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Abstract

Two-player zero-sum stochastic games with finite state and action
spaces, as well as two-player zero-sum absorbing games with compact
metric action spaces, are known to have undiscounted values. We
study such games under the assumption that one or both players ob-
serve the actions of their opponent after some time-dependent delay.
We develop criteria for the rate of growth of the delay such that a
player subject to such an information lag can still guarantee himself
in the undiscounted game as much as he could have with perfect moni-
toring. We also demonstrate that the player in the Big Match with the
absorbing action subject to information lags which grow too rapidly,
according to certain criteria, will not be able to guarantee as much as
he could have in the game with perfect monitoring.

1 Introduction

1.1 Background

Stochastic games were introduced by Shapley [28]. In a stochastic game,
the players play in stages. At each stage, the game is in one of the avail-
able states, and each player chooses an action from the action spaces in that
state. The actions chosen then determine a probability distribution on the
state space which is used to determine the state at the next stage.
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University of Jerusalem, 91904 Jerusalem, Israel. Research supported in part by Israel
Science Foundation grant 1123/06. This work is the author’s M.Sc. thesis (2008). The
author expresses gratitude to Prof. Abraham Neyman for his guidance and patience.
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Stochastic games are usually assumed to have a rule which assigns payoffs
to the players at each stage, depending on the state and actions played at
that stage. In a related model, it is assumed that there is a payoff that is a
Borel-measurable function of the entire infinite history of the game. Often, a
combination of the two is employed: a Borel payoff is defined in terms of the
stage-by-stage payoffs (important examples being the λ-discounted payoff,
liminf payoff, and limsup payoff).

A strategy for a player is a rule by which a player chooses, at each stage,
a mixed action from his action space in that state. Much of the study of
stochastic games has made the assumption that the game has perfect mon-
itoring; that is, the choice of mixed action of a player can depend, at any
given time, on the entire history of the game up to that point.

Shapley proved [28] the existence of the λ-discounted value of two-player
zero-sum stochastic games with finitely many states and actions, as well as
the existence of stationary optimal strategies for each player. (Since the
strategies are stationary, this result does not require the perfect monitoring
assumption, or for that matter any monitoring of the history of the game
except for the knowledge of the current state.)

The existence of the undiscounted value in two-player zero-sum stochas-
tic games with finitely many states and actions was proved, under the as-
sumption of perfect monitoring, in [16], and this value is the limit of the
λ-discounted values as λ → 0 (the existence of which was proved earlier in
[2]).

Stochastic games with more general state and action spaces have been
studied (a very general approach is presented in [22]). One such generaliza-
tion is when the available action spaces are compact metric, and appropriate
continuity conditions on the payoffs and transition probabilities are assumed.
In this case, the techniques used by Shapley can be generalized to show the
existence of the λ-discounted values and stationary optimal strategies.

There is no general result for the existence of the value (or even conver-
gence of the λ-discounted values) in games with compact metric action spaces
and finite state space. However, the existence of the undiscounted value was
proved for two-player zero-sum absorbing games with compact metric action
spaces, with perfect monitoring, in [17].

In [4], a specific example of an absorbing stochastic game, called the Big
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Match, was discussed. It was demonstrated there that when a player does
not view any information about his opponent’s previous actions, he may not
be able to guarantee in the undiscounted game as much as he could have with
perfect monitoring; in particular, the undiscounted value there no longer ex-
ists.

It is also of interest to study stochastic games with various types of partial
monitoring. Examples include games where the current state is not publicly
known [30], games in which a player is not informed of his opponents actions
but does receive stochastic signals according to some rule [6],[23], games in
which a player observes only his own actions but neither the states or actions
of his opponent [24], and stochastic games where a player is informed of his
opponent’s actions and the states but after some delay [27],[8].

1.2 Objectives

In this thesis, we examined two-player zero-sum stochastic games with a par-
ticular type of partial monitoring, called an information lag ; that is, games
such that for a player, there is a function f such that after the n-th stage,
that player observes only the first n−f(n) actions of his opponent (however,
he observes all the states of the game up through the current one, and his
own previous actions1.)

We posed the following question: What is a sufficient condition on the
growth of the information lag function f that a player is subject to, such that
he would be able to guarantee in the undiscounted game as much as he could
have in the game with perfect monitoring? We established that f(n) = o(n)
is a necessary condition for this to be true for the player with the absorbing
action in the Big Match (Proposition 4.2.1).

For some time, we had conjectured that this was also the sufficient condi-
tion we had been seeking. However, eventually we demonstrated, also for the
player with the absorbing action in the Big Match, that f(n) = o(n) is not
a sufficient condition (Proposition 4.2.4), and, in fact, if f(n) >> n

log(log(n))
,

then this player cannot guarantee, in the undiscounted game, any more than
the minimum payoff in the game (Proposition 4.2.5).

1The delay in the receipt of information discussed in [27],[8] is of a different kind; the
games there can be modeled as stochastic games in which a player also has a delay on the
information he receives about the states. These delays in information are also referred to
in these papers as information lags.
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A sufficient condition, we proved, is given by f(n) = O( n
(log(n))β

) for arbi-

trary real β > 1 (Theorem 4.1.1). (In Theorem 4.1.2, a slightly more general
sufficient condition is presented, of which Theorem 4.1.1 is a prototypical
case.) The method of this proof is to generalize the proofs in [16], which
showed the existence of the value in the case of games with finite state and
action spaces, as well as the similar proof in [17], which showed the exis-
tence of the undiscounted value in the case of absorbing games with compact
metric action spaces, so as to encompass games with information lags whose
growth satisfies the conditions given in Theorem 4.1.2.

Section 4.3 discusses the results, including remarks on the minmax of
multi-player games and an application of theorems pertaining to games with
Borel payoffs. Section 4.4 demonstrates that it was necessary to modify the
proofs in [16] and [17] to encompass games with information lags.
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2 Notations

Notation 1. For a bounded real-valued function f on a set A, we denote the
supremum norm ||f || = supx∈A|f(x)|.

Notation 2. N denotes the positive integers (without 0).

Notation 3. Given a set A and two vectors u, v ∈ RA, u ≤ v denotes
inequality in each coordinate.

Notation 4. Given a compact metric space X, C(X) denotes the Banach
space of continuous complex-valued functions on X with the supremum norm,
and ∆(X) denotes the space of regular Borel probability measures on X; if
X is a compact metric action space, ∆(X) is the space of mixed actions.

Notation 5. The value of the λ-discounted game, if it exists, will be denoted
vλ or v(λ). (This is a vector in RS, i.e., a value for each initial state.)

Notation 6. If f(n),g(n) are positive real-valued functions defined for large

enough positive integers, f(n) >> g(n) and g(n) = o(f(n)) denote lim
n→∞

g(n)
f(n)

=

0.

Notation 7. If f(n),g(n) are positive real-valued functions defined for large

enough positive integers, f(n) ∼ g(n) denotes lim
n→∞

g(n)
f(n)

= 1.

Notation 8. Given a finite set A, |A| and #A denote the number of elements
in A.

Notation 9. The value of a game in normal form, if it exists, will be denoted
valX×Y (g), where X, Y are the action spaces for Players 1 and 2 respectively,
and g is the payoff function.

3 Definitions and Previous Results

3.1 Definitions

Definition 3.1.1. A two-player zero-sum stochastic game (with compact or
finite action spaces) consists of the following:

• A set S (the collection of states) assumed to be finite unless otherwise
specified.2

2If the state space is not discrete, but rather endowed with a measurable structure,
certain measurability conditions must be assumed on the payoff functions and probability
transitions defined here; see [22]. Such matters will not concern us here.
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• For each z ∈ S, compact metric or finite sets Az, Bz of actions for
Player 1 and Player 2, respectively.

• For each z ∈ S, a separately continuous payoff function, g(z, ·, ·) :
Az ×Bz → R, such that g(·, ·, ·) is bounded.

• For each z ∈ S, a ∈ Az,b ∈ Bz, a probability distribution q(z, a, b) on
S, such that for each z, z′ ∈ S, q(z, ·, ·)(z′) is separately continuous.3

By stochastic game I refer to the two-player, zero-sum case defined here,
unless otherwise specified.

Definition 3.1.2. A state z ∈ S in a stochastic game is called absorbing if
for every (a, b) ∈ Az×Bz, q(z, a, b)(z) = 1. An absorbing game is a stochastic
game in which every state but one is absorbing.

Remark 3.1.3. The continuity conditions on the transition probability and
the payoff function imply measurability ([19, I.1, Ex.7a], [15, p. 238]).

Remark 3.1.4. A reference to a stochastic game is technically a reference to
a collection of games: each z1 ∈ S defines a game in which z1 is the initial
state.

A stochastic game is played in stages. At stage n ∈ N, each player chooses
an action in the set of actions available to him in the current state zn (Player
1 chooses an ∈ Azn , Player 2 chooses bn ∈ Bzn). The payoff for that stage
is then g(zn, an, bn) (Player 2 pays Player 1) and the next state is chosen
according to the probability distribution q(zn, an, bn).

In general we will assume a stochastic game to have infinitely many stages,
unless otherwise specified. But we will also refer to games of finite length;
that is, games consisting of finitely many stages.

Given a stochastic game, we find it is convenient to define several sets
and σ-algebras pertaining to the space of plays of the game:

• Hn is the set of finite histories of the form

hn := (z1, a1, b1, . . . , zn−1, an−1, bn−1, zn),

where zk ∈ S, (ak, bk) ∈ Azk ×Bzk .

3This continuity condition is also stronger than is usually used in the study of stochastic
games with infinite state spaces; for example, [22]. However, in the case of a finite state
space, the various continuity conditions coincide.
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• H∞ is the set of infinite histories of the form h = (z1, a1, b1, z2, . . .),
where zk ∈ S, (ak, bk) ∈ Azk ×Bzk .

• Hn denotes the product σ-algebra of
(⋃

z∈S({z} × Az × Bz)
)n−1 ×

S on Hn, where Az, Bz are endowed with the Borel σ-algebra, and
also its inverse image on H∞ via the projections H → Hn given by
(z1, a1, b1, . . .) → (z1, a1, b1, . . . , zn−1, an−1, bn−1, zn). (It will always be
clear from the context which σ-algebra we are referring to.)

• H∞ is the σ-algebra on H∞ generated by
⋃
n∈N Hn.

Definition 3.1.5. Given a compact metric space X, we define the weak
topology on ∆(X) to be the topology induced on it as a subset of the dual
space of C(X) with the weak-* topology; that is, the weak topology on
∆(X) is the weakest topology such that all the linear functionals of the form
µ→

∫
X
fdµ, where f ∈ C(X), are continuous.

If X is a compact metric space, then reference to a measurable mapping
from or into ∆(X) assumes ∆(X) to be endowed with the Borel σ-algebra
generated by the weak topology; reference to a continuous mapping from
∆(X) assumes ∆(X) to be endowed with the weak toplogy.

In the study of games with perfect monitoring (see Remark 3.1.7), the
following class of strategies is used:

Definition 3.1.6. A behavioral strategy4 σ for Player 1 is a collection of
measurable mappings, one for each (Hn,Hn), such that σ((z1, a1, b1, . . . , zn))
∈ ∆(Azn). Similarly we define a behavioral strategy τ for Player 2. A
behaviorial strategy is said to be stationary if it is dependent only on the
current state; it is said to be Markov stationary (or just Markov) if it is
dependent only on the current state and the number of the stages so far.
Stationary strategies are often described by a listing of mixed actions, one
for each state in S. A strategy is pure if for every finite history h the support
of σ(h) is a single element of the available action space.

For brevity, behavioral strategies will be referred to simply as strategies.

4There is also a class of strategies known as mixed strategies. Due to the complexity of
the definition of this class of strategies in games with non-discrete action spaces, and due
to their equivalence to behavioral strategies in the class of games considered in this thesis
[1], we will not concern ourselves with such matters here.
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Remark 3.1.7. If a player in a game has no further restrictions placed on the
strategies that he can choose from, with respect to the dependency of the
strategy on the history of the game, he is said to have perfect monitoring.
Intuitively, a player has perfect monitoring if he can ”see”, at any point in
the game, the entire history of the game up to this point.

Games in which a player does not observe all the information pertaining
to the history of the game up to the present do not have perfect monitoring.

An initial state z1 ∈ S and profile of behavioral strategies (σ, τ) define a
probability distribution on (H∞,H∞), P z1

σ,τ , and the expected value operator
with respect to this distribution, Ez1

σ,τ , as previously described.

Remark 3.1.8. If as in Definition 3.1.1, q(·, ·, ·) is a probability transition
function, given a bounded measurable function u so that for each z ∈ S,
u(z, ·, ·, ·) : Az ×Bz × S → R, we will often write an expression of the form

Ex,y,q[u(z, a, b, z′)],

where z is a given state and either x = (xs)s∈S, y = (ys)s∈S are stationary
strategies for the players or x = xz, y = yz are mixed actions in state z for
the players. Informally, this means that (a, b) distributes according to the
product measure xz ⊗ yz on Az × Bz, and z′ then distributes according to
q(z, a, b). Formally, this means

Exz ,yz
[
Eq(z,a,b)[u(z, a, b, z′)]

]
=

∫
Az×Bz

d(xz ⊗ yz)(a, b)
∫
S

u(z, a, b, z′)d(q(z, a, b))(z′)

(This is well defined by Remark 3.1.3 and Fubini’s theorem.)

We now address the issue of payoffs in the infinite-stage game and the
relevant value concepts.

Definition 3.1.9. In a stochastic game with a countable discrete state space
and finite action spaces, let ϕ : H∞ → R be a bounded function which is
measurable with respect to H∞. Given a strategy profile (σ, τ) and an initial
state z1 ∈ S, we define

Ez1
σ,τ [ϕ]

to be the ϕ-payoff (Player 2 pays Player 1). If there is v ∈ RS such that for
all ε > 0 there is a strategy σε of Player 1 such that for every strategy τ of
Player 2 and all z1 ∈ S,

Ez1
σε,τ [ϕ] ≥ v(z1)− ε
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then we say that Player 1 can guarantee v in the ϕ-game. Similarly, if for
all ε > 0 there is a strategy τε of Player 2 such that for every strategy σ of
Player 1 and all z1 ∈ S,

Ez1
σ,τε [ϕ] ≤ v(z1) + ε

then we say that Player 2 can guarantee v in the ϕ-game. If there is v ∈ RS

that both players can guarantee, it is referred to as the value of the ϕ-game.

A few important examples of Borel payoffs are given in Definitions 3.1.10,
3.1.11, and 3.1.12 below.

Definition 3.1.10. For λ ∈ (0, 1), given a strategy profile (σ, τ) and an
initial state z1 ∈ S, define the λ-discounted payoff (to Player 1) by

Ez1
σ,τ

[ ∞∑
k=1

λ(1− λ)k−1gk

]
where gk = g(zk, ak, bk) is the payoff to Player 1 at stage k.

Theorem 3.3.6 will show that under our assumptions, the value of the
λ-discounted game, vλ, exists and can be characterized.

Definition 3.1.11. Given a strategy profile (σ, τ) and initial state an z1, we
will refer to

Ez1
σ,τ

[
lim inf
n→∞

∑n
k=1 gk
n

]
where gk = g(zk, ak, bk), as the liminf payoff (to Player 1). Similarly, we can
define the limsup payoff.

Definition 3.1.12. Given a strategy profile (σ, τ), an initial state z1, and
N ∈ N, we will refer to

Ez1
σ,τ

[∑N
k=1 gk
N

]
where gk = g(zk, ak, bk), as the average payoff (to Player 1) in the finite
N-stage game.

Definition 3.1.12 also defines a payoff for games of finite length N .

Our primary value concept is given in the following definition, which was
given in [16]:
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Definition 3.1.13. Player 1 can guarantee v ∈ RS (in the undiscounted
game) if for every ε > 0 there is a strategy σε for Player 1 and N ∈ N such
that for every strategy τ of Player 2 and all z1 ∈ S,

Ez1
σε,τ

[
lim inf
n→∞

∑n
k=1 gk
n

]
≥ v(z1)− ε

and for all n ≥ N ,

Ez1
σε,τ

[∑n
k=1 gk
n

]
≥ v(z1)− ε

where gk = g(zk, ak, bk).

Player 2 can guarantee v ∈ RS (in the undiscounted game) if for every
ε > 0 there is a strategy τε for Player 2 and N ∈ N such that for every
strategy σ of Player 1 and all z1 ∈ S,

Ez1
σ,τε

[
lim sup
n→∞

∑n
k=1 gk
n

]
≤ v(z1) + ε

and for all n ≥ N ,

Ez1
σ,τε

[∑n
k=1 gk
n

]
≤ v(z1) + ε

A stochastic game has an undiscounted value v ∈ RS if both players can
guarantee v.

Remark 3.1.14. Strategies σε, τε, described in Definition 3.1.9 and Definition
3.1.13, are referred to as ε-optimal.

Other value concepts and examples can be found in [21]. Other payoff
concepts with examples can also be found in [3].

Remark 3.1.15. In all models that we will consider, both players have perfect
monitoring of sequence of states. Therefore, in an absorbing game, both
players know when an absorbing state z is reached; the rest of the game
is a repeated zero-sum game with value v(z) = valAz×Bz(g(z, ·, ·)), where g
denotes the payoff function for the game (see Theorem 3.3.4). Therefore,
by replacing all the absorbing states with a pair of absorbing states s+, s−

with values ±||g||, and then replacing the probability of a transition to state

z with transitions to s+ or s− with probabilities 1
2
(1 ± v(z)

||g|| ), we can always
reduce a game with infinitely many absorbing states to a game with two
absorbing states.
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Definition 3.1.16. A lag function is a function f : N
⋃
{0} → N

⋃
{0} which

satisfies f(0) = 0 and
f(n+ 1) ≤ f(n) + 1 (3.1.1)

A strategy is subject to an information lag f if, at the n + 1-th stage, the
choice of mixed action is independent of the actions of the opponent from
stages n− f(n) + 1 through n.

If f is a lag function, we say that a player is subject to an information lag
f if he can only play behavioral strategies subject to this information lag.5

Explicitly, a behavioral strategy – say, σ for Player 1 – is subject to an
information lag f if it is dependent, at the n + 1-th stage, only on the se-
quence of previous and current states (z1, . . . , zn+1), the sequence of Player
1’s previous actions (a1, . . . , an), and the sequence of the first n−f(n) actions
of Player 2 (b1, . . . , bn−f(n)).

Intuitively, we see that if a player is subject to an information lag f , then
after stage n, he does not ”see” the last f(n) of his opponent’s actions. The
condition (3.1.1) implies that a player subject to an information lag doesn’t
forget what he knows. (Since a player also recalls his own actions, and the
sequence of states, the game has perfect recall.)

Definition 3.1.17. Suppose as in Definition 3.1.1, we have a stochastic game
with compact metric action spaces. Define, for each λ ∈ [0, 1), Φ(λ, ·) : RS →
RS, by

Φ(λ, u)(z) = maxx∈∆(Az)miny∈∆(Bz)Ex,y,q

[
λg(z, a, b) + (1− λ)u(z′)

]
(3.1.2)

This is known as the discounted Shapley operator.

Remark 3.1.18. For games with compact action spaces, the discounted Shap-
ley operator is well defined by Theorem 3.3.4.

Remark 3.1.19. Equivalently,

Φ(λ, u)(z) = valAz×Bz(λg(z, a, b) + (1− λ)Eq(z,a,b)(u(z′)))

5As mentioned earlier, the game studied in [8] can be modeled as a stochastic game
in which there is an information lag of a stronger type, such that a player does not have
perfect monitoring over the sequence of states. Comparing the results there to the results
that will be presented here (Theorem 4.1.1) demonstrates that the sort of information lag
discussed there is significantly more severe than that discussed here. By their usage of the
term, even a bounded information lag can ruin the existence of the undiscounted value.
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Remark 3.1.20. Note that Φ(λ, ·) is monotonic: If u ≥ v, then Φ(λ, u) ≥
Φ(λ, v).

Remark 3.1.21. For λ ∈ (0, 1), Φ(λ, ·) is a contraction on RS with the || · ||
norm, ||Φ(λ, u)− Φ(λ, v)|| ≤ (1− λ)||u− v||.
Remark 3.1.22. As mentioned in Theorem 3.3.1 (for finite action spaces) and
Theorem 3.3.6 (for compact action spaces), the λ-discounted value vλ is the
unique fixed point of the operator Φ(λ, ·).

3.2 The Big Match

A stochastic game of particular importance and interest is the Big Match,
introduced by D. Gillette in 1957 [9]. The game is an absorbing game given by

L R
T 1 −1
B −1∗ 1∗

where the notation a∗ means the game moves on to an absorbing state such
that at this stage and every subsequent stage, the payoff is a. (Player 1 is
the row player; Player 2 is the column player.) The Big Match is thus an
absorbing game with two absorbing states.

Theorem 3.2.1 ([9]). In the Big Match:

• If the players are restricted to using only stationary strategies, then the
most Player 1 can guarantee in the undiscounted game is −1; the most
Player 2 can guarantee is 0 (by using the strategy (1

2
, 1

2
)).

• The same result holds if the players are restricted to using Markov
strategies.

The question of the undiscounted value6 of Big Match was eventually
solved by D. Blackwell and T.S. Ferguson (1968).

Theorem 3.2.2 ([4]). In the Big Match, in behavioral strategies the undis-
counted value of the game is 0; for Player 2, (1

2
, 1

2
) is an optimal strategy,

while Player 1 has no optimal strategies (only ε-optimal strategies).

6Their article worked with the limsup value, not with the stronger concept of the
undiscounted value as defined in [16] and in Definition 3.1.13. However, the proof given
in [4, Section 2] effectively shows the existence of the undiscounted value.
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Remark 3.2.3. In the Big Match, we will refer to the event of Player 1 playing
B as absorption.

It’s also worth noting that in the λ-discounted game, the optimal station-
ary strategy for Player 1 is ( 1

1+λ
, λ

1+λ
) [31]; as before, the optimal stationary

strategy for Player 2 is (1
2
, 1

2
).

The results of [9] are [4] are presented neatly in [31].

3.3 Previous Results

I now state several known results in game theory and in the theory of dis-
counted stochastic games.

The first result is that of Shapley, given in the paper in which he intro-
duced stochastic games [28]. Shapley’s formulation of this result was not for
discounted games, but for games with positive stopping probabilities; that
is, games with a positive probability of terminating at each stage, depending
on the current state. Derivations of this result in the language of discounted
games can be found, for example, in [29] and [2].

Theorem 3.3.1 ([28]). In a stochastic game with finite state and action
spaces, for each λ ∈ (0, 1) the value vλ of the λ-discounted game exists and
each player possesses stationary optimal strategies. Furtheremore,the value
vλ is the unique solution to the equation

vλ = Φ(λ, vλ) (3.3.1)

where Φ(λ, ·) is the discounted Shapley operator.

A result of fundamental importance to the theory of stochastic games with
finite state and actions spaces, due to T. Bewley and E. Kohlberg (1976), is
as follows:7

Theorem 3.3.2 ([2]). For a stochastic game with finite state and action
spaces, there exists M ∈ N,λ0 > 0, and for each z ∈ S, {ak,z}∞k=0 ⊆ RS,
{pk,z}∞k=0 ⊆ RAz , {qk,z}∞k=0 ⊆ RBz such that for λ ∈ (0, λ0) and z ∈ S,

vλ(z) =
∞∑
k=0

ak,zλ
k/M (3.3.2)

7An alternative approach to these results is presented in [20].

13



and such that

pλ(z) =
∞∑
k=0

pk,zλ
k/M , qλ(z) =

∞∑
k=0

qk,zλ
k/M (3.3.3)

are stationary optimal stationary strategies in the λ-discounted game for
Player 1 and Player 2, respectively.

Remark 3.3.3. A series of the form

∞∑
k=−N

akλ
k/M

is known as a Puiseux series.

The following is a generalized minmax theorem about games in normal
form with compact metric action spaces.

Theorem 3.3.4 ([15]; [19], Chapter I, Theorem 2.6). A two-person zero-
sum game with compact metric action spaces,8 such that the payoff function
is upper semi-continuous in Player 1’s strategy, lower semi-continuous in
Player 2’s strategy, and bounded either from above or below, has a value, and
each player has optimal (mixed) strategies.

Remark 3.3.5. It can be shown that under the conditions of Theorem 3.3.4,
each player has ε-optimal strategies with finite support; see [15] and [19,
Chapter I].

Using generalized minmax theorems like Theorem 3.3.4, the argument
given by Shapley in [28] can be generalized:

Theorem 3.3.6 ([19], Chapter VI, Proposition 1.4). The existence of the
λ-discounted value, the existence of stationary optimal strategies, and the
characterization of vλ by equation (3.3.1) hold for stochastic games with finite
state space and compact action spaces.

This theorem can also be deduced as a corollary of the much more general
results given in [22].

8One can also speak, more generally, of compact Haussdorf action spaces; see [15] and
[19, Chapter I].
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The following result, due to D. Martin (1998), pertains to stochastic
games with Borel payoffs.9

Theorem 3.3.7 ([14]). A stochastic game with a countable state space, finite
action spaces, and (bounded) Borel payoff, has a value.

3.4 The Operator Approach to Stochastic Games

In this section, we present the results of an operator approach to two-player
zero-sum games with compact action spaces discussed in [25], and demon-
strate the measurability of the relevant selection of strategies that will be
used in Section 5.3.

Proposition 3.4.1. In a stochastic game with finite state space S and com-
pact metric action spaces, for z ∈ S, u ∈ RS,

ϕ∗(u)(z) := lim
α→0+

Φ(α, u)(z)− u(z)

α

exists in R
⋃
{∞,−∞}, where Φ(λ, ·) is the discounted Shapley operator.

In the following propositions, we will adopt the conventions that ∞ −
(−∞) =∞ and −∞−∞ = −∞.

Proposition 3.4.2. In a stochastic game with finite state space S and com-
pact metric action spaces, if u, v ∈ RS and z ∈ S satisfy

u(z)− v(z) = δ = maxz′∈S(u− v)(z′) > 0,

then either ϕ∗(u)(z) = ϕ∗(v)(z) = ±∞, or

ϕ∗(v)(z)− ϕ∗(u)(z) ≥ δ.

Now, suppose the game of the preceding propositions is an absorbing
stochastic game, with payoff function g, probability transition function q,
and action spaces (Az)z∈S, (Bz)z∈S. (By Remark 3.1.15, we needn’t place
any restrictions on the state space.) Let z0 be the non-absorbing state. For
each u ∈ R, we define û ∈ RS by

9The results in [14] are proved there for a different class of games, and the corollary for
stochastic games is deduced afterwards. An approach to these results directed explicitly at
stochastic games is well presented in [13]. Note that this latter article makes for simplicity
the assumption that all states have the same finite action spaces, but this is not a necessary
assumption.
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û(z) =

{
u if z = z0

valAz×Bz(g(z, ·, ·)) if z 6= z0

We can treat Φ(λ, ·) as an operator from R to R via

Φ(λ, u) = Φ(λ, û)(z0)

and we can define ϕ∗(·) : R→ R
⋃
{∞,−∞} by

ϕ∗(u) = ϕ∗(û)(z0)

The previous proposition thus becomes:

Proposition 3.4.3. In an absorbing game with compact metric action spaces,
if u, v ∈ R, u > v, then either ϕ∗(u) = ϕ∗(v) = ±∞, or

ϕ∗(v)− ϕ∗(u) ≥ u− v
Since if u ≥ ||g|| then ϕ∗(u) ≤ 0, and if u ≤ −||g|| then ϕ∗(u) ≥ 0, we

use the proposition to deduce:

Proposition 3.4.4. In an absorbing game with compact metric action spaces,
there exists a unique w ∈ R such that

w′ < w =⇒ ϕ∗(w′) > 0

w′′ > w =⇒ ϕ∗(w′′) < 0

Furthermore, w = Φ(0, w).

Using other results from [25], it is demonstrated that:

Theorem 3.4.5. In an absorbing game with compact metric action spaces,
the limit limλ→0+ vλ exists and is equal to ŵ, where w is the same as in the
previous proposition.

These last two results, along with the definition of ϕ∗, lead us to the
following corollary (which was used in [17]):

Corollary 3.4.6. In an absorbing game with compact metric action spaces,
non-absorbing state z0, payoff function g, and actions spaces (Az)z∈S, (Bz)z∈S,
let ε > 0, define

w(z) =

{
limλ→0+ vλ(z0)− ε if z = z0

valAz×Bz(g(z, ·, ·)) if z 6= z0

Then, for λ > 0 small enough,

Φ(λ,w) ≥ w
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This corollary implies that for this w, and each λ small enough, Player 1
has a mixed action xλ in z0 so that for all mixed action y in z0 of Player 2,

Exλ,y,q[λg(z0, a, b) + (1− λ)w(z′)] ≥ w(z0) (3.4.1)

This, however, is not enough for us; we want this assignment λ → xλ to be
measurable.

Let λ0 be such that the conclusion of Corollary 3.4.6 holds for λ ∈ I :=
(0, λ0). Let Ω be the set of pairs (λ, x) ∈ I ×∆(Az0) that satisfy (3.4.1) for
all y ∈ ∆(Bz0), and for each λ ∈ I, denote Ωλ = {x ∈ ∆(Az0)

∣∣(λ, x) ∈ Ω}.

From Remark 3.1.8 and the fact that the payoff and the probability
transition are separately continuous, it’s easy to see that the mapping (I ×
∆(Az0))×∆(Bz0)→ R given by

((λ, x), y)→ Ex,y,q[λg(z0, a, b) + (1− λ)w(z′)]

is separately continuous in (λ, x) and in y, where we recall that ∆(Az0) and
∆(Bz0) are endowed with the weak topology. ∆(Az0) is well known to be
compact metric (e.g., [19, Section I.1], or [26, Sections 3.15 and 3.16]) and
therefore each Ωλ is compact, and Ω is Borel.

We recall the following selector theorem:10

Theorem 3.4.7 ([5]). Let U, V be complete, separable metric spaces, and let
Ω ⊆ U × V be a Borel set. Denote Proj(Ω) = {u ∈ U |∃v ∈ V, (u, v) ∈ Ω}.
Suppose that for each u ∈ U , Ωu = {v ∈ V

∣∣(u, v) ∈ Ω} is compact. Then
there is a Borel-measurable function f : Proj(Ω) → V such that for all
u ∈ Proj(Ω), (u, f(u)) ∈ Ω.

Therefore, we deduce the following corollary:

Corollary 3.4.8. Under the conditions of Corollary 3.4.6, there exists λ0

such that there is a Borel-measurable mapping (0, λ0) → ∆(Az0) (where
∆(Az0) is endowed with the weak topology), λ→ xλ, so that for all λ ∈ (0, λ0)
and all y ∈ ∆(Bz0),

Exλ,y,q[λg(z0, a, b) + (1− λ)w(z′)] ≥ w(z0)

Remark 3.4.9. If z 6= z0, by the definition of w(z) there is x ∈ ∆(Az) such
that for all λ ∈ (0, 1) and all y ∈ ∆(Bz),

Ex,y,q[λg(z, a, b) + (1− λ)w(z′)] = λEx,y[g(z, a, b)] + (1− λ)w(z) ≥ w(z)

10This theorem also results immediately from the general selector theorem in [12], using
[10, Theorem 3], or from the selector theorem in [11, Section 14.2], using [11, Section 13.2].
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3.5 Results in Undiscounted Stochastic Games

The following two results show the existence of the value in undiscounted
stochastic games under proper conditions. (The aim of this thesis is to ex-
tend these results to the case where an information lag is imposed.)

The first is due to J.F. Mertens and A. Neyman (1981).

Theorem 3.5.1 ([16]). A stochastic game with finite state and action spaces,
and perfect monitoring, has a value.

The second is due to J.F. Mertens, A. Neyman and D. Rosenberg (2007).

Theorem 3.5.2 ([17],[18]). An absorbing game with compact metric action
spaces, and perfect monitoring, has a value.

Remark 3.5.3. By Remark 3.1.15, we needn’t impose any restrictions on the
state space in Theorem 3.5.2.

Remark 3.5.4. As demonstrated by the explicit constructions in the respec-
tive articles, the ε-optimal strategies in both these cases can be chosen such
that they depend only, at stage n + 1, on the sequence of states up to to
that point, (z1, . . . , zn+1), and the sequence of payoffs in the game up to that
point, (g1, . . . , gn).

4 The Results

4.1 Conditions for the Existence of the Value

This theorem, the main result of this work, extends the results on the exis-
tence of the undiscounted value of those games mentioned in Section 3.5 to
games with information lags that are not too severe.

Theorem 4.1.1. Suppose we have a two-player zero-sum stochastic game
with finite state and action spaces, or a two-player zero-sum absorbing game
with compact metric action spaces. Suppose a player is subject to an infor-
mation lag given by a lag function f such that there is β > 1 such that11

f(n) = O
(

n
(log(n))β

)
. Then that player can guarantee in the undiscounted

game whatever he can guarantee in the game with perfect monitoring. In
particular, if one or both players have such information lags, the game has
an undiscounted value.

11Or f(n) = O
(

n
log(n)(log(log(n)))β

)
or O

(
n

log(n) log(log(n))(log(log(log(n))))β

)
, etc.
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In Sections 5.3–5.5, we will prove the following more general result, and
then deduce Theorem 4.1.1 as a corollary thereof in Section 5.6.

Theorem 4.1.2. Suppose we have a two-player zero-sum stochastic game
with finite state and action spaces, or a two-player zero-sum absorbing game
with compact metric action spaces. Let v(λ) denote the λ-discounted value.
Suppose a player is subject to an information lag given by a lag function f
such that for every ε > 0:

1) There exists a non-decreasing lag function g(n) so that f(n) = o(g(n)).

2) There exists a decreasing function λ(s) : (0,∞)→ (0, 1) satisfying the
following conditions:

a)
∫∞

0
λ(s)ds <∞.

b) For all M > 0, λ(M + g(n)) · n→∞.

Moreover, either of the following pairs (c.I, d.I) or (c.II, d.II) of condi-
tions hold:

c.I) For M large enough, and any k, if s ≥M + g(k), then

∣∣λ(s±max(1, f(k)))

λ(s)
− 1
∣∣ ≤ ε.

d.I) The game is absorbing, or for s large enough

||v(λ(s± 1))− v(λ(s))|| ≤ ε · λ(s)

c.II) For every D small enough and s large,

∣∣λ((1±D)s)

λ(s)
− 1
∣∣ ≤ ε.

d.II) The game is absorbing, or for every D small enough, and s large
enough,

||v(λ((1±D)s))− v(λ(s))|| ≤ ε · s · λ(s)

Then that player can guarantee in the undiscounted game whatever he
could guarantee in the game with perfect monitoring. In particular, if one or
both players have such information lags, the game has an undiscounted value.
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We clarify that conditions (d.I) and (d.II) are of relevance in those games
which are not absorbing. If the game is an absorbing game, then (d.I) and
(d.II) are to be ignored.

The two pairs of conditions (c.I, d.I) and (c.II, d.II) correspond to two
different proofs. The first will extend the proof in [16, Section 2], while the
second will extend the proof in [16, Section 3].

4.2 Large Information Lags

These results deal with games in which a player has an information lag that
grows fast enough so that the undiscounted value of the game no longer ex-
ists. All these results pertain to the Big Match (defined in Section 3.2).

This following proposition, proved in Section 5.1, shows that if the in-
formation lag is too large, the undiscounted value of the game no longer
exists.

Proposition 4.2.1. Suppose that in the Big Match, Player 1 is subject to
an information lag f(n) that is not o(n). Then Player 1 cannot guarantee a

liminf payoff of more than −1
2

lim supn→∞
f(n)
n

.

Player 2 may be able to guarantee a liminf payoff of much less. A tech-
nique provided by E. Shmaya (private communication) shows that:

Proposition 4.2.2. Suppose that in the Big Match, Player 1 is subject to
an information lag f(n) so that there is a sequence of positive integers n1 <
n2 < n3 < . . . such that if nk ≤ nk + j < nk+1, then f(nk + j) ≥ j, and
furthermore,

lim inf
k→∞

nk+1 − nk
nk+1

> 0

Then Player 2 can guarantee a liminf payoff of −1.

The conditions of this proposition can be intuitively stated as follows:
Suppose the stages of the game can be partitioned into blocks (Bk)

∞
k=1 of

consecutive stages so that while in block Bk Player 1 gets no information
about Player 2’s actions within the block. Suppose also that each block con-
sists of at least a fixed percentage of the stages in the game up to that point.
Then the result follows.

As a corollary to Proposition 4.2.2, one can deduce
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Corollary 4.2.3. Suppose that in the Big Match, Player 1 is subject to an
information lag f(n) such that

lim inf
n→∞

f(n)

n
> 0

Then Player 2 can guarantee a liminf payoff of −1.

The above corollary is also immediate from Proposition 4.2.5 below, so I
shall not state a separate proof.

The next proposition shows that even if the lag function f(n) is o(n), the
undiscounted value may not exist.

Proposition 4.2.4. There exists a lag function f(n) which is o(n) so that
if in the Big Match Player 1 is subject to this information lag, then Player 2
can guarantee a liminf payoff of −1.

A result provided by A. Neyman (private communication) gives a more
explicit result:

Proposition 4.2.5. Suppose that in the Big Match, Player 1 is subject to
an information lag f(n) such that

f(n) >>
n

log(log(n))

Then Player 2 can guarantee a liminf payoff of −1.

Although Proposition 4.2.4 is an immediate corollary of Proposition 4.2.5,
the construction in the proof of Proposition 4.2.4 yields a lag function with
the interesting property that there is a sequence n1 < n2 < n3 < . . . such
that for all k, f(nk) = 0; that is, infinitely often Player 1 views the entire
history of the game up to that point.

Propositions 4.2.2, 4.2.4, and 4.2.5 are proved in Section 5.2.

4.3 Discussion of the Information Lag Results

Remark I. For any fixed N ∈ N, we observe the stochastic game (for sim-
plicity, with finite state and action spaces) of finite length N (the payoff,
given by Definition 3.1.12, is the average of the stage-by-stage payoffs). It
results by an inductive argument that the value vN ∈ RS for such a game
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exists and the players possess optimal Markov strategies [29, Section 1.4].

Therefore, in such games of finite length, a player can certainly guarantee
whatever he could in the perfect monitoring game even if he monitors nothing
but the current state. If the undiscounted value of a stochastic game exists,
then it must hold that vN(z) →

N→∞
v(z) for each state z. The existence of this

limit, and its value in the case that it does exist, is therefore independent
of any information lags. In particular, in the propositions in Section 4.2,
the undiscounted value of the game (Definition 3.1.13) is not merely shifted
when an information lag is imposed on one player; the undiscounted value
no longer exists.

It is interesting to observe the payoff to Player 1 given by

lim inf
N→∞

Ez1
σ,τ

[ 1

N

N∑
j=1

gj
]

(which, by Fatou’s lemma, is at least as much as the liminf-payoff) and ask
what Player 1 can guarantee in such a game when subject to large informa-
tion lags. This question is still open.

Remark II. The results presented here still do not pertain to certain lag
functions. For instance, if a player in a stochastic game has an information
lag given by f(n) ∼ n

logn
, can he guarantee the same as he could have in the

game with perfect monitoring? Perhaps he can; however, such a lag function
does not satisfy the condition of Theorem 4.1.2:

Suppose f(n) = π(n) = #{1 < p ≤ n
∣∣ p is prime} is the prime-counting

function. Then the prime number theorem states that π(n) ∼ n
logn

[7, Chap-

ter 18]. Let p(n) denote the n-th prime. Note that π(p(n)) = n for all n.

Suppose g(n) is related to f(n) as in Theorem 4.1.2, and suppose λ sat-
isfies the conditions there. Then we would have to have for any M > 0, and
almost all n,

1

λ(π(n)) · n
≤ 1

λ(M + g(n)) · n
→ 0

which tells us that

1

λ(π(n))
= o(n)
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and therefore,

1

λ(n)
= o(p(n))

and therefore, for almost all n,

1

p(n)
≤ λ(n)

However, the harmonic series of primes
∑∞

n=1
1

p(n)
diverges [7, Chapter 7],

a contradiction to condition (2.a) on λ of Theorem 4.1.2.

Remark 4.3.1. The same contradiction would arise for any non-decreasing
f(n) ∼ n

log(n)
by taking the counting function of the set {k ∈ N|f(k) 6=

f(k+ 1)}; it’s easier, however, to rely on the known result on the divergence
of the harmonic series of primes.

Remark III.The condition lim sup
n→∞

f(n)
n

> 0 in itself is a weak condition.

For any ε ∈ (0, 1), there is a lag function so that lim sup
n→∞

f(n)
n

= ε and nev-

ertheless Player 1 subject to this lag in the Big Match can guarantee −ε in
the undiscounted game. This occurs if the structure of the lag is such that
there are large periods of perfect monitoring with short periods of imperfect
monitoring in between.

Choose η > 0, and let σ be an η-optimal strategy in the perfect monitor-
ing game for Player 1. Define sequences (nj), (mj) of positive integers such
that:
(i) n1 < m1 < n2 < m2 < n3 < . . .
(ii) For all j,

mj
nj+1

→
j→∞

0.

(iii) limj→∞
mj−nj
mj

= ε.

Denote m0 = 1. Define the lag function so that for all j and mj ≤ k <
nj+1, f(k) = 0, and for all j and nj ≤ k < mj, f(k) = k − nj + 1. (That
is, Player 1 views the entire history of the game after each stage k such that
mj ≤ k < nj+1, and gets no new information if nj ≤ k < mj).

A strategy for Player 1 in the Big Match depends, at any given time, only
on the previous actions of Player 2, so, for brevity, we list only those in the
history of the game. Define a strategy σ′ for Player 1 by:
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σ′(b1, . . . , bk) =


T if nj < k ≤ mj

σ(b1, . . . , bn1 , bm1+1, . . . , bn2 , bm2+1, . . . ,
bn3 , bm4+1, . . . , . . . , bnj , bmj+1, . . . , bk) if mj < k ≤ nj+1

σ(∅) if k = 0

where (b1, . . . , bk) are the previous actions of Player 2. That is, σ′ plays T
when nj < k ≤ mj (”playing it safe”), and otherwise plays as σ would have
played against a history in which the actions at stages j for which there is i
such that ni < j ≤ mi have been removed. Such a strategy σ′ is easily shown
to yield a payoff of at least −2η − ε in the liminf game and in long enough
games of finite length (with average payoff).

Remark IV. Suppose that in the Big Match, with liminf (or limsup) pay-
off, Player 1 is subject to an information lag f so that there is a sequence of
integers n1 < n2 < n3 < . . . so that if nk ≤ nk+j < nk+1, then f(nk+j) = j.
That is, Player 1 views the entire history the game after each of the stages
n1, n2, n3, . . ., and none of Player 2’s actions in between. Denote n0 = 0, and
denote mk = nk − nk−1. Assume Player 2 has perfect monitoring. We define
an auxiliary game (denoted G) as follows:

The (countably infinite) state space S of G consists of states (si)i∈N. In
state sk, Player 2’s action space is the set of pure behavioral strategies for
Player 2 in the Big Match of finite length mk; Player 1’s action space is the
set of pure behavioral strategies for Player 1 that are independent of Player
2’s actions in this Big Match of finite length. (These are both finite action
spaces. Note that these are only the pure strategies.) State sk can then be
viewed as a play of length mk in the Big Match in which Player 2 has perfect
monitoring and Player 1 observes none of Player 2’s actions. The transition
probabilities are defined so that si is followed by state si+1.

The Borel payoff in G is defined to be the payoff that would result in the
Big Match with liminf (or limsup) payoff if the players played from stages
nk−1 + 1 through nk as they did in stage k of G, assuming absorption had
not occurred yet.

G is therefore a stochastic game with countable state space and finite
action spaces, a bounded Borel payoff, and perfect monitoring. By Theorem
3.3.7, it has a value; therefore, in the case that Player 1 has this particular
type of information lag, the Big Match has a liminf value and a limsup value.
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A conjecture, based on indirect contact with E. Shmaya, is that the liminf
and limsup values in any stochastic game with finite state and action spaces
exist when the players are subject to arbitrary information lags in which all
actions are eventually observed.

Remark V. In [21], the concepts of minmax and maxmin for multi-
player undiscounted stochastic games are introduced and the existence of
the minmax is demonstrated. An example provided by A. Neyman (private
communication) demonstrates that if a player is subject to an information
lag of even a single move, the minmax may shift. Observe, first, the following
three-player stochastic game with a single state whose actions and payoffs to
Player 1 are given by:

W E
L R

T −1 0
B 0 0

L R
T 0 0
B 0 −1

Player 1 is the box player (E,W ), Player 2 is the row player (T,B), and
Player 3 is the column player (L,R). With perfect monitoring, the undis-
counted minmax is seen to be −1

4
: A minmaxing strategy for Players 2,3

would be for each to play (0.5, 0.5) at each stage. For a strategy profile
(σ2, σ3) of Players 2,3, a (σ2, σ3)-maximizing strategy σ1 for Player 1 is to
observe the history h and playW if (σ2, σ3)(h)(T, L) < (σ2, σ3)(h)(R,B), and
E otherwise; since min[(σ2, σ3)(h)(T, L), (σ2, σ3)(h)(R,B)] ≤ 1

4
, this demon-

strates that the undiscounted minmax is −1
4
.

Now, observe the following variation of the above game:

W E
L1 L2 R1 R2

T −1 −1 0 0
B 0 0 0 0

L1 L2 R1 R2

T 0 0 0 0
B 0 0 −1 −1

If the game had perfect monitoring, then the minmax would be −1
4
, as

above. Now impose a one-move information lag on Player 1; that is, the lag
function satisfies f(k) = 1 for all k ≥ 1. I contend that the undiscounted
minmax is now −1

2
. For any strategy profile (σ2, σ3) of Players 2,3, Player 1

can guarantee −1
2

by playing (0.5, 0.5). A minmaxing strategy profile (σ2, σ3)
of Players 2, 3 is the following: Play arbitrarily at the first stage. Thereafter,
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their actions are determined by what they had played at the previous stage.
If R1 or L1 was played, Player 3 plays T and Player 2 plays (0.5, 0.5, 0, 0); if
R2 or L2 was played, Player 3 plays B and Player 2 plays (0, 0, 0.5, 0.5).

In this manner, the actions of Player 2 and Player 3 are correlated. Player
1, however, doesn’t see the actions played at the previous stage and so, from
his point of view, (T, L1) or (T, L2) occurs with probability 1

2
, and (B,R1)

or (B,R2) occurs with probability 1
2
.

It’s not clear whether the minmax must exists when a bounded informa-
tion lag is imposed on one player in a multi-player game.

4.4 Failure of a ”Direct Approach” in Games with In-
formation Lag

In this section I bring an example to demonstrate why near-optimal strategies
in a stochastic game with perfect monitoring do not translate immediately
into near-optimal strategies in games with information lag.

Let us take, for example, the Big Match, presented in Section 3.2. A
near-optimal strategy for Player 1 – similar to the one derived from [16] – is
given by

σ(hn)(B) =
1

[(M + kn + εn)+]2 + 1

where M > 0, ε < 1, kn denotes the excess of L’s over R’s of Player 2 in the
history hn of length n in which B has not been played, and a+ = max(a, 0).
As ε is taken smaller, and M is taken larger, the strategy becomes more
optimal.

Now, suppose the lag function f(n) = bn0.8c is imposed on Player 1.
Denote q(n) = n− f(n). Suppose Player 1 tries to play a strategy

σ′(hn)(B) =
1

[(M + kq(n) + εn)+]2 + 1

That is, suppose Player 1 modifies his strategy to accommodate the in-
formation lag (the rationale being that f(n) = o(εn)). We shall now demon-
strate how Player 2 can assure that with high probability that (B,L) is
eventually played.
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Choose 0 < δ (which will be taken to be small), 0 < P (which will be
taken to be large), and C > 5. Choose M ′ > 0 so that M ≤ M ′ and M ′ is
large enough so that

∞∑
n=1

1

(M ′ + n0.75)2 + 1
< δ (4.4.1)

and choose S ∈ N large enough so that

S

(M ′)2 + 1
> P (4.4.2)

Let U ∈ N be the smallest integer so that

M + q(U) + εU ≥M ′ + C (4.4.3)

We take integers W,K such that K ≤ f(U +W +K) (and other proper-
ties to be specified later), and describe τ :

Step 1: τ plays L for the first U stages.

Step 2: For the next W stages, τ plays a sequence of L’s and R’s such
that

M ′ + (n− U)0.75 ≤M + kq(n) + εn

and so that n ≤ W +K large enough,

M + kq(n) + εn ≤M ′ + (n− U)0.75 + 2C

Since it never happens that q(n) = q(n+ 1) for two consecutive integers ≥ 2,
this step in the description of τ can be defined.

Step 3: For the next K stages, τ plays R.

Step 4: Thereafter, τ plays L.

We say that Player 1 plays, at stage n+ 1, against Step j if q(n) + 1 is a
stage at which Step j was played.

Since the growth n0.8 of the information lag is greater than the growth
of (n − U)0.75, it’s not hard to see that W,K can be chosen large enough
so that Player 2 plays Step 4 while Player 1 plays against Step 2 (i.e.,
K ≤ f(U + W + K), and so Step 2 is well defined), and so that there
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are at least S integers n so that, at stage n, Player 1 plays against Step 3,
and so that M + kq(n) + εn ≤M ′.

Let Ai (resp., Bi) denote the set of infinite histories in which B (resp.
(B,L)) is played while Player 1 is plays against Step i. Note that playing B
occurs at most once, as the game moves to an absorbing state when this hap-
pens, so the (Ai) (resp., (Bi)), are mutually exclusive. Observe that A1 = B1

and A3 = B3, since Player 1 plays against Step 3 after Player 2 begins Step
4. Let B =

⋃4
i=1 B4.

If there is a sequence of Bernoulli trials, with probabilities of success
p1, . . . , pn, Ei denoting the event that the first success occurs on the i-th
trial, and E =

⋃n
j=1Ei, then

P (E) =
n∑
k=1

(1− P (
⋃
i<k

Ei))pi ≥
n∑
k=1

(1− P (E))pi

and therefore

P (E) ≥
∑n

k=1 pi
1 +

∑n
k=1 pi

Inequality (4.4.1) tells us that P (A2|Ac1) < δ. Since there are at least S
stages which occur while Step 4 is being played for which M+kq(n)+εn ≤M ′,
using inequality (4.4.2) and the above observation on sequences of trials, we
derive P (B3|(A1

⋃
A2)c) ≥ P

1+P
.

Therefore,

P (B) ≥ P (B1) + (1− P (A1)− P ((A1)c)P (A2|(A1)c))P (B3|(A1

⋃
A2)c)

≥ P (B1) + (1− P (B1)− P ((A1)c)δ)
P

1 + P

which tends to 1 as P →∞, δ → 0.

5 Proofs

Sections 5.1 and 5.2 pertain to the Big Match. We use the following nota-
tions and conventions:

28



• z0 denotes the non-absorbing state of the Big Match.

• gk denotes the payment of Player 2 to Player 1 at stage k.

• Y = lim infn→∞
g1+...+gn

n
.

• A ⊆ H∞ denotes the subset of infinite histories of the Big Match,
beginning in state z0, in which absorption occurs.

• E = Ac; that is, E ⊆ H∞ is the subset of infinite histories of the Big
Match, beginning in state z0, in which absorption does not occur.

5.1 Proof of Proposition 4.2.1

Choose

ε <
1

4
· lim sup

n→∞

f(n)

n

Choose a countable partition of N (that is, a countable partition of the
stages of the game), denoted {R,B1, B2, B3, . . .}, such that:

• Each Bk is a non-empty finite set of consecutive integers (that is, a set
of consecutive stages).

• If j < k, maxBj < minBk.

• If nk denotes the largest element of Bk, then f(nk)
nk
≥ |Bk|

nk
≥ 4ε.

The definition of ε implies that we can choose such a partition.

Let σ be any strategy for Player 1, subject to the information lag f .
Let s1, s2 denote one-shot strategies for Player 2: s1 = (0.5 + ε, 0.5 − ε),
s2 = (0, 1). Note that the expected payoff to Player 1 at a stage in which
the strategy profile (T, s1) is played is 2ε.

Let 0 < η, and take any sequence of positive real numbers (αi)
∞
i=0 such

that
∑∞

i=0 αi ≤ η. Define τ such:

• At each stage of R, τ plays s1.

• For a block Bn, τ will play s2, for each stage in that block, if τ has
played s2 in precisely k of the previous blocks and the probability that σ will
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play B during this block (based on the history preceding this block) is ≤ αk;
otherwise, τ plays s1 for every stage in the block.

Note that this is well defined because anything σ plays during a block Bk

is independent of the actions of Player 2 within the block.

Let A1 ⊆ A (resp. A2 ⊆ A) denote the plays where absorption occurs
when s1 (resp. s2) is played. Then A = A1

⋃
A2.

Ez1
σ,τ (Y |A1) = −2ε, Ez1

σ,τ (Y |A2) = 1. Furthermore, P (A2) ≤ η. Therefore,
since ε ≤ 1

2
,

P (A)Ez1
σ,τ (Y |A) = P (A1)Ez1

σ,τ (Y |A1) + P (A2)Ez1
σ,τ (Y |A2) = −2εP (A1) + P (A2)

= −2ε(P (A)− P (A2)) + P (A2) = −2εP (A) + P (A2)(1 + 2ε)

≤ −2εP (A) + η(1 + 2ε) < −2εP (A) + 2η (5.1.1)

(The inequality between the first and final terms still holds if P (A1) or
P (A2) are 0; if P (A) = 0, the calculation becomes irrelevant.)

Proposition 5.1.1. Against almost every play in E, τ plays s2 infinitely
many times.

Proof. Let Σ ⊆ 2N denote the collection of finite sets of positive integers. For
every I ∈ Σ, let EI denote the subset of E of plays against which τ plays s2

only in blocks (Bi)i∈I . Since Σ is countable, it’s enough to verify that for all
I ∈ Σ, P (EI) = 0.

Given such I, denote m = maxI, and L = |I|. Then, for every k > m, σ
plays B with probability greater than αL in the block Bk against any history
in EI . Absorption then occurs almost surely, but absorption does not occur
in EI ⊆ E; therefore, P (EI) = 0.

Suppose that in some play, up to the beginning of a block Bk, the average
payoff has been ρ, and suppose s2 is played during Bk and absorption does
not occur. Then, the average payoff at the end of the block is

ρ(nk − |Bk|)− |Bk|
nk

= ρ(1− |Bk|
nk

)− |Bk|
nk
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By the definition of the blocks, the strong law of large numbers, and
Proposition 5.1.1,

Ez1
σ,τ (Y |E) ≤ (1− lim inf

k→∞

|Bk|
nk

)2ε− lim inf
k→∞

|Bk|
nk

≤ 2ε− 4ε = −2ε

and therefore

Ez1
σ,τ (Y ) = P (E)Ez1

σ,τ (Y |E) + P (A)Ez1
σ,τ (Y |A) ≤ −2ε(1− P (A))− 2εP (A) + 2η

= −2ε+ 2η (5.1.2)

and we could have chosen η arbitrarily small and ε arbitrarily close to 1
4
·

lim sup
n→∞

f(n)
n

.

5.2 Proof of Propositions 4.2.2, 4.2.4, and 4.2.5

The proofs of Propositions 4.2.2, 4.2.4, and 4.2.5 all involve a similar tech-
nique. The game will be partitioned into blocks (Bk)

∞
k=1 comprising consec-

utive stages, such that Player 1 sees none of Player 2’s actions within Bk

while that block is being played. Player 2’s strategies will be to choose ε > 0
small and, in each block, play only R with probability ε, and play only L
with probability 1 − ε. Since Player 1 observes none of Player 2’s actions
in the current block, the smaller ε is, the more Player 1 is discouraged from
playing B.

These proofs make use of the conventions introduced at the beginning of
Section 5.

Proof of Proposition 4.2.2. Let (nk) be a sequence as in Proposition 4.2.2,
and denote n0 = 0. Choose α > 0 such that for all k,

nk+1 − nk
nk+1

≥ α

(Note that α < 1.) This can be rewritten as

nk+1 ≥
1

1− α
nk (5.2.1)
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Let Bk denote the set of stages nk−1 + 1 through nk. Choose now ε > 0.
(5.2.1) implies that there is K so that for all m,

∑m
k=1 |Bk|∑m+K
k=1 |Bk|

< ε (5.2.2)

I.e., there is K so that at any point in the game, the most recent K blocks
will contain a fraction of at least 1− ε of the stages in the game up to that
point.

Player 2’s strategy τ is to play, in block Bk, R for the entire block with
probability ε and L for the entire block with probability 1− ε, independent
of anything that occurred before block Bk.

If absorption does not occur, it almost surely occurs infinitely often that
only R is played in K consecutive blocks. By (5.2.2),

Ez1
σ,τ [Y |E] ≤ −1(1− ε) + 1 · ε = −1 + 2ε

since the average payoff to Player 1 in the blocks preceding any such K blocks
is at most 1.

On the other hand, Player 1 does not observe whether Player 2 is currently
playing L or R in the current block and Player 2’s choices are independent
of anything that occurred previously. As such, given that absorption occurs,
the probability of absorption occurring when R is played is ε. That is,

Ez1
σ,τ [Y |A] = −1(1− ε) + 1 · ε = −1 + 2ε

Therefore,

Ez1
σ,τ [Y ] ≤ −1 + 2ε

and ε can be chosen arbitrarily small.

Proof of Proposition 4.2.4. We will construct a sequence n1 < n2 < n3 <
· · · , and define the information lag to be such that if nk ≤ nk + j < nk+1,
then f(nk + j) = j. For convenience, denote n0 = 0; then the k-th block, Bk,
comprises the stages from nk−1 + 1 through stages nk.

Once the sequence (nk), and hence the blocks (Bk), are defined, Player
2’s strategy τ will be to play, for ε > 0 chosen arbitrarily small, R for the
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entire k-th block with probability ε, and L for the entire k-th block other-
wise, independent of the history preceding the k-th block.

The idea will be to mimic the exponential growth of the size of the blocks
used in the proof of Proposition 4.2.2, but to carefully decrease the base of
the growth.

For each m ≥ 1, take Km to be such that if a sequence in N, (pk), satisfies
for all k that

pk+1 − pk
pk+1

≥ 1

2 +m
(5.2.3)

then for all k,

pk
pk+Km

< ε (5.2.4)

(The choice of Km can be done in a fashion similar to the choice of K in the
proof of Proposition 4.2.2). We will define a sequence k1 < k2 < k3 < . . .
such that

m∑
j=1

kj < k ≤
m+1∑
j=1

kj =⇒ nk − nk−1

nk
>

1

2 +m
(5.2.5)

holds. (5.2.5) will recursively determine the (nk): Choose n1 arbitrarily, and
given nk−1, choose nk to be the smallest integer satisfing (5.2.5). Choose
k1 arbitrarily, and choose km+1 (recursively) to be even and large enough,
according to the following criteria:

(i) km+1 is chosen so that, if (5.2.5) holds, then the number of stages in
the first

∑m
j=1 kj blocks is at most an 1

m
-fraction of the stages in the first∑m

j=1 kj + km+1

2
blocks.

(ii) The probability that R is played for Km consecutive blocks, sometime
between block

∑m
j=1 kj + km+1

2
+ 1 and block

∑m+1
j=1 kj, is at least 1

2
.

Then, given that absorption does not occur, it a.s. happens for infinitely
many m that R is played for Km consecutive blocks between block

∑m
j=1 kj +

km+1

2
+ 1 and block

∑m+1
j=1 kj. Therefore, that this strategy yields a liminf

payoff of less than −1 + 2ε is shown using an argument very similar to the
one towards the end of the proof of Proposition 4.2.2, together with condition
(i) on the sequence (kj).
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Proof of Proposition 4.2.5. Assume that f(n) is non-decreasing (if it is not,
replace it with the function g(n) = mink≥n f(k), which also satisfies the con-
dition of the proposition).

Choose 0 < ε < 1
2
, and 0 < δ < (− ln(ε))−1. Choose C > 0 so that

eC·δ > 1
ε
. Therefore, for m large enough,

(1 +
C

m
)δ·m >

1

ε
(5.2.6)

Define n0 = 0, and take n1 large enough so that:
(i) m ≥ log(log(n1)) satisfies (5.2.6).
(ii) 1

log(log(x))
is defined in [n1,∞).

(iii) For n ≥ n1, f(n) ≥ C·n
log(log(n))

.

Define recursively
nk+1 = f(nk) + nk (5.2.7)

Note that since f is non-decreasing, if nk ≤ nk + j < nk+1

j ≤ nk+1 − nk = f(nk) ≤ f(nk + j) (5.2.8)

The k-th block, Bk, comprises the stages from nk−1 + 1 through stage nk.
Inequality (5.2.8) implies that Player 1 sees none of Player 2’s actions in the
block Bk while Bk is being played.

Define p1 = 1, and define recursively pk to be the smallest integer so that

npk ≥
1

ε
npk−1

(5.2.9)

Note that nk ≤ 2 · nk−1 for all k > 1 (since f is a lag function) and
therefore, since pk is the smallest integer to satisfy (5.2.9),

npk ≤
2

ε
npk−1

In particular,

npk ≤
(2

ε

)k−1
n1

Player 2’s strategy τ in block Bk is to play R for the entire block with
probability ε, and L for the entire block with probability 1 − ε, indepen-
dent of the history preceding the k-th block. Let Yk ⊆ E denote the event
that R is played in the block Bk and that absorption never occurs, and let
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Xk =
⋂pk+1−1
j=pk

Yj.

The events {Xk} are independent, given that absorption never occurs.
Therefore, if for any strategy σ of Player 1,

∞∑
k=1

P z1
σ,τ (Xk|E) =∞

it will result from the Borel-Cantelli lemma that, given that absorption does
not occur, a.s. infinitely many of the Xk occur. Hence, that this strategy
yields a liminf payoff of < −1 + 3ε is shown using an argument very similar
to the one towards the end of the proof of Proposition 4.2.2, together with
inequality (5.2.9).

Observe that, since ε < 1
2

and nk+1 ≤ 2nk, from (5.2.9) we deduce that
pk+1 ≥ pk + 2, and therefore,

(1+
C

log(log(npk+1
))

)δ·log(log(npk+1
)) >

1

ε
>
npk+1−1

npk

=

pk+1−2∏
j=pk

nj+1

nj
=

pk+1−2∏
j=pk

(1 +
f(nj)

nj
) ≥

pk+1−2∏
j=pk

(1 +
C

log(log(nj))
)

≥
pk+1−2∏
j=pk

(1 +
C

log(log(npk+1
))

) = (1 +
C

log(log(npk+1
))

)pk+1−pk−1 (5.2.10)

Therefore

δ · log(log(npk+1
)) ≥ pk+1 − pk − 1

Therefore,

P z1
σ,τ (Xk|E) = εpk+1−pk ≥ ε · εδ·log(log(npk+1

)) = ε · e− log( 1
ε

)δ·log(log(npk+1
))

≥ ε · e− log( 1
ε

)δ·log(log(( 2
ε

)kn1)) ∼ ε · e− log( 1
ε

)δ·log(k)

= ε · k−δ log( 1
ε

) ≥ εk−1 (5.2.11)

which completes the proof.
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5.3 Proofs of Theorem 4.1.2

Without loss of generality, we will assume that Player 1 is subject to the
information lag f(n).

Choose an initial state z1. Let g(·, ·, ·) be the payoff function for the game,
and let A = ||g(·, ·, ·)||. Let (gn), (zn) denote the sequences of payoffs and
states, respectively. zn and gn are measurable with respect to Hn.

Choose 0 < ε < 1
6
.

Theorem 4.1.2 refers to two types of games, called Case 1 and Case 2 for
short:

Case 1: Games with finite space and actions spaces.

Case 2: Absorbing games with compact metric action spaces.

In Case 1, denote
v(z, λ) = v(λ)(z)

and

v(z, 0) = lim
λ→0

v(λ)(z),

which exists by Theorem 3.3.2.

In Case 2, we take v(z, λ) to be independent of λ in [0, 1) and define it
by

v(z, λ) =

{
limλ→0 v(λ)(z)− ε if z = z0

valAz×Bz(g(z, ·, ·)) if z 6= z0

which exists by Theorem 3.4.5, where z0 denotes the non-absorbing state,
and Az, Bz denote the action spaces in state z.

We need to show that Player 1 can guarantee v(z1, 0).

Using Corollary 3.4.6 for the Case 2-type games, together with with the
characterization of the λ-discounted value given in Theorem 3.3.2 for Case
1-type games, we derive that for λ small enough,

Φ(λ, v(z, λ)) ≥ v(z, λ) (5.3.1)
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In each case, choose a measurable assignment that assigns to each λ < λ0,
for appropriately small λ0, a stationary strategy (xz)z∈S for Player 1 such that
for every stationary strategy (yz)z∈S of Player 2 and every state z ∈ S

Exz ,yz ,q[λg(z, a, b) + (1− λ)v(z′, λ)] ≥ v(z, λ) (5.3.2)

In both cases, this can be done by inequality (5.3.1): in Case 1, this can
be done in a measurable fashion (for small enough λ)12 by Theorem 3.3.2;
in Case 2, this can be done in a measurable fashion by Corollary 3.4.8 and
Remark 3.4.9.

Have λ0 be taken small enough to also assure that v(z, λ) is monotonic,
for each z, in (0, λ0), and so that for λ < λ0 and all z,

|v(z, 0)− v(z, λ)| ≤ ε

12
(5.3.3)

(In Case 1, such a choice of λ0 can be made by Theorem 3.3.2; in Case 2 it
follows from the independence of v(z, λ) on λ.)

Suppose (µn)∞n=1 is a sequence of measurable functions such that µn :
(Hn,Hn)→ (0, λ0). We can define a behavioral strategy σ for Player 1 that
at the n-th stage plays a mixed action xz so that for every mixed action yz,
(5.3.2) holds with the discount factor µn. In other words, for every behavioral
strategy τ of Player 2,

Ez1
σ,τ [v(zn+1, µn)− v(zn, µn) + λn(gn − v(zn+1, µn))|Hn] ≥ 0 (5.3.4)

In the next two sections we demonstrate ways to define (µn)∞n=1 so that
σ is subject to the information lag f , and prove that these choices generate
the required near-optimal strategies.

5.4 First Proof of Theorem 4.1.2

This proof is based on [16, Section 2], and assumes that the conditions of
Theorem 4.1.2 with the pair (c.I) and (d.I) hold.

Assume without loss of generality that A ≤ 1
6
. Choose g, λ satisfying the

conditions of Theorem 4.1.2, together with the pair of conditions (c.I) and

12It can actually be done in a measurable (semi-algebraic) fashion in all of (0, 1); see
[20, Theorem 4].
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(d.I). Recall that 0 < ε < 1
6
.

Choose M > 1 large enough so that the following assumptions on λ hold:

i) For s ≥M − 1, λ(s) < λ0.

ii) ∫ ∞
M

λ(s)ds < ε (5.4.1)

(This can be done by condition (2.a).)

iii) For s ≥M + g(k) and |θ| ≤ 1,

∣∣λ(s+ θ ·max(1, f(k)))

λ(s)
− 1
∣∣ ≤ ε. (5.4.2)

(This can be done by condition (2.c.I) and the monoticity of λ.)

iv) In Case 1, for all s > M and |θ| ≤ 1,

||v(λ(s+ θ))− v(λ(s))|| ≤ ε · λ(s) (5.4.3)

(This can be done by condition (2.d.I), the monoticity of v(z, λ) in (0, λ0),
and by the fact that, from (i), λ(s± θ) < λ0.)

Define functions h(k) = M + g(k), q(k) = k − f(k).

Define s1 = h(1) ≥M , λk = λ(sk), and

sk+1 = Max[h(k + 1), sk + gk − v(zk+1, λq(k)) + 4ε] (5.4.4)

σ denotes the behavioral strategy for Player 1 defined in Section 5.3 with
respect to the sequence (µn) = (λq(n)); that is, for any strategy τ of Player
2,

Ez1
σ,τ [v(zn+1, λq(n))− v(zn, λq(n)) + λq(n)(gn − v(zn+1, λq(n)))|Hn] ≥ 0 (5.4.5)

Note that as Player 1 is about to play stage k+ 1, he knows g1, . . . , gq(k) and
z1, . . . , zk+1, and therefore knows s1, . . . , sq(k)+1, and in particular, knows
sq(k+1) (since q(k) ≤ q(k+ 1) ≤ q(k) + 1). Therefore, this strategy is subject
to the information lag f(n).
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Note that

|sk+1 − sk| ≤ 1 (5.4.6)

since g, being a lag function, satisfies g(y) − g(x) ≤ y − x for y > x, and
therefore

|sq(k) − sk| ≤ f(k) (5.4.7)

Also note that

gk − v(zk+1, λq(k)) + 4ε ≤ sk+1 − sk
≤ gk − v(zk+1, λq(k)) + 4ε+ 2I(sk+1 = h(k + 1))

(5.4.8)

Observe that by (5.4.2) and (5.4.6),

|λk+1 − λk| ≤ ελk

and, by (5.4.7) and 5.4.2, for the appropriate |θ| ≤ 1,

|
λq(k)

λk
− 1| = |

λ(sq(k))

λ(sk)
− 1| = |λ(sk + θf(k)))

λ(sk)
− 1| ≤ ε (5.4.9)

as sk ≥ h(k). Also, in Case 1, by (5.4.3) and (5.4.9),

||v(λq(k+1))− v(λq(k))|| ≤ ελq(k) ≤
3

2
ελk (5.4.10)

Therefore, by (5.4.8),(5.4.5) and (5.4.10), together with the independence
of v(z, λ) on λ in Case 2,

Ez1
σ,τ (v(zk+1, λq(k+1))− v(zk, λq(k)) + λq(k)(sk+1 − sk)|Hk) ≥

5

2
ελk (5.4.11)

Define t(y) =
∫∞
y
λ(s)ds, tk = t(sk). By (5.4.1), t(y) is well defined and

tk ≤ ε. By (5.4.8), (5.4.9) and (5.4.6), together with the monoticity of λ, we
get

tk − tk+1 ≥ λk(sk+1 − sk)− ελk ≥ λq(k)(sk+1 − sk)− 2ελk
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Define Yk = v(zk, λq(k))− tk. (5.4.11) then implies

Ez1
σ,τ [Yk+1 − Yk|Hk] ≥

1

2
ελk (5.4.12)

Therefore, (Yk)
∞
k=1 is a submartingale with respect to (Hk)

∞
k=1, and is

bounded by 1
6

+ ε, and therefore converges a.s. to a limit, denoted Y∞, such
that (by (5.3.3))

Ez1
σ,τ [Y∞] ≥ Ez1

σ,τ [Y1] ≥ v(z1, λ1)− t1 ≥ v(z1, 0)− 2ε (5.4.13)

Furthermore, for all k,

0 ≤ 1

2
εEz1

σ,τ [
k∑
j=1

λj] ≤ Ez1
σ,τ [Yk − Y1] ≤ 2t(M) + 2

1

6
≤ 2ε+

1

3
≤ 1 (5.4.14)

and so, by Lebesgue’s monotone convergence theorem,

Ez1
σ,τ (

∞∑
k=1

λk) ≤ 2ε−1 (5.4.15)

In particular, λk → 0 a.s., and therefore sk → ∞ a.s., and therefore
tk → 0 a.s.. Therefore, v(zk, λq(k))→ Y∞ a.s., and by using (5.4.10),

v(zk+1, λq(k))
a.s.→ Y∞ (5.4.16)

Also observe that by (5.4.14) and (5.4.1), for every k

Ez1
σ,τ [v(zk+1, λq(k+1))] ≥ Ez1

σ,τ [tk+1] + v(z1, λ1)− t1 ≥ v(z1, λ1)− ε

and using (5.3.3) and (5.4.10),

Ez1
σ,τ (v(zk+1, λq(k))) ≥ v(z1, 0)− 3ε (5.4.17)

Denoting P = {k|sk+1 = h(k + 1)} and using (5.4.8),

∑
k≤n

gk ≥
∑
k≤n

v(zk+1, λq(k)) + sn+1 − s1 − 4nε− 2
∑
k≤n

I(k ∈ P ) (5.4.18)

Since 1
λ

and h are non-decreasing functions, and if k ∈ P then 1
λk+1

=
1

λ(h(k+1))
,
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1

n

n∑
k=1

I(k ∈ P ) =
1

n

n∑
k=1

I(k ∈ P )λk+1
1

λk+1

≤ 1

n

n∑
k=1

I(k ∈ P )λk+1
1

λ(h(k + 1))

≤ 1

nλ(h(n+ 1))

n∑
k=1

I(k ∈ P )λk+1 (5.4.19)

We deduce from (5.4.14) that for all n,

Ez1
σ,τ (

n∑
k=1

I(k ∈ P )λk+1) ≤ 2ε−1 (5.4.20)

and therefore, combining (5.4.19) and (5.4.20),

Ez1
σ,τ

[ 1

n

n∑
k=1

I(k ∈ P )
]
≤ 2ε−1

nλ(M + g(n+ 1))

Therefore, (5.4.18) implies that

Ez1
σ,τ [

1

n

∑
k≤n

gk] ≥ Ez1
σ,τ [

1

n

∑
k≤n

v(zk+1, λq(k))]−
1

n
s1 − 4ε− 4ε−1

nλ(M + g(n+ 1))

Applying (5.4.17) yields, finally,

Ez1
σ,τ [

1

n

∑
k≤n

gk] ≥ v(z1, 0)− 3ε− 1

n
s1 − 4ε− 4ε−1

nλ(M + g(n+ 1))

And using condition (2.b) of Theorem 4.1.2 gives the required near opti-
mality in long enough games with average payoff (note that the right-hand
side of this last inequality is independent of the strategy τ of Player 2.)

Since (5.4.15) implies that a.s.
∑∞

k=1 λk < ∞, using (5.4.19) and condi-
tion (2.b) of the theorem, we obtain,

1

n

n∑
k=1

I(k ∈ P ) ≤ 1

nλ(h(n+ 1))

n∑
k=1

I(k ∈ P )λk+1

≤ 1

nλ(M + g(n+ 1))

∞∑
k=1

λk
a.s.→ 0
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and therefore, (5.4.18) implies that

Ez1
σ,τ [lim inf

n→∞

1

n

∑
k≤n

gk] ≥ Ez1
σ,τ [lim inf

n→∞

1

n

∑
k≤n

v(zk+1, λq(k))]− 4ε

Applying (5.4.13) and (5.4.16) gives

Ez1
σ,τ [lim inf

n→∞

1

n

∑
k<n

gk] ≥ v(z1, 0)− 6ε

and the proof is complete.

5.5 Second Proof of Theorem 4.1.2

This proof is based on [16, Section 3], and assumes that the conditions of
Theorem 4.1.2 with the pair (c.II) and (d.II) hold.
.

Assume without loss of generality that A ≤ 1
4
. Choose g, λ satisfying the

conditions of Theorem 4.1.2, together with the pair of conditions (c.II),(d.II).
Recall that 0 < ε < 1

6
.

Set δ = ε
12

. Choose 0 < D < 1
4

small enough, and M > 8
D

large enough,
so that the following assumptions on λ hold:

i) For s ≥ M
1−D , λ(s) < λ0.

ii) ∫ ∞
M

λ(s)ds < δ (5.5.1)

(This can be done by (2.a).)

iii) For s ≥M and |θ| ≤ 1

∣∣λ(s(1 + θD))

λ(s)
− 1
∣∣ ≤ δ. (5.5.2)

(This can be done by condition (2.c.II) and the monoticity of λ.)

iv) In Case 1, for all s > M and |θ| ≤ 1,

||v(λ(s(1 + θD)))− v(λ(s))|| ≤ δ · λ(s) (5.5.3)
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(This can be done by condition (2.d.II), the monoticity v(z, λ) in (0, λ0), and
by the fact that, from (i), λ(s(1 + θD)) < λ0.)

v) For s ≥M ,

D · sλ(s) < δ (5.5.4)

(This results from condition (2.a) and the monoticity of λ.)

(We will enlarge M beyond these requirements.)

Define functions h(k) = M + g(k), L(s) = bDsc.

Define s0 = h(1) ≥M , B0 = 1, Lk = L(sk), Bk+1 = Bk +Lk, λk = λ(sk),
and

sk+1 = Max[h(Bk+1), sk +
∑

Bk≤i<Bk+1

(gi − v(zBk+1
, 0) + ε)] (5.5.5)

Note that

|sk+1 − sk| ≤ max(Lk, g(Bk+1)− g(Bk)) = Lk (5.5.6)

since g, being a lag function, satisfies g(y) − g(x) ≤ y − x for y > x and
therefore |g(Bk+1)− g(Bk)| ≤ Lk.

Denote Gk = HBk and define the (Gk)∞k=0 stopping times by

k(i) = inf{k|Bk > i} (5.5.7)

Using the facts that M > 8
D

(and therefore Lk ≥ 8) and D ≤ 1
4
, we see

that for all n ≥ 1

| Ln
Ln−1

− 1| ≤ 1

Ln−1

|Ln − Ln−1| ≤
1

Ln−1

(D|sn − sn−1|+ 2)

≤ 1

Ln−1

(
1

4
Ln−1 + 2) ≤ 1

Ln−1

(
1

2
Ln−1) =

1

2
(5.5.8)

Observe that

Dg(Bn) ≤ Dsn ≤ Ln + 1 ≤ 2Ln ≤ 4Ln−1

and M can be taken large enough so that for k ≥ B1,
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f(k) ≤ 1

32
Dg(k)

and using g’s monoticity we deduce that for k ≥ 1 and Bk ≤ n < Bk+1,
f(n) ≤ 1

32
Dg(Bk+1) and therefore,

f(n) ≤ 1

4
Lk−1, f(n) ≤ 1

4
Lk (5.5.9)

Accordingly, at stage Bk, Player 1 will have observed all the stages except
at most 1

4
of the previous block.

Denote s′0 = s0 and for k ≥ 1,

s′k = Max[h(Bk), sk−1 +
∑

Bk−1≤i<Bk−f(Bk)

(gi − v(zBk+1
, 0) + ε)] (5.5.10)

And therefore, from (5.5.9),

|s′k − sk| ≤
1

4
Lk ≤ Lk ≤ D · sk (5.5.11)

and therefore, taking λ′k = λ(s′k) and using (5.5.2) yields

|λ′k − λk| ≤ δλk (5.5.12)

Define λ̂i = λ′k(i)−1, and let σ be the strategy as defined in Section 5.3

with respect to the sequence (µi)
∞
i=1 = (λ̂i)

∞
i=1. Explicitly, σ is such that for

any k and 0 ≤ i < Lk and any strategy τ for Player 2,

Ez1
σ,τ (λ̂jgj + (1− λ̂j)v(zj+1, λ̂j)|Hj) ≥ v(zj, λ̂j) (5.5.13)

In other words, the strategy σ plays, from Bk through Bk+1 − 1, is a
strategy that is optimal in the λ′k-discounted game.

We note that by (5.5.9), σ is subject to the information lag f(n). At move
Bk, Player 1 is aware of the value of Lk−1 and is aware of s′k, and knows that
Lk ≥ b1

2
Lkc; by move Bk + 1

2
Lk, he is already aware of the value of sk and

therefore of the value of Bk+1.

From (5.5.13), taking the expected value with respect to Gk for Bk ≤ j =
Bk + i < Bk+1 for 0 ≤ i < Lk, we get

Ez1
σ,τ (λ

′
kgBk+i + (1− λ′k)v(zBk+i+1, λ

′
k)|Gk) ≥ E[v(zBk+i, λ

′
k)|Gk]

44



Multiplying by (1− λ′k)i and summing gives

Ez1
σ,τ (λ

′
k

∑
0≤i<Lk

(1− λ′k)igBk+i + (1− λ′k)Lkv(zBk+1
, λ′k)− v(zBk , λ

′
k)|Gk) ≥ 0

(5.5.14)
Now, since (5.5.12) and Lkλk < δ (condition (v)),

∣∣∣λk ∑
0≤i<Lk

(1− λk)igBk+i − λ′k
∑

0≤i<Lk

(1− λ′k)igBk+i

∣∣∣
=
∣∣∣λk ∑

0≤i<Lk

[(1− λk)i − (1− λ′k)i]gBk+i + (λk − λ′k)
∑

0≤i<Lk

(1− λ′k)igBk+i

∣∣∣
≤ λk

∑
0≤i<Lk

|λk − λ′k|Lk + |λk − λ′k|Lk ≤ λk(λkLk)Lk + δλkLk ≤ 2δλkLk

(5.5.15)

Also observe that

|v(z, λ′k)−v(z, λk)| = |v(z, λ(sk+
s′k − sk
Lk

Lk))−v(z, λ(sk))| ≤ δLkλk (5.5.16)

(In Case 1, this results from (5.5.3); in Case 2, it is immediate.) Therefore,

|(1− λk)Lkv(z, λk)− (1− λ′k)Lkv(z, λ′k)|

=
∣∣∣(1− λk)Lk(v(z, λk)− v(z, λ′k)) + v(z, λ′k)((1− λk)Lk − (1− λ′k)Lk)

∣∣∣
≤ δLkλk + Lk|λk − λ′k| ≤ 2δλkLk (5.5.17)

Using (5.5.15), (5.5.16) and (5.5.17) on (5.5.14), we derive

Ez1
σ,τ (λk

∑
0≤i<Lk

(1−λk)igBk+i+(1−λk)Lkv(zBk+1
, λk)−v(zBk , λk)|Gk) ≥ −5δLkλk

(5.5.18)
Denote lk = v(zBk , λk). By (5.4.3),

|v(zBk+1
, λk)− lk+1| ≤ δLkλk (5.5.19)

Lemma 5.5.1. Ez1
σ,τ (lk+1 − lk + λk(sk+1 − sk)|Gk) ≥ 3δ  Lkλk
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Proof. In (5.5.18), we apply

1− λ
∑

0≤i<L

(1− λ)i = (1− λ)L

to derive

Ez1
σ,τ (v(zBk+1

, λk)−lk+λk
∑

0≤i<Lk

(1−λk)i(gBk+i−v(zBk+1
, λk))|Gk) ≥ −5δLkλk

Since 1− λkLk ≤ (1− λk)i ≤ 1 and Lkλk < δ,

|λk
∑

0≤i<Lk

(1− λk)i(gBk+i − v(zBk+1
, λk))− λk

∑
0≤i<Lk

(gBk+i − v(zBk+1
, λk))|

≤ 2λk · |
∑

0≤i<Lk

((1− λk)i − 1)| ≤ 2λkLk(λkLk) ≤ 2δλkLk

Putting these last two inequalities together with (5.5.19) and (5.3.3), and
recalling that δ = ε

12
, we obtain

Ez1
σ,τ (lk+1 − lk + λk

∑
0≤i<Lk

(gBk+i − v(zBk+1
, 0))|Gk) ≥ −5δLkλk − 4δLkλk

and by sk+1 − sk ≥
∑

0≤i<Lk(gBk+i − v(zBk+1
, 0) + 12δ), we get the required.

Define

t(s) =

∫ ∞
s

λ(x)dx

and tk = t(s). By (5.5.1), tk ≤ δ.

Lemma 5.5.2. Ez1
σ,τ (lk+1 − tk+1 − (lk − tk)|Gk) ≥ 2δ  Lkλk

Proof. Using inequalities (5.5.6) and (5.5.2) together with the monoticity of
λ we get

tk+1 − tk =

∫ sk

sk+1

λ(s)ds ≤ λk(sk − sk+1) + δLkλk

and using Lemma 5.5.1 completes the proof.
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Denote λi = λk(i)−1 and li = v(zBk(i) , 0).

Proposition 5.5.3. a) lk converges almost surely (denote the limit l∞) and
sk converges almost surely to ∞.

b) For any (Gk)∞k=0 stopping time T ,

Ez1
σ,τ [lT |G0] ≥ l0 − t0 ≥ l0 − δ

c) Ez1
σ,τ [
∑∞

i=0(Liλi)] = Ez1
σ,τ [
∑∞

i=0 λi] < δ−1

d) li converges to l∞ = l∞.

e) For all i = 1, 2, . . . ,∞, Ez1
σ,τ [li|G0] ≥ l0 − 3δ = v∞(z1)− 3δ

Proof. Denote Yk = lk − tk; then Lemma 5.5.2 implies that (Yk)
∞
k=0 is a

submartingale with respect to (Gk)∞k=0, and therefore converges a.s. to Y∞.
Since |Yk| ≤ 1

4
+ ε ≤ 1

2
,

0 ≤ 2δEz1
σ,τ [
∑
k<Bn

λk] = 2δEz1
σ,τ [
∑
k<n

λkLk] ≤ Ez1
σ,τ [Yn − Y1] ≤ 1 (5.5.20)

(c) results from (5.5.20), using the monotone convergence theorem.

Therefore, λk → 0 a.s. and tk → 0; therefore lk → Y∞ a.s. and l∞ = Y∞,
so (a) is proved.

(b) is an immediate corollary of the stopping theorem for bounded sub-
martingales:

Ez1
σ,τ [lT |G0] = Ez1

σ,τ [YT + tT |G0] ≥ Ez1
σ,τ [YT |G0] ≥ Y0 = l0 − t0

(d) results from the uniform convergence of v(z, λ) → v(z, 0), and (e)
results from (b) and (5.3.3).

Denote P = {k|sk = h(Bk)}.

Lemma 5.5.4.

Ez1
σ,τ [

1

N

k(N)−1∑
k=1

I(k ∈ P )Lk] ≤ δ−1 1

λ(h(N))N
→

N→∞
0 (5.5.21)
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and almost surely

1

N

k(N)−1∑
k=1

I(k ∈ P )Lk →
N→∞

0 (5.5.22)

Proof.

1

N

k(N)−1∑
k=1

I(k ∈ P )Lk =
1

N

k(N)−1∑
k=1

I(k ∈ P )Lkλk
1

λk

=
1

N

k(N)−1∑
k=1

I(k ∈ P )Lkλk
1

λ(h(Bk))

≤ 1

λ(h(N))

1

N

k(N)−1∑
k=1

I(k ∈ P )Lkλk (5.5.23)

since 1
λ

and h are non-decreasing, and Bk(N)−1 ≤ N . From Proposition
(5.5.3),

Ez1
σ,τ [

∞∑
k=1

I(k ∈ P )Lkλk] ≤ Ez1
σ,τ [

∞∑
k=1

Lkλk] ≤ δ−1 (5.5.24)

Therefore, using condition (2.b) of the theorem and (5.5.23),

Ez1
σ,τ [

1

N

k(N)−1∑
k=1

I(k ∈ P )Lk] ≤
1

λ(h(N)) ·N
δ−1 →

N→∞
0

That gives (5.5.21). Similarly, since we get from inequality (5.5.24) that
a.s.

∞∑
k=1

I(k ∈ P )Lkλk <∞

we again use (5.5.23) to derive that a.s.

1

N

k(N)−1∑
k=1

I(k ∈ P )Lk ≤
N→∞

1

λ(h(N))

1

N

k(N)−1∑
k=1

I(k ∈ P )Lkλk

≤ 1

λ(h(N))

1

N

∞∑
k=1

I(k ∈ P )Lkλk →
N→∞

0 (5.5.25)
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Lemma 5.5.5.

n∑
1

gi ≥
n∑
1

li − 2s0 − 8δn− 4δ

k(n)∑
k=0

I(k + 1 ∈ P )Lk+1

Proof. Using (5.5.5) and (5.5.8), we get

sk+1 − sk ≤
∑

Bk≤i<Bk+1

(gi − li) + 6δLk + I(k + 1 ∈ P )2Lk

≤
∑

Bk≤i<Bk+1

(gi − li) + 6δLk + I(k + 1 ∈ P )4Lk+1

and summing, we get

sk − s0 ≤
∑
i<Bk

(gi − li) + 6δBk + 4δ
k∑
j=0

I(j + 1 ∈ P )Lj+1

Therefore,

∑
i≤n

gi ≥
∑
i≤n

li − 6δBk(n) + sk(n) − s0 − (Bk(n) − n)− 4δ

k(n)∑
j=0

I(j + 1 ∈ P )Lj+1

≥
∑
i≤n

li − s0 − 6δn− 2(Bk(n) − n)− 4δ

k(n)∑
j=0

I(j + 1 ∈ P )Lj+1

(5.5.26)

Therefore

Bk(n) − n ≤ L(sk(n)−1) ≤ δsk(n)−1 ≤ δ(s0 + n) (5.5.27)

completes the proof of the lemma.

Therefore, since

k(n)∑
j=0

I(j+1 ∈ P )Lj+1 ≤
k(n)−1∑
j=0

I(j ∈ P )Lj+Lk(n)+1 ≤
k(n)−1∑
j=0

I(j ∈ P )Lj+3Lk(n)

and
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Lk(n)

n
≤
L(sk(n))

n
≤ L(s0 + n)

n
≤ δ

s0 + n

n

we get that bounding the terms of Lemma 5.5.5 with the results of Proposi-
tion 5.5.3 and of Lemma 5.5.4 gives the required near-optimality of σ, similar
to the proof in Section 5.5.

5.6 Proof of Theorem 4.1.1

Choose β > 1 as in Theorem 4.1.1, and choose γ ∈ (1, β). Choose λ so that
λ(s) = 1

s(ln(s))γ
for large s.13

Observe that f(n)(ln(f(n)))γ = o(n). Choose g(n) to be a non-decreasing
lag function so that f(n) << g(n), g(n)(ln(g(n)))γ = o(n) (for example,
denote f̂(k) = maxj≤k f(j), and choose g(n) so that g(n)(ln(g(n)))γ ∼√

max{f̂(n)(ln(f̂(n)))γ, 1} · n); therefore, for any M > 0,

λ(M + g(n))n ∼ λ(g(n))n ∼ n

g(n)(ln(g(n)))γ
→∞

Accordingly, conditions (1), (2.a), and (2.b) of Theorem 4.1.2 hold. (2.c.I)
and (2.c.II) are easily seen to hold. I will demonstrate that in the case of
games with finite state and action spaces, (2.d.I) and (2.d.II) hold.

From Theorem 3.3.2, there is r ∈ [0, 1) such that for small enough λ,

∣∣dv(z, λ)

dλ

∣∣ ≤ Bλ−r (5.6.1)

It is easily verified that for any constant η > 0, if s is large enough,

∣∣dλ
ds

(s)
∣∣ ≤ η · (λ(s))1+r

Therefore, using (2.c.I),

13Or λ(s) = 1
s ln(s)(ln(ln(s)))γ , or λ(s) = 1

s ln(s) ln(ln(s))(ln(ln(ln(s))))γ , etc.; I will proceed to
the proof for the first case; the others following similarly.
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||v(λ(s± 1))− v(λ(s))|| ≤ B · sup
0≤±(ζ−s)≤1

(λ(ζ))−r sup
0≤±(ξ−s)≤1

|dλ
ds

(ξ)|

≤ B(1− ε)−r sup
0≤±(ξ−s)≤1

(λ(ξ))−r|dλ
ds

(ξ)|

≤ B(1− ε)−rη sup
0≤±(ξ−s)≤1

λ(ξ)

≤ B(1− ε)−r(1 + ε)ηλ(s) (5.6.2)

Taking η small enough and s large enough shows that (2.d.I) holds.

Similarly, using (2.c.II) we get

||v(λ(s±Ds))− v(λ(s))|| ≤ B(Ds) · sup
0≤±(ζ−s)≤Ds

(λ(ζ))−r sup
0≤±(ξ−s)≤Ds

|dλ
ds

(ξ)|

≤ B(Ds)(1− ε)−r sup
0≤±(ξ−s)≤Ds

(λ(ξ))−r|dλ
ds

(ξ)|

≤ B(Ds)(1− ε)−rη sup
0≤±(ξ−s)≤Ds

λ(ξ)

≤ B(Ds)(1− ε)−r(1 + ε)ηλ(s) (5.6.3)

Taking η small enough and s large enough shows that (2.d.II) holds.
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