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Abstract

This paper analyzes and compares behavior of the regulator and polluting firms in

emission tax systems with and without commitment to monitoring. In the commitment

case, firms are found noncompliant at all equilibria. It means that there exists no

paradox of ex ante commitment to monitoring as shown in principal-agent models.

We also discover that the commitment to monitoring system is at least as efficient

as the no-commitment to monitoring system. It implies that the regulator may face

efficiency loss when she can commit but chooses not to. Accordingly, the regulator

has stronger incentive to adopt the commitment system. Finally, relative magnitudes

of firms’ optimal emissions as well as equilibrium monitoring probabilities in the two

systems are uncertain unless firms’ weight in the social cost function is no less than

one.
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1. Introduction

In the literature of principals and agents, monitoring (or inspection) is an impor-

tant method to mitigate principals’ efficiency loss caused by asymmetric information.

Many relevant studies assume that principals can make ex ante commitment to mon-

itoring, i.e., a preannounced probability of monitoring,(e.g., Baron and Besanko,1984;

Reinganum and Wilde, 1985; Graetz et al., 1986; Kofman and Lawarrée, 1993; and

Khalil and Lawarrée, 2001). However, two shortcomings arise under this presump-

tion. First, if agent’s misreport incentive is totally negated by principal’s ex ante

commitment, auditing itself will become unnecessary ex post. This is the paradox of

ex ante commitment to monitoring. Second, principals’ monitoring efforts are usually

difficult to verify. Thus, the literature of no-commitment to monitoring ensures (e.g.,

Reinganum and Wilde, 1986; Khalil, 1997; Chen and Liu, 2005a, 2007; Chen, 2006).

In the field of environmental economics, most theoretical works also assume that

regulators can make ex ante commitment to monitoring (e.g., Harford, 1978; Beavis and

Walker, 1983; Garvie and Keeler, 1994; Stranlund and Dhanda,1999; Macho-Stadler

and Perez-Castrillo, 2006). Nevertheless, regulators in the real world may have difficul-

ties in making commitment to monitoring due to its high-cost nature and complicated

prosecution procedures. In other words, no-commitment to monitoring could give reg-

ulators more flexibility while performing their duties. Moreover, regulators’ monitoring

commitments are not that credible to firms from time to time for unworthy records of

the authorities or the impossibility to verify whether the commitments are kept. Thus,

no-commitment to monitoring could be a better choice for regulators. To satisfy re-

searchers’ curiosity like ours as well as to provide regulators a criterion when choosing

between a commitment and a no-commitment mechanism, this paper would first inves-

tigate existence of the paradox of ex ante commitment to monitoring in emission tax

systems. If the paradox shows, regulators may prefer no-commitment to monitoring.

Oppositely, their inclination to a no-commitment setting will be weakened. The second
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purpose of this paper is to explore behavior of regulators and polluting firms in emis-

sion tax systems with and without commitment to monitoring. Then, we can compare

both systems and examine whether regulators are better off under a no-commitment

mechanism.

An emission tax system with regulator’s commitment to monitoring is first built.

Under the circumstance, polluting firms’ optimal abatements and reported emissions,

including both interior and boundary solutions, are derived. Moreover, regulator’s

emission tax and monitoring probability are endogenous in this model. Then, an

emission tax system without regulator’s commitment to monitoring is constructed.

Based on the two systems, we can inspect how players behave differently, and relative

efficiency of the two setups at their associated equilibria. In the commitment system,

firms are found noncompliant at all equilibria. This implies that the paradox of ex ante

commitment to monitoring does not appear in our model. Moreover, the commitment

system is shown at least as efficient as the no-commitment system. It suggests that

the regulator may face efficiency loss when she is able to commit but chooses not

to. These outcomes give the regulator fewer incentives to adopt the no-commitment

mechanism in emission tax systems. We also discover that firms’ weight in the social

cost function is conspicuous in determining relative magnitudes of optimal monitoring

probabilities as well as pollutant emissions in the two systems. Basically, relative sizes

of firms’ optimal emissions and equilibrium monitoring probabilities in the two systems

are uncertain unless firms’ weight in the social cost function is no less than one.

Our commitment game differs from previous settings as follows. Harford (1978)

focuses on firms’ interior solutions only, while we consider both interior and boundary

solutions. Harford adopts exogenous monitoring probability, while we use endogenous

monitoring probability. The regulator minimize firms’ total emissions in Macho-Stadler

and Perez-Castrillo (2006), while our regulator minimizes the expected weighted so-

cial cost. Our model differs from Beavis and Walker’s (1983) in terms of regulator’s

2



objective function. Garvie and Keeler (1994) and Stranlund and Dhanda (1999) ana-

lyze tradeable permit systems considering the commitment case only, while we focus

on emission tax systems deliberating both the commitment and no-commitment cases.

On the other hand, some environmental protection research assumes regulator’s no-

commitment to monitoring, such as Grieson and Singh (1990), Bose (1995), Franckx

(2002), Chen and Liu (2005b), and Friesen (2006). Players move simultaneously in

the first three studies, while they move sequentially in this paper. We (Chen and Liu,

2005b) compare the commitment and no-commitment cases in tradeable-permit pollu-

tion control systems, focusing on firms’ interior solutions only. Since some equilibria

are missed, whether the paradox of ex ante commitment to monitoring exists is not

addressed, and firms’ weight in the social cost function is set equal to one in that paper.

Although Friesen’s (2006) model allows players to move sequentially, the emphasis is

how firms’ self-auditing policy affects the social welfare. Finally, the robustness of our

findings is enhanced by assuming multiple firms and various firm-specific monitoring

probabilities in our setups, or by allowing asymmetric information between players

about firm’s abatement cost function.

The rest of this paper is organized as follows. Models are introduced in Section

2. Equilibria derived from the commitment and no-commitment systems are presented

in Sections 3 and 4, respectively. Comparisons between the two systems are made in

Section 5. Robustness of our findings is displayed in Section 6. And conclusions are

drawn in Section 7.

2. Models

One firm and one regulator are considered in our models.1 Let e represent the firm’s

pollutant emission level. Pollution can be reduced if emission abatement technologies

1In Section 6.1, the models would be extended to include one regulator and n firms. Same results

would still hold.
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or equipments are employed. Abatement level a would cost the firm C(a), and make

its discharge level become e = e(a), where e(·) is a function describing the relation

between pollution abatement and emission levels.2 Assume function C(·) is strictly

increasing and strictly convex, i.e., C ′(a) > 0 and C ′′(a) > 0 for all a ≥ 0. And e(·) is

strictly decreasing and strictly convex, i.e., e′(a) < 0 and e′′(a) > 0 for all a ≥ 0. Given

the firm’s emission e, environmental damage D(e) is the monetary loss corresponding

to this pollution level with D′(e) > 0 and D′′(e) > 0 for all e ≥ 0. Function forms of

C(·), e(·), and D(·) are known to the regulator and the firm.

In the setup, the regulator is equipped with policy instruments of emission tax and

monitoring, and he could commit to monitoring or not.3 If a precommitment is made,

the game is as follows. The regulator first announces emission tax t∗ and monitoring

probability α∗ to minimize the expected weighted social cost. Given (t∗, α∗), the

firm decides its optimal pollution abatement level a∗ and reports emission level s∗

to minimize its expected total cost.4 Then, monitoring is conducted based on the

regulator’s ex ante announcement. Thus, {t∗, α∗, a∗, s∗} constitutes a subgame

perfect equilibrium (hereafter SPE) of the emission tax system under commitment

to monitoring. Alternatively, if no monitoring commitment is made, we have the

ensuing game. The regulator first announces emission tax t̂ to minimize the expected

weighted social cost. Given t̂, the firm selects its optimal pollution abatement level â

and reports emission level ŝ to minimize its expected total cost. After knowing the

firm’s reported emission, the regulator determines an optimal monitoring probability, α̂,

to minimize the expected weighted social cost. Monitoring is then conducted according

2For instance, e(a) = ē − a, where ē is the firm’s maximal emission level without pollution abate-

ment. Alternatively, e(a) = ē − aα with 0 < α < 1 also satisfies the required conditions.
3The environmental protection agent (EPA) in the States cannot determine emission tax levels,

while the EPAs in Hong Kong and Taiwan can. If the regulator is not allowed to choose emission tax

in our models, all the outcomes except those of Lemma 2(iic) and Lemma 3 would remain true.
4Malik (1993) and Macho-Stadler and Perez-Castrillo (2006) also consider the self-reporting mech-

anism. Our design is the same as Macho-Stadler and Perez-Castrillo’s (2006).
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to probability α̂. Thus, {t̂, â, ŝ, α̂} is a SPE of the emission tax system under no-

commitment to monitoring.

Let h(α) be the regulator’s enforcement cost corresponding to monitoring proba-

bility α. The cost includes all the expenses incurred during the monitoring and prose-

cuting process. As in Faure-Grimaud, Laffont, and Martimort (1999), h(α) is assumed

to be a monotonically increasing and strictly convex function with h(0) = h0 ≥ 0,

i.e., h′(α) > 0 and h′′(α) > 0 for all α ≥ 0. Nonzero h0 could represent fixed cost

of monitoring activities. As monitoring probability increases, the regulator needs to

inspect the firm more frequently. Hence the expenses of monitoring and prosecuting

violated firms will expand accordingly. Define v = e − s. While v = 0 means that the

firm is compliant, v > 0 indicates that the firm is noncompliant and will be fined f(v).

Assume f(·) is strictly increasing and strictly convex with f(0) = 0, i.e., f ′(v) > 0 and

f ′′(v) > 0 for all v ≥ 0. For simplicity, the third and higher-order derivatives of h(α)

and f(v) are presumed to be zero.5 Since the firm’s abatement cost function is com-

mon knowledge, the regulator can infer the firm’s cost-minimizing optimal abatement

level from it. Thus, as in Beavis and Walker (1983) and Malik (1993), monitoring is to

verify the firm’s reported emissions to serve as the official emission readings for later

prosecuting usage perhaps. In Section 6.2, the complete information assumption about

C(·) would be relaxed, and the firm is presumed to have better information on C(·)

than the regulator. Under the circumstance, the regulator would not know the firm’s

emissions. Therefore, monitoring is necessary to uncover the firm’s true emissions and

verify its reported emissions. And our outcomes are not affected by this relaxation.

Finally, let us depict the firm’s and the regulator’s objective functions in the two

games. The firm’s expected total cost is composed of the expenses of pollution abate-

ment, emission tax levied based on its reported emissions, and expected penalty for

5If the third and higher-order derivatives of h(α) and f(v) are nonzero, our outcomes still hold as

the derivatives’ magnitudes are small.
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noncompliance,6 i.e.,

FC(a, s) ≡ C(a) + ts + αf(e − s). (1)

The regulator’s expected weighted social cost is composed of the pollution damage, net

monitoring cost, and weighted firm’s expected total cost. That is,

SC(α, t) ≡ D(e) + [h(α) − ts − αf(e − s)] + βFC(a, s),

where β > 0 is the firm’s weight given in the social cost function.7 The weight param-

eter could represent the tradeoff between economic growth and environmental quality.

When β > 1, the environmental damage caused by pollutant emissions is regarded less

important than polluting firm’s expected total cost. This may describe the situation

faced by many developing countries, which put a larger weight on economic growth

driven by firm’s production. In contrast, when β < 1, the environmental damage from

pollutant emissions is treated more seriously than firm’s expected total cost. It could

reflect the situation faced by developed countries, which put a bigger weight on en-

vironmental quality. When β = 1, the regulator considers environmental quality and

economic growth equally significant. By (1), we have

SC(α, t) ≡ D(e) + h(α) + βC(a) − (1 − β)[ts + αf(e − s)]. (2)

The SPEs of our models are derived in the following two sections.

3. Commitment to Monitoring

In this section, the SPEs, (t∗, α∗, a∗, s∗), of the emission tax system with com-

mitment to monitoring are derived by the backward induction method.

6For simplicity, we do not consider the evaded tax, αt[e − s], for noncompliant firms here. Our

results would remain true qualitatively even the evaded tax is counted, and are available on request.
7This kind of objective function appears often in the regulatory (e.g., Baron and Myerson, 1982;

Baron and Besanko, 1984, 1987) and environmental protection literature (e.g., Friesen, 2006). Firms’

weight is usually assumed no greater than one. However, we consider a more general situation here.
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First, given emission tax t and monitoring probability α, the firm will choose

abatement level a∗ and report emission level s∗, which are the solution of

mina, s FC(a, s) = C(a) + ts + αf(e − s)

s.t. 0 ≤ e ≤ ē and 0 ≤ s ≤ e.
(3)

The first-order conditions for interior solutions are

∂FC

∂a
=

dC(a)

da
+ αf ′(e − s) ·

de(a)

da
= 0, and (4)

∂FC

∂s
= t − αf ′(e − s) = 0. (5)

From (4)-(5), we know that the firm’s optimal choices vary with monitoring probability

and emission tax. To better observe the details, we decompose all value combinations

of α and t into four disjoint regions by the increasing order of monitoring probability.

Region 1 ≡ {(α, t) | α = 0 and t ≤ t ≤ t̄},

Region 2 ≡ {(α, t) | 0 < α <
t

f ′(ẽ(t))
and t ≤ t ≤ t̄},

Region 3 ≡ {(α, t) |
t

f ′(ẽ(t))
≤ α <

t

f ′(0)
and t ≤ t ≤ t̄}, and

Region 4 ≡ {(α, t) |
t

f ′(0)
≤ α ≤ 1 and t ≤ t ≤ t̄}.

Here t and t̄ are the lower and upper bounds of emission tax, respectively, with

0 < t < t̄ < ∞. The former could represent the minimum emission tax to main-

tain environmental quality, while the latter is the maximum emission tax under which

the firm could still produce. And ẽ(t) = e(ã(t)) is the firm’s emission level associated

with abatement amount ã(t) given emission tax t, which satisfies equation (7) below.

To have non-empty four regions, we make the following assumption.

Assumption A1: f ′(0) is large enough with t̄
f ′(0)

< 1.

Accordingly, we can obtain the firm’s optimal behavior in all regions. Denote a∗
i

and s∗i respectively the firm’s optimal abatement and reported emission levels in region

i, i ∈ {1, 2, 3, 4}. They are characterized below.

7



Proposition 1. Suppose that assumption A1 holds. In the emission tax system with

commitment to monitoring, we have the following.

(i) In region 1, a∗
1 = 0, e∗1 = ē, and s∗1 = 0.

(ii) In region 2, a∗
2 = a∗(α) satisfying

dC(a∗
2)

da
= −αf ′(e(a∗

2)) ·
de(a∗

2)

da
, (6)

e∗2(α) = e(a∗(α)), and s∗2 = 0. Moreover,
da∗

2

dα
> 0 and

de∗
2

dα
< 0.

(iii) In region 3, a∗
3 = ã(t) satisfying

dC(a∗
3)

da
= −t ·

de(a∗
3)

da
, (7)

e∗3(t) = e(ã(t)), and s∗3 = s̃(α, t) satisfying (5) and 0 ≤ s∗3 < e∗3(t). Note that s∗3 = 0

occurs only when α = t
f ′(ẽ(t))

. Moreover,
da∗

3

dt
> 0,

de∗
3

dt
< 0,

∂s∗
3

∂α
> 0, and

∂s∗
3

∂t
< 0.

(v) In region 4, a∗
4 = ã(t) satisfying (7), e∗4(t) = e(ã(t)), and s∗4(t) = e∗4(t). Moreover,

da∗

4

dt
> 0 and

ds∗
4

dt
=

de∗
4

dt
< 0.

Proof. See the Appendix.

Proposition 1 demonstrates how firm’s optimal emissions and reported emissions

vary with values of monitoring probability and emission tax. Proposition 1(i)-(iii) im-

ply that the firm will not comply when monitoring probability is small, while Propo-

sition 1(iv) shows that the firm complies for large enough monitoring probability. The

explanations are given below.

If the regulator does not monitor, the firm will emit as many pollutants as possible

and report zero emission due to no punishment. This is what Proposition 1(i) says.

To demonstrate cases with nonzero monitoring probability, let us rewrite equations (4)

and (5) as follows.

−
dC(a)

da
· [

de(a)

da
]−1 = αf ′(e − s) (4)′

t = αf ′(e − s) (5)′

Higher emissions will lower the firm’s abatement cost, but increase its expected fine.

Thus, the LHS and RHS of (4)′ are the marginal benefit and marginal cost of the
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firm’s emission, respectively. Similarly, larger reported emissions will reduce the firm’s

expected fine but raise its tax payment. Thus, the LHS and RHS of (5)′ are the marginal

cost and marginal benefit of the firm’s reported emission, respectively. Equations (4)′

and (5)′ imply that the marginal cost of the firm’s emission equals its marginal benefit

of reported emission. The impact of nonzero monitoring probability (α) on the firm’s

optimal emissions is composed of a direct and an indirect effects. As α increases, the

marginal cost of emission increases, hence the firm will discharge fewer emissions. This

is the direct effect. On the other hand, rising α will enhance the marginal benefit

of reported emission, which would lead to larger reported emissions. However, larger

reported emissions will lower the marginal cost of emission, hence the firm will emit

more. This is the indirect effect. In region 2, the indirect effect is nil because monitoring

probability is so small that the increased marginal benefit of reported emission due

to rising α is always less than its marginal cost (t). Hence, the firm will report zero

emission. Consequently, only the direct effect occurs in region 2, and the firm’s optimal

emissions will decrease with rising α. That is what Proposition 1(ii) claims. In regions

3-4, the indirect effect exists because the firm’s optimal reported emissions are nonzero.

However, the direct and indirect effects will offset each other because the marginal cost

of the firm’s emission equals its marginal benefit of reported emission. Under the

circumstance, the firm’s optimal emissions are not affected by monitoring probability,

and depend on emission tax only. As to the firm’s optimal reported emission in region 3,

it will meet (5), hence depends on both emission tax and monitoring probability. And

the firm will report more as emission tax decreases or monitoring probability increases.

That is what Proposition 1(iii) states. In region 4, since monitoring probability is large

enough, the increased marginal benefit of reported emission due to rising α is always

larger than its marginal cost (t). Consequently, the firm will report as many emissions

as possible.

Next, we compare Proposition 1 with relevant literature. Proposition 1 suggests

that both the firm’s optimal abatement and reported emission levels are interior solu-
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tions in region 3 only, i.e., (a∗
3, s∗3), which is also uncovered by Harford (1978). Never-

theless, Harford neglects boundary solution (a∗
2, s∗2), at which firm’s optimal emissions

depend on monitoring probability. The outcomes of Proposition 1 are similar to those

obtained by Macho-Stadler and Perez-Castrillo (2006). Nevertheless, since regulators’

objective functions are different in the two models, it will be shown later that solutions

in region 4, i.e., (a∗
4, s∗4), cannot be part of our equilibrium, although the firm could

comply at some equilibria of Macho-Stadler and Perez-Castrillo (2006).

Before presenting our equilibria, let us first summarize the impact of monitoring

probability and emission tax on the firm’s optimal behavior below.

Corollary 1. Suppose that assumption A1 holds. In the emission tax system with

commitment to monitoring, we have the following.

(i) a∗ is non-decreasing in α and t, i.e., ∂a∗

∂α
≥ 0 and ∂a∗

∂t
≥ 0.

(ii) e∗ is non-increasing in α and t, i.e., ∂e∗

∂α
≤ 0 and ∂e∗

∂t
≤ 0.

(iii) s∗ is non-decreasing in α and non-increasing in t, i.e., ∂s∗

∂α
≥ 0 and ∂s∗

∂t
≤ 0.

Proof. These come from Proposition 1 directly.

The relations between (e∗, s∗) and α are graphed in Figure 1 for a given emission tax

t.

Given the firm’s best choices (a∗, s∗) as in Proposition 1, the regulator is assumed

to pick monitoring probability α∗ and emission tax t∗ to solve the problem of

minα, t SC(α, t) ≡ D(e∗) + h(α) + βC(a∗) − (1 − β)[ts∗ + αf(e∗ − s∗)]

s.t. 0 ≤ α ≤ 1 and 0 < t ≤ t ≤ t̄.
(8)

Recall that t and t̄ are the lower and upper bounds of emission tax, respectively. The

first-order conditions for interior solutions are

∂SC

∂α
= [De(e

∗)ea(a
∗) + βC ′(a∗) − (1 − β)αf ′(e∗ − s∗)ea(a

∗)]
∂a∗

∂α
+ h′(α)

−(1 − β)[(t − αf ′(e∗ − s∗))
∂s∗

∂α
+ f(e∗ − s∗)] = 0, and (9)
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Figure 1: The Firm’s optimal Emissions and Reported Emissions in Regions 1-4
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∂SC

∂t
= [De(e

∗)ea(a
∗) + βC ′(a∗) − (1 − β)αf ′(e∗ − s∗)ea(a

∗)]
∂a∗

∂t

−(1 − β)[s∗ + (t − αf ′(e∗ − s∗))
∂s∗

∂t
] = 0. (10)

We derive (α∗, t∗) by the following two steps. First, given the firm’s optimal choice

in region i, i ∈ {1, 2, 3, 4}, we try to find (α∗
i , t∗i ) in each region to minimize the

regulator’s expected weighted social cost. Denote SCi(α
∗
i , t∗i ) the associated minimum

expected weighted social cost in region i, i ∈ {1, 2, 3, 4}. Second, the optimal solution

(α∗, t∗) is the one minimizing SCi(α
∗
i , t∗i ) over i ∈ {1, 2, 3, 4}. That is,

(α∗, t∗) ∈ arg min
i∈{1, 2, 3, 4}

SCi(α
∗
i , t∗i ).

By carrying out the two steps, (α∗, t∗) could be delineated below.

Proposition 2. Suppose that assumption A1 holds. In the emission tax system with

commitment to monitoring, we have the following.

(i) Let β ≥ 1. If (α∗, t∗) exist, they could be in region 1, and region 2 if C ′(a∗
2) <

|De(e
∗
2)ea(a

∗
2)|. That is, we have 0 ≤ α∗ < t∗

f ′(ẽ(t∗))
if (α∗, t∗) exist.

(ii) Let β < 1. If (α∗, t∗) exist, they could be in regions 2 and 3. That is, we have

0 < α∗ < t∗

f ′(0)
if (α∗, t∗) exist.

Proof. See the Appendix.

Proposition 2 shows that firm’s weight in the social cost function is important in

determining optimal monitoring probability and emission tax. The reasons are given

below.

If the firm’s weight is greater than or equal to one, Proposition 2(i) shows that

optimal emission tax and monitoring probability would not appear in regions 3 and

4. That is because the firm’s optimal emissions are unaffected by monitoring policy in

the regions. Under the circumstance, equation (9) implies that the marginal benefit of

monitoring ((1 − β)f(e∗ − s∗)) is nonpositive, while the marginal cost of monitoring
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(h′(α)) is positive. Accordingly, no monitoring is optimal. It contradicts regions 3

and 4’s positive monitoring probability requirement. Thus, no equilibrium monitoring

probability will occur in regions 3 and 4. Also, equilibrium monitoring probability and

emission tax will not appear in region 2 when the firm’s marginal cost of abatement

is large enough. Again, no monitoring is optimal since it will lead to firm’s zero

abatement, and lower abatement and social cost. This is inconsistent with region 2’s

positive monitoring probability requirement. In sum, optimal monitoring probability

and emission tax will be in region 1 or 2 when the firm’s marginal abatement cost is

small.

If the firm’s weight is less than one, the emission damage will become more sig-

nificant. Thus, it is optimal for the regulator to suppress firm’s emissions through

monitoring with positive probability. However, optimal monitoring probability cannot

appear in region 4. If it is in region 4, the firm will comply by Proposition 1(iv). And

equation (9) implies that the marginal benefit of monitoring the firm ((1−β)f(e∗−s∗))

is zero, but monitoring is costly. Therefore, no monitoring is optimal and the contra-

diction occurs. By contrast, optimal monitoring probability and emission tax could

appear in region 2 or 3. Under the circumstance, the marginal benefit of monitoring

((1−β)f(e∗− s∗)) is positive, so is the marginal cost of monitoring. Thus, equilibrium

monitoring probability is positive.

By combining outcomes of Propositions 1 and 2, we obtain Corollary 2.

Corollary 2. Suppose that assumption A1 holds. At equilibria (t∗, α∗, a∗, s∗) of the

emission tax system with commitment to monitoring, we have the following.

(i) When β ≥ 1, we have 0 ≤ α∗ < t∗

f ′(ẽ(t∗))
. And (a∗, s∗) = (a∗

1, s∗1) if α∗ = 0, and

(a∗, s∗) = (a∗
2, s∗2) if α∗ > 0 and C ′(a) < |De(e)ea(a)| for all a ≥ 0.

(ii) When β < 1, we have 0 < α∗ < t∗

f ′(0)
. And (a∗, s∗) could be (a∗

2, s∗2) or (a∗
3, s∗3).

Proof. These come from Propositions 1 and 2 directly.
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The first implication of Corollary 2 is that the firm will not comply at all equilibria

under the commitment setting. This means that the paradox of ex ante commitment

to monitoring does not exist here. In contrast, some equilibria with compliant firms

appear in Macho-Stadler and Perez-Castrillo’s (2006) study. Second, the effectiveness

of monitoring in reducing firm’s optimal emissions depends on the firm’s weight in the

social cost function. If the firm’s weight is greater than or equal to one, monitoring

can effectively reduce pollutant emissions as the regulator monitors with positive prob-

ability. This outcome is different from Harford’s (1978) finding. However, if the firm’s

weight is less than one, monitoring may be ineffective even the regulator monitors with

positive probability.

4. No-Commitment to Monitoring

In this section, the SPEs of the emission tax system with no-commitment to mon-

itoring will be derived by the backward induction method.

First, given emission tax t and the firm’s abatement and reported emission level

(a, s), the regulator is assumed to choose monitoring probability α̂ to minimize the

expected weighted social cost. That is, α̂ solves the problem of

minα SC(α | a, s, t) = D(e) + h(α) + βC(a) − (1 − β)[ts + αf(e − s)]

s.t. 0 ≤ α ≤ 1.
(11)

At this stage, the regulator behaves exactly like minimizing the net monitoring cost

since the firm’s choice and emission tax are fixed. Thus, the first- and second-order

conditions for interior solutions are

dSC(α | a, s, t)

dα
= h′(α) − (1 − β)f(e − s) = 0, and (12)

d2SC(α | a, s, t)

dα2
= h′′(α) > 0 ∀α, respectively.

If the firm’s weight in social cost function is greater than or equal to one (β ≥ 1) or

the firm is compliant (e = s), we have dSC(α | a, s, t)
dα

> 0 by (12). Thus, no monitoring
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is optimal for the following reasons. When β > 1, the marginal benefit of monitoring,

(1−β)f(e−s), is negative because the firm’s expected penalty (βαf(e−s)) is counted

more than the regulator’s expected revenue of fine (αf(e−s)) in the social cost function.

Therefore, it is optimal for the regulator not to monitor. When β = 1, the firm’s

expected penalty and the regulator’s expected revenue of fine offset each other in

the social cost function. Hence, the marginal benefit of monitoring is zero, while the

marginal cost of monitoring, h′(α), is positive. No monitoring is still the regulator’s best

choice. Similarly, when the firm is compliant (e = s), it is optimal for the regulator not

to monitor because of zero marginal benefit and positive marginal cost of monitoring.

In opposite, when the firm’s weight is less than one, the marginal benefit and

marginal cost of monitoring are both positive. Therefore, it is optimal for the regulator

to monitor with probability α̂ > 0 satisfying the condition of

h′(α̂) = (1 − β)f(e − s). (13)

Equation (13) sets the marginal cost equal to the marginal benefit of monitoring.

Consequently, optimal monitoring probability is affected by the firm’s abatements and

reported emissions. That is, α̂ = α̂(a, s) exists with8

∂α̂

∂a
=

(1 − β)f ′(e − s) · de(a)
da

h′′(α̂)
< 0, and (14)

∂α̂

∂s
=

−(1 − β)f ′(e − s)

h′′(α̂)
< 0. (15)

It means that the regulator will monitor more (less) ex post when the firm abates or

reports fewer (more) emissions. Moreover, we have ∂α̂
∂a

= −∂α̂
∂s

∂e
∂a

. These results are

summarized below.

Lemma 1. (i) If β ≥ 1 or e = s, then α̂ = 0.

(ii) If β < 1 and e 6= s, then α̂ = α̂(a, s) > 0 exists with ∂α̂
∂a

< 0 and ∂α̂
∂s

< 0.

8By the implicit function theorem, given (a, s), α̂(a, s) exists due to h′′ > 0 for all α.
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Second, given emission tax t and monitoring probability α̂ = α̂(a, s), the firm will

adopt abatement level â and report emission level ŝ to the regulator, which solve (3)

with α replaced by α̂. The first-order conditions for interior solutions are

∂FC

∂a
=

dC

da
+ α̂f ′(e − s)

de

da
+ f(e − s)

∂α̂

∂a
= 0, and (16)

∂FC

∂s
= t − α̂f ′(e − s) + f(e − s)

∂α̂

∂s
= 0. (17)

Equation (16) suggests that, at the firm’s optimal abatement levels, the marginal cost

and the marginal benefit of abatement are equal. The marginal benefit of abatement is

composed of the changes of fine (−α̂f ′(e − s) ∂e
∂a

) and monitoring probability (−f(e −

s)∂α̂
∂a

) caused by an abatement shift. The latter effect is not present in the commitment

case. Similarly, at the firm’s equilibrium reported emission levels, emission tax equals

the marginal benefit of emission report, which consists of the changes of fine (α̂f ′(e−s))

and monitoring probability (−f(e− s) ∂α̂
∂s

) due to a reported emission shift. Again, the

latter effect does not appear in the commitment case.

As in the commitment case, if the regulator will not monitor ex post, the firm will

abate and report zero emission by (16)-(17). However, unlike the commitment case,

only interior solutions, (â, ŝ), will exist when the regulator monitors with positive

probability.9 Interior solution â = â(t) meets the condition of

dC(â)

da
= −t ·

de(â)

da
(18)

by (16)-(17) and ∂α̂
∂a

= −∂α̂
∂s

∂e
∂a

. And interior solution ŝ = ŝ(t) satisfies (17). Next, we

derive their properties. Denote Ĥ the Hessian matrix associated with (16)-(17), where

Ĥ ≡


 Ĥ11 Ĥ12

Ĥ12 Ĥ22




9For a given s ≥ 0, if dC(0)
da

≥ −α̂f ′(ē − s)de(ē)
da

− f(ē − s) ∂α̂(0, s)
∂a

, there exists no solution. In

contrast, if dC(0)
da

< −α̂f ′(ē− s)de(ē)
da

− f(ē− s) ∂α̂(0, s)
∂a

, there exists a unique interior solution because

dC(a)
da

is a strictly increasing function of a and −α̂f ′(e−s)de(a)
da

−f(e−s)∂α̂(a, s)
∂a

is a strictly decreasing

function of a. Similar arguments can be applied to show the existence of ŝ. Throughout this paper,

the conditions guaranteeing the existence of interior solutions are assumed.
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with Ĥij > 0, i, j ∈ {1, 2}. For brevity, the definitions of Ĥij, i, j ∈ {1, 2}, are

provided in the Appendix. To make (16)-(17) sufficient conditions as well, the following

assumption is required.

Assumption A2: |Ĥ| = Ĥ11Ĥ22 − (Ĥ12)
2 > 0 at (â, ŝ).

Under assumption A2, the properties of (â, ŝ) can be derived.

Lemma 2. Suppose that assumption A2 holds. Then we have the following.

(i) If β ≥ 1, then â = ŝ = 0 and ê = ē.

(ii) If β < 1, then â = â(t) and ŝ = ŝ(t) exist with

(iia) dâ
dt

= Ĥ12

|Ĥ|
> 0,

(iib) dŝ
dt

= −Ĥ11

|Ĥ|
< 0, and

(iic) dα̂
dt

≥ (≤) 0 iff de
da

Ĥ12 ≥ (≤) − Ĥ11.

Proof . See the Appendix.

When the firm’s weight is greater than or equal to one, the regulator will not

monitor by Lemma 1(i). Thus, the firm will abate and report zero emission, and

discharge as many pollutants as possible. This is what Lemma 2(i) claims. When the

firm’s weight is less than one, the regulator will monitor with positive probability by

Lemma 1(ii). Hence, the firm’s optimal choices are interior solutions and depend on

emission tax only. Moreover, the firm will abate more (fewer) and report fewer (more)

emissions with rising (falling) emission tax. The latter result is different from that

under the commitment case, in which the firm’s optimal reported emissions depend on

both monitoring probability and emission tax.

Furthermore, emission tax could affect equilibrium monitoring probability posi-

tively or negatively under the no-commitment case, while they are independent in the

commitment case. As emission tax increases, the firm will abate more emissions by

Lemma 2(iia), hence the regulator will monitor less ex post by (14). Nevertheless, the

firm will report fewer emissions due to higher emission tax by Lemma 2(iib). Thus,
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more ex post monitoring is induced by (15). If the former effect dominates, optimal

monitoring probability would decrease with rising emission tax, and monitoring is a

substitute for emission tax. In contrast, if the latter effect dominates, optimal monitor-

ing probability would increase with rising emission tax, and monitoring is a complement

to emission tax. When the two effects are equal, optimal monitoring probability and

emission tax are independent as in the commitment case.

Third, given optimal monitoring probability α̂ = α̂(â, ŝ) and the firm’s optimal

abatement and reported emission (â(t), ŝ(t)), the regulator selects optimal emission

tax t̂ to solve the problem of

min
t

SC(α̂(t), t) = D(ê) + h(α̂) + βC(â) − (1 − β)[tŝ + α̂f(ê − ŝ)]

subject to 0 < t ≤ t ≤ t̄.

The first-order condition for interior solutions is

dSC

dt
=

{
De(ê)ea(â) + βC ′(â) − (1 − β)

[
∂α̂
∂a

f(ê − ŝ) + α̂f ′(ê − ŝ)ea(â)
]}

dâ
dt

−(1 − β)
[
t − α̂f ′(ê − ŝ) + ∂α̂

∂s
f(ê − ŝ)

]
dŝ
dt

+ h′(α̂)dα̂
dt

− (1 − β)ŝ = 0, (19)

where dα̂
dt

= [∂α̂
∂a

dâ
dt

+ ∂α̂
∂s

dŝ
dt

]. By the first-order conditions of (16)-(17), we can simplify

(19) to

dSC

dt
= [De(ê)ea(â) + C ′(â)]

dâ

dt
+ h′(α̂)

dα̂

dt
− (1 − β)ŝ(t) = 0. (20)

The following assumption makes (20) a sufficient condition for interior t̂ as well.

Assumption A3: d2SC
dt2

(t̂) > 0.10

Then, we can characterize optimal emission tax t̂ below.

Lemma 3. Suppose that assumptions A2-A3 hold. We have the following.

(i) If β ≥ 1, then t̂ could be any number in [t, t̄].

10This assumption holds if D′′(ê) or C ′′(â) is large enough.
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(ii) If β < 1, then





t̂ = t̄ if De(ê)ea(â) + C ′(â) ≤ 0 and dα̂
dt

≤ 0,

t̂ ∈ [t, t̄] otherwise.

Proof. See the Appendix.

As in the commitment case, optimal emission tax depends on the firm’s weight in

the social cost function.

5. Comparing the Commitment and No-Commitment Systems

The SPEs of the commitment and no-commitment to monitoring games are com-

pared in terms of the firm’s emission level, monitoring probability, emission tax, and

the expected weighted social cost.

Given equilibria (t∗, α∗, a∗, s∗) and (t̂, â, ŝ, α̂) at the commitment and no-

commitment systems, respectively, we first compare α∗ and α̂ below.

Lemma 4. Suppose that assumptions A1-A3 hold. Then we have the following.

(i) If β ≥ 1, then α∗ ≥ α̂. The equality holds when C ′(a) ≥ |De(e)ea(a)| for all a ≥ 0.

(ii) If β < 1, then relative sizes of α∗ and α̂ are ambiguous.

Proof. See the Appendix.

When the firm’s weight is greater than or equal to one, the regulator will not

monitor in the no-commitment case, while he may monitor with positive probability in

the commitment case by Proposition 2(i). Thus, we have α∗ ≥ α̂ as claimed by Lemma

4(i). In contrast, the regulator will monitor with positive probability in both systems by

Proposition 2(ii) and Lemma 1(ii) when the firm’s weight is less than one. Accordingly,

relative sizes of optimal monitoring probabilities in the two systems are unsure as

claimed by Lemma 4(ii). Actually, relative magnitudes of optimal emission taxes in

the two systems are also unclear, which is shown after Lemma B in the Appendix.
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Next, by combining the outcomes of Lemmas 1, 2, 4, and Proposition 2, we can

reach conclusions about the firm’s optimal emission and abatement levels.

Lemma 5. Suppose that assumptions A1-A3 hold. Then we have the following.

(i) If β ≥ 1, then a∗ ≥ â, s∗ ≥ ŝ, and e∗ ≤ ê. The equality holds when C ′(a) ≥

|De(e)ea(a)| for all a ≥ 0.

(ii) If β < 1, then relative sizes of a∗ and â are ambiguous, and so are those of e∗

and ê.

Proof. See the Appendix.

Lemma 5 shows that for β ≥ 1 the firm will abate fewer and discharge more

emissions in the no-commitment than in the commitment system. That is because

the regulator does not monitor in the no-commitment system. In contrast, as β < 1,

relative sizes of the firm’s optimal abatements and emissions in the two systems are

unpredictable due to uncertain relative magnitudes of optimal monitoring probabilities

and emission taxes in the two systems.

Finally, contrary to previous unjudgeable situations, the expected weighted social

costs at equilibria of the two systems can be compared in general.

Proposition 3. Under assumptions A1-A3, we have SC(α̂, t̂) ≥ SC(α∗, t∗).

Proof. In the commitment system, the regulator choose (α∗, t∗) to solve the problem

of

minα, t SC(α, t) = D(e∗) + h(α) + βC(a∗) − (1 − β)[ts∗ + αf(e∗ − s∗)]

s.t. (a∗, s∗) ∈ arg mina, s C(a) + ts + αf(e − s),

0 ≤ e ≤ ē, 0 ≤ s ≤ e, 0 ≤ α ≤ 1, and 0 < t ≤ t ≤ t̄.

(21)
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In the no-commitment system, the regulator chooses (α̂, t̂) to solve the problem of

minα, t SC(α̂(t), t) = D(ê) + h(α̂) + βC(â) − (1 − β)[tŝ + α̂f(ê − ŝ)]

s.t. (â, ŝ) ∈ arg mina, s C(a) + ts + α̂f(e − s),

α̂ ∈ arg minα SC(α | â, ŝ, t) = D(ê) + h(α) + βC(â) − (1 − β)[tŝ + αf(ê − ŝ)],

0 ≤ e ≤ ē, 0 ≤ s ≤ e, 0 ≤ α ≤ 1, and 0 < t ≤ t ≤ t̄.

(22)

Let Sc be the set of (a, s, α, t) satisfying all constraints listed in (21), and Snc be the

set of (a, s, α, t) satisfying all constraints listed in (22). It is obvious that Snc ⊆ Sc.

Consequently, we have SC(α̂, t̂) ≥ SC(α∗, t∗). 2

Proposition 3 suggests that the commitment system is at least as efficient as the

no-commitment system. This means that the regulator may face efficiency loss when

she can commit but chooses not to. The intuition behind Proposition 3 is simple. The

regulator has the first-mover advantage in the commitment system since she decides

monitoring probability before the firm’s optimal actions, but this advantage disappears

in the no-commitment system. Thus, efficiency loss could happen in the latter case.

Accordingly, the result of Proposition 3 will weaken regulator’s incentive to adopt the

no-commitment design.

6. Extensions

For brevity, all proofs in this section are omitted and available on request.

6.1. One Regulator and n Firms

If damage and monitoring-cost functions over firms are additively separable, the

results in Sections 3-5 would hold when our models are extended to include one reg-

ulator and n, n ≥ 2, firms. Let Ci(ai) be firm i’s cost at abatement level ai with

C ′
i(ai) > 0, C ′′

i (ai) > 0 for all ai ≥ 0, i = 1, 2, . . . , n. Moreover, let si and ei = ei(ai)

21



represent firm i’s reported emission and emission levels with ei(0) = ēi, e′i(·) < 0, and

e′′i (·) > 0. The regulator’s monitoring probability for firm i is denoted by αi. Then, in

the commitment case, the regulator will choose {α∗
i }

n
i=1 and t∗ to solve the problem of

minα1,...,αn, t

∑n

i=1{D(e∗i ) + h(αi) + βCi(a
∗
i ) − (1 − β)[tsi + αif(e∗i − s∗i )]}

s.t. (a∗
i , s∗i ) ∈ arg minai, si

Ci(ai) + tsi + αif(ei − si),

0 ≤ ei ≤ ēi, 0 ≤ si ≤ ei, 0 ≤ αi ≤ 1, 0 < t ≤ t ≤ t̄, i = 1, 2, . . . , n.

In the no-commitment case, the regulator will choose (α̂1, α̂1, . . . , α̂n, t̂) to solve the

problem of

minα, t

∑n

i=1{D(êi) + h(α̂i) + βCi(âi) − (1 − β)[tŝi + α̂if(êi − ŝi)]}

s.t. (âi, ŝi) ∈ arg minai, si
Ci(ai) + tsi + α̂if(ei − si),

α̂i ∈ arg minαi

∑n

i=1{D(êi) + h(αi) + βCi(âi) − (1 − β)[tŝi + αif(êi − ŝi)]},

0 ≤ ei ≤ ēi, 0 ≤ si ≤ ei, 0 ≤ αi ≤ 1, 0 < t ≤ t ≤ t̄, i = 1, 2, . . . , n.

Since firms’ behavior is pairwisely independent, it is easy to see that the outcomes in

Sections 3-5 remain true qualitatively if α∗, α̂, a∗, â, s∗, ŝ, C(·) and e(·) are replaced

by α∗
i , α̂i, a∗

i , âi, s∗i , ŝi, Ci(·) and ei(·), respectively. Also, equations (10) and (19)

should be replaced by

∂SC

∂t
=

n∑

i=1

{[De(e
∗
i )

dei(a
∗
i )

dai

+ βC ′
i(a

∗
i ) − (1 − β)αif

′(e∗i − s∗i )
dei

dai

]
∂a∗

i

∂t
− (1 − β)[s∗i

+(t − αif
′(e∗i − s∗i ))

∂s∗i
∂t

]} = 0, and

∂SC

∂t
=

n∑

i=1

{[De(êi)
dei(âi)

dai

+ βC ′
i(âi) − (1 − β)(

∂α̂i

∂ai

f(êi − ŝi) + α̂if
′(êi − ŝi)

dei(âi)

dai

)]
dâi

dt

−(1 − β)[t − α̂if
′(êi − ŝi) +

∂α̂i

∂si

f(êi − ŝi)]
dŝi

dt
+ h′(α̂i)

dα̂i

dt
− (1 − β)ŝi} = 0,

respectively. Here dα̂i

dt
= ∂α̂i

∂ai

∂âi

∂t
+ ∂α̂i

∂si

∂ŝi

∂t
for i = 1, 2, . . . , n.
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6.2. Incomplete Information on Firm’s Abatement Cost Function

In this section, we relax the complete information assumption about the firm’s abate-

ment cost function. Our conclusions obtained in Sections 3-5 are shown to remain

true.

As in Yates and Cronshaw (2001), it is presumed that there exists a parameter

ε in the firm’s abatement cost function, i.e., C(a, ε). The true value of ε is only

known to the firm, and the regulator perceives the distribution of ε. In other words,

the firm’s optimal emission abatement levels, a∗(·, ε) and â(·, ε), in the two systems

are stochastic for the regulator, and so are the firm’s reported emissions, s∗(·, ε) and

ŝ(·, ε). Thus, monitoring is conducted to both discover the firm’s true emissions and

verify its reported emissions. In the commitment system, the regulator chooses (α∗, t∗)

to solve the problem of

minα, t S̄C(α, t) ≡ ED(e∗) + h(α) + βEC(a∗) − (1 − β)[tEs∗ + αEf(e∗ − s∗)]

s.t. (a∗, s∗) ∈ arg mina, s C(a, ε) + ts + αf(e − s),

0 ≤ e ≤ ē, 0 ≤ s ≤ e, 0 ≤ α ≤ 1, 0 < t ≤ t ≤ t̄,

where E is the expectation operator taken with respect to ε. Accordingly, equations

(9)-(10) are replaced by

∂S̄C

∂α
=

∫
[De(e

∗)ea(a
∗) + βC ′(a∗) − (1 − β)αf ′(e∗ − s∗)ea(a

∗)]
∂a∗

∂α
dg(ε) + h′(α)

−(1 − β)

∫
{[t − αf ′(e∗ − s∗)]

∂s∗

∂α
+ f(e∗ − s∗)}dg(ε) = 0, and

∂S̄C

∂t
=

∫
[De(e

∗)ea(a
∗) + βC ′(a∗) − (1 − β)αf ′(e∗ − s∗)ea(a

∗)]
∂a∗

∂t
dg(ε)

−(1 − β)

∫
{s∗ + (t − αf ′(e∗ − s∗))

∂s∗

∂t
}dg(ε) = 0,

respectively, where g(ε) is the CDF of random variable ε. It is easy to see that Propo-

sition 1 remains true for all ε. Consequently, Proposition 2 will also hold. Similarly, in
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the no-commitment system, the regulator chooses (α̂, t̂) to solve the problem of

minα, t S̄C(α̂(t), t) ≡ ED(ê) + h(α̂) + βEC(â) − (1 − β)[tEŝ + α̂Ef(ê − ŝ)]

s.t. (â, ŝ) ∈ arg mina, s C(a, ε) + ts + α̂f(e − s),

α̂ ∈ arg minα S̄C(α | â, ŝ, t) ≡ D(ê) + h(α) + βC(â) − (1 − β)[tŝ + αf(ê − ŝ)],

0 ≤ e ≤ ē, 0 ≤ s ≤ e, 0 ≤ α ≤ 1, 0 < t ≤ t ≤ t̄.

Accordingly, equation (20) is replaced by

dS̄C

dt
=

∫
[De(ê)ea(â) + C ′(â)]

dâ

dt
dg(ε) + h′(α̂)

∫
dα̂

dt
dg(ε)

−(1 − β)

∫
ŝ(t, ε)dg(ε) = 0.

It is easy to see that Lemmas 1-3 still hold. Consequently, the outcomes in Section 5

remain true.

7. Conclusions

In this paper, we analyze and compare the behavior of one regulator and one pol-

luting firm in emission tax systems with and without commitment to monitoring. The

main findings are as follows. First, the firm is noncompliant at all equilibria of the com-

mitment system. This implies non-existence of the paradox of ex ante commitment to

monitoring. Second, in the commitment system, the effectiveness of monitoring policy

in reducing firm’s optimal emissions would depend on firm’s weight in the social cost

function. Third, relative sizes of firm’s optimal emissions and reported emissions can-

not be sure in the two systems unless firm’s weight in the social cost function is no less

than one. Relative magnitudes of regulator’s optimal monitoring probabilities in the

two systems are also uncertain. Fourth, optimal monitoring probability and emission

tax are independent in the commitment system, while monitoring probability could be

a substitute or complement to emission tax in the no-commitment system. Fifth, the

commitment to monitoring system is at least as efficient as the no-commitment system.
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Finally, all the above results would hold if our models are generalized to include one

regulator and n, n ≥ 2, firms, or if players have asymmetric information about firm’s

abatement cost function. In the future, it will be interesting to examine whether these

findings still hold when the regulator minimizes firms’ total emissions as in Macho-

Stadler and Perez-Castrillo (2006) or minimizes firms’ violation levels as in Stranlund

and Dhanda (1999).

Appendix

Proof of Proposition 1: (i) If α = 0, then ∂FC
∂a

= C ′(a) > 0 for all a ≥ 0, and ∂FC
∂s

=

t > 0 for all s ≥ 0. Thus, a∗
1 = 0, e∗1 = ē and s∗1 = 0.

(ii) For α ∈ (0, t
f ′(ẽ(t))

), two subintervals, (0, t
f ′(ē)

] and ( t
f ′(ē)

, t
f ′(ẽ(t))

), should be

considered. That is because, for a given t, we have ē > ẽ(t) > 0. Hence, f ′(ē) >

f ′(ẽ(t)) > f ′(0) > 0, and 0 < t
f ′(ē)

< t
f ′(ẽ(t))

< t
f ′(0)

< 1 by f ′′ > 0.

For α ∈ (0, t
f ′(ē)

], we have t − αf ′(e − s) ≥ t − αf ′(ē) ≥ 0 for all s because

e − s ≤ e ≤ ē for all s, f ′′ > 0, and α ≤ t
f ′(ē)

. Accordingly, ∂FC
∂s

= t − αf ′(e − s) ≥ 0

for all e and s. Thus, s∗2 = 0. On the other hand, since α > 0, a∗
2 must satisfy (6).

For α ∈ ( t
f ′(ē)

, t
f ′(ẽ(t))

), firm’s optimal choices are still (a∗(α), s∗ = 0), which is

shown below. For e ∈ (0, ẽ(t)], we have e − s ≤ e ≤ ẽ(t) for all e ≥ 0 and s ≥ 0.

This in turn implies that 0 < t − αf ′(ẽ(t)) ≤ t − αf ′(e) ≤ t − αf ′(e − s) for all e ≥ 0

and s ≥ 0 by α < t
f ′(ẽ(t))

. Accordingly, ∂FC
∂s

= t − αf ′(e − s) > 0 for all e ≥ 0 and

s ≥ 0. Thus, s∗ = 0 and a∗ = a∗(α) satisfying (6). For e ∈ (ẽ(t), ē], relative sizes of

αf ′(e − s) and t are uncertain because unsure relative sizes of (e − s) and ẽ(t). Thus,

the firm’s optimal solutions (a∗, s∗) must satisfy (4)-(5). However, since α < t
f ′(ẽ(t))

,

we have t > αf ′(ẽ(t)) ≥ αf ′(ẽ(t) − s) for all s ≥ 0. Thus, ∂FC
∂s

= t − αf ′(ẽ(t) − s) > 0

for all s ≥ 0. It contradicts (5). Thus, there exists no solution for e ∈ (ẽ(t), ē].

Thus, for α ∈ ( t
f ′(ē)

, t
f ′(ẽ(t))

), the firm’s optimal solutions are (a∗(α), s∗ = 0) with
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e∗(α) = e(a∗(α)) ∈ (0, ẽ(t)]. Combined with the outcome in subinterval (0, t
f ′(ē)

], we

have (a∗
2, s∗2) = (a∗(α), 0) with

da∗
2

dα
=

−f ′(e∗2)ea(a
∗
2)

C ′′(a∗
2) + αf ′′(e∗2)e

2
a(a

∗
2) + αf ′(e∗2)eaa(a∗

2)
> 0 and

de∗2
dα

=
de(a∗

2)

dα
·
da∗

2

dα
< 0.

(iii) For α ∈ [ t
f ′(ẽ(t))

, t
f ′(0)

), relative sizes of t and αf ′(e− s) are unpredictable because

t − αf ′(0) ≥ t − αf ′(e − s) ≥ t − αf ′(e) ≥ t − αf ′(ē) for all e and s, t − αf ′(0) > 0,

and t − αf ′(ē) < 0. Thus, the firm’s optimal solutions (a∗
3, s∗3) should satisfy (4)-(5),

and equal (ã(t), s̃(α, t)) with 0 ≤ s̃(α, t) < ẽ(t) = e(ã(t)). The case of s̃(α, t) = 0

will occur only when α = t
f ′(ẽ(t))

. On the other hand, if s̃(α, t) = ẽ(t), then t = αf ′(0)

by (5). It contradicts with α < t
f ′(0)

. Moreover, by Cramer’s rule, we can obtain

da∗
3

dt
=

−ea(a
∗
3)

C ′′(a∗
3) + teaa(a∗

3)
> 0,

de∗3
dt

=
de(a∗

3)

da
·
da∗

3

dt
< 0,

∂s∗3
∂t

=
−1 + αf ′′(e∗3 − s∗3)ea

da∗

3

dt

αf ′′(e∗3 − s∗3)
< 0, and

∂s∗3
∂α

=
f ′(e∗3 − s∗3)

αf ′′(e∗3 − s∗3)
> 0.

(iv) For α ∈ [ t
f ′(0)

, 1], we have t − αf ′(e − s) ≤ t − αf ′(0) ≤ 0 for all e and s because

e − s ≥ 0. Thus, ∂FC
∂s

≤ 0, which suggests s∗4 = e∗4. Accordingly, a∗
4 = ã(t) satisfying

(7), and e∗4(t) = e(ã(t)) = s∗4(t). As in part (iii), we have
da∗

4

dt
> 0 and

de∗
4

dt
=

ds∗
4

dt
< 0.

Finally, the second-order conditions for solutions (a∗
i , s∗i ), i = 1, 2, 3, 4, hold

because for all (a, s)

∂2FC

∂a2
=

d2C(a)

da2
+ αf ′′(e − s)(

de

da
)2 + αf ′(e − s)

d2e

da2
> 0,

∂2FC

∂s2
= αf ′′(e − s) > 0,

∂2FC

∂a∂s
= −αf ′′(e − s)

de

da
> 0, and

∂2FC

∂a2

∂2FC

∂s2
− [

∂2FC

∂a∂s
]2 = αf ′′(e − s)[

d2C(a)

da2
+ αf ′(e − s)

d2e

da2
] > 0.

Proof of Proposition 2: In the first step, we derive the regulator’s best choices in all

regions if they exist, given the firm’s optimal choices. Second, by comparing the associ-

ated expected social costs at all possible candidates, we can find the optimal solutions.
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Step 1:

(i) In region 1, we have a∗
1 = 0, e∗1 = ē, and s∗1 = 0 by Proposition 1(i). Thus,

∂e∗
1

∂α
=

∂a∗

1

∂α
=

∂s∗
1

∂α
=

∂e∗
1

∂t
=

∂a∗

1

∂t
=

∂s∗
1

∂t
= 0. Then we have

∂SC

∂α
= h′(α) − (1 − β)f(ē), and

∂SC

∂t
= −(1 − β)s∗1 = 0 ∀t.

Accordingly, t∗1 could be any number in [t, t̄]. As to α∗
1, it depends on the values of β.

If β < 1, we have α∗
1 > 0 satisfying the condition of h′(α) = (1 − β)f(ē). However, it

contradicts the definition of region 1. Thus, there exists no optimal solution in region

1. If β ≥ 1, we have ∂SC
∂α

> 0. Thus, α∗
1 = 0. And the associated minimum expected

weighted social cost is

SC1 = D(ē) + h0. (23)

(ii) In region 2, by Proposition 1(ii), we have s∗2 = 0, e∗2(α) = e(a∗
2), and a∗

2 = a∗(α)

satisfying C ′(a∗
2) = −αf ′(e∗2)ea(a

∗
2). Moreover,

∂a∗

2

∂α
> 0 and

∂a∗

2

∂t
=

∂s∗
2

∂α
=

∂s∗
2

∂t
= 0. Thus,

we have

∂SC

∂α
= [De(e

∗
2)ea + C ′(a∗

2)]
∂a∗

2

∂α
+ h′(α) − (1 − β)f(e∗2), and

∂SC

∂t
= −(1 − β)s∗2 = 0 ∀t.

As in part (i), t∗2 could be any number in [t, t̄]. If β < 1, α∗
2 satisfying ∂SC

∂α
= 0 could

be optimal if α∗
2 lies in the interval of (0,

t∗
2

f ′(ẽ(t∗
2
))

). Similar situation occurs when β ≥ 1

and De(e
∗
2)ea(a

∗
2) + C ′(a∗

2) < 0. When β ≥ 1 and De(e
∗
2)ea(a

∗
2) + C ′(a∗

2) ≥ 0, α∗
2 = 0

because ∂SC
∂α

> 0. Nevertheless, it contradicts the definition of region 2. Accordingly,

the associated expected social cost is

SC2 = D(e∗2) + h(α∗
2) + βC(a∗

2) − (1 − β)α∗
2f(e∗2). (24)

(iii) In region 3, by Proposition 1(iii), we have a∗
3 = ã(t) and s∗3 = s̃(α, t) satisfying
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(4)-(5) with
∂a∗

3

∂t
> 0,

∂s∗
3

∂α
> 0, and

∂s∗
3

∂t
< 0. Therefore, we have

∂SC

∂α
= h′(α) − (1 − β)f(e∗3 − s∗3), and

∂SC

∂t
= [De(e

∗
3)ea(a

∗
3) + C ′(a∗

3)]
∂a∗

3

∂t
− (1 − β)s∗3.

If β ≥ 1, then ∂SC
∂α

> 0. Thus, α∗
3 = 0. Again, this is a contradiction. If β < 1 and

De(e
∗
3)ea(a

∗
3) + C ′(a∗

3) ≥ 0, then t∗3 must satisfy ∂SC
∂t

= 0, and α∗
3 exists as it satisfies

the condition of ∂SC
∂α

= 0 and lies in the interval of [
t∗
3

f ′(ẽ(t∗
3
))
,

t∗
3

f ′(0)
). If β < 1 and

De(e
∗
3)ea(a

∗
3) + C ′(a∗

3) < 0, then t∗3 = t̄, and α∗
3 exists as it satisfies the condition of

∂SC
∂α

= 0 and lies in the interval of [ t̄
f ′(ẽ(t̄))

, t̄
f ′(0)

). Accordingly, the associated expected

social cost is

SC3 = D(e∗3) + h(α∗
3) + βC(a∗

3) − (1 − β)[t∗3s
∗
3 + α∗

3f(e∗3 − s∗3)]. (25)

(iv) In region 4, by Proposition 1(iv), we have a∗
4 = ã(t) satisfying (7), and e∗4(t) =

e(ã(t)) = s∗4(t) with t − αf ′(0) ≤ 0,
∂a∗

4

∂t
> 0, and

∂s∗
4

∂t
< 0. Consequently, we have

∂SC

∂α
= h′(α) and

∂SC

∂t
=

∂a∗
4

∂t
ea(a

∗
4)[De(e

∗
4) − βt − (1 − β)αf ′(0)] − (1 − β)[e∗4 + (t − αf ′(0))

ds∗4
dt

].

Since h′(α) > 0, we have ∂SC
∂α

> 0 for all α. Thus, α∗
4 = 0. It contradicts the definition

of region 4. Thus, there exists no solution in region 4.

Step 2: (i) Suppose β ≥ 1. By step 1, we know that (α∗, t∗) are not in regions 3 and 4.

Thus, we have a∗
1 < a∗

2, e∗1 > e∗2, and α∗
1 < α∗

2. Then, we have D(e∗1) > D(e∗2), C(a∗
1) <

C(a∗
2), and h(α∗

2) > h(α∗
1). Under the circumstances, equations (23) and (24) imply that

relative sizes of SC1 and SC2 are unpredictable. It means that pair (α∗
i , t∗i ), i = 1, 2,

could be optimal solutions. For instance, if C(a∗
2) is large enough and β = 1, (α∗, t∗)

could be in region 1. In contrast, if D(ē) is large enough, (α∗, t∗) could occur in region

2.

(ii) Suppose β < 1. By step 1, we know that (α∗, t∗) could lie in regions 2-3. Similarly,

since optimal emission tax in all regions could be distinct, we can only conclude s∗2 ≤ s∗3.
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Under the situation, equations (24)-(25) suggest that relative sizes of SC2 and SC3 are

unclear. In particular, if e∗2 is large enough, we could have (α∗, t∗) in region 2. If t∗3s
∗
3

is large enough, we could have (α∗, t∗) in region 3. 2

The definition of Hessian matrix H:

Ĥ11 =
d2C(a)

da2
+ α̂f ′′(e − s)(

de(a)

da
)2 + α̂f ′(e − s)

d2e(a)

da2
+ 2f ′(e − s)

∂α̂

∂a
·
de(a)

da

+f(e − s)
∂2α̂

∂a2
> 0,

Ĥ12 = Ĥ21 = f ′(e − s)
∂α̂

∂s

de(a)

da
− α̂f ′′(e − s)

de(a)

da
+ f(e − s)

∂2α̂

∂s∂a

−f ′(e − s)
∂α̂

∂a
> 0,

Ĥ22 = α̂f ′′(e − s) + f(e − s)
∂2α̂

∂s2
− 2f ′(e − s)

∂α̂

∂s
> 0,

∂2α̂

∂a2
=

(1 − β)

h′′(α̂)
[f ′′(e − s)(

de(a)

da
)2 + f ′′(e − s)

d2e(a)

da2
] > 0,

∂2α̂

∂a∂s
=

−(1 − β)

h′′(α̂)
f ′′(e − s)

de(a)

da
> 0, and

∂2α̂

∂s2
=

(1 − β)

h′′(α̂)
f ′′(e − s) > 0.

Proof of Lemma 2: Substituting a and s by â(t) and ŝ(t) respectively in (16)-(17), and

taking the derivatives of (16) and (17) with respect to t yield

Ĥ ·




dâ
dt

dŝ
dt


 =


 0

−1


 dt.

Applying Cramer’s rule yields dâ
dt

= Ĥ12

|Ĥ|
> 0 and dŝ

dt
= −Ĥ11

|Ĥ|
< 0. It in turn implies that

dα̂

dt
=

∂α̂

∂a

dâ

dt
+

∂α̂

∂s

dŝ

dt
=

(1 − β)f ′

h′′(α̂)|Ĥ|

[
de

da
Ĥ12 + Ĥ11

]
.

So, we have dα̂
dt

≥ (≤) 0 iff de
da

Ĥ12 ≥ (≤) − Ĥ11. 2

Proof of Lemma 3: (i) If β ≥ 1, we have α̂ = 0. Accordingly, â = ŝ = 0, and ê = ē.

Then, SC(t) = D(ē) + h0, which is independent of t. Thus, t̂ can be any number in
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[t, t̄].

(ii) For β < 1, we have α̂ > 0. Suppose dα̂
dt

≤ 0 and De(ê)ea(â) + C ′(â) ≤ 0. Then

dSC
dt

≤ 0, hence t̂ = t̄. In other situations, we could have t̂ ∈ [t, t̄] satisfying the

condition of dSC
dt

= 0, t̂ = t if dSC
dt

> 0, or t̂ = t̄ if dSC
dt

< 0. 2

Proof of Lemma 4: (i) For β ≥ 1, α∗ is non-negative by Proposition 2(i), while α̂ = 0

by Lemma 1(i). Thus, we have α∗ ≥ α̂. In particular, if C ′(a) ≥ |De(e)ea(a)| for all a,

then we have α∗ = 0 by Proposition 2(i). Thus, α∗ = α̂.

(ii) For β < 1, α̂ > 0 satisfies the condition of h′(α̂) = (1−β)f(ê−ŝ) by (13). However,

which conditions α∗ > 0 would satisfy depends on the region it is in. For instance,

in region 3, α∗ needs to meet the condition of h′(α∗) = (1 − β)f(e∗3 − s∗3). Under the

circumstance, we have

α∗ ≥ (≤) α̂ iff f(e∗3 − s∗3) ≥ (≤) f(ê − ŝ)

by h′′(α) > 0 for all α. It means that relative magnitudes of α∗ and α̂ are uncertain. 2

Proof of Lemma 5: (i) Since β ≥ 1, we have α̂ = 0 by Lemma 1(i). Hence, â = ŝ = 0

and ê = ē by Lemma 2(i). We must have a∗ ≥ â, s∗ ≥ ŝ, and e∗ ≤ ê due to α∗ ≥ 0.

The equality will hold when α∗ = 0, which is implied by C ′(a) ≥ |De(e)ea(a)| for all

a ≥ 0 and Proposition 2(i).

(ii) If β < 1, relative sizes of α∗ and α̂ are unsure by Lemma 4(ii). Accordingly, relative

sizes of â and a∗(α∗) in region 2 under commitment to monitoring cannot be judged.

However, for interior solutions â(t) and a∗(t) in region 3 under the commitment case,

we have a∗(t) = â(t) for a given t as shown below.

Lemma B. Suppose that assumptions A1-A3 hold. For a given t, we have a∗(t) = â(t),

where a∗(t) = a∗
3(t) in the commitment case. However, interior solutions s̃(α, t) in

region 3 and ŝ(t) are different functions of t.

Proof. For the commitment solutions in region 3, we have a∗(t) satisfying (7), and â(t)

meeting (18). By (7) and (18), we know that a∗(t) = â(t) for a given t. Moreover,
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equations (5) and (17) imply that s̃(α, t) and ŝ(t) are different functions of t. 2

Lemma B suggests that the firm could abate the same amount of emissions in the

two systems if two emission taxes are equal. The equal-emission-tax condition could

hold in the exogenous-tax setups, but may fail in the endogenous-tax models, such as

ours. It is shown below that relative magnitudes of t∗ and t̂ are ambiguous, which

in turn implies uncertain relative values of a∗ and â. Let us compare t∗ in region 3

under commitment to monitoring with t̂ under no-commitment to monitoring. Thus,

for β < 1, t∗ must meet the condition of

(1 − β)s∗3(α
∗, t∗) = [

dD(e∗3(t
∗))

de

de(a∗
3(t

∗))

da
+

dC(a∗
3(t

∗))

da
]
da∗

3(t
∗)

dt

by (10), and t̂ satisfies the requirement of

(1 − β)ŝ(t̂) = [
dD(ê(t̂))

de

de(â(t̂))

da
+

dC(â(t̂))

da
]
dâ

dt
+ h′(α̂)

dα̂

dt

by (20). Since s∗3(α, t) and ŝ(t) are different functions of t and the sign of dα̂
dt

is

uncertain, we cannot tell relative magnitudes of t∗ and t̂ unless all functions forms in

the models are provided. Accordingly, relative sizes of â(t̂) and a∗(t∗) in region 3 under

the commitment case are unsure due to uncertain magnitudes of t̂ and t∗. 2
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