allocations and the

non-existence of supermodular one-dimensional mechanisms that implement Lindahl allocations.

Finally, in Section 6 we exploit the fact that adding dimensions to the strategy space allows new

freedom in the form of the mechanism; freedom enough to add a ‘penalty’ term that guarantees

the mechanism induces supermodular games for a wide class of environments.

2 The Model

2.1 Economic Environments

Consider an economy that consists of n agents each endowed with a preference relation defined on a

two-dimensional commodity space. For each trader i denote the individually feasible consumption

set by Ci and the endowment vector by ωi = (ωi
x, ω

i
y). We require that ωi ∈ Ci for each i. The

two-dimensional net trade vector of agent i is given by zi = (xi, yi) and the set of i’s individually

feasible net trades is Zi := Ci − {ωi}. Thus, we can describe i’s preferences over net trades by

a preference relation defined on Zi. We assume that, for all i ∈ I, if z ∈ Zi and z′ ≥ z then

z′ ∈ Zi. A net trade vector z = (z1, . . . , zn) is said to be feasible if zi ∈ Zi for each i and balanced

if
∑

i zi = 0.

For simplicity we assume that each agent’s preferences over net trades are representable by a

utility function of the form ui(xi, yi|θi), where θi identifies i’s type and is drawn from some set of

admissible types Θi. Define Θ = ×iΘi to be the set of all admissible type profiles. We assume

throughout that ui is strictly increasing in xi (the numéraire good) for all yi and θi; when we

describe results on stability we further assume that ui is quasilinear in xi. We let p represent the

price of the second good, normalizing the numéraire price to one.

This model, as specified, describes an exchange economy with purely private goods; we can

easily reinterpret the model to allow the second good to be a purely public good by making three

changes to the model: (1) every feasible net trade vector must be such that yi = yj for all agents

i and j, (2) ωi
y = ωj

y for all i and j, and (3) include a firm who can produce y units of the public

good from c(y) units of the numéraire and aims to maximize profit (py − c(y)). For simplicity we

assume a constant marginal cost of production, so that c(y) = κy for all y, with κ > 0.

A Walrasian equilibrium of a private goods economy is a net trade vector z∗ and a price p∗
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such that z∗ is balanced, feasible, and maximizes each agent i’s utility among all feasible net trades

satisfying i’s budget constraint that xi + p∗yi ≤ 0.

A Lindahl equilibrium of a public goods economy is a net trade vector z∗ and a vector of

individual prices p∗ = (p∗1, . . . , p
∗
n) such that z∗ is balanced, feasible (which guarantees that y∗i =

y∗j = y∗ for all i and j), maximizes each agent i’s utility among all feasible net trades satisfying

i’s budget constraint that xi + p∗i yi ≤ 0, and, among all feasible net trades, maximizes the firm’s

profit of (
∑

i p
∗
i )y − c(y).

Note that Lindahl equilibria are of the same dimensionality as Walrasian equilibria; the latter

requires 2n quantities but only one price while the former requires only n+ 1 quantities but needs

n prices.

2.2 Mechanisms & Implementation

A social choice correspondence f : Θ ։ Z maps type profiles into sets of allocations. For example,

f might identify all Pareto optimal net trades for each θ (the Pareto correspondence), all net trades

z for which there is some price p such that (z, p) constitutes a Walrasian equilibrium at θ (the

Walrasian correspondence), or, in a public goods setting, all net trades z for which there is some

price vector p such that (z, p) constitutes a Lindahl equilibrium at θ (the Lindahl correspondence).

A mechanism Γ = (M, h) is a message space M = ×iMi and an outcome function h : M ։ Z

mapping each message profile m = (m1, . . . ,mn) into a net trade vector z. A Nash equilibrium

message profile of the mechanism Γ at the type profile θ is an m∗ ∈ M such that, for each i and

m′
i ∈ Mi,

ui(h(m
∗)|θi) ≥ ui(h(m

′
i,m

∗
−i)|θi),

where (m′
i,m

∗
−i) represents the message vector where i chooses m′

i and each j 6= i chooses m∗
j .

In the case of economic environments with two goods, the outcome function can equivalently

be written as a vector of 2n functions of the form xi(m) and yi(m) for each i ∈ I.

The Nash correspondence ν : Θ ։ M identifies the set of Nash equilibrium message profiles for

each environment θ. A mechanism (M, h) is said to implement a social choice correspondence f if,

for all θ ∈ Θ,

h(ν(θ)) = f(θ).

3 Necessary Conditions for Nash Implementation

Our ultimate goal is to describe a procedure for designing mechanisms that Nash implement Wal-

rasian or Lindahl equilibria and have desirable stability properties. To do this we first identify

what all mechanisms that Nash implement Walrasian or Lindahl equilibria must look like. Then,

given this necessary condition on the form of the mechanism, we can show how to modify any such
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mechanism to guarantee the required stability properties. In this section we focus on the necessary

condition; stability is covered in the following section.

In the most general form, a mechanism for implementing Walrasian or Lindahl equilibria can

be specified by a mapping

M ∋ m 7→ (xi(m), yi(m))n
i=1 ∈ Z.

Given any function yi(m), it is without loss of generality that we can express i’s net trade of the

numéraire as

xi(m) = −qi(m−i)yi(m) − gi(m), (1)

where the per-unit ‘price’ term qi does not depend on mi (and could be identically equal to zero)

and the ‘penalty’ term gi(m) is arbitrary. Thus, a mechanism can equivalently be described by the

mapping m 7→ (yi(m), qi(m−i), gi(m))ni=1.

Our proofs rely heavily on differentiability arguments, so we restrict attention to those mecha-

nisms whose messages are finite-dimensional vectors of real numbers and whose outcome functions

are twice continuously differentiable in every dimension. To avoid explicitly the complications aris-

ing with boundary equilibria we further assume that all message spaces are open sets. In most

applications the message spaces equal the entire space, but if a mechanism has a closed message

space our characterization result simply applies to any open subset of the space.

Assumption 1 (Differentiability). For each agent i the message space Mi is an open subset of

R
Ki , where Ki ∈ {1, 2, . . .} and, for each dimension k ∈ {1, . . . ,Ki} and message vector m ∈ M,

the functions xi and yi are twice continuously differentiable in mik at m.

Our first proposition derives necessary conditions on the form of a mechanism that Nash imple-

ments Walrasian or Lindahl equilibria; however, these conditions apply at equilibrium points only.

Since messages that cannot be equilibria for any type profile θ need not map to any particular

allocation, mechanisms may be arbitrarily badly behaved at these off-equilibrium points. For the

special case of one-dimensional message spaces (Ki = 1 for all i) we are able to prove that if the

type space is rich enough then it must be that every message is a Nash equilibrium for some type

profile. Thus, our necessary conditions apply to the entire strategy space and we can derive a fairly

strong result about the required functional form of the mechanism. If the strategy spaces have

more than one dimension then we cannot guarantee that all messages are equilibria and therefore

we cannot derive necessary conditions that cover the entire strategy space.

As a simple example of how extra dimensions introduce freedom in the functional form of the

mechanism, take any mechanism with one-dimensional message spaces in which agents sendmi ∈ R
1

and the outcome is given by ỹi(m) and x̃i(m) for each i. Assume that this mechanism implements

some social choice correspondence f(θ). Now consider a new mechanism in which agents send two-

dimensional messages of the form mi = (ri, si) and the outcomes are given by ỹi(r) and x̃i(r)−|si|.

Clearly, if m∗
i is a Nash equilibrium of the original mechanism at type profile θ then (m∗

i , 0) is a
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Nash equilibrium of the new mechanism at θ and the new mechanism also implements f . The extra

dimension serves no purpose in this case, but the example shows how there can be message vectors

(with si 6= 0 here) that cannot be Nash equilibria for any θ. Thus, the necessary conditions we

derive at equilibrium points cannot apply everywhere. It is exactly this freedom that we have in the

added dimensions, however, that allows us to modify existing mechanisms to guarantee additional

off-equilibrium properties such as supermodularity.

To make this issue of dimensions explicit, we let Mi = Ri × Si, where, for each i, Ri ⊆ R
Ji

represents those dimensions k ∈ {1, . . . , Ji} for which there is some message vector m = (r, s) such

that ∂yi(r, s)/∂rik 6= 0. The set Si ⊆ R
Ki−Ji represents those dimensions k ∈ {1, . . . ,Ki − Ji} for

which ∂yi/∂sik ≡ 0.

With the partitioning of the strategy spaces into Ri and Si we can modify equation (1) slightly

and write any mechanism’s numéraire outcome function as

xi(r, s) = −qi(r−i, s)yi(r) − gi(r, s). (2)

This formulation allows the ‘price’ term qi to depend on the components of i’s message that do not

affect yi, but not on the remaining dimensions.

Roughly speaking, our first proposition shows that, if a mechanism Nash implements Walrasian

or Lindahl equilibria then the ‘penalty’ term gi(m) must equal zero at any Nash equilibrium message

profile (r∗, s∗) such that small perturbations of r∗ also lead to Nash equilibrium messages (possibly

for different type profiles). Thus, each agent i is simply paying a per-unit price for the non-

numéraire commodity without any extra ‘penalty’ terms, and this per-unit price cannot depend on

i’s announcement of ri alone.

To capture formally this idea of small perturbations in r∗i leading to other equilibrium messages,

we employ the following definition:

Definition 1. Given a set M′ ⊆ M, the R-interior of M′ is defined by

Rint(M′) =
{
m = (r, s) ∈ M : (∃ε > 0)(∀i ∈ I) ||r′i − ri|| < ε⇒ (r′i, r−i, s) ∈ M′

}
.

If m∗ ∈ Rint(ν(Θ)), say that m∗ is an R-interior Nash equilibrium.

In words, the R-interior of a set is simply those points in the set such that all small perturbations

in r lead to points also within the set; the R-interior is a superset of the interior since no restriction

is made on perturbations in s. For example, figure 1 shows an example of an R-interior Nash

equilibrium m∗ that is not in the interior of ν(Θ).

Proposition 1. If a mechanism Γ = (M, (xi(·), yi(·))
n
i=1) is differentiable (assumption A1) and

Nash implements either the Walrasian or Lindahl correspondence then at any R-interior Nash
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Figure 1: An R-interior Nash equilibrium m∗ that is not in the interior of ν(Θ).

equilibrium m∗ = (r∗, s∗),

xi(r
∗, s∗) = −qi(r

∗
−i, s

∗)y(r∗) (3)

for each i ∈ I, so that gi(m
∗) = 0.

Although proposition 1 gives a strong result, its scope of applicability is limited to those mes-

sages which can be an equilibrium. If the type space is rich enough, however, one might expect

that any messages can be an equilibrium for some type profile and, therefore, that equation (12)

would apply over the whole message space.

Unfortunately, we can identify two classes of messages that can never constitute a Nash equi-

librium (under the maintained assumptions) for any type profile θ.

The first class of messages that cannot be Nash equilibria are those for which the si components

are not all best responses. Since the si component of each agent’s message enters only into the

determination of the numéraire, the si components can be thought of as a strategy in a separate

‘transfer-maximizing game’ in which agents take r as fixed and simultaneously choose si to maximize

xi(r, si, s−i). Define

σi(r, s−i) := arg max
s′i∈Si

xi(r, s
′
i, s−i) (4)

to be i’s set of best responses in Si to s−i given r. The Nash equilibria of this transfer-maximizing

game can then be identified by

σ(r) := {s ∈ S : (∀i ∈ I) si ∈ σi(r, s−i)} . (5)

Since preferences are strictly monotone in the numéraire, the payoffs of the transfer-maximizing

game are independent of θ. Therefore it is possible for the mechanism designer to determine each

σi and σ without knowledge of θ. Clearly, if s is not in σ(r) then (r, s) cannot be an equilibrium of

the mechanism for any type profile θ ∈ Θ.

The second class of messages that cannot be Nash equilibria are those for which perturbations
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in different dimensions of Ri lead to different rates of substitution between the private good and

the public good. If this were the case the agent would prefer to deviate in (at least) one dimension.

To proceed, we assume that the mechanism’s yi function is always responsive in ri for each

i. This assumption is in fact relatively innocuous; all existing mechanisms of which we are aware

satisfy this condition, and if a mechanism did not satisfy this condition at some point m then our

necessary conditions would simply not apply at this point.

Assumption 2 (Responsive yi). ∂yi(r)/∂rik is bounded away from zero for each r ∈ ×n
i=1Ri,

i ∈ I, and k ∈ {1, . . . , Ji}.

To visualize this idea of different rates of substitution in different dimensions, it is useful to

think of the set of (xi, yi) pairs that an agent i is capable of obtaining as he unilaterally varies

rik away from some equilibrium point r∗i . Given the above discussion, we need only to focus on

those deviations in which the change in ri is paired with an appropriate change in si; as any utility-

maximizing player i deviates from r∗i to r′i he must also adjust s∗i to some s′i ∈ σi(r
′
i, r

∗
−i, s

∗
−i). Thus,

we graph out those (xi, yi) pairs that i can reach by deviating in ri and matching this deviation

with some si that continues to be a best response in the resulting transfer-maximizing game.

Since yi is invertible in each rik (because ∂yi/∂rik is bounded away from zero) we can define

y−1
ik (ŷ|r−(ik)) as the inverse of yi(·, r−(ik)), where r−(ik) is the vector r with component rik removed.

Using this notation, the graph of (x, y) pairs that i can realize by varying rik from (r, s) is the

graph of the function

χik(y|r, s) := xi(y
−1
ik (y|r−(ik))
︸ ︷︷ ︸

rik

, r−(ik), σi(y
−1
ik (y|r−(ik))
︸ ︷︷ ︸

rik

, r−(ik), s−i)

︸ ︷︷ ︸

si

, s−i). (6)

Note that χik is the value function of a maximization problem (maximizing xi(r, ·, s−i) over Si) and

is therefore single-valued even if the set of maximizers (σi(r, s−i)) is not. For the sake of exposition,

assume that χik is differentiable at some point m∗ = (r∗, s∗) (Milgrom and Segal, 2002 provide

conditions for differentiability everywhere, though we do not require differentiability of χik in our

propositions). The downward slope of χik at m∗ = (r∗, s∗) can then be described by

Pik(r
∗, s∗) := −

∂xi(r
∗, s∗)/∂rik

∂yi(r∗)/∂rik
. (7)

In economic terms, Pik represents the effective price of yi charged by the mechanism at m∗ as rik

moves in the direction of increasing yi. This is shown in figure 2.

The effective price in a mechanism serves the same role locally as prices in a Walrasian or Lindahl

equilibrium. To see this, write agent i’s utility at θi in the game induced by some mechanism

(Mi, xi, yi)i∈I as

ũi(r, s|θi) := ui(yi(r), xi(r, s)|θi).
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Figure 2: The effective price of changes in rik.

Since the message space is open, at any Nash equilibrium m∗ = (r∗, s∗) it must be that for each

dimension k ∈ {1, . . . , Ji}, m
∗ satisfies the first order condition

∂ũi(m
∗|θi)/∂yi

∂ũi(m∗|θi)/∂xi
= Pik(m

∗). (8)

But if this mechanism implements a Walrasian or Lindahl equilibrium, the ratio of marginal utilities

must also equal the Walrasian or Lindahl price. Thus, the effective prices at the equilibrium message

profiles must match the Walrasian or Lindahl prices for each environment θ.

Given these two classes of messages that cannot be equilibria, define

M∗ := {m ∈ M : (∀i ∈ I)(∀k, l ∈ {1, . . . , Ji}) Pik(m) = Pil(m)} (9)

∩{m = (r, s) ∈ M : s ∈ σ(r)}

as those messages that are not ruled out by these arguments. If the mechanism has a one-

dimensional message space for each agent (Ri = R
1 and Si = ∅ for all i) then the two restrictions

identified above are trivially satisfied and so M∗ = M; in general, however, M∗ is a strict subset

of M and could even be empty.

We now explore how rich the type space must be so that all messages in M∗ are equilibria for

some admissible type profile.

To do so, we require one additional restriction on the form of the mechanism: it cannot be that

deviations can cause arbitrarily large changes in xi, relative to the corresponding change in yi. If

the ratio of these changes were unbounded as agents deviate from some point m∗ then the function
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Figure 3: The bounds on χik(y|m
∗) imposed by assumption 3.

χik would become arbitrarily steep and, by monotonicity, all agents of every type would prefer to

deviate to gain infinite quantities of xi at a (relatively) infinitesimal cost in terms of yi. Thus, there

needs to be some joint condition on how dramatic changes in xi can be (relative to changes in yi)

along with a condition on how ‘steep’ agents’ indifference curves can become in (xi, yi)-space.

We choose to require a weak form of Hölder continuity of order 2 on χik to rule out mechanisms

in which χik has a slope that becomes infinite as m approaches some m∗ or diverges ‘too quickly’

as m grows without bound.

Assumption 3 (Weak Hölder Continuity). For all r ∈ R, all s ∈ σ(r), and all i ∈ I there exists

some finite γi(r) > 0 such that for all r′i ∈ Ri and s′i ∈ σi(r
′
i, r−i, s−i),

∣
∣xi(r

′
i, r−i, s

′
i, s−i) − xi(r, s)

∣
∣ ≤ γi(r)max

{∣
∣yi(r

′
i, r−i) − yi(r)

∣
∣2 ,
∣
∣yi(r

′
i, r−i) − yi(r)

∣
∣1/2
}

To interpret Assumption 3, first suppose that r′i leads to large changes in yi (more than one

unit in magnitude). Then the first term in the maximand applies and the associated change in xi

must be less than the squared change in yi times some multiple that varies in r. If instead r′i leads

to small changes in yi (less than one unit in magnitude) then the second term in the maximand

applies and the associated change in xi must be less than the square root of the change in yi times

some variable multiplier. In both cases, the requirement is strictly weaker than requiring that χik

be Hölder continuous of degree 2 or that χik be Lipschitz continuous. The bounds on χik imposed

by this assumption are demonstrated in figure 3.

Given assumption 3, we then require that the type space at least contains all possible quasilinear

preferences with a quadratic valuation of yi. This allows for types with sufficient steepness in agents’

indifference curves to prevent them from preferring deviations from any m∗. This is formalized in
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the following assumption, where R++ represents the set of strictly positive real numbers.

Assumption 4 (Rich Type Space). For each vector (αi, βi)
n
i=1 ∈ (R++ × R)n there is some θ ∈ Θ

such that for each i,

ui(xi, yi|θi) =
(
−αiy

2
i + βiyi

)
+ xi.

Under assumption 4 we can define Θ2 as the subset of Θ containing all preferences of this form;

formally, let

Θ2 :=
{
θ ∈ Θ : (∀i ∈ I) ui(xi, yi|θi) =

(
−αiy

2
i + βiyi

)
+ xi

}
. (10)

We now show that if the slope of χik does not become arbitrarily steep (assumption 3) and

the type space is rich enough (assumption 4) then M∗ ⊆ ν(Θ), so the derived set M∗ exactly

corresponds to the set of all equilibrium message profiles.

Proposition 2. If a mechanism Γ = (Mi, xi, yi)i∈I satisfies assumptions 1, 2 and 3 and the type

space Θ satisfies assumption 4 then every message profile m ∈ M∗ (defined in equation 9) is a Nash

equilibrium of Γ for some θ ∈ Θ. Thus, M∗ = ν(Θ).

Corollary 1. Under assumptions 1 through 4, if Mi = R
1 for each i then every message is a Nash

equilibrium for some environment (M = ν(Θ)).

Combining proposition 1 and 2 gives the following theorem and corollary:

Theorem 1. If a mechanism Γ = (Mi, xi, yi)i∈I Nash implements the Lindahl or Walrasian corre-

spondences and satisfies assumptions 1, 2 and 3 and the type space Θ satisfies assumption 4 then

for every i ∈ I and every m∗ = (r∗, s∗) in the R-interior of M∗,

xi(r
∗, s∗) = −qi(r

∗
−i, s

∗)yi(r
∗), (11)

so that gi(m
∗) = 0.

For one-dimensional mechanisms and public goods environments this theorem provides a strong

restriction on the functional form of any mechanism implementing the Lindahl correspondence.

Corollary 2. Under assumptions 1 through 4, if Γ Nash implements the Lindahl correspondence

with Mi = R
1 for each i then for every i ∈ I and every m ∈ M,

xi(m) ≡ −qi(m−i)yi(m), (12)

so that gi(m) ≡ 0.

Walker (1981) and Hurwicz (1979) provide one-dimensional mechanisms for implementing Lin-

dahl allocations, both of which are generalized by Tian (1990). In each of these cases q(m) = b+Am
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and gi(m) ≡ 0, where b is a 1× n vector of coefficients and A is a n× n matrix of coefficients with

aii = 0 for each i; thus, qi(m) does not depend on mi and there is no penalty term, consistent

with corollary 2. The Groves and Ledyard (1977) mechanism, on the other hand, uses a non-zero

penalty term and consequently does not implement Lindahl allocations.

For the Walrasian correspondence the above result would hold, but since there can only be one

price (qi ≡ qj ≡ q) and since each qi cannot depend on mi, the price function q must be constant.

Thus, we have the following impossibility result:

Corollary 3. There does not exist a mechanism with Mi = R
1 for each i that Nash implements

the Walrasian correspondence unless every θ ∈ Θ has an identical and unique Walrasian equilibrium

price.

4 Designing Supermodular Mechanisms

4.1 Lattice-Theoretic Definitions and Supermodular Games

The basic definitions of lattice theory in this section are discussed in Milgrom and Roberts

(1990) and Topkis (1998).

In this paper, we endow each agent’s message space Mi ⊂ R
n with the usual order ≥. That is,

mi ≥ m′
i in Mi if and only if each dimension of mi is larger than or equal to the corresponding

dimension of m′
i. Since ≥ is transitive, reflexive, antisymmetric on Mi, (Mi,≥) is a lattice for all i.

The set M =
∏

i Mi is endowed with the product order. Each Mi is endowed with the Euclidean

topology.1 Let (M−i,≥) be a partially ordered set2. A function gi : Mi → R is supermodular if,

for all mi,m
′
i ∈ Mi, gi(mi)+gi(m

′
i) ≤ gi(mi∧m

′
i)+gi(mi∨m

′
i); gi : Mi×M−i → R has increasing

differences in (mi,m−i) if, whenever mi ≥ m′
i and m−i ≥ m′

−i, gi(mi,m−i) − gi(m
′
i,m−i) ≥

gi(mi,m
′
−i) − gi(m

′
i,m

′
−i). If gi has increasing differences or satisfies the single-crossing property

in (mi,m−i), then mi and m−i are said to be complements.

A game is a tuple (I, {(Mi,≥), ui}), where I is a finite set of players; each i ∈ I has a strategy

space Mi ⊂ R
n endowed with the usual order; and each i has a payoff function ui : Mi×M−i → R.

Definition 2. A game G = (I, {(Mi,≥), ui}) is supermodular if for all i ∈ I,

1. ui is bounded, supermodular in mi for each m−i, and has increasing differences in (mi,m−i);

2. ui is upper-semicontinuous in mi for each m−i and continuous in m−i for each mi.

Consider a mechanism Γ = (Mi, xi, yi)i∈I . Agent i’s utility function in the mechanism given

type profile θ ∈ Θ is ui(yi(m), xi(m)|θi).

1The order-interval topology on a lattice is the topology whose subbasis for the closed sets is the set of closed
intervals. A closed interval [x, y] in M is the set of z ∈ M such that y ≥ z ≥ x.

2A partially ordered set is a set with a binary relation that is transitive, reflexive, antisymmetric.
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Definition 3. A mechanism Γ = (Mi, xi, yi)i∈I supermodularly implements a social correspon-

dence f : Θ ։ Z if, for all θ ∈ Θ,

1. (yi(ν(θ)), xi(ν(θ))) = f(θ), where ν is the Nash correspondence, and

2. the game (I, {(Mi,≥), ui(yi(.), xi(.)|θ)}) is supermodular.

5 Impossibility Results

To design supermodular mechanisms, we need to take into account the restrictions imposed on

the transfers by Theorem 1. By corollary 3, there cannot be any one-dimensional mechanism that

implements the Walrasian correspondence, much less a supermodular one. Although there do exist

one-dimensional mechanisms that implement the Lindahl correspondence (see Walker, 1981, for

example), we now show that no one-dimensional mechanism can supermodularly implement the

Lindahl correspondence when the function y(m) takes its usual form of y(m) =
∑

imi.

Theorem 2. Under assumptions 1, 2, 3’ and 4’, there cannot be any one-dimensional mechanism

with allocation function y(m) =
∑

imi that supermodularly implements the Lindahl correspon-

dence.

Most existing Lindahl mechanisms use y(m) =
∑

imi, so the result applies to all of them. But

most of these mechanisms also employ a symmetric price function, in which case, the result extends

to all symmetric allocation functions y.

Definition 4. For clarity, the ith component of any message profile gives agent i’s message. Let π

be any bijection from {1, . . . , n} onto itself. A mechanism is symmetric if y(m) = y(mπ(1), . . . ,mπ(I))

and qi(m) = qπ(i)(mπ(1), . . . ,mπ(I)) for all i ∈ I.

Theorem 2’. Under assumptions 1, 2, 3’ and 4’, there does exist any symmetric one-dimensional

mechanism that supermodularly implements the Lindahl correspondence.

6 Supermodular Mechanisms

6.1 Lindahl Mechanisms

In this section, we are concerned with the stability of mechanisms that implement the Lindahl

correspondence. Although there already exist stable Lindahl mechanisms, the existing literature

does not provide a methodology for building such mechanisms. Our results, on the other hand,

describe a way for stabilizing any mechanism with certain properties, and so they should be seen as

a tool for constructing new mechanisms with desirable stability properties. We adopt the method-

ology introduced in Mathevet (2007) for weak Bayesian implementation, which exploits strategic
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complementarities to obtain nice stability properties. More precisely, we will provide a method for

converting mechanisms into supermodular mechanisms. This method consists of adding comple-

mentarities until the mechanism becomes supermodular. So, if the original mechanism produces

strategic substitutes—as opposed to strategic complementarities—then it must do so only to a

bounded degree, for otherwise we cannot compensate for ‘infinite substitutes’. This motivates the

following assumption.

Assumption 5. (Boundedly-Convex Quasilinear Preferences). For each θ ∈ Θ each agent i has

preferences given by

ui(xi, yi|θi) = vi(yi|θi) + xi

where ∂2vi/∂y
2
i ∈ [M, 0) for some M < 0.

The next theorem shows that if there is a mechanism that implements the Lindahl correspon-

dence, then there is also a supermodular mechanism that implements the Lindahl correspondence.

This theorem works by appending a term to the transfer function xi that vanishes in equilibrium

and provides sufficient complementarities to make the mechanism induce a supermodular game.

This provides supermodularity without affecting the desirable equilibrium properties of the origi-

nal mechanism. This transformation technique has a similar flavor to Mathevet (2007).

Theorem 3. Let Γ = (Mi, (y, xi))i∈I be a one-dimensional differentiable (1) mechanism that

implements the Lindahl correspondence such that y(m) =
∑

imi and qi(·) has bounded first-

derivatives. If Θ satisfies assumption 5, then there exists a supermodular mechanism (Ai, (y, x
SM
i ))i∈I

that implements the Lindahl correspondence.

This result identifies conditions on two functions so that, if transfers are appended to these

functions, they generate complementarities while maintaining the original incentives. We can verify

that the following functions satisfy all these conditions (see the proof of the theorem):

qSM

i (m−i, a−i) = τ(
∑

j 6=i

mj) −
1

n

∑

j 6=i

ψj(aj)

and

Hi(m,a, ρi) = −
1

2
(ψi(ai) − τ(

n∑

k=1

mk))
2 − ρi

1

2

∑

j 6=i

(aj − τ(

n∑

k=1

mk))
2

where τ is any increasing affine function, and ψi, i = 1, . . . , n are increasing functions with slope

bounded above zero. These functions can be used to turn the Walker mechanism into a supermod-

ular mechanism, which can be useful, given that this mechanism is known to have stability issues.

Note that when τ and ψ are the identify function we recover a piece of Chen’s mechanism.

The next proposition shows that Theorem 3 implies that any supermodular Lindahl mecha-

nism has a unique Nash equilibrium under assumption 5. This is a positive result, because such

mechanisms, for which we give examples below, have strong robustness properties.
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Proposition 3. Suppose Θ contains only boundedly-convex quasilinear preferences (A5). Any

differentiable mechanism with a responsive y function (A1 and A2) that supermodularly implements

the Lindahl correspondence has a unique Nash equilibrium.

Proof. We proceed by showing that, under assumption 5, there can be only one Lindahl allocation

for each environment θ. Then, we prove that it implies that a supermodular mechanism has a

unique Nash equilibrium. If preferences are strictly convex, then there is a unique efficient public

good level y∗(θ), because

argmaxy∈R

∑

i∈I

vi(y| θ) = {y∗(θ)}.

Similarly, there is a unique allocation of the numeraire,

x∗i (θ) = p∗i (θ)y
∗(θ),

where p∗i (θ) = ∂vi(y
∗(θ)|θ)/∂y. By way of contradiction, suppose that a supermodular mechanism

implements the Lindahl correspondence and has several equilibria. Then, its largest equilibrium

must be strictly greater than its smallest one. Since the public good function is strictly mono-

tonic, these two equilibria cannot correspond to the same public good level, hence one is inefficient

(because only one public good level is efficient). This is a contradiction, because this mechanism

implements the Lindahl correspondence.

6.2 The Walrasian Correspondence

6.2.1 Supermodular Implementation of the Walrasian Correspondence

In this section, we are concerned with the stability of mechanisms that implement the (constrained)

Walrasian correspondence. We present a procedure to stabilize smooth Walrasian mechanisms by

turning them into supermodular mechanisms. The analysis applies for any finite number of private

goods as long as preferences are strictly convex.

The mechanisms that we study satisfy some feasibility properties. The first property is balanced-

ness, which is some inter-agent feasibility condition, essentially requiring that net trades add up to

zero. The second property is individual feasibility (in equilibrium), which requires the mechanism

to allocate consumption bundles within the consumption sets of the agents.

Definition 5. A mechanism (Mi, (yi, xi))i∈I is balanced if
∑

i∈I yi(m) =
∑

i∈I xi(m) = 0, for all

m ∈ M. Given an environment {(ui(yi, xi|θ))i∈I : θ ∈ Θ}, the mechanism is balanced in equilibrium

if for all θ, (yi(m
∗), xi(m

∗)) ∈ Zi for all m∗ ∈ ν(θ).

Definition 6. Given an environment {(ui(yi, xi|θ))i∈I : θ ∈ Θ}, a mechanism (Mi, (yi, xi))i∈I is

individually feasible (in equilibrium) if for all θ, (yi(m
∗), xi(m

∗)) ∈ Zi for all m∗ ∈ ν(θ).

Now we provide our main result.
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Theorem 4. Under assumption 5, suppose there is a 2n-dimensional, twice-differentiable, bal-

anced, and individually feasible mechanism (Mi, (yi, xi))i∈I that implements the Walrasian corre-

spondence such that:

1. yi(s) = si −
∑

j 6=i sj

n−1 , and

2. xi(m) = q(r−i) · yi(s) + gi(r) + Si(m−i) where q(·) has first-derivatives which are bounded

below zero, and ∂2q(·)/∂ri,k∂ri,z = 0 for any distinct dimensions k, z.

Then there exists a 2n-dimensional, twice-differentiable, individually feasible, supermodular mech-

anism (Mi, (yi, x
SM

i ))i∈I that implements the Walrasian correspondence and is balanced in equilib-

rium.

In this theorem, we have given the simplest way of transforming a Walrasian mechanism into a

supermodular mechanism. There are, of course, many possible transformations; in particular, we

can generate complementarities by adding dimensions but we did not do it here.

Hurwicz proposed a smooth mechanism which implements the Walrasian correspondence and

satisfies all the conditions of Theorem 4; so it follows as a corollary that the Walrasian correspon-

dence is supermodular implementable. Besides, the price function in Hurwicz’s mechanism has

further properties that allow us to turn it into a supermodular mechanism, while guaranteeing

balancedness off-equilibrium.

Proposition 4. The Walrasian correspondence is supermodular implementable with a balanced

mechanism.

In our mechanisms, agents essentially choose a price-quantity pair. Interestingly, while the

quantity they choose is their own consumption bundle, the price they choose is the price vector for

the other agents. Supermodular mechanisms derive their nice properties from the fact that agents

want to increase their price-quantity announcement, as others do the same. As a result, dynamics

inherit a certain monotonicity which leads play towards equilibrium.

6.2.2 Mechanism Design as a Game-Theoretic Foundation for Walrasian Equilibria

General equilibrium theory has long been criticized for providing poor justifications of the Walrasian

equilibrium. There is no plausible theory of how economies attain competitive equilibrium (see

Kirman, 1989), and some researchers also question the rationality postulate on the agents (Simon,

1978, e.g.).

Our paper provides mechanisms that help guide boundedly rational agents to play equilibrium

profiles whose outcomes are Walrasian allocations. So, we offer a game-theoretic explanation of

how competitive equilibrium can emerge using mechanisms that differ from the standard (though

vaguely-defined) competitive mechanism. Our explanation uses as its foundations the literature on
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bounded rationality and learning (Fudenberg and Levine, 1998). While viewing the economy as a

non-cooperative game is not new (Shapley and Shubik, 1977; Chatterji and Ghosal, 2004; Gul and

Stacchetti, 1999; and Milgrom and Strulovici, 2009), there have been few studies concerned with

bounded rationality and convergence in competitive economies (see Crockett et al., 2008, for one

exception).

Our contribution stems from the limits of Walrasian tâtonnement, which is the first well-defined

dynamics to formalize a market equilibration process. Despite its intuitive appeal—operating

through excess demand—it lacks certain foundational components. For example, the forces at work

behind the price adjustment and the behavioral assumptions on the agents are unclear. Moreover,

many economies may not be able to attain a competitive equilibrium via such a process; although

we focus on quasilinear economies where stability and uniqueness are guaranteed when preferences

for the non-numéraire good are strictly convex and monotonic (see Brown and Calsamiglia, 2007

or Hildenbrand, 1983), we do not require monotonicity and so the known stability results do not

apply. Without monotonicity, stability—even existence—is not guaranteed; e.g., goods may not

be gross substitutes even though there are no income effects. Furthermore, equilibrium uniqueness

only means that there is a unique price ratio for which excess demands are null; this price ratio

could correspond to several Walrasian allocations. A dynamic adjustment process can help in this

situation to determine to which allocations consumers will converge.

A Proofs

A.1 Proposition 1

Proof of Proposition 1. For any θ ∈ Θ let pi(θ) be agent i’s price for good yi at the Walrasian or

Lindahl equilibrium for environment θ. For any m ∈ ν(Θ) let φ(m) ∈ Θ identify an environment

θ for which m is an equilibrium. Thus, pi(φ(m)) is the Walrasian or Lindahl price that must be

charged to agent i in the environment φ(m). Pick any m∗ = (r∗, s∗) in the relative interior of

ν(Θ|s∗) and, for notational simplicity, let y∗i = yi(r
∗) and x∗i = xi(m

∗). The proof then follows

from three important observations that must be true at m∗ for each i ∈ I:

1. Because m∗ is a Nash equilibrium for some θ ∈ Θ the following first-order condition is satisfied

for each k ∈ {1, . . . , Ji}:

∂ui(x
∗
i , y

∗
i |θi)

∂yi

∂yi(r
∗
i )

∂rik
=
∂ui(x

∗
i , y

∗
i |θi)

∂xi

[

qi(r
∗
−i, s

∗)
∂yi(r

∗
i )

∂rik
+
∂gi(r

∗, s∗)

∂rik

]

. (13)

2. If m∗ maps to a Walrasian or Lindahl equilibrium for some θ ∈ Θ then it must be that the

transfers collected by the mechanism equals the transfers of the numéraire required by the
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Walrasian or Lindahl equilibrium:

qi(r
∗
−i, s

∗)yi(r
∗) + gi(r

∗, s∗) = pi(φ(r∗, s∗))yi(r
∗). (14)

3. If m∗ maps to a Walrasian or Lindahl equilibrium for some θ ∈ Θ then the Walrasian or

Lindahl price must equal the marginal rate of substitution of yi in terms of xi:

∂ui(x
∗
i , y

∗
i |θi)/∂yi

∂ui(x∗i , y
∗
i |θi)/∂xi

= pi(φ(r∗, s∗)). (15)

Dividing both sides of (13) by ∂ui/∂xi, inserting equation (15), and rearranging gives

∂gi(r
∗, s∗)

∂rik
=
[
pi(φ(r∗, s∗)) − qi(r

∗
−i, s

∗)
] ∂yi(r

∗)

∂rik
. (16)

for each i and k.

By assumption 1 and the fact that m∗ is in the relative interior of ν(Θ|s∗) these equations must

also hold for every m in some open neighborhood in ν(Θ|s∗) around m∗. Thus, we can differentiate

equation (14) with respect to each rik to get

∂gi(r
∗, s∗)

∂rik
=
[
pi(φ(r∗, s∗)) − qi(r

∗
−i, s

∗)
] ∂yi(r

∗)

∂rik
+
dpi(φ(r∗, s∗))

drik
yi(r

∗). (17)

Compare this to equation (16); it must be true that either yi(r
∗) = 0 or dpi(φ(r∗, s∗)/drik = 0 for

all k.

If yi(r
∗) = 0 then by equation (14) we have gi(r

∗, s∗) = 0, giving the result.

If yi(r
∗) 6= 0 but dpi(φ(r∗, s∗)/drik = 0 for all k then gi(r

∗, s∗) can be expressed as hi(r
∗
−i, s

∗)yi(r
∗)

for some function hi that does not depend on ri. But then xi(r
∗, s∗) can be re-written as:

xi(r
∗, s∗) = −

[
qi(r

∗
−i, s

∗) + hi(r
∗
−i, s

∗)
]
yi(r

∗).

Label the bracketed term as q̃i(r
∗
−i, s

∗) and we have that

xi(r
∗, s∗) = −q̃i(r

∗
−i, s

∗)yi(r
∗),

and again no ‘penalty’ term appears.

A.2 Proposition 2

Proposition 2 can be weakened to allow for mechanisms that fail the Hölder continuity requirement

(assumption 3), which would happen if the xi functions use polynomials of order more than twice

as large as the yi functions. This is done by modifying assumptions 3 and 4 to:
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Assumption 3’ (Weak Hölder Continuity). Associated with the mechanism Γ is some ρ ∈ {1, 2, . . .}

such that for all r ∈ R, all s ∈ σ(r), and all i ∈ I there exists some finite γi(r) > 0 such that for

all r′i ∈ Ri and s′i ∈ σi(r
′
i, r−i, s−i),

∣
∣xi(r

′
i, r−i, s

′
i, s−i) − xi(r, s)

∣
∣ ≤ γi(r)max

{∣
∣yi(r

′
i, r−i) − yi(r)

∣
∣ρ ,
∣
∣yi(r

′
i, r−i) − yi(r)

∣
∣1/ρ
}

,

and

Assumption 4’ (Rich Type Space). Let ρ̂ ∈ {2, 4, 6, . . .} be the smallest even value of ρ satisfying

assumption 3’. For each vector (αi, βi)
n
i=1 ∈ (R++ × R)n there is some θ ∈ Θ such that for each i,

ui(xi, yi|θi) =
(

−αiy
ρ̂
i + βiyi

)

+ xi.

When ρ = 2, assumptions 3’ and 4’ are identical to assumptions 3 and 4, respectively. As

ρ increases assumption 3’ becomes strictly weaker. Technically, assumption 4’ becomes neither

stronger or weaker as ρ changes, but in practical terms a higher ρ requires preferences that are

more ‘exotic’ (using higher-order polynomials) and may therefore be viewed as less desirable.

Given these modified assumptions, we can now prove a generalization of proposition 2 for any

ρ ≥ 1; again, the case of ρ = 2 reduces to the original statement of proposition 2.

Proposition 2’. Take any mechanism Γ = (Mi, xi, yi)i∈I satisfying assumptions 1, 2 and 3’ for

some ρ ∈ {1, 2, 3, . . .} and any type space Θ satisfying assumption 4’. If ρ ≤ 2 then every m ∈ M∗

is a Nash equilibrium of Γ for some θ ∈ Θ. If ρ > 2 then every m ∈ M∗ such that yi(r) 6= 0 for all

i is a Nash equilibrium of Γ for some θ ∈ Θ.

Proof of Proposition 2’. Let ρ̂ be the smallest even number weakly greater than ρ. Define M∗∗ by

M∗∗ =
{

(r, s) ∈ M∗ : (∀i ∈ I) yi(r)
ρ̂−2 6= 0

}

.

Note that if ρ ∈ {1, 2} then ρ̂ = 2 and M∗ = M∗∗ (using the convention that 00 = 1). Proposition

2’ can then be proven by showing that M∗∗ ⊆ ν(Θ). This is done by constructing a mapping

φ : M∗∗ → Θρ̂ (where Θρ̂ ⊆ Θ by assumption 4) such that m ∈ ν(φ(m)) for all m ∈ M∗∗. Thus,

M∗∗ ⊆ ν(φ(M∗∗)) = ν(Θρ̂) ⊆ ν(Θ),

giving the result.

Specifically, consider the mapping φ : M∗∗ → Θρ̂ such that φi(m
∗) = (αi(m

∗), βi(m
∗)) ∈ R+×R

for each m∗ ∈ M∗∗ and

ui(xi, yi|φi(m
∗)) = vi(yi|φi(m

∗)) + xi,

where

vi(yi|φi(m
∗)) = −

αi(m
∗)

ρ̂
yρ̂

i + βi(m
∗)yi
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and, for a given value of αi(m
∗) (to be determined later in the proof), βi(m

∗) is given by

βi(r
∗, s∗) := αi(r

∗, s∗)yρ̂−1
i (r) + Pik(r

∗, s∗) (18)

(recall that Pik is the effective price function defined in equation 7 and does not depend on k since

m∗ ∈ M∗∗).

We now fix an arbitrary m∗ = (r∗, s∗) ∈ M∗∗ and show that m∗
i is a best response to m∗

−i

for each i in environment φ(m∗) = (αi(m
∗), βi(m

∗))i∈I. This is done in two steps; first we verify

that m∗
i is a local optimum in response to m∗

−i for each i and then we show m∗
i can be made a

global optimum by increasing αi(m
∗) sufficiently (allowing βi(m

∗) to adjust appropriately as αi(m
∗)

changes).

Given φi(m
∗), i’s objective is to choose (ri, si) to maximize

−
αi(m

∗)

ρ̂
yi(ri, r

∗
−i)

ρ̂ + βi(m
∗)yi(ri, r

∗
−i) + xi(ri, si, r

∗
−i, s

∗
−i). (19)

For local optimality, the first-order conditions for each sik are already satisfied at m∗ by the con-

struction of M∗∗ (see equation 9). As for rik, agent i’s first-order condition for utility maximization

at (r∗, s∗) with respect to each rik is

[

−αi(r
∗, s∗)yρ̂−1

i (r) + βi(r
∗, s∗)

] ∂yi(r)

∂rik
+
∂xi(r, s)

∂rik
= 0.

But the construction of βi (equation 18) guarantees that this is satisfied at (r, s) = (r∗, s∗) for any

αi(r
∗, s∗), so the first-order conditions are satisfied for all m∗ ∈ M∗∗.

To describe the second-order conditions for local optimality, we show that the matrix of second-

partial derivatives of i’s objective function will be negative definite for sufficiently large αi(m
∗).

Shortening notation, let Xr and Xs be the column vectors of partial derivatives of xi with respect to

ri and si, respectively, and let Xrr, Xrs, and Xss represent the matrices of cross-partial derivatives

of xi. Similarly define Yr and Yrr as the partial and cross-partial derivatives of yi, respectively.

Using this notation, the matrix of second partial derivatives of the objective function (19) (after

inserting the definition of βi(m
∗) from equation 18) is given by the Ki ×Ki matrix

Hi =

[

−αi(m
∗)(ρ̂− 1)yi(r

∗)ρ̂−2
(
Yr · Yr

T
)

+ Pik(m
∗)Yrr + Xrr Xrs

Xrs
T Xss

]

,

where again Pik(m
∗) does not depend on k since m∗ ∈ M∗∗. Now take any direction (dr,ds) 6= 0

of deviation from m∗
i . Since m∗ ∈ M∗∗ implies s∗ ∈ σ(r∗), we know that any deviation with dr = 0

will not yield strictly higher utility, hence (0,ds)
T ·Hi · (0,ds) ≤ 0. For any direction (dr,ds) with
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dr 6= 0 we have

(dr,ds)
T · Hi · (dr,ds) = −αi(m

∗)(ρ̂− 1)yi(r
∗)ρ̂−2 dr

T
(
Yr ·Yr

T
)
dr +Ki(m

∗)

= −αi(m
∗)(ρ̂− 1)yi(r

∗)ρ̂−2
(
dr

TYr

)2
+Ki(m

∗)

where

Ki(m
∗) = dr

T [Pik(m
∗)Yrr + Xrr]dr + 2dr

TXrsds + ds
TXssds.

Since xi and yi are continuously differentiable and ∂yi/∂ri is bounded away from zero, Ki(m
∗) is

finite for all m∗. Because yi(r
∗)ρ̂−2 6= 0, αi can be chosen to be any function satisfying

αi(m
∗) > Ki(m

∗)
(

(ρ̂− 1)yi(r
∗)ρ̂−2

)−1 (
dr

TYr

)−2

for all m∗ ∈ M∗∗, so that (dr,ds)
T ·Hi · (dr,ds) < 0. Thus, m∗

i is a local best response to m∗
−i for

large enough αi(m
∗).

We now construct φi(m
∗) by increasing αi(m

∗) until m∗
i is a global best response to m∗

−i. Since

m∗
i is a local best response, there is some neighborhood Ni(m

∗) of m∗
i on which m∗

i maximizes i’s

utility given αi(m
∗). Although increasing αi may change the neighborhood around m∗ on which

m∗
i is a local best response, the neighborhood can only increase in size as αi is increased. Thus, we

ignore this dependence of Ni(m
∗) on αi and show that any m′

i 6∈ Ni(m
∗) yields a lower payoff than

m∗
i when αi is sufficiently large.

To proceed, pick anym′
i andm′′

i such that m∗
i ∈ (m′

i,m
′′
i ) ⊂ Ni(m

∗) and, to shorten notation, let

y∗i = yi(r
∗), x∗i = xi(m

∗), y′i = yi(r
′
i, r

∗
−i), x

′
i = xi(m

′
i,m

∗
−i), y

′′
i = yi(r

′′
i , r

∗
−i), and x′′i = xi(m

′′
i ,m

∗
−i).

To show that ui(x
∗
i , y

∗
i ) − ui(x

′
i, y

′
i) ≥ 0 for some α′

i, we expand this expression to get

α′
i

[(
ρ̂− 1

ρ̂
y∗ρ̂i +

1

ρ̂
y′ρ̂i

)

−
(

y∗ρ̂i

) ρ̂−1
ρ̂
(

y′ρ̂i

) 1
ρ̂

]

+ Pik(m
∗)
(
y∗i − y′i

)
≥
(
x′i − x∗i

)
,

which, by assumption 3’, is true if

α′
i

[(
ρ̂− 1

ρ̂
y∗ρ̂i +

1

ρ̂
y′ρ̂i

)

−
(

y∗ρ̂i

) ρ̂−1
ρ̂
(

y′ρ̂i

) 1
ρ̂

]

+ Pik(m
∗)
(
y∗i − y′i

)
≥ (20)

γi(m
∗)ρ̂max

{

|y∗i − y′i|
ρ̂, |y∗i − y′i|

1
ρ̂

}

(the extra ρ̂ before the maximizing operator is needed for a later step). But the term in square

brackets is the difference between the weighted arithmetic mean and the weighted geometric mean

of the two points y∗ρ̂i and y′ρ̂i ; by the AM-GM inequality this difference is positive. Thus, there

is some finite α′
i at which inequality (20) is true. Similarly, there is some finite α′′

i at which the

expression ui(x
∗
i , y

∗
i ) − ui(x

′′
i , y

′′
i ) ≥ 0 is true. Let αi(m

∗) = max{α′
i, α

′′
i } and now fix φi(m

∗) =

(αi(m
∗), βi(m

∗)).
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Suppose that y′i < y′′i (the proof for the case where y′′i < y′i is symmetric) and pick any yi ≥ y′′i .

Suppose that

αi(m
∗)

[(
ρ̂− 1

ρ̂
y∗ρ̂i +

1

ρ̂
yρ̂

i

)

−
(

y∗ρ̂i

) ρ̂−1
ρ̂
(

yρ̂
i

) 1
ρ̂

]

+ Pik(m
∗) (y∗i − yi) (21)

−γi(m
∗)ρ̂max

{

|y∗i − yi|
ρ̂, |y∗i − yi|

1
ρ̂

}

≥ 0,

which is true for yi = y′′i (see inequality (20)). Then the derivative of the left-hand side of this

inequality is positive, implying that the inequality is true for all yi ≥ y′′i ; to see this, take the

derivative of the left-hand side and multiply by (yi − y∗i ) > 0 to get either

αi(m
∗)
[

y∗ρ̂i − y∗ρ̂−1
i yi + yρ̂

i − y∗i y
ρ̂−1
i

]

+ Pik(m
∗)(y∗i − yi) − γi(m

∗)ρ̂(yi − y∗i )
ρ̂ (22)

or

αi(m
∗)
[

y∗ρ̂i − y∗ρ̂−1
i yi + yρ̂

i − y∗i y
ρ̂−1
i

]

+ Pik(m
∗)(y∗i − yi) − γi(m

∗)
1

ρ̂
(yi − y∗i )

1/ρ̂. (23)

In either case, the expression is greater than the left-hand side of (21) because

[

y∗ρ̂i − y∗ρ̂−1
i yi + yρ̂

i − y∗i y
ρ̂−1
i

]

≥

[(
ρ̂− 1

ρ̂
y∗ρ̂i +

1

ρ̂
yρ̂

i

)

−
(

y∗ρ̂i

) ρ̂−1
ρ̂
(

yρ̂
i

) 1
ρ̂

]

reduces to (
ρ̂− 1

ρ̂
y∗ρ̂i +

1

ρ̂
yρ̂

i

)

≥
(

y∗ρ̂i

) ρ̂−1
ρ̂
(

yρ̂
i

) 1
ρ̂
,

which is just the AM-GM inequality again. Thus, both (22) and (23) are positive. By continuity,

(21) is positive for all yi ≥ y′′i and so deviations resulting in yi ≥ y′′i are not profitable. A symmetric

argument shows that deviations to yi ≤ y′i are also not profitable. Since we already know that

deviations resulting in yi ∈ (y′i, y
′′
i ) are unprofitable, the proof is complete.

Proof of Theorem ??. By means of contradiction, suppose that there exists a one-dimensional

mechanism that supermodularly implements the Lindahl correspondence. By Theorem ??, the

transfer function in this mechanism must take the following form:

xi(m) = qi(m−i)y(m)

where qi is a price function that does not depend on i’s message. Consider a particular environment

θ′, where vi(y|θ
′) = vi(y) for all y and i. Since the mechanism supermodularly implements the

Lindahl correspondence, we have for any i and j 6= i,

d2vi(y(m))

dy2
≥
∂qi(m−i)

∂mj
. (24)
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By strict convexity of preferences, (24) implies that

0 >
∂qi(m−i)

∂mj
(25)

for any i and j 6= i. It follows from the Lindahl requirement that
∑

i qi(m
∗
−i) = κ for every Nash

equilibrium m∗. We know from Corollary ?? that every message profile is an equilibrium when the

type space is rich enough. So,
∑

i qi(m−i) = κ for all m−i, and thus

∂

∂mk

∑

i

qi(m−i) =
∑

i

∂qi(m−i)

∂mk
= 0.

This is a contradiction, because (25) implies

0 >
∑

i

∂qi(m−i)

∂mk
.

Proof of Proposition ??. By way of contradiction, suppose that there exists a symmetric one-

dimensional mechanism that supermodularly implements the Lindahl correspondence. By Theorem

??, the transfer function in this mechanism must take the following form:

xi(m) = qi(m−i)y(m)

where qi is the symmetric price function that does not depend on i’s message. Consider a particular

environment θ′, where vi(y|θ
′) = vi(y) for all y and i. Since the mechanism supermodularly

implements the Lindahl correspondence, we have for any i and j 6= i,

d2v(y(m))

dy2

∂y(m)

∂mi

∂y(m)

∂mj
+
dv(y(m))

dy

∂2y(m)

∂mi∂mj
≥
∂qi(m)

∂mj

∂y(m)

∂mi
+ qi(m−i)

∂2y(m)

∂mi∂mj
(26)

for all m. Since the mechanism is symmetric, it induces a symmetric supermodular game, which

guarantees that a symmetric equilibrium exists.3 Denote this equilibrium by m∗ = (m∗, . . . ,m∗).

Symmetry also implies ∂y(m∗)/∂mi = ∂y(m∗)/∂mj for all distinct i and j, hence

∂y(m)

∂mi

∂y(m)

∂mj
> 0.

3In particular, the extremal equilibria in symmetric supermodular games are symmetric.
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By strict convexity of preferences, (26) implies

∂2y(m∗)

∂mi∂mj

(
dv(y(m∗))

dy
− qi(m

∗
−i)

)

>
∂qi(m

∗
−i)

∂mj

∂y(m∗)

∂mi
. (27)

In any equilibrium,4

dv(y(m∗))

dy
= qi(m

∗
−i)

so that (27) becomes

0 >
∂qi(m

∗
−i)

∂mj

∂y(m∗)

∂mi
. (28)

It follows from the Lindahl requirement that
∑

i qi(m
∗
−i) = κ for every Nash equilibrium m∗. We

know from Corollary ?? that every message profile is an equilibrium when the type space is rich

enough. So,
∑

i qi(m−i) = κ for all m−i, and thus

0 >
∑

i

∂qi(m
∗
−i)

∂mk

∂y(m∗)

∂mi
=
∂y(m∗)

∂mi

∑

i

∂qi(m−i)

∂mk
=
∂y(m∗)

∂mi

∂

∂mk

∑

i

qi(m−i) = 0.

So there does exist any symmetric one-dimensional mechanism that supermodularly implements

the Lindahl correspondence.

Proof of Theorem 3. Define transfers xSM

i by modifying the original transfers xi as follows:

xSM

i (m,a) = xi(m) + γiq
SM

i (m−i, a−i)y(m) +Hi(m,a, ρi)

where

Hi(m,a, ρi) = hi(m,ai) + ρi

∑

j 6=i

hj(m,aj).

Functions hi and qSM

i , i = 1, . . . , n, are chosen to satisfy several conditions. First, for each i ∈ I,

hi(m,ai) is a twice-differentiable function with m ∈ M and ai ∈ R such that

∂2hi(m,a)

∂mi∂aj
> 0,

∂2hi(m,a)

∂ai∂mk
≥ 0,

∂2hi(m,a)

∂mi∂mj
≥ B > −∞

for all m, a, j 6= i and k, i ∈ I. Furthermore, for all m and i,

max
ai∈R

hi(m,ai) = hi(m,a
∗(y(m))) = 0.

Let a∗(y(m)) denote the n-dimensional vector of identical entries a∗(y(m)), and let a∗
−i(m) be its

4By the first-order conditions, dv(y(m∗))
dy

∂y(m∗)
∂mi

= qi(m
∗
−i)

∂y(m∗)
∂mi

. Since ∂y(m∗)
∂mi

is non-zero by assumption, the
equality follows.
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(n− 1)-dimensional analog. The function qSM
i (m−i, a−i) is a twice-differentiable function such that

∂qSM
i (m−i, a−i)

∂mj
≥ b > 0,

∑

i

qSM
i (m−i,a

∗
−i(y(m))) = 0,

for all m−i, a−i, j 6= i, i ∈ I. Finally, assume there is ∆ > 0 for which

∑

k 6=i

∂2hk(m,ak)

∂mi∂mj

∂qSM
i (m−i, a−i)

∂mj

>

∂2hj(m,aj)

∂mi∂aj

∂qSM
i (m−i, a−i)

∂aj

+ ∆, (29)

for all (m,a). Under the above transfers, agent i’s utility function is

uSM
i (m,ai, a−i) = vi(yi(m)|θ) + qi(m−i)y(m) + γiq

SM
i (m−i, a−i)y(m) +Hi(m,a, ρi).

We first show that there exist values of γi and ρi for which mechanism (Ai, y, x
SM
i )i∈I induces a

supermodular game. Computing the cross-partial derivatives with respect to (mi,mj) and (mi, aj)

gives

∂2uSM
i (m,ai, a−i)

∂mi∂mj
≥ Ti + γi

∂qSM
i (m−i, a−i)

∂mj
+
∂2hi(m,ai)

∂mi∂mj
+ ρi

∑

j 6=i

∂2hj(m,aj)

∂mi∂mj

where5

d2vi(y(m)|θ)

dy2
+
∂qi(m−i)

∂mj
≥ Ti

and
∂2uSM

i (m,ai, a−i)

∂mi∂aj
= γi

∂qSM
i (m−i, a−i)

∂aj
+ ρi

∑

j 6=i

∂2hj(m,aj)

∂mi∂aj
.

So, the utility function uSM
i has increasing differences in (mi,mj) and (mi, aj) if

γi > ρi









−

∑

k 6=i

∂2hk(m,ak)

∂mi∂mj

∂qSM
i (m−i, a−i)

∂mj









−

Ti +
∂hi(m−i, a−i)

∂mj∂mi

∂qSM
i (m−i, a−i)

∂mj

γi < ρi






−

∂2hj(m,aj)

∂mi∂aj

∂qSM
i (m−i, a−i)

∂aj







5The existence of a lower bound follows by assumption ?? and because
∂qi(m−i)

∂mj
is bounded below.
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which holds by (29), because the second member on the RHS of the first inequality is bounded.

There are actually infinitely many solutions to this system of inequalities and, γi and ρi can be

chosen arbitrarily large. So, uSM

i (m,a) has increasing differences in (mi,mj). SinceHi has increasing

differences in (ai, aj) and in (ai,mk) for all k (including k = i) and ρi, so does uSM

i (m,a). We

conclude that the game induced by the mechanism is supermodular.

Second, we prove that (Ai, (y, x
SM

i ))i∈I strongly implements the Lindahl correspondence. To this

end, we first show that, for any type θ and Lindahl allocation (x∗i (θ), y
∗(θ)), there exists a Nash

equilibrium (m∗, a∗) such that (xSM

i (m∗, a∗), y(m∗, a∗)) = (x∗i (θ), y
∗(θ)). Consider the following

system of equations:6

{

y(m) = y∗(θ)

qi(m−i) + γqSM

i (m−i,a
∗(y(θ))) = −pi(θ), for i = 1, . . . , n− 1.

where (pi(θ))i∈I is the price vector associated with the above Lindahl allocation. Since qi has

bounded derivatives and ∂qSM

i /∂mj is bounded below by b > 0, there is γ∗ large enough so that

∂(qi(·) + γ∗qSM

i (·,a∗(y(θ)))/∂mj is bounded above zero for each j 6= i. So, qi(·) + γ∗qSM

i (·,a∗(y(θ)))

is a surjection from R onto R in mj for all j 6= i. As a result, the above system of equations has a

solution.7 For notational purposes, denote that solution m∗. Letting a∗i = a∗(y(m∗)) for all i, we

show next that (m∗, a∗) is a Nash equilibrium. From the system of equations, we obtain

xSM

i (m∗, a∗) = −pi(θ)y
∗(θ). (30)

Agent i has no incentive to unilaterally deviate from a∗i , because, by definition of hi,

uSM

i (m∗, a∗) − uSM

i (m∗, zi, a
∗
−i) = hi(m

∗, a∗) − hi(m
∗, ai, a

∗
−i) ≥ 0.

Since (xi(θ), y
∗(θ))i∈I is a Lindahl allocation with price (pi(θ))i∈I ,

vi(y
∗(θ)|θi) − pi(θ)y

∗(θ) ≥ vi(y|θi) − pi(θ)y

for all y. Therefore

vi(y(m
∗)|θi) − pi(θ)y(m

∗) ≥ vi(y(mi,m
∗
−i)|θi) − pi(θ)y(mi,m

∗
−i) (31)

for all mi. It follows from our assumptions on Hi that Hi(mi,m
∗
−i, a

∗
i , a

∗
−i) ≤ 0 for all mi and a−i.

6Note that if this system admits a solution, then it implies −qn(m−n) − γqSM
n (m−n,a∗(y(θ)) = x∗

n(θ).
7This holds with more generality, because the statement that “if f : X → Y is surjective then there is g : X → Y

such that f(g(x)) = x” is equivalent to the Axiom of Choice.
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From the system of equations, we obtain

−pi(θ) = qi(m
∗
−i) + γqSM

i (m∗
−i, a

∗
−i),

and since Hi(mi,m
∗
−i, a

∗
i , a

∗
−i, ρi) ≤ 0 for all mi and ρi,

−pi(θ)y(mi,m
∗
−i) ≥ (qi(m

∗
−i) + γqSM

i (m∗
−i, z

∗))y(mi,m
∗
−i) +Hi(mi,m

∗
−i, a

∗, ρi)

= xSM

i (mi,m
∗
−i, a

∗)

for all mi. By (30), (31) implies

vi(y(m
∗)|θi) + xSM

i (m∗, z∗) ≥ vi(y(mi,m
∗
−i)|θi) + xSM

i (mi,m
∗
−i, z

∗)

for all mi, and so,

uSM

i (m∗, a∗) ≥ uSM

i (mi,m
∗
−i, a

∗)

for all mi. That is, agent i has no incentive to unilaterally deviate from m∗
i . To complete the proof,

we need to establish that all Nash equilibria of the mechanism produce Lindahl allocations. In any

Nash equilibrium (m∗, a∗), the FOC implies:

∂vi(y(m
∗)|θi)

∂mi
+ (qi(m

∗
−i) + γqSM

i (m∗
−i, a

∗)) + ρi
∂hi(m

∗, a∗)

∂mi
= 0. (32)

We know that Hi(m
′
i,m−i,a

∗(y(m))) ≤ hi(m,a
∗(y(m))) for all m′

i, and so

∂hi(m,a
∗(y(m)))

∂mi
= 0.

Since a∗ must be equal to a∗(y(m∗)), (32) implies

dvi(y(m
∗))

dy
= qi(m

∗
−i) + γqSM

i (m∗
−i, a

∗). (33)

Summing up the RHS of (33) gives

γ
∑

i

qSM

i (m∗
−i, a

∗
−i) +

∑

i

qi(m
∗
−i) = κ, (34)

because
∑

i q
SM

i (m−i,a
∗
−i(y(m))) = 0 by definition. Given

xSM

i (m∗, a∗) = (qi(m
∗
−i) + γqSM

i (m∗
−i, a

∗))y(m∗),

it follows from (33) and (34) that (y(m∗), x∗i (m
∗
−i, a

∗
−i)) is a Lindahl allocation with price vector
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(qSM

i (m∗
−i, a

∗
−i) +

∑

i qi(m
∗
−i))i∈I .

Proof of Theorem 4. In what follows, products should be understood as scalar product, and squared

expressions as the scalar product of a vector with itself. Denote i’s message by mi = (si, ri) ∈

R
n × R

n. In what follows, products should be understood as scalar product. Define:

1. The allocation function

yi(m) = si −

∑

j 6=i sj

n− 1
.

2. The transfers

xSM

i (m) = xi(m) − βq(r−i)yi(s) −
γi

2

(

ri −

∑

j 6=i rj

n− 1

)2

− gi(r) − Si(m−i). (35)

Let

uSM

i (m) = Vi(yi(m)|θ) + xSM

i (m) = (1 − β)q(r−i)y(s) −
γi

2

(

ri −

∑

j 6=i rj

n− 1

)2

.

Step 1. We verify supermodularity. Since agents have 2n-dimensional message spaces, there are

(n − 1)(2n)2 inter -player pairs for which we must check increasing differences, as well as

(

2

2n

)

intra-player pairs. By virtue of the scalar product and by assumption, there is no interaction

between the k -th dimension of si or ri and the z -th dimension of si or ri when z 6= k. Therefore,

we only need to check one of the

(

2

2n

)

intra-player pairs. The problem comes down to checking

pair (si, ri):
8

∂2uSM

i (m)

∂si∂ri
= 0.

So, there are increasing differences in (si, ri). Now, we check all inter-player pairs. Since there is

no interaction across the message dimensions, the dimension subscript is implicit. Taking β > 1

and γi > 0 for all i, we check for increasing differences between the strategic variables of agents i

and j:

1. Pair (si, sj):

∂2uSM

i (m)

∂si∂sj
=
∂2Vi(xi(m)|θ)

∂si∂sj
=
∂2Vi

(

si −
∑

j 6=i sj

n−1 |θ
)

∂si∂sj
= −

d2Vi

(

si −
∑

j 6=i sj

n−1 |θ
)

dy2
i (n− 1)

> 0,

8It is implicit here that we are looking at the same dimension of si and ri, say (s1
i , r

1
i ).
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because preferences are strictly convex (assumption ??).

2. Pair (si, rj):
∂2uSM

i (m)

∂si∂rj
= (1 − β)

∂q(r−i)

∂rj
> 0.

3. Pair (ri, rj):
∂2uSM

i (m)

∂ri∂rj
= γi > 0

4. Pair (ri, sj):
∂2uSM

i (m)

∂ri∂sj
= 0

Step 2. We want to show that ifm∗ is a Nash equilibrium of (Mi, (yi, x
SM

i ))i∈I , then (yi(m
∗), xSM

i (m∗))i∈I

is a Walrasian allocation. For any Nash equilibrium m∗ of the mechanism, the first-order conditions

must be satisfied:
∂uSM

i (m)

∂ri
= −γi

(

ri +

∑

j 6=i rj

n− 1

)

= 0, (i = 1, . . . , n).

Hence,

r∗i =

∑

j 6=i r
∗
j

n− 1
, (i = 1, . . . , n), (36)

and so r∗i = P for all i = 1, . . . , n. Therefore, the third member of the transfers (RHS of (35))

vanish in equilibrium. Since m∗ is an equilibrium, we have

Vi(yi(m
∗)|θ) + xSM

i (m∗) ≥ Vi(yi(mi,m
∗
−i)|θ) + xSM

i (mi,m
∗
−i) (37)

for all mi. Letting P ∗ = −(1 − β)q(P) where P is a vector of identical entries P , (37) implies,

Vi(yi(m
∗)|θ) − P ∗yi(m

∗
i ,m

∗
−i) ≥ Vi(yi(mi,m

∗
−i)|θ) − P ∗yi(mi,m

∗
−i)

for all mi. Since yi(·,m
∗
−i) = yi(·, s

∗
−i) is a surjection from R onto R,

Vi(yi(m
∗)|θ) − P ∗yi(m

∗
i ,m

∗
−i) ≥ Vi(yi|θ) − P ∗ · yi (38)

for all yi. Since xSM

i (m∗) = −P ∗yi(m
∗), the budget equation P ∗yi(m

∗)+xSM

i (m∗) = 0 is satisfied at

allocation (yi(m
∗), xSM

i (m∗)). By (38), this allocation maximizes the utility subject to the budget

equation. It only remains to show that the Nash equilibrium allocation is individually feasible.

This allocation is preferred by agent i to her endowment, which is itself strictly preferred to all

infeasible allocations. So, (yi(m
∗), xSM

i (m∗)) must be individually feasible.
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Step 3. We want to show that if [(Y ∗
i ,X

∗
i )i∈I , P

∗] is a Walrasian equilibrium, then it is the outcome

of a Nash equilibrium m∗. Define Q : r 7→ q(r) where r is the (n−1)-dimensional vector of identical

entries r. We construct the following m∗: For each i = 1, . . . , n, take

s∗i = (1 − 1/n)X∗
i

r∗i = r∗ = Q−1
(
−P ∗

1−β

)

where Q−1 exists because q is strictly decreasing in each variable. Because [(Y ∗
i ,X

∗
i )i∈I , P

∗] is a

Walrasian equilibrium,

Vi(Y
∗
i ) − P ∗Y ∗

i ≥ Vi(yi) − P ∗yi

for all yi. As a result, we have

Vi(y(m
∗
i ,m

∗
−i)|θ) − P ∗ · yi(m

∗
i ,m

∗
i ) ≥ Vi(y(mi,m

∗
−i)|θ) − P ∗ · yi(mi,m

∗
i )

for all mi, and so

Vi(y(s
∗
i , s

∗
−i)|θ) + (1 − β)q(r∗) · yi(s

∗
i , s

∗
i ) −

γi

2

(

r∗i −

∑

j 6=i r
∗
j

n− 1

)

≥ Vi(y(si, s
∗
−i)|θ) + (1 − β)q(r∗) · yi(s

∗
i , s

∗
i ) −

γi

2

(

ri −

∑

j 6=i r
∗
j

n− 1

)

(39)

for all (si, ri), because

0 =
γi

2

(

r∗i −

∑

j 6=i r
∗
j

n− 1

)

>
γi

2

(

ri −

∑

j 6=i r
∗
j

n− 1

)

≥ 0.

Hence m∗ is a Nash equilibrium whose outcome is (Y ∗
i ,X

∗
i )i∈I .

Step 4. We establish balancedness in equilibrium. From Step 1, we know that any equilibrium

must be such that r∗i = r∗. Hence, the third member of the transfers vanishes in equilibrium, and

we are left with

xSM

i (m∗) = Pyi(m
∗),

for some P . So,
n∑

i=1

xSM

i (m∗) = P
n∑

i=1

yi(m
∗) = 0,

because
∑n

i=1 yi(m) = 0 for all m. The mechanism is balanced in equilibrium.
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Proof of Proposition 4. Hurwicz’s mechanism is defined as:

1. The allocation function

yi(m) = si −

∑

j 6=i sj

n− 1
.

2. The transfers

xi(m) = −

(∑

j 6=i rj

n− 1

)

yi(s) −
γi

2

(

ri −

∑

j 6=i rj

n− 1

)2

+ Si(m−i). (40)

where Si is such that
∑

i∈I xi(m) = 0 for all m.

Consider the following transformation of Hurwicz’s mechanism where β > 1:

1. The allocation function

yi(m) = si −

∑

j 6=i sj

n− 1
.

2. The transfers

xSM

i (m) = (1 − β)

(∑

j 6=i rj

n− 1

)

yi(s) −
γi

2

(

ri −

∑

j 6=i rj

n− 1

)2

+ Si(m−i) +Bi(m−i) (41)

where

Bi(m−i) = −
(
∑

j 6=i βrj)(
∑

j 6=i sj)

(n − 1)2
+

∑

j 6=i sj
∑

k 6=i,j βrk

(n− 1)(n − 2)
.

We omit to prove that the game induced by this mechanism is supermodular, because it is similar

to that of Theorem 4. Indeed, the main difference is that there is an extra term, Bi, but it does

not depend on i’s strategic variables. So, we check balancedness only:

∑

i∈I

xSM

i (m) = −
∑

i∈I

β

(∑

j 6=i rj

n− 1

)

yi(s) +
∑

i∈I

Bi(m−i), (42)

by virtue of balancedness of Hurwicz’s mechanism. Since

∑

i∈I Bi(m−i) = −
∑

i∈I β

(∑

j 6=i rj

n− 1

)(∑

j 6=i sj

n− 1

)

+

∑

i∈I

∑

j 6=i

sj

∑

k 6=i,j

βrk

(n− 1)(n − 2)

= −
∑

i∈I β

(∑

j 6=i rj

n− 1

)(∑

j 6=i sj

n− 1

)

+

∑

i∈I

∑

j 6=i

siβrj

(n− 1)
,

the RHS of (42) is null, establishing that the mechanism is balanced.
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