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We consider a variation of the resource allocation problem. In the traditional problem, there is a global planner who
would like to assign a set of players to a set of resources so as to maximize welfare. We consider the situation where the
global planner does not have the authority to assign players to resources; rather, players are self-interested. The question
that emerges is how can the global planner entice the players to settle on a desirable allocation with respect to the global
welfare? To study this question, we focus on a class of games that we refer to as distributed welfare games. Within this
context, we investigate how the global planner should distribute the welfare to the players. We measure the efficacy of a
distribution rule in two ways: (i) Does a pure Nash equilibrium exist? (ii) How does the welfare associated with a pure
Nash equilibrium compare to the global welfare associated with the optimal allocation? In this paper we explore the
applicability of cost sharing methodologies for distributing welfare in such resource allocation problems. We demonstrate
that obtaining desirable distribution rules, such as distribution rules that are budget balanced and guarantee the existence
of a pure Nash equilibrium, often comes at a significant informational and computational cost. In light of this, we derive a
systematic procedure for designing desirable distribution rules with a minimal informational and computational cost for a
special class of distributed welfare games. Furthermore, we derive a bound on the price of anarchy for distributed welfare
games in a variety of settings. Lastly, we highlight the implications of these results using the problem of sensor coverage.
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1. Introduction
Resource allocation problems are of fundamental importance in many applications. Traditionally,
researchers have aimed at developing centralized algorithms to determine efficient allocations (Feige and
Vondrak (2006), Ageev and Sviridenko (2004), Ahuja et al. (2003)). However, in many modern applications,
these centralized algorithms are not applicable and/or desirable. One concrete example which we will focus
on in this paper is the problem of sensor coverage. In sensor coverage, the goal is to allocate a fixed number
of sensors across a given mission space so as to maximize the probability of detecting a particular event
(Li and Cassandras (2005)). In this case, a centralized algorithm requires that a central authority maintains
complete knowledge of the environment and can communicate directly with each sensor during the entire
mission. Both requirements may be unrealistic in large and/or hostile environments. The same issues arise
in many computer network resource allocation problems, e.g., wireless access point assignment (Kaumann
et al. (2007)), congestion control (Garcia et al. (2000), Akella et al. (2002)), and wireless power manage-
ment (Enrique Campos-Nañez (2008), Li and Cassandras (2005)). There are also many examples outside of
computer systems, e.g., minimizing aggregate congestion in a transportation system. In this setting, a global
planner does not have the authority to assign drivers to roads; rather, a global planner must entice drivers
appropriately, possibly through taxation, to settle on a desirable allocation (Sandholm (2002)).

Recently, there has been surge of research aimed at understanding the possibility of decentralizing (local-
izing) decisions in resource allocation problems (Kaumann et al. (2007), Mhatre et al. (2007), Komali and
MacKenzie (2007), Zou and Chakrabarty (2004), Srivastava et al. (2005), Enrique Campos-Nañez (2008)).
One approach for accomplishing this is to model the resource allocation problem as a non-cooperative game
where the players, e.g, the sensors in the sensor coverage problem or the drivers in the transportation sys-
tems, selfishly pursue their own independent objectives which may or may not be in conflict with other
players. In the context of a non-cooperative game, each player is assigned an action set in addition to a
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utility function which depends not only on the player’s action, but also the actions of all other players. For
example, in the sensor coverage problem, each sensor’s action set could represent possible search locations
and each sensor’s utility function could assess the quality of a particular search location given the search
locations of all other sensors. The goal is to design utility functions appropriately so that the resulting game
has desirable characteristics.

There are wide-ranging advantages to this game-theoretic form of a distributed architecture, including
robustness to failures and environmental disturbances, reducing communication requirements, improving
scalability, etc. However, several challenges arise when seeking to design and implement such a distributed
system (Arslan et al. (2007), Marden et al. (2007a)). The primary challenge, and the focus of this paper, is
the following: how can a global planner entice the players to settle on something desirable with regards to
the global objective? Equivalently, in the case of engineered systems such as sensor coverage, how can a
global planner design utility functions for the players so that they will settle on a desirable allocation?

Non-cooperative resource allocation has recently been applied to a number of computer network appli-
cations, e.g., Akella et al. (2002), Kaumann et al. (2007), Mhatre et al. (2007), Komali and MacKenzie
(2007), Zou and Chakrabarty (2004), Enrique Campos-Nañez (2008). However, in the current literature, the
design of utility functions is highly dependent on the application at hand. For example, Enrique Campos-
Nañez (2008) focuses on efficiently managing a tradeoff between energy usage and sensing capability in
sensor networks while Komali and MacKenzie (2007) focuses on topology control in ad-hoc networks. The
respective utility designs are as independent as the problem domains. However, the analysis of the utility
designs in both cases are very similar. Among other things, they investigate the existence and efficiency of
(pure) Nash equilibria. These are the primary two questions because, in a non-cooperative setting where
players are self-interested, a Nash equilibrium represents an individually agreeable allocation. Therefore,
the existence of efficient equilibria for a utility design is of the utmost importance.

The goal of this paper is to establish a general framework, independent of any specific application domain,
for (i) investigating the feasibility of non-cooperative resource allocation and (ii) designing desirable utility
functions. To that end, in this paper we will consider a class of resource allocation games that we refer to
as distributed welfare games. A distributed welfare game is a resource allocation game where each player’s
utility is defined as some fraction of the total welfare garnered (see Section 3). Therefore, designing a utility
function is equivalent to defining a distribution rule that depicts how the welfare garnered from a specific
allocation is distributed to the players. The primary goal is to design distribution rules for distributed welfare
games that guarantee the following two properties.

(i) Existence: A distribution rule should guarantee that a Nash equilibrium exists.
(ii) Efficiency: A distribution rule should guarantee that all Nash equilibria are efficient with respect to the

global objective.
In addition to the two properties above, which are of primary importance, in many applications there are
additional requirements that distribution should satisfy. We will investigate four such features:
(iii) Tractability: Computing the distribution rule should be tractable in games with a large number of

players.
(iv) Low informational requirement: The distribution rule should only use limited information. Further, it

should be as independent of the structure of of the global welfare function as possible.
(v) Budget-balance: In many problems that involve costs, the cost must be completely absorbed by the

players. For example, in a network formation problem the cost associated with building and maintain-
ing a network must be completely distributed to the players.

(vi) Potential game: If the distribution rule results in the formulation of a potential game, then one can
appeal to a variety of distributed algorithms to ensure that the players converge to a Nash equilibrium.

With the goal of developing distribution rules that satisfy the above properties, we first focus on devel-
oping distribution rules that guarantee the existence of a Nash equilibrium (property i) while satisfying as
many of (iii)-(vi) as possible. To accomplish this, we begin by investigating the applicability of cost-sharing
methodologies (Young (1994), Shapley (1953), Hart and Mas-Colell (1989)). In particular, the first set of
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results (Section 4) illustrate that cost sharing methodologies can be used effectively as distribution rules in
distributed welfare games. In a cost sharing problem, there are a group of players that are allowed to form
coalitions with one another. Each coalition is accompanied by an associated worth (or cost) that must be
distributed completely to the members of the coalition. These methodologies seek to understand how the
worth of a coalition should be dispersed to its members to satisfy various objectives. While reminiscent of a
distribution rule for distributed welfare games, there is one key difference. In a distributed welfare game, the
welfare garnered by a particular coalition is dependent on the resource the coalition is utilizing. Therefore,
there is an extra degree of flexibility in distributed welfare games when compared to cost sharing problems
as each player must select not only a coalition, but also a set of resources.

Building upon results from Hart and Mas-Colell (1989), we show that one can use cost sharing method-
ologies as distribution rules in distributed welfare games. However, we demonstrate that these approaches
do not satisfy all of the desirable properties above. For example, rules that are budget balanced and guar-
antee the existence of a Nash equilibrium, often come with significant informational and computational
costs. This fact has also been noted by recent result of Chen et al. (2008), which studies a special class of
distributed welfare games where the welfare (or cost) garnered at a particular resource is independent of
the coalition of players utilizing that resource. The authors show that a budget balanced distribution rule
guarantees the existence of a Nash equilibrium if and only if the welfare is distributed in accordance with
each player’s weighted Shapley value (Hart and Mas-Colell (1989)), which is intractable in general.

The results of Chen et al. (2008) ensure that attaining a systematic procedure for defining distribution
rules satisfying all the desirable properties for arbitrary distributed welfare games is unattainable. Thus,
the natural question that emerges is whether there exists special classes of distributed welfare games where
one can establish distribution rules satisfying the above properties. Our second set of results (Section 5)
investigates this question. We identify three easily verifiable properties of distribution rules, see Condi-
tions 5.1–5.3, that guarantee the existence of a Nash equilibrium in any distributed welfare game where
players are restricted to selecting a single resource. Furthermore, we derive a systematic procedure for
designing desirable distribution rules with minimal informational and computational costs in these single
selection distributed welfare games when the welfare function takes on a specified form.

Having provided a general class of distribution rules that guarantee the existence of a Nash equilibrium,
the next task (Section 6) is to understand whether the Nash equilibria are efficient (property ii). We measure
the efficiency of a Nash equilibrium using the well known measures: price of anarchy and price of stability.
The price of anarchy (stability) is defined as the worst-case ratio between the global welfare evaluated at
the worst (best) Nash equilibrium and the optimal welfare. These measures have been studied extensively
in several application domains (Vetta (2002), Johari and Tsitsiklis (2004), Nissan et al. (2007)). In general,
the price anarchy in distributed welfare games can be arbitrarily close to 0; however, when we restrict our
attention to submodular welfare functions, which is a common assumption in many resource allocation
problems (Vetta (2002), Krause and Guestrin (2007)), we can develop distribution rules that obtain a welfare
within 1/2 of that of the optimal assignment. Furthermore, we tighten this price of anarchy bound in a variety
of settings. This compares favorably with the best known results of centralized approximations for resource
allocation problems with submodular welfare functions, which guarantee welfare within 1− 1/e≈ 0.6321
of the optimal (Feige and Vondrak (2006), Ageev and Sviridenko (2004), Ahuja et al. (2003)). Surprisingly,
this comparison demonstrates that the inefficiency resulting from localizing decisions in resource allocation
problems is relatively small when the welfare functions are submodular.

To ground the discussion of distributed welfare games, we end the paper in Section 7 with an illustration
of the theory developed for the particular case of the sensor coverage problem. We model the sensor cover-
age problem as a non-cooperative game and we directly apply the results of this paper to develop tractable,
budget balanced distribution rules that guarantee the existence of efficient Nash equilibria. Furthermore, in
the case of sensor coverage, we demonstrate how to exploit the structure of the welfare function to tighten
the price of anarchy results.
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It should be noted that this paper predominantly focuses on equilibrium behavior in distributed welfare
games. An alternative question that is of equal importance is understanding how players reach an equilib-
rium in a distributed fashion. While not focusing on this question in detail, we illustrate the applicability
of the theory of learning in games (Young (1998), Monderer and Shapley (1996a), Marden et al. (2008,
2007b,a)) as a distributed control mechanism for coordinating group behavior. For example, if a distributed
welfare game constitutes a potential game, then a global planner can appeal to a variety of distributed learn-
ing algorithms of varying complexity to guarantee that the group behavior converges to a Nash equilibrium
Young (1998), Monderer and Shapley (1996a), Marden et al. (2008, 2007b,a,c) . There are fewer distributed
learning algorithms available for distributed welfare games that possess at least one Nash equilibrium but do
not constitute potential games (Young (2008)). An important future direction is developing suitable learning
algorithms that exploit the structure inherent within distributed welfare games.

2. Background
In this paper we consider resource allocation games that consist of a set of players N := {1, ..., n} and
a finite set of resources R that are to be shared by the players. Each player i ∈ N is assigned an action
set Ai ⊆ 2R and a utility function of the form Ui : A → R where 2R denotes the power sets of R and
A := A1 × · · · × An is referred to as the set of joint actions. Therefore, a player may have the option of
selecting multiple resources and the player’s utility may be influenced by the actions of other players.

For an action profile a= (a1, a2, ..., an)∈A, let a−i denote the profile of player actions other than player
i, i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , an). With this notation, we will sometimes write a profile a of actions
as (ai, a−i). Similarly, we may write Ui(a) as Ui(ai, a−i). Furthermore, let A−i :=

∏
j 6=iAj denote the set

of possible collective actions of all players other than player i.
We will focus on analyzing equilibrium behavior in such games. A well-known equilibrium concept that

emerges in non-cooperative games is that of a pure Nash equilibrium. An action profile a∗ ∈A is called a
pure Nash equilibrium if for all players i∈N ,

Ui(a∗i , a
∗
−i) = max

ai∈Ai

Ui(ai, a∗−i). (1)

A pure Nash equilibrium represents a scenario for which no player has an incentive to unilaterally deviate.
We will henceforth refer to a pure Nash equilibrium as simply an equilibrium.

One class of games discussed in this paper is potential games (Monderer and Shapley (1996b)). In a
potential game, the change in a player’s utility that results from a unilateral change in strategy equals the
change in some global potential function. Specifically, there is a function φ : A→ R such that for every
player i∈N , for every a−i ∈A−i, and for every a′i, a

′′
i ∈Ai,

Ui(a′i, a−i)−Ui(a′′i , a−i) = φ(a′i, a−i)−φ(a′′i , a−i). (2)

When this condition is satisfied, the game is called a potential game with the potential function φ. In poten-
tial games, any action profile maximizing the potential function is an equilibrium, hence every potential
game possesses at least one such equilibrium.

For a more comprehensive review of the game-theoretic concepts introduced in this section, we refer the
readers to Fudenberg and Tirole (1991), Young (1998, 2005), Nissan et al. (2007).

3. Distributed Welfare Games
A distributed welfare game is a non-cooperative formalization of a resource allocation game with a spe-
cific structure enforced on player utility functions. The formalization includes a wide variety of resource
allocation problems including network routing, wireless power management, sensor coverage, and others.
To illustrate the applicability of distributed welfare games, we will focus in detail on the case of the sensor
coverage problem in Section 7.
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To define distributed welfare games, consider a resource allocation game with a global welfare function,
W :A→R+. Each player’s utility is defined as some portion of the welfare and must satisfy the following
properties: for any player i∈N and action profile (allocation) a∈A

(i) Ui(a)≥ 0,
(ii)

∑
i∈N Ui(a)≤W (a).

This structure permits the total global welfare to be distributed arbitrarily to the players.
An example of a utility function that satisfies these conditions is equally distributing the global welfare

Ui(a) =
1
n
W (a). (3)

This utility design guarantees that any allocation that maximizes the welfare is an equilibrium. (This could
also be observed by noticing that we have a potential game.) However, a player needs to know the selections
of all other players in addition to the structural form of the global welfare function in order to evaluate his
utility, which is typically impractical.

Our focus in this paper is on understanding the degree to which players’ utility functions can be localized
while at the same time guaranteeing both existence and efficiency of equilibria. To this end, we will restrict
our attention to separable welfare functions of the form

W (a) =
∑
r∈R

W r(ar),

whereW r : 2N →R+ is the welfare function for resource r and ar denotes the subset of players that selected
resource r in the joint allocation a, i.e., ar := {i ∈ N : r ∈ ai}. To simplify notation, we will commonly
write W r(ar) as just W r(a). Because the welfare function is assumed to be separable, we will also restrict
player utility functions to be local and separable, i.e., of the form

Ui(ai, a−i) =
∑
r∈ai

fi(r, a) W r(a), (4)

where {f1(r, a), ..., fn(r, a)} defines how the global reward garnered from resource r is distributed across
the players. We will refer to {f1(r, a), ..., fn(r, a)}r∈R,a∈A as the distribution rule. A distribution rule must
satisfy the following properties: for any player i∈N , resource r ∈R, and action profile a∈A

(i) fi(r, a)≥ 0,
(ii) r /∈ ai ⇒ fi(r, a) = 0,

(iii)
∑

i∈N fi(r, a)≤ 1.
We will refer to distribution rules that satisfy (iii) with equality as budget balanced distribution rules.

There are a number of desirable properties of distribution rules, which we discussed in Section 1. Of pri-
mary importance is that the distribution rule guarantees existence and efficiency of equilibria. Furthermore,
it is often desirable that distribution rules are tractable, budget-balanced, have a low informational require-
ment, and lead to a potential game formulation. The focus of this paper is designing distribution rules that
satisfy these objectives.

4. Methods for Distributing Welfare
In this section, we explore several natural approaches for designing distribution rules in distributed welfare
games. These approaches are derived from methodologies in the cost sharing literature (Young (1994)),
such as the Shapley value (Shapley (1953), Hart and Mas-Colell (1989)). In particular, distributing the
welfare garnered at each resource in a distributed welfare game can be viewed as a cost sharing problem. We
will see that cost sharing methodologies can be effective as distribution rules in distributed welfare games.
However, we will also see that there are several issues that limit their applicability. Resultantly, we will
discuss alternative approaches to designing distribution rules for distributed welfare games in the Section 5.
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4.1. Equally Shared Utilities

The utility design in (3) disseminates the total welfare equally to all players and guarantees the existence of
efficient equilibria. Unfortunately, it requires players to use global (rather than local) information and thus
it is not a local distribution rule of the form (4).

Suppose the welfare from each resource is divided equally amongst the players that selected the resource,
i.e.,

Ui(ai, a−i) =
∑
r∈ai

(
1∑

j I{r ∈ aj}

)
W r(a), (5)

where I{·} is the usual indicator function. In general, such a design cannot guarantee the existence of an
equilibrium as the following example illustrates. For alternative examples, see Arslan et al. (2007).

EXAMPLE 1 (EQUALLY SHARED UTILITIES). Consider a two player distributed welfare game with player
set N = {1,2}, resources R= {r1, r2}, actions set A1 =A2 =R, utility functions of the form (5), and a
separable welfare function as illustrated below. Note that the game does not possess an equilibrium.

Player 1

Player 2
∅ r1 r2

∅ 0 4 1
r1 6 6 7
r2 5 9 10

Welfare

Player 1

Player 2
∅ r1 r2

∅ 0, 0 0, 4 0, 1
r1 6, 0 3, 3 6, 1
r2 5, 0 5, 4 5, 5

Payoffs

1

One problem with equally shared utilities is that players’ utility functions are not aligned with their
contribution to the global welfare. However, if players are anonymous with regards to their impact on the
global welfare function then the equally shared utilities in (5) guarantee the existence of an equilibrium.
Players are anonymous with regards to their impact on the global welfare function if for any action profiles
a,a′ ∈A, σr(a) = σr(a′) ⇒ W r(a) =W r(a′), where σr(a) := |{i ∈N : r ∈ ai}| denotes the number of
players utilizing resource r given the allocation a. Hence, the welfare generated by a particular resource
depends only on the number of players utilizing that resource, not the specific players utilizing the resource.

PROPOSITION 1. If a distributed welfare game has anonymous players then an equilibrium exists under
the equal share utility design (5).

Proof: It is straightforward to show that any distributed welfare game with anonymous players is a conges-
tion game (Rosenthal (1973), Monderer and Shapley (1996b)), with the following specification:
(a) resources:R,
(b) cost functions: cr(k) = W r(k)

k
, k > 0, where k is the number of players utilizing resource r, and

(c) utility functions: Ui(a) =
∑

r∈ai
cr(σr(a)).

Any congestion game is a potential game with potential function

φ(a) =
∑
r∈R

σr(a)∑
k=1

cr(k).

Therefore, an equilibrium is guaranteed to exist in such a game.
2
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4.2. Marginal Contribution Utilities
The structural requirement of equally shared utilities requires that players need to know the total welfare
garnered from a particular resource in addition to the number of players utilizing that resource in order to
evaluate their utilities. While this requirement is desirable from an implementation stand point, in general
this design does not guarantee the existence of an equilibrium. However, by conditioning a distribution rule
not only on the welfare garnered, but also on each player’s marginal contribution to the existing welfare, we
can guarantee the existence of an equilibrium even when players are not anonymous.

Specifically, suppose each player’s utility is set as his marginal contribution to the global welfare, i.e.,

Ui(ai, a−i) = W (ai, a−i)−W (a0
i , a−i), (6)

where a0
i designate the null action for player i. We will refer to the utility design in (6) as the wonderful life

utility (WLU) (Wolpert and Tumor (1999)). We will assume throughout this paper that a0
i = ∅; however, in

general a0
i could be set as any fixed action in the player’s action set. This translates to a distribution rule of

the form

fi(r, a) =
W r(a)−W r(a0

i , a−i)
W r(a)

, (7)

hence the distribution rule is dependent on both the current welfare and each player’s marginal contribution
to the current welfare. It is well known that assigning each player a utility as in (6) results in a potential game
with potential function W ; hence any action profile that maximizes the global welfare is an equilibrium.
However, other equilibria may also exist under the wonderful life utility design.

There are two limitations of the the marginal contribution utility design. First, each player needs to be able
to compute his marginal contribution to the welfare in order to evaluate his utility. Second, the wonderful
life utility may distribute more (or less) welfare than is gathered; hence, it may not satisfy condition (iii)
of distributed welfare games. While the first limitation cannot be relaxed in this setting, it remains an open
question as to whether the second limitation can be addressed utilizing a similar informational requirement.

One natural approach for extending (7) is to disperse welfare proportionally to each player’s marginal
contribution

Ui(ai, a−i) =
∑
r∈ai

(
W r(a)−W r(a0

i , a−i)∑
jW

r(a)−W r(a0
j , a−j)

)
W r(a). (8)

We will refer to (8) as the normalized wonderful life utility (NWLU). However, the following example
illustrates that such a design does not always guarantee the existence of an equilibrium.

EXAMPLE 2 (WLU AND NWLU). Consider the setup and separable welfare function in Example 1. The
wonderful life utility and normalized wonderful life utility for each player are illustrated below. Note that
while the WLU ensures that the optimal allocation is indeed an equilibrium, the players payoffs may be
more or less than the welfare garnered. Furthermore note that no equilibrium exists in the case of NWLU.

Player 1

Player 2
∅ r1 r2

∅ 0, 0 0, 4 0, 1
r1 6, 0 2, 0 6, 1
r2 5, 0 5, 4 9, 5

Payoffs – WLU

Player 1

Player 2
∅ r1 r2

∅ 0, 0 0, 4 0, 1
r1 6, 0 6, 0 6, 1
r2 5, 0 5, 4 6.4, 3.6

Payoffs – NWLU

1
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4.3. The Shapley Value
While WLU guarantees the existence of an equilibrium in all settings, it may distribute more or less reward
than the welfare garnered. It turns out that we can rectify this problem by using a common cost sharing
methodology known as the Shapley value (Shapley (1953)). For any subset of players Ñ ⊆ N , resource
r ∈R, and player i ∈ Ñ , the Shapley value of player i is defined as (Shapley (1953), Hart and Mas-Colell
(1989), Haeringer (2006))

Shri (Ñ) :=
∑

S⊆ eN :i∈S

(|Ñ | − 2)!(|S| − 1)!

|Ñ |! (W r(S)−W r(S \ {i})) . (9)

Suppose each player’s utility function is defined as

Ui(ai, a−i) :=
∑
r∈ai

Shri (a
r), (10)

where Shri (ar) is player i’s Shapley value at resource r given the allocation of players ar. Unfortunately,
utilizing (9) comes with a significant informational and computational cost. Each player needs to know not
only his marginal contribution to the existing welfare but also his perceived marginal contribution to the
welfare garnered from any subset of players in order to evaluate his utility. Roughly speaking, utilizing (9)
requires each player to have complete knowledge of the structural form of the welfare function in addition
to the capabilities of all players.

PROPOSITION 2. Consider any resource allocation game. If each player is assigned a utility of the form
(10), then the ensuing game is a budget balanced distributed welfare game. Furthermore, it is a potential
game with the following potential function φ :A→R

φ(a) :=
∑
r∈R

∑
S⊆ar

1
|S|

(∑
T⊆S

(−1)|S|−|T |W r(T )

)
. (11)

Proof: We will prove this proposition by using the potential function derived in Hart and Mas-Colell (1989).
First, we will express the Shapley value of player i as a weighted sum of unanimity games (Hart and Mas-
Colell (1989), Haeringer (2006)) which takes on the form

Shri (Ñ) =
∑

S⊆ eN :i∈S

1
|S|

(∑
T⊆S

(−1)|S|−|T |W r(T )

)
. (12)

Let αrS :=
∑

T⊆S (−1)|S|−|T |W r(T ) and φr : 2N →R be the resource specific potential function (Hart and
Mas-Colell (1989))

φr(a) :=
∑
S⊆ar

αrS
|S| .

Let a∈A be any allocation. Player i’s marginal utility is

Ui(a)−Ui(a0
i , a−i) =

∑
r∈ai

Shri (a
r),

=
∑
r∈ai

( ∑
S⊆ar :i∈S

αrS
|S|

)
,

=
∑
r∈ai

∑
S⊆ar

αrS
|S| −

∑
S⊆ar\i

αrS
|S|

 ,
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=
∑
r∈ai

(
φr(a)−φr(a0

i , a−i)
)
,

= φ(a)−φ(a0
i , a−i).

Therefore, for any player i, actions a′i, a
′′
i ∈Ai, and allocation a−i ∈A−i

Ui(a′i, a−i)−Ui(a′′i , a−i) = φ(a′i, a−i)−φ(a′′i , a−i).

2

It is also worth noting that this potential function could be computed recursively. For any resources r ∈R
define φr(∅) := 0. One can recursively evaluate φr according to the following equation: for any S ⊆N ,

φr(S) =
1
|S|

[
W r(S) +

∑
i∈S

φr(S \ {i})
]
.

There are two limitations of the Shapley value utility design that may prevent it from being applicable.
First, there is a high informational requirement as each player must be able to compute his marginal contri-
bution to all action profiles in order to evaluate his utility. Second, in general computing a Shapley value is
intractable in games with a large number of players. This is highlighted explicitly in either (9) or (12) where
computation of the Shapley value requires a weighted summation over all subsets of players. However, it
should be noted that this computational cost is lessened dramatically if there are a limited number of distinct
“classes” of players, see Conitzer and Sandholm (2004). For example, if players are anonymous then the
Shapley value is equivalent to the equal share distribution rule in (5).

4.4. The Weighted Shapley Value

A generalization to the Shapley Value that is often studied in the cost sharing literature is the weighted
Shapley value (Shapley (1953), Hart and Mas-Colell (1989), Haeringer (2006)). Define ωi ∈ R+ as the
weight of player i. Let ω := {ωi}i∈N be the associated weight weight vector. For any weight vector ω ∈Rn

+,
subset of players Ñ ⊆ N , resource r ∈ R, and player i ∈ Ñ , the weighted Shapley value is defined as
(Haeringer (2006))

S̃h
r

i (Ñ) :=
∑

S⊆ eN :i∈S

ωi∑
j∈S ωj

(∑
T⊆S

(−1)|S|−|T |W (T )

)
.

Note that the Shapley value is recaptured if ωi = 1 for all players i∈N .
Suppose each player is assigned the following utility

Ui(ai, a−i) :=
∑
r∈ai

S̃h
r

i (a
r). (13)

where S̃h
r

i (ar) is player i’s weighted Shapley value at resource r given the allocation of players ar. Note
that if players are anonymous, the weighted Shapley distributes the welfare according to wi/

∑
j∈N wj . We

will state the following proposition without proof to avoid redundancy.

PROPOSITION 3. Consider any resource allocation game. If each player is assigned a utility of the form
(13), then the ensuing game is a budget balanced distributed welfare game. Furthermore, the resulting game
is a potential game.
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The weighted Shapley value does not result in as clean a closed form expression for the potential function
as the Shapley value in (11). However, as with the Shapley value, the potential function can be computed
recursively and is of the form

φ̃(a) :=
∑
r∈R

φ̃r(a),

where φ̃r(a) is the resource specific potential function, φ̃r(∅) := 0, and for any subset S ⊆ N (Hart and
Mas-Colell (1989))

φ̃r(S) =
1∑
i∈S ωi

[
W r(S) +

∑
i∈S

ωiφ̃
r(S \ {i})

]
.

Finally, note that the weighted Shapley utility design suffers from the same drawbacks as the Shapley value
utility design.

4.5. Comparison of distribution rules

To this point we have surveyed five distribution rules, each of which was motivated by methodologies from
the cost sharing literature. We will end this section by summarizing the advantages and disadvantages of
these rules. Table 1 illustrates the tradeoff between desirable features of a distribution rule and the computa-
tional and informational requirement needed to obtain such a rule. The only setting where a distribution rule
achieves all of the desired properties is the case where players are anonymous. In this setting, the Shapley
value is equivalent to equally share distribution rule in (5). In the next section, our goal will be to develop
other distribution rules that attain (nearly) all of our desired properties.

Distribution Existence of Potential Budget Tractable Informational
Rule Equilibrium Game Balanced Requirement

Equally Shared yes yes yes yes Low
(anonymous)

Equally Shared no no yes yes Low
WLU yes yes no yes Medium

NWLU no no yes yes Medium
Shapley yes yes yes no High

Weighted Shapley yes yes yes no High
Table 1 Summary of Distribution Rules for Distributed Welfare Games

5. Single Selection Distributed Welfare Games
The results of the previous section suggest that, in general it is not possible to establish distribution rules
that guarantee all of our desired properties. As a result, in this section we focus on a simplified setting where
players are only allowed to select a single resource, Ai =R, as opposed to multiple resources, Ai ⊆ 2R.
In this restricted setting, the goal will be to develop distribution rules that guarantee several of our desired
properties.

To this end, we identify three sufficient conditions that determine whether a distribution rule guarantees
the existence of an equilibrium for a particular game. Furthermore, we develop a systematic procedure for
designing desirable distribution rules in single selection distributed welfare game with a particular class of
welfare functions.
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5.1. Sufficient Conditions for Existence of an Equilibrium
In this section, we identify three sufficient conditions on players’ utility functions that determine whether
a distribution rule guarantees the existence of an equilibrium in any single selection resource allocation
game. These sufficient conditions translate to pairwise comparisons of players’ utility functions. Before
stating the conditions, we will introduce the following notation. The allocation (r(i), r(j), a−ij), denotes
the situation where player i selects resource r(i), player j selects resource r(j), and all other player select
resources according to a−ij ∈ A−ij :=

∏
k 6=i,jAk. Likewise, let Ui(r(i), r(j), a−ij) and Uj(r(i), r(j), a−ij)

denote player i and j’s respective utility for the given allocation.

CONDITION 5.1. Let i and j be any two players. If for any resource r ∈R and any allocation a−ij ∈A−ij
Ui(r, r, a−ij)>Uj(r, r, a−ij),

then for all resources r′ ∈R and all allocations a′−ij ∈A−ij
Ui(r′, r′, a′−ij)≥Uj(r′, r′, a′−ij).

In this situation, we will say that player i is stronger than player j. Furthermore, we will require that player
strengths are a transitive property, that is if player i is stronger than player j who is stronger than player k,
then player i is also stronger than player k.

CONDITION 5.2. Suppose player i is stronger than player j. For any resource r ∈R and any action profile
a−ij ∈A−ij , the following holds

Ui(r, a0
j , a−ij)≥Ui(r, r, a−ij).

CONDITION 5.3. Suppose player i is stronger than player j. For any resources r ∈ R and action profile
a−ij ∈A−ij , the following holds

Uj(a0
i , r, a−ij)

Ui(r, a0
j , a−ij)

≥max
r∗∈R

Uj(r∗, r∗, a−ij)
Ui(r∗, r∗, a−ij)

.

THEOREM 1. Consider any single selection resource allocation game. If each player’s utility function sat-
isfies Conditions 5.1, 5.2, and 5.3 then an equilibrium exists.

Proof: We begin by renumbering the players in order of strengths with player 1 being the strongest player.
This is possible because of Condition 5.1.

We will construct an equilibrium by letting each player select his action one at a time in order of strength.
The general idea of the proof is that once a player selects an action, the player will never seek to deviate
regardless of the other player’s action. First, player 1 selects the resource r(1) according to

r(1) ∈ arg max
r∈R

U1(r, a0
−1) (14)

Next, player 2 selects action r(2) according to

r(2) ∈ arg max
r∈R

U2(r(1), r, a0
−12).

If r(1) 6= r(2), then by (14) and Condition 5.2 we know that

U1(r(1), a0
−1)≥U1(r(2), a0

−1)≥U1(r(2), r(2), a0
−12).

Therefore, player 1 can not improve his utility by switching his strategy, i.e.,

U1(r(1), r(2), a0
−12)≥U1(r, r(2), a0

−12), ∀r ∈R.
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If r(1) = r(2) = r, then by Condition 5.3, we know that for any resource r̃ ∈R, r̃ 6= r,

U2(r̃, r, a0
−12)

U1(r, r̃, a0
−12)

=
U2(a0

1, r, a
0
−12)

U1(r, a0
2, a

0
−12)

,

≥ U2(r, r, a0
−12)

U1(r, r, a0
−ij)

.

Using the above inequality, we can conclude that for any resource r̃ ∈R

U2(r, r, a0
−12)≥U2(r, r̃, a0

−12) ⇒ U1(r, r, a0
−12)≥U1(r̃, r, a0

−12).

Therefore, player 1 cannot improve his utility by switching his strategy.
If n = 2, then a = (r(1), r(2)) would be an equilibrium. Otherwise this argument could be repeated n

times to construct an equilibrium.
2

It remains an open question as to whether Conditions 5.1 – 5.3 guarantee additional properties pertaining
to the structure of the game besides existence of an equilibrium. For example, if each player’s utility function
satisfies Conditions 5.1 – 5.3, is the game a potential game or some variant?

5.2. Generalized Method for Distributing Welfare

The previous section illustrates three sufficient conditions on distribution rules that guarantee the existence
of an equilibrium. These conditions provide a useful tool, but ideally it would be desirable to provide a
systematic procedure for designing such a rule. In this section we provide such a procedure.

Inspired by the three conditions of the previous section, we introduce a procedure for defining each
player’s strength, denoted as (s1, ..., sn) ∈ Rn

+, such that if each player is assigned a utility function that
distributes welfare proportionally according to the players’ strengths, i.e.,

Ui(r, a−i) =
si∑

j∈N :aj=r

sj
W r(a) (15)

then the resulting game is guaranteed to possess at least one equilibrium. However, in order to attain our
results we must limit the analysis to a particular class of welfare functions that we introduce in the next
section. Note that the utility design in (15) has a similar informational and computational requirement to
the equally shared utility in (5).

5.2.1. Admissible Welfare Functions. We limit ourselves to welfare functions that satisfy the follow-
ing condition: for any resource r ∈R there exists a constant W̄ r > 0 such that for any player i∈N , resource
r ∈R, and action profile a−i ∈A−i

W r(r, a−i)−W r(a0
i , a−i) = fi

(
W̄ r−W r(a0

i , ai)
)
, (16)

for some player dependent constant fi ∈ (0,1]. We will define the leftover at resource r given the allocation
a as Lr(a) := W̄ r −W r(a0

i , ai). Therefore a player’s marginal contribution to the welfare is linear in the
size of the leftover.

This form of welfare function is common in many applications. For example, the sensor coverage problem
that we consider in Section 7 has a welfare function of this form.
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5.2.2. Definition of Strength. In order to guarantee the existence of an equilibrium, it is enough to
define strengths as follows. For some k ∈ [0,1], define the strength of each player i, si, as the solution to

fi = (1− k)si + k
si

1 + si
. (17)

It is easy to see that the strength of any player i is increasing in both k and fi. According to (17), the strength
of any player i∈N for the special case of k= 0 or k= 1 is precisely

si =
{

fi, k= 0,
fi

1−fi
, k= 1.

By referring back to (16), these extreme points correspond to

fi =
W r(r, a−i)−W r(a0

i , a−i)
Lr(a0

i , a−i)
,

fi
1− fi =

W r(r, a−i)−W r(a0
i , a−i)

Lr(r, a−i)
.

Note that si ≥ 0 for all players i∈N .

THEOREM 2. Consider any single selection distributed welfare game with a welfare function of the form
(16). If each player’s strength is defined according to (17) then distributing welfare proportionally according
to the players’ strengths as in (15) guarantees the existence of an equilibrium.

We defer the proof of this result to appendix A.

6. Efficiency of Equilibria in Distributed Welfare Games
In addition to guaranteeing the existence of an equilibrium, it is important for a distribution rule to guar-
antee that the equilibria are efficient. In this section, we focus on bounding the efficiency of equilibria in
distributed welfare games. We gauge the efficiency of equilibria using use the well known measures of
price of anarchy (PoA) and price of stability (PoS) (Nissan et al. (2007)). In terms of distributed welfare
games, the PoA gives a lower bound on the global welfare achieved by any equilibrium while the PoS gives
a lower bound on the global welfare associated with the best equilibrium for any distributed welfare game.
Specifically, let G denote a set of distributed welfare games. For any particular game G∈ G let E(G) denote
the set of equilibria, PoA(G) denote the price of anarchy, and PoS(G) denote the price of stability for the
game G where

PoA(G) := min
ane∈ E(G)

W (ane)

W (aopt)
(18)

PoS(G) := max
ane∈ E(G)

W (ane)

W (aopt)
, (19)

where aopt ∈ arg maxa∗∈AW (a∗). We define the PoA and PoS for the set of distributed welfare games G as

PoA(G) := inf
G∈G

PoA(G), (20)

PoS(G) := inf
G∈G

PoS(G). (21)

In general, the price of anarchy can be arbitrarily close to 0 in distributed welfare games. However, when
the welfare function is submodular it is possible to attain a much better price of anarchy. A set valued
function W : 2A → R is submodular if W (X) +W (Y ) ≥W (X ∩ Y ) +W (X ∪ Y ) for all X,Y ⊆ 2A.
Submodularity corresponds to the notion of a decreasing marginal contribution and is a common in many
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resource allocation problems, e.g., Vetta (2002), Krause and Guestrin (2007). Further, it is a key property
underlying the design of many centralized algorithms for these problems.

We can interpret Theorem 3.4 in Vetta (2002) in the context of distributed welfare games to provide a
fairly weak condition on the interaction between the welfare function W and the utility functions which
guarantees that the price of anarchy is at least 1/2.

PROPOSITION 4. (Vetta (2002)) Consider any distributed welfare game where
(i) the welfare function W is submodular and

(ii) each player’s utility is at least equal to his marginal contribution to the global welfare

Ui(a)≥W (a)−W (a0
i , a−i), ∀i∈N, a∈A.

If an equilibrium exists, then the price of anarchy is 1/2.

To provide a basis for comparison, computing the optimal assignment for a general distributed welfare
game is NP-complete (Murphey (1999)). Further, the best known approximation algorithms guarantee only
to provide a solution that is within 1− 1/e≈ 0.6321 of the optimal (Feige and Vondrak (2006), Ageev and
Sviridenko (2004), Ahuja et al. (2003)). Thus, the 1/2 price of anarchy in this scenario is comparable to the
best centralized solution.

While the generality of Proposition 4 is useful, the applicability is limited because it does not guarantee
the existence of an equilibrium. Hence, its applicability depends on the results we have proven in Section 4.

COROLLARY 1. Consider any distributed welfare game with a submodular global welfare function. If
(i) players are anonymous and assigned an equally shared utility as in (5), or

(ii) players are assigned a wonderful life utility as in (6), or
(iii) players are assigned a (weighted) Shapley value utility as in (10) or (13),
then an equilibrium exists and the price of anarchy is 1/2.

The four distribution rules depicted in Corollary 1 all guarantee the existence of an equilibrium. Note that
the wonderful life utility design satisfies condition (ii) of Proposition 4 with equality in addition to condition
(iii) of distributed welfare games since the welfare function is submodular. Additionally, the Shapley and
weighted Shapley values can easily be seen to satisfy condition (ii) of Proposition 4 when the welfare
function is submodular. Finally, note that the price of anarchy is tight for these rules. This is illustrated in
Appendix B.

To this point we have focussed exclusively on bounding the price of anarchy. Interestingly, when we
focus on the price of stability there is a distinction between rules that are budget balanced and those that
are not. In particular, the price of stability under any rule that is equivalent to equal share in the case of
anonymous players is 1/2 (see Appendix B for an illustrative example). Hence, the price of stability of the
Shapley value distributed rule is 1/2. Thus, any fair budget balanced rule has both a price of anarchy and a
price of stability of 1/2.

In contrast, if the distribution rule is allowed to violate the budget balance constraint, then the price
of stability can be 1. For example, under the wonderful life utility design, the optimal assignment is an
equilibrium, thus the price of stability is 1. However, like the budget balance rules, the price of anarchy
bound of 1/2 can be shown to be tight.

Distribution Rule Budget Balanced Price of Anarchy Price of Stability
Equally Shared (anonymous) yes 1/2 1/2

WLU no 1/2 1
Shapley Value yes 1/2 1/2

Table 2 Price of Anarchy and Price of Stability Comparison
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6.1. Single Selection Distributed Welfare Games
We now move from general distributed welfare games to single selection games. In this case, we can
strengthen the results of Proposition 4 utilizing Conditions 5.1–5.3 which guarantee the existence of an
equilibrium.

PROPOSITION 5. Consider a single selection distributed welfare game with a submodular welfare function
and a budget balanced distribution rule. If Conditions 5.1–5.3 are satisfied, then an equilibrium exists and
the price of anarchy is 1/2.

Proof: The result follows from the fact that Conditions 5.1 – 5.3 combine to ensure that Condition (ii) of
Proposition 4 is satisfied.

For any allocation a∈A, the marginal contribution of any player i∈N to the global welfare is

W (ai, a−i)−W (a0
i , a−i) = Ui(ai, a−i) +

∑
j 6=i

(
Uj(ai, a−i)−Uj(a0

i , a−i)
)

by noting that Ui(a0
i , a−i) = 0. To complete the proof, it is enough to show that for any player j 6= i,

Uj(ai, a−i)≤Uj(a0
i , a−i),

since it follows that

Ui(ai, a−i) +
∑
j 6=i

(
Uj(ai, a−i)−Uj(a0

i , a−i)
)≤Ui(ai, a−i).

Therefore, we will complete the proof by proving that Conditions 5.2 and 5.3 imply that for any players
i, j ∈N and any allocation a−ij ∈A−ij

Ui(r, a0
j , a−ij)≥Ui(r, r, a−ij).

Assume, without loss of generality, that player i is stronger than player j. We can rewrite Condition 5.3 as

Uj(a0
i , r, a−ij) ≥

Ui(r, a0
j , a−ij)

Ui(r, r, a−ij)
Uj(r, r, a−ij),

≥ Uj(r, r, a−ij),

where the second inequality comes from Condition 5.2 which ensures that
Ui(r,a

0
j ,a−ij)

Ui(r,r,a−ij)
≥ 1. This completes

the proof.
2

6.2. Anonymous Distributed Welfare Games
Our bounds on the price of anarchy to this point have been independent of the number of players. In this
section, we investigate the relationship between the price of anarchy and the number of players, albeit in the
limited case where players are anonymous with regard to their impact on the global welfare. Furthermore,
we will analyze the price of anarchy when the number of players at the equilibrium and optimal allocations
differ. Specifically, let W (ane;n+ δ) be the total welfare garnered by an equilibrium consisting of n+ δ
players. Likewise, let W (aopt;n) be the total welfare garnered by an optimal allocation consisting of n
players.

THEOREM 3. Consider any distributed welfare game with anonymous players where
(i) the welfare function W is submodular,

(ii) the action set of player i is Ai ⊆ 2R and Ai =Aj for all i, j ∈N , and
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(iii) each player’s utility is at least equal to his marginal contribution to the global welfare

Ui(a)≥W (a)−W (a0
i , a−i), ∀i∈N, a∈A.

If an equilibrium exists, then the relative price of anarchy satisfies

W (ane;n+ δ)
W (aopt;n)

≥ n+ δ

2n+ δ− 1
.

Proof: We will prove the result by boundingW (aopt;n) in terms ofW (ane;n+δ). First, notice that an upper
bound on the W (aopt;n) is if one player in the optimal allocation can attain the entire welfare garnered at
the equilibrium, W (ane;n+ δ), and all other players attain mini∈N Ui(ane;n+ δ) where Ui(ane;n+ δ)
represents the utility player i receives for the allocation ane consisting of n+ δ players. To see that this
upper bound holds, note first that (iii) guarantees that each player’s utility is an upper bound on the player’s
contribution to the global welfare. Further, by combining the definition of an equilibrium with the fact
that the welfare function is submodular, we see that no additional player can attain a utility higher than
mini∈N Ui(ane;n+ δ) once W (ane;n+ δ) is covered. Thus, we have

W (aopt;n)≤W (ane;n+ δ) + (n− 1)min
i∈N

Ui(ane;n+ δ).

Now, noting that

min
i∈N

Ui(ane;n+ δ) ≤ W (ane;n+ δ)
n+ δ

gives

W (ane;n+ δ) + (n− 1)min
i∈N

Ui(ane;n+ δ) ≤ W (ane;n+ δ)
(

1 +
n− 1
n+ δ

)
which easily gives the bound in the theorem

W (ane;n+ δ)
W (aopt;n)

≥ 1
1 + n−1

n+δ

=
n+ δ

2n+ δ− 1
.

2

Notice that Theorem 3 shows that the worst-case price of anarchy is increasing as the number of play-
ers increases and that as n→∞ the price of anarchy approaches 1/2, which matches Proposition 4. See
Appendix B for an example which illustrates that this bound is tight. Furthermore, note that all the utility
design methods previously studied, i.e., equally shared, wonderful life, and (weighted) Shapley value utility,
satisfy the three conditions of Theorem 3. Hence, if the welfare function is submodular, then an equilibrium
is guaranteed to exist and the bound on the relative price of anarchy holds. Lastly, note that the price of
anarchy, δ= 0, is bounded by

W (ane;n)
W (aopt;n)

≥ n

2n− 1
.
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7. Motivational Example: The Sensor Coverage Problem
To ground the discussion in this paper, we will now highlight many of the issues we have discussed using
a specific resource allocation problem: the sensor coverage problem. This problem is of particular interest
given the growing deployment of sensor networks in a wide range of applications including surveillance,
military, environmental monitoring, and beyond. The goal of the sensor coverage problem is to allocate a
fixed number of sensors across a given “mission space” so as to maximize the probability of detecting a
particular event. For a more detailed introduction to the problem, refer to Iyengar and Brooks (2005), Li
and Cassandras (2005).

In modeling this problem, we divide the mission space into a finite set of sectors denoted as R and
define an events density function, or relative reward/value function, V (r), overR, where V (r)≥ 0,∀r ∈R.
This formulation of the problem is common (Dhillon et al. (2004), Iyengar and Brooks (2005), Zou and
Chakrabarty (2004)). Note that V (r) often has a very intuitive meaning, e.g., in the case of enemy submarine
tracking, V (r) represents the a priori probability that an enemy submarine is situated in sector r.

There are a finite number of autonomous sensors (or players) denoted as N = {1, ..., n} allocated to the
mission space. Each sensor i is capable of sensing activity in (monitoring) possibly multiple sectors simul-
taneously based on its chosen location. The set of possible monitoring choices for sensor i is denoted as
Ai ⊆ 2R. LetA=

∏
i∈N Ai be the set of joint actions, or monitoring choices, for all players. The probability

that sensor i detects an event in sector r given his current monitoring choice ai is denoted as pi(r, ai). We
will assume that the detection probabilities satisfy:

r ∈ ai ⇔ pi(r, ai)> 0,
r /∈ ai ⇔ pi(r, ai) = 0,

This sensor model is quite general and can accommodate a variety of settings, such as a sensing capability
that degrades exponentially in distance, obstacles, etc.

For a given joint action profile a := {a1, ..., an}, the joint probability of detecting an event in sector r is

P (r, a) = 1−
∏
i∈N

[1− pi(r, ai)].

The goal of the global planner in this scenario is to allocate the sensors in a way that maximizes the
probability of detecting an event, which is characterized by the following global welfare function (Li and
Cassandras (2005))

W (a) =
∑
r∈R

V (r)P (r, a). (22)

Computing the optimal sensor allocation is an NP-hard combinatorial optimization problem – Murphey
(1999) shows this for a structurally equivalent version of the weapon targeting problem. Resultantly,
research has traditionally centered around developing heuristic methods to quickly obtain near optimal allo-
cations, where the degree of suboptimality is dependent on the structure of the global objective, e.g., Ahuja
et al. (2003).

7.1. The Sensor Coverage Game
Rather than view the sensor coverage problem as a centralized optimization problem, our focus is on the
design of autonomous sensors that are individually capable of making their own independent decision in
response to local information. To model this situation, we will view the interactions of the sensors as a
non-cooperative resource allocation game where each sensor i is assigned a utility function Ui : A→ R
that defines his payoff (utility) for each monitoring profile. Note that a sensor’s utility could be adversely
affected by the monitoring choices of other sensors.

We will refer to the non-cooperative game theoretic formulation of the sensor coverage problem as the
sensor coverage game. The engineering question in this setting is how to design the sensor utility functions,
or equivalently, how should a global planner distribute the global welfare to the sensors. In the case of large
sensors networks local utility functions are a necessity.
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7.2. Local Utility Designs for the Sensor Coverage Game
The sensor coverage game is a simple example of a distributed welfare game. Thus, we can apply our
results in order to design distribution rules that guarantee the existence of an equilibrium. In particular,
we can immediately conclude that the wonderful life and the (weighted) Shapley value utility designs will
guarantee the existence of an equilibrium.

In the case of the sensor coverage problem, the wonderful life utility design can be written as

Ui(ai, a−i) =
∑
r∈ai

V (r)pi(r, ai)
∏

j∈N, j 6=i

(1− pj(r, aj)), (23)

In addition, the weighted Shapley value can be written as

Ui(ai, a−i) =wi
∑
r∈ai

V (r)
∑

S⊆N, S∈r

∏
j∈S pj(r, aj)∑

j∈S wj
(−1)|S|−1, (24)

where wj is the weight of sensor j. Recall that the Shapley value can be attained with wj = 1. We know
from our previous discussions that both (23) and (24) guarantee the existence of an equilibrium. Further,
since the welfare function is submodular, both rules yield a price of anarchy of 1/2. Further, the price of
stability of the wonderful life design is 1 and the price of stability of the weighted Shapley design is 1/2.

As we discussed previously, there are many issues that limit the practical applicability of the wonderful
life and (weighted) Shapley designs. The most important issues are that the wonderful life design is not
budget balanced and that, in general, computing the (weighted) Shapley values is not tractable.

7.3. Single Selection Sensor Coverage Games
In this section we will focus on the sensor coverage game in which each sensor is only capable of selecting
a single sector, i.e., Ai = R. Furthermore, we will assume that each sensor has an invariant detection
probability, i.e., for each sensor i∈N there exists an invariant detection probability pi > 0 such that

pi(r, ai) =
{
pi, if r= ai,
0, if r 6= ai.

Let W r(a) := P (r, a)V (r) be the welfare generated from sector r given the allocation a. The marginal
contribution of player i to the global welfare provided that the ai = r is

W r(r, a−i)−W r(a0
i , a−i) = pi

(
V (r)−W r(a0

i , a−i)
)
, (25)

which fits into the class of admissible welfare functions developed in Section 5.2. Therefore we can appeal
to Theorem 2 to design distribution rules that yield the existence of an equilibrium and Theorem 5 to bound
the price of anarchy. This is summarized in the following corollary.

COROLLARY 2. Consider any single selection sensor coverage game where each sensor has an invariant
detection probability. Fix k ∈ [0,1]. Define the strength of player i as the solution to the equation

pi = (1− k)si + k
si

1 + si
.

If the utility of sensor i is defined as

Ui(r, a−i) =
si∑

j∈N :aj=r sj
V (r)P (r, a). (26)

then the resulting game is a budget balanced distributed welfare game and possesses at least one equilib-
rium. Furthermore, the price of anarchy is 1/2.
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An example of a distribution rule that guarantees the existence of an equilibrium is dividing the welfare
proportionally according to players’ detection probabilities

Ui(r, a−i) =
pi∑

j∈N :aj=r pj
P (r, a)V (r). (27)

This corresponds to the special case when k= 0, and we refer to this as the proportional share utility design.
An alternative distribution rule that guarantees the existence of an equilibrium is the normalized wonderful
life utility design which takes on the form

Ui(r, a−i) =

(
W (r, a−i)−W (a0

i , a−i)∑
j∈N :aj=rW (r, a−j)−W (a0

j , a−j)

)
P (r, a)V (r),

=

(
pi

1−pi∑
j∈N :aj=r

pj

1−pj

)
P (r, a)V (r). (28)

This corresponds to the special case when k= 1. Both of these distribution rules have a price of anarchy of
1/2 because the welfare function is submodular.

It is interesting to note that the distribution rules captured in (27) and (28) are extremely sensitive to
perturbations. For example, consider a slight variant of (27)

Ui(r, a−i) =
pβi∑

j∈N :aj=r p
β
j

P (r, a)V (r),

for some β > 0. An equilibrium is only guaranteed to exist for the special case when β = 1. (See
Appendix C.)

It is also important to point out that neither of the distribution rules captured in (27) and (28) correspond
to particular weights for the weighted Shapley value. (See Appendix D.) Thus, a priori, one does not expect
them to guarantee the existence of an equilibrium. This is especially true in light of the results of Chen et al.
(2008), who prove that all distribution rules that guarantee the existence of an equilibrium must correspond
to a weighted Shapley distribution rule (13) in a special case of distributed welfare games.

7.4. Anonymous Sensor Coverage Games

In the case of anonymous sensors, that is all sensors have the same detection probability p, we can obtain
tighter bounds on the price of anarchy by appealing to Theorem 3.

COROLLARY 3. Consider any anonymous sensor coverage game where the action set of sensor i is Ai ⊆
2R and Ai =Aj for all i, j ∈N . If each sensor is assigned an equally shared utility

Ui(a) =
∑
r∈ai

1
σr(a)

V (r)P (r, a), (29)

then the resulting game possesses at least one equilibrium and the relative price of anarchy satisfies

W (ane;n+ δ)
W (aopt;n)

≥ n+ δ

2n+ δ− 1
.

We can specialize these bounds further to attain the following bound, which illustrates the impact of the
detection probability on the price of anarchy.
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THEOREM 4. Consider a single-sector anonymous sensor coverage game with n sensors each having
invariant detection probability p. Under the equal share utility design (29) the price of anarchy is bounded
by

W (ane)
W (aopt)

≥
(
a∗

n
+

1− (1− p)n−a∗
1− (1− p)n

)−1

where a∗ =

{
n− 1, p= 1;

n− log
“
n

log(1/(1−p))
1−(1−p)n

”
log(1/(1−p)) , p < 1.

We defer the proof of Theorem 4 to the appendix. We illustrate the price of anarchy in Figure 1. Note that
this bound is a decreasing function of the detection probability of the sensors, which is intuitive.
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Figure 1 Price of Anarchy in Single Sector Anonymous Sensor Coverage Game

7.5. Simulation Experiments
To this point, we have explored equilibrium behavior in the sensor coverage game. The question that remains
is how can autonomous sensors reach an equilibrium in a distributed fashion. While not focusing on this
question in detail, we illustrate the applicability of the theory of learning in games as a local control mech-
anism for coordinating group behavior.

We consider a sensor coverage game with 100 single-sector homogenous sensors with invariant detec-
tion probability p= 0.25. The mission space is R= {r1, ..., r25}. The reward for each sector is randomly
assigned from a uniform distribution; two sectors according to U [0,6], four sectors according to U [0,3],
and the remaining according to U [0,1]. Each sensor is capable of monitoring any of the 25 sectors, i.e.,
Ai =R and is assigned an equally shared utility design (29).

There is a large body of literature analyzing distributed learning algorithms in potential games (Young
(1998), Monderer and Shapley (1996a), Marden et al. (2008, 2007b,a)). We will apply fading memory
joint strategy fictitious play with inertia, which guarantees convergence to an equilibrium in any potential
game while maintaining computational tractability even in large-scale games (Marden et al. (2008)). Fading
memory joint strategy fictitious play with inertia can be described as follows:

1. Initialization: Each sensor i is assigned a perceived utility V ai
i (1) ∈ R for each action ai ∈ Ai. One

can think of V ai
i (1) as sensor i’s initial belief about the utility he would receive for playing action ai

in the ensuing time step.
2. Action Selection: At time t≥ 1, each sensor i plays the following strategy:

• ai(t)∈ arg max
ai∈Ai

V ai
i (t) with probability (1− ε),

• ai(t) = ai(t− 1) with probability (ε),
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Figure 2 Simulation results for sensor coverage game.

where ε∈ (0,1) is referred to as the sensor’s inertia, i.e., a probabilistic reluctance to changing strate-
gies.

3. Belief Propagation: Each sensor i updates his beliefs as

V ai
i (t+ 1) = (1−λ)V ai

i (t) +λ Ui(ai, a−i(t)), ∀ai ∈Ai,
where λ∈ (0,1] is the discount factor.

4. Return to Step 2 and repeat.
It is worth noting that fading memory joint strategy fictitious play with inertia only requires each sensor
to observe the number of players at each sector. The identity of the observed player is unimportant. If all
players adhere to the prescribed learning rule, then the action profile, a(t), will converge almost surely to
an equilibrium.

We use the following discount factor and inertia: λ= 0.5 and ε= 0.02. Figure 2(a) illustrates the evolution
of the number of sensors at each sector. The identity of the sectors is unimportant as the key observation
is that behavior settles down at an equilibrium. Figure 2(b) illustrates the evolution of the global welfare
in addition to the efficiency gap between the equilibrium and the optimal. From Theorem 4, we know that
the price of anarchy must be greater than 0.541. Our simulation illustrates that Theorem 4 provides a very
conservative estimate of the efficiency since the price of anarchy we observe is 0.936.

8. Concluding Remarks
In this paper, we focus on a class of games that we refer to as distributed welfare games. These games
are formulated to study the feasibility of approaching resource allocation problems via distributed, non-
cooperative techniques. In particular, these games allows us to study how the method used to divide the
global welfare among participating (selfish) players impacts the existence and efficiency of equilibria in
resource allocation games.

The paper illustrates that cost sharing methodologies are applicable to distributed welfare games, but
suffer from a number of drawbacks, such as leading to intractable distribution rules with high informa-
tional requirements. This leads us to investigate the possibility of developing alternative distribution rules.
To this end, we derive three sufficient conditions on distribution rules that guarantee the existence of an
equilibrium in the setting where players are only allowed to select a single resource. Further, we use these
sufficient conditions to develop a systematic procedure for designing desirable distribution rules with min-
imal informational and computational costs in these single selection distributed welfare games when the
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welfare function takes on a specified form. We illustrate the applicability of this procedure using the sensor
coverage problem. We also derive general bounds on the price of anarchy in distributed welfare games and
application specific bounds on the price of anarchy for the sensor coverage problem. It should be noted that
the structure of the global welfare function W for sensor coverage parallels those for many other problems,
e.g., weapon target assignment, fault detection, and surveillance.

A number of interesting research questions related to distributed welfare games remain. Of primary
importance is the use of learning rules to ensure fast convergence to an equilibrium. When players are
anonymous, we demonstrated that there are several distributed learning algorithms that guarantee players
will reach an equilibrium. However, it remains to apply learning algorithms for the distributed welfare
games with players that are not anonymous. In the case of the Shapley value and wonderful life designs, the
same learning algorithms can be applied, since both designs lead to potential games. However, it is unclear
whether the other distribution rules introduced in the paper, e.g. the proportional share rule, give rise to a
potential game.
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Appendix A: Proof of Theorem 2

We will prove the result by verifying Conditions 5.1-5.3.

Step 1: Verification of Condition 5.1

According to (17), for any k ∈ [0,1] we have

fi ≥ fj ⇒ si ≥ sj.

Therefore, Condition 5.1 is satisfied.



Author: Distributed Welfare Games
24 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Step 2: Verification of Condition 5.2

Let a := (r, a0
j , a−ij) and a′ := (r, r, a−ij) be any two action profile where si ≥ sj . According to (15), we

have

Ui(a) =
si∑

j∈N :aj=r sj
W r(a),

=
si
S
W r(a),

where S :=
∑

j∈N :aj=r sj. Similarly, we have

Ui(a′) =
si∑

j∈N :a′j=r sj
W r(a′),

=
si

S+ sj
(W r(a) + fjL

r(a)) .

Verifying Condition 5.2 involves proving that
si
S
W r(a) ≥ si

S+ sj
(W r(a) + fjL

r(a)) ,

which is equivalent to proving that

W r(a) ≥ S

(
fj
sj

)
Lr(a).

Letting fj = (1− k)sj + k
sj

1+sj
and expanding the right hand side we obtain

S

(
fj
sj

)
Lr(a) = S

(
(1− k)sj + k

sj
1+sj

sj

)
Lr(a),

= S

(
(1− k) + k

1
1 + sj

)
Lr(a),

≤ SLr(a),

=
∑

i∈N :ai=r

siL
r(a).

Since si ≤ fi
1−fi

, we have ∑
i∈N :ai=r

siL
r(a) ≤

∑
i∈N :ai=r

fi
1− fiL

r(a),

=
∑

i∈N :ai=r

W r(a)−W r(a0
i , a−i),

≤ W r(a),

where the last inequality results from the welfare structure in (16).

Step 3: Verification of Condition 5.3

Let a := (a0
i , a

0
j , a−ij) and a′ := (r, r, a−ij) where si ≥ sj . The utility of player i for the allocation

(r, a0
j , a−ij) is

Ui(r, a0
j , a−ij) =

si∑
j∈N :aj=r sj

(W r(a) + fiL
r(a)) ,

=
si

S+ si
(W r(a) + fiL

r(a)) .
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where S :=
∑

j 6=i:aj=r sj. The utility of player j for the allocation (a0
i , r, a−ij) is

Uj(a0
j , r, a−ij) =

sj
S+ sj

(W r(a) + fjL
r(a)) .

Verifying Condition 5.3 involves proving that

sj
S+sj

(W r(a) + fjL
r(a))

si
S+si

(W r(a) + fiLr(a))
≥ sj
si
.

Using simple algebra, this is equivalent to showing that

(S+ si) (W r(a) + fjL
r(a)) ≥ (S+ sj) (W r(a) + fiL

r(a)) .

Rewriting the above equation, we obtain

W r(a)(si− sj) ≥ (S+ sj)fiLr(a)− (S+ si)fjLr(a),

= S(fi− fj)Lr(a) + (sjfi− sifj)Lr(a).

Dividing through by (si− sj), we are left to show that

W r(a) ≥
(
fi− fj
si− sj

)
SLr(a) +

(
sjfi− sifj
si− sj

)
Lr(a). (30)

We will first focus on the first term of (30)

fi− fj
si− sj =

(1− k)si + k si
1+si
− (1− k)sj − k sj

1+sj

si− sj ,

= (1− k) + k
1

(1 + si)(1 + sj)
,

≤ 1.

Focusing on the numerator of the second term of (30), we have

sjfi− sifj = (1− k)
(
sj

si
1 + si

− si sj
1 + sj

)
,

= k

(
sisj(1 + sj)− sisj(1 + si)

(1 + si)(1 + sj)

)
,

= k

(
sisj(sj − si)

(1 + si)(1 + sj)

)
,

≤ 0.

In conclusion, we have (
fi− fj
si− sj

)
SLr(a) +

(
sjfi− sifj
si− sj

)
Lr(a) ≤ SLr(a),

≤ W r(a).

This completes the proof.
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Appendix B: Tightness of Theorem 3 and Price of Stability in Fair Budget Balanced Rules
To illustrate the tightness of Theorem 3, consider a anonymous single-selection sensor coverage game with
the equal share utility design (29). There are n+ δ sensors each having invariant detection probability p= 1
and n+ δ sectors. One sector, r, has reward 1 and the other sectors have reward 1/(n+ δ).

Notice that if all n + δ sensors cover r, then the total reward garnered is 1 and the assignment is an
equilibrium. However, the optimal assignment with n sensors has one sensor in each sector and achieves
reward 1 + (n− 1)/(n+ δ). Thus, we achieve the bound in Theorem 3.

Appendix C: Sensitivity of Distribution Rules
To illustrate the sensitivity of the distribution rules presented in Theorem 2 we consider the following
variation of the proportional share utility design:

gi(r, a) =
pβi∑

j:aj=r p
β
j

.

Note that when, β = 1, this is equivalent to the proportional share utility design. When β→ 0, this rule
becomes the equal share utility design, and when β→∞, this rule gives the entire reward to the sensor with
the highest detection probability. So, we have already seen that an equilibrium exists when β = 1 and does
not exist when β = 0. We will now see that for any β 6= 1, an equilibrium is not guaranteed to exist.

Consider 2 sectors x and y and 2 sensors 1 and 2. The rewards are V (x) = V (y) = 1 and the detection
probabilities are p1 > p2. Now, we are going to set a scenario where if β > 1 sensor 1 chases sensor 2 and
if β < 1 sensor 2 chases sensor 1.

The utilities to each sensor when both are in the same sector are

Ui(x,x) =Ui(y, y) =
pβi

pβ1 + pβ2
(1− (1− p1)(1− p2))

If the sensors are in different sectors, the utilities are

Ui(x, y) =Ui(x, y) = pi

Now, consider player 1. The difference in utility between being together and being apart is equal to:

U1(x,x)−U1(y,x) =
pβ1

pβ1 + pβ2
(1− (1− p1)(1− p2))− p1

=
p2p

β
1

pβ1 + pβ2

(
1− p1−

(
p1

p2

)1−β
)

Similarly, for player 2, we have the difference in utility between being together and being apart is equal to:

U2(x,x)−U2(y,x) =
p1p

β
2

pβ1 + pβ2

(
1− p2−

(
p2

p1

)1−β
)

If β = 1 both players prefer to be apart regardless of p1, p2. However, if β 6= 1, the sensors exhibit chasing
behavior. In particular, set p1 = 0.5 and p2 = ε > 0. Then, by letting ε→ 0, we can observe chasing behavior.
In particular, as ε→ 0, when β < 1 we see that sensor 1 prefers to be away from sensor 2 and sensor 2
prefers to be with sensor 1, and when β > 1 the sensors have the opposite preferences.

Appendix D: Relationship of Distribution Rules to the Weighted Shapley Value
One might expect a priori that all distribution rules that guarantee the existence of a Nash equilibrium can
be viewed as a version of the weighted Shapley. This is especially true in light of recent results (Chen et al.
(2008)) which prove such a characterization in the case of a related model.

However, our results in the example of the sensor coverage game illustrate that this is not the case. In
particular, we give examples of two simple rules that guarantee the existence of an equilibrium which are
not weighted Shapley values.
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D.1. The Proportional Share Utility Design
eq:dist-ratio-marginal

We will start with the proportional share design in (27). Consider a sensor coverage game with 2 sensors
where each sensor i has an invariant detection probability pi. In such a game, we can write the proportional
share rule as (after some algebra)

U1(r, r) =
(
p1− p1

p1 + p2

p1p2

)
V (r)

and we can write the weighted Shapley value as

U1(r, r) =
(
p1− w1

w1 +w2

p1p2

)
V (r)

Thus, for the proportional share rule to correspond to a weighted Shapley value, it must be that pi/pj =
wi/wj for all i, j. So, wi = cpi for some constant c for all i.

Now, consider a sensor coverage game with 3 sensors. In this case, we can write the proportional share
rule as

U1(r, r, r) = p1

(
1 +

(
p1p2 + p2p3 + p3p1

p1 + p2 + p3

)
+

p1p2p3

p1 + p2 + p3

)
V (r)

and we can write the weighted Shapley value as

U1(r, r, r) =w1

(
p1

w1

+
(

p1p2

w1 +w2

+
p1p3

w1 +w3

)
+

p1p2p3

w1 +w2 +w3

)
V (r)

But, it is easy to see that no choice of wi can both satisfy pi/pj =wi/wj and make the above two equations
equal.

Notice that the reason proportional share utilities cannot be viewed as weighted Shapley values is not
that for a particular number of players there are not weights that could be chosen so that the utilities can
be viewed as a weighted Shapley value. Rather, the issue is that these weights are required to be the same
across all sets of possible players. It is this extra constraint that leads to the existence of rules that guarantee
the existence of an equilibrium but are not weighted Shapley values.

D.2. The Normalized Wonderful Life Utility Design
We will consider a 2 sensor game where sensor i has an invariant detection probability pi. Then, we have
that the normalized wonderful life utility design can be written as (after some algebra)

U1(r, r) =

(
p1−

p2
1−p2

p1
1−p1

+ p2
1−p2

p1p2

)
V (r)

and we can write the weighted Shapley value as

U1(r, r) =
(
p1− wi

w1 +w2

p1p2

)
V (r)

So, the only way to satisfy these equations is to have wi
wj

= pj(1−pi)

pi(1−pj)
. So, wi = c(1−pi)/pi for some constant

c for all i.
Once again, it can be verified that such a weight scheme will not work for a three player game. The

calculation is tedious, so we do not include it.
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Appendix E: Proof of Theorem 4
Theorem 4 follows from the following sequence of lemmas.

LEMMA 1. Consider a single-sector sensor coverage game with n sensors each having fixed detection
probability p. The price of anarchy is bounded by(

max
a+b≤n,a≥0,b≥1

{
a

a+ b
+

1− (1− p)b
1− (1− p)a+b

})−1

where the maximum is taken over integer a, b.

Proof: We will again describe the optimal placement in terms of the Nash placement. For each sector r
covered by the Nash, either every sensor is also present at that sector in the optimal placement, or some
numbermr “move” in the optimal. The sensors that move, can provide an additional reward that is bounded
by their contribution in the Nash, but will drop the reward gathered from sector r. Note that 0 ≤ mr ≤
σr(ane)− 1.

This gives that

W (aopt) ≤
∑

r∈R:σr(ane)>0

max
mr∈[0,σr(ane)−1]

{
mrUr(ane) + (1− (1− p)σr−mr)V (r)

}
=

∑
r∈R:σr(ane)>0

max
mr∈[0,σr(ane)−1]

{
mr

σr(ane)
+

1− (1− p)σr(ane)−mr

1− (1− p)σr(ane)

}
(1− (1− p)σr(ane))V (r)

Letting ar =mr and br = σr(ane)−mr, we have

W (aopt) ≤
∑

r∈R:σr(ane)>0

max
ar+br=σr(ane),ar≥0,br≥1

{
ar

ar + br
+

1− (1− p)br
1− (1− p)ar+br

}
(1− (1− p)σr(ane))V (r)

≤
∑

r∈R:σr(ane)>0

max
a+b≤n,a≥0,b≥1

{
a

a+ b
+

1− (1− p)b
1− (1− p)a+b

}
(1− (1− p)σr(ane))V (r)

= max
a+b≤n,a≥0,b≥1

{
a

a+ b
+

1− (1− p)b
1− (1− p)a+b

} ∑
r∈R:σr(ane)>0

(1− (1− p)σr(ane))V (r)

= max
a+b≤n,a≥0,b≥1

{
a

a+ b
+

1− (1− p)b
1− (1− p)a+b

}
W (ane)

which completes the proof.

2

To obtain a more explicit form of the price of anarchy, we will first relax the constraints and then we will
characterize the maximal a, b.

LEMMA 2.

max
a+b≤n,a≥0,b≥1

{
a

a+ b
+

1− (1− p)b
1− (1− p)a+b

}
≤ max

a+b=n,a≥0,b≥1

{
a

a+ b
+

1− (1− p)b
1− (1− p)a+b

}
where the LHS is taken over integer a, b and the RHS is taken over real-valued a, b.

Proof: We will start by relaxing the integer optimization to include real-valued a, b.
Next, suppose, that am + bm = m < n are the maximizers under the constraint that a + b = m. We

will show that an = nam/m, bn = nbm/m lead to a larger value than am, bm. Combining this with the
observation that an + bn = n then completes the proof.

an
an + bn

+
1− (1− p)bn

1− (1− p)an+bn
=

am
am + bm

+
1− (1− p)n/m(1− p)bm

1− (1− p)n/m(1− p)am+bm
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Now, it is enough to show that

1− (1− p)n/m(1− p)bm
1− (1− p)n/m(1− p)am+bm

≥ 1− (1− p)bm
1− (1− p)am+bm

A bit of algebra shows that this holds as long as (1− p)n/m ≤ 1, which is always true in our setting since
p∈ [0,1].
2

Now, we know that b= n− a. So, we need only calculate a.

LEMMA 3.

a∗ = arg max
0≤a≤n−1

{
a

n
+

1− (1− p)n−a
1− (1− p)n

}
=

{
n− 1, p= 1;

n− log
“

n log(1/(1−p))
1−(1−p)n

”
log(1/(1−p)) , p < 1.

Proof: For the case of p = 1, the result is immediate. In the case when p 6= 1, we will determine the
maximizer by simply differentiating. Differentiating with respect to a gives:

1
n
− (1− p)n−a log(1/(1− p))

1− (1− p)n

Setting the derivative equal to zero, then gives

(1− p)n−a =
n log(1/(1− p))

1− (1− p)n

Solving for a, we obtain

a= n−
log
(
n log(1/(1−p))

1−(1−p)n

)
log(1/(1− p))

which completes the proof.
2


