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Abstract

In this paper, under a binary relation that refines the standard relation
which only accounts for single profitable deviations, we obtain that the
set of NE strategy profiles of every finite non-cooperative game in normal
form coincides with the supercore (Roth, 1976) of its associated abstract
system. Further, under the standard relation we show when these two
solution concepts coincide.
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1 Introduction

In game theory there has been some interest in the study of the equivalence be-
tween solution concepts for non-cooperative games in normal form and those for
the abstract system (i.e., an abstract set endowed with a binary relation) associ-
ated with them.! These analyses have focussed on defining a binary relation for
which the solution concepts under study coincide.? This is important because
finding such a binary relation contributes to improving our understanding of

how solution concepts in game theory relate to each other.

For instance, Kalai and Schmeidler (1977) associate the mixed extension of
a normal form game with an abstract system using a binary relation that only
accounts for profitable single deviations. For this binary relation, they find no
equivalence between the Nash equilibrium (NE) solution (Nash, 1951) and the
admissible set (Kalai, Schmeidler and Pazner, 1976). The coincidence, however,
is achieved under a somewhat different binary relation that incorporates the
idea of rationalizability. Greenberg (1989), and Kahn and Mookherjee (1992)
for the case of infinite games, show that the Coalition Proof Nash Equilibrium
solution is equivalent to the von Neumann and Morgenstern stable sets solution
under a binary relation that allows for coalitional deviations.

More recently, Inarra, Larrea and Saracho (2007) study the supercore (Roth,
1976) for the abstract system associated with a finite game in normal form by
considering the binary relation used by Kalai and Schmeidler (1977). For the
case of pure strategies, a sequence of games is given and it is shown that the
supercore for the abstract system associated with the first game in the sequence
coincides with the set of NE strategy profiles of the last game in that sequence.
With regard to the mixed extension of the game, it is shown that the set of NE
strategy profiles coincides with the supercore for games with a finite number of
NE.

Along this line of research, the purpose of this paper is to define a suitable

binary relation under which we may obtain that the set of NE strategy profiles

1 Abstract systems are considered by von Neumann and Morgenstern in their book Theory
of Games and Economic Behavior, 1947. A generalization of this notion, the general system,
has been defined by Luo (2001).

2Greenberg (1980) considers different binary relations that associate games in normal form
with abstract relational systems.



for the mixed extension of every finite non-cooperative game in normal form
coincides with the supercore for the abstract system associated with it. The
new relation that we propose simply refines the conventional one (Kalai and
Schmeidler (1977)) by incorporating individual deviations that do not require a

strictly positive gain.

The contributions of the paper may be summarized as follows. First, using
the new binary relation we obtain that the set of NE strategy profiles coincides
with the supercore for every finite game. Second, using numerical examples we
show that under the standard relation this coincidence need not hold for games
with infinite NE profiles.® Lastly, we establish that the two solution concepts
under study coincide if and only if there is not a non-NE strategy profile in
which a player’s payoff is equal to her payoff in some NE strategy profile and
that is only dominated by "some strategy profile which is dominated by some

NE strategy profile."

The rest of the paper is organized as follows. Section 2 contains the prelim-
inaries. In Section 3 we give some examples to provide some intuition for the
upcoming results. Section 4 contains the definition of the new binary relation

and the results.

2 Preliminaries

An abstract system is a pair (X, R), where X is a set of elements and R is an
irreflexive binary relation, which may be partial, defined on X. The relation R
reads “dominates.” Hence, if for two elements =, z’ in X we have zRz’, then we
say that x dominates x’.

For any z € X, let D(z) denote the dominion of z, i.e., D(z) = {2’ € X :
xRx'}. Given a non-empty subset A of X, we may define the following sets:

D(A) = |J D(x) is the set of elements dominated by some element of A and
€A
U(A) = X —D(A) is the set of elements undominated by any element of A.

A set A C X is the core for (X, R) if A =U(X).

3Inarra et al. (2007) proves the coincidence result for finite games with a finite number of
NE profiles. Wilson (1971) shows that in "almost all" finite games the number of NE is finite
and odd. See also Harsanyi (1973).



A set A C X is a uNEM stable set of (X, R) if A=U(A). Hence A C U(A),
which is known as the internal stability condition, and U(A) C A, known as the

external stability condition.

A subsolution of (X, R) is a subset A of X such that (1) A C U(A) and (ii)
A =U*(A), where U?(A) = UU(A)).

Let P(A) = U(A) — A Dbe the set of elements undominated by any element
of A excluding the elements of A. Given a subsolution A, the set X may be
partitioned into three sets: A, D(A) and P(A).* Moreover, if A C U(A), given
that U(U(A)) =U(AUP(A)) = X —D(AUP(A)) = AUP(A) —D(P(A)), then
we have U%(A) = A <= P(A) C D(P(A)) and AND(P(A)) = 0.

The most significant subsolution of (X, R) is the intersection of all subsolu-
tions which is called the supercore.’

This solution concept is a generalization of the vIN&M stable set. Note that
if A is a vIN&M stable set then A is a subsolution with P(A4) = (.

A finite normal form game T™ is a triple < N,{S;},cn ,{ui};cn > where
N = {1,...,n} is the finite set of players, S; is the finite set of strategies for
player i and u; : S = X;enS; — R is player i’s payoff function.

A mized extension of the game T'N is a triple < N,{AS;}ien,{Ui};en >
where AS; is the simplex of the mixed strategies for player ¢, and U; : A(S) =
XieNA(S;) — R, assigns to 0 € A(S), where o denotes a mixed strategy

profile, the expected value under u; of the lottery over S that is induced by o,

so that U; (o) = > (] o;(sj)us(s)).
s€S jEN
The strategy profile o* = (07, ..., 0%) is a Nash equilibrium in the mixed ex-
tension of the game I''V if o} is a best response to 0* ; = (0%, ...,07_ 1,071, ...,0})

for all : € N. The set of NE strategy profiles of a mized extension of the game
I'"N is denoted by X*.

In order to associate an abstract system (X, R) to the mixed extension of a
finite normal form game we follow the approach developed by Greenberg (1990).
He proposes a negotiation procedure among players that can be described as

follows.® Suppose that the strategy profile o is proposed to players. Then each

4These sets are the good, the ugly and the bad in terms of Kahn and Mookherjee (1992).
SIf U(X) = 0, then the supercore of (X, R) is the empty set (Roth, 1976).
6In Greenberg (1980) this procedure is called an individual contingent threat situation.



individual player can object to the prevailing profile and can threat the others
by saying that she will choose another strategy. If she does this, player ¢ induces

o' from o. The set of profiles that player i can induce from o is defined as:
vi(0) ={0" € A(S) : 0, =g forall j #4i,j € N}.

Following this negotiation procedure among players and considering the
strategy profiles of A(S), the following abstract system can be defined.
A dominance system of the mized extension of a game '™V is a pair (A(S), =)

where > is the binary relation defined on A(S) such that:
o' = o if there exists i € N such that o’ € v,(0) and U;(0”) > U;(0).

To conclude these preliminaries, note that ¥* is included in the supercore
for the abstract system (A(S), ) since the strategy profiles in ¥* are the un-
dominated profiles in A(S). That is, Core(A(S), >) = £*.

The two examples in the following section show that in order to derive the
coincidence between X* and the supercore for the abstract system associated
with the mixed extension of the game I'"V it is necessary to define a binary rela-
tion that is different from >. In addition, the examples provide some intuition

as to the kind of binary relation that may be required to obtain that coincidence.

3 Some Examples

Inarra et al. (2007) show that if 3* is finite then ¥* is the supercore for the
abstract system (A(S), ). Example 1 shows that it is not necessary that X*
is finite to obtain ¥* as the supercore for (A(S),>). In Example 2, however,
there is no coincidence between X* and the supercore. As we shall see, the
strategy profiles that belong to the supercore are the profiles of ¥* and some
undominated profiles by the elements of ¥* which have the following property:
In all of them there is a player with a payoff equal to her payoff in some NE

profile. We next analyze these examples in some detail.

Let 0* € ¥* be a NE strategy profile. The dominion of ¥* is D(¥*) =

U D(c*). Let U(EZ*) = A(S) — D(E*) and P(E*) =U(E*) — Z*.
oreEX*



Example 1. Consider the mixed extension of the following game:

by | by
ar | 1,1 | 0,1
as | 0,0 | 0,1

Let p be the probability that player 1 chooses a; and let ¢ be the probability
that player 2 chooses by. In this example U (o) = pq, Uz(0) = 1 — ¢ + pq, and
the players’ best response functions are:

BRi(q,1-q) = { (1,0) otherwise

and
v _J (@, 1-9q) ifp=1

Bl (p, 1-p) = { (0,1) otherwise.

It is easy to check that ¥* = {(p, 1—p,0,1): 0 <p < 1}U{(1,0, ¢, (1—q)) :
0<qg<1}and D(X*) ={(p,1 —p,q,1 —q) : 0<p<1 0<gq<1} Since
Y*UD(E*) = A(S) then P(X*) = (). Hence, X* is the supercore for (A(S), -).
Since P(X*) = ), ¥* is the vIN&M stable set for (A(S), =).

Example 2. Consider the mixed extension of the following game:

by | b
ay 1,0 0,1
4 01100

In this example U; (o) = pq, Us(o) = p(1 — q) + (1 — p)q and the players’

best response functions are:

BRi(q,1-q) = { (1,0) otherwise
and .
(¢, 1-q) ifp=1/2
BRy(p, 1 —p) = (1,0) ifp<1/2
(0,1) ifp>1/2.

[Insert Figures 1 and 2 about here]



It is easy to check that ¥* = {(p, 1 —p, 0, 1) : % < p < 1}, which is
represented by the thick line in Figure 1. The set D(X*) ={(p, 1 —p, ¢, 1 —¢q) :
% < p<1,0 < g <1} is represented by the shaded area in Figure 1 and the
set P(Z*) = A(S) = D(E*) — 2" = {(p,1 = p,q,1 —q) : 0< p< 30< ¢ <
1} — {3, 3,0,1} is the remaining area’.

Every profile of P(X*) is dominated by some profile of this set except the
profiles in {(3,3,¢,1 —q), 0 < ¢ < 1}, the thick dotted line in Figure 1. These
profiles are only dominated by some profile of D(X*). Hence P(X*) ¢ D(P(X*))
and the supercore does not coincide with ¥*. Further, it is important to note
that the profiles of {(%, %, 4,1 —¢q), 0 < g < 1} share a common feature: The
payoff for player 2 UQ(%, %,q,l —q) = %, coincides with her payoff in the NE
strategy profile (%, %, 0,1). The union of the set of these "tied-profiles" and ¥*
gives a new set ©! which is represented by the thick line in Figure 2. Some
profiles of P(X*) are in D(X1!). Specifically, D(X') = {(p, 1 —p, ¢, 1 — q) :
0<p<1,0<q<1}—%! theshaded area in Figure 2. Therefore P(X1) = {(p,
1-p,g,1—q):0<p< %, q = 0}, the thick dotted line in Figure 2. The profiles
of P(X1) do not dominate each other, and hence the supercore does not coincide
with $!. These profiles share a common feature: The payoff for player 1 Uy ((p,
1-p,0,1):0<p< %) is equal to Ul(%,%,o,l) = 0 where (%, %,0,1) € X*.
The union of the set ! and the set of these additional "tied-profiles" forms the
set 2 and P(X2) = (). Hence ¥? is the supercore for the system associated to
the game of this example, represented by the thick lines and the thick dotted
line in Figure 2. Moreover, since P(X?) = () we have that %2 is the vN&M stable

set for (A(S), ).

Finally, let us show why %2 is the supercore for (A(S), =). Inarra et al.
(2007) observe that A is the supercore for (X, R) if and only if A is the supercore
for (Y, R) where Y = X — D(Core(X,R)) in (X, R).

In our context X = A(S) and R = ». For (A(S) »), the Core(A(S), =) =
Y*and Y = A(S)—D(X*). For (Y, =), the Core(Y, ) = X! and Z = Y -D(Z1).
Now, %2 is the supercore for (Z, ) since Z = %2 and the Core(Z, =) = ¥2.
Thus by applying the above observation we conclude that ¥? is the supercore
for (A(S),>).

"Note that given o* = (p;, 1 — p;,0,1), D(0*) = {(pi,1 —p;i ¢,1 —q), 0 < g < 1}.




4 The Binary Relation and the Results

In this section we define a binary relation > over A(S) by refining the relation
>, under which the supercore for (A(S),>>) coincides with X*. Further we also
obtain a result concerning the behavior of the non-NE strategy profiles in the

abstract system (A(S),~).®

Definition A weak dominance system of the mized extension of a game TV is
a pair (A(S),>>) where > is the binary relation defined on A(S) such that for
any two distinct strategy profiles o/, € A(S):

!

o' > o if there exists i € N such that ¢’ € v,(c) and U;(c’) > U;(o) or

Ui(o') = U(o) and Uj(c") > Uj(o) for some 0" € v;(c) and j # i.

Let us analyze the implications of this definition. Consider ¢’ > o:

(i) In the case of U;(¢”) > U;(o) we are under relation >, and hence o’ > o.
(#1) In the case of U;(0’) = U;(0), being o’ a NE strategy profile, the rationale
for o’ > o is to consider that player 7 has a preference for keeping her current
payoff in o, and in ¢’ she is "protected" from deviations by other player. For

instance, consider the strategy profiles in Example 2: ¢ = (3, 1, 1 1) and

20 20 20 2
the NE profile ¢/ = (3, %, 0, 1) where ¢’ € v,(0). In this case we have that
Us(o) = Uy(o!) = % It is easy to find a third profile e.g., " = (1, 0, %, %)
where ¢” € v,(c) such that & = U;(¢”) > Ui(0) = 1. Since player 1 objects

to o, player 2 objects to o by choosing o', and therefore ¢’ > o. (i) In case
of U;j(¢’) = Ui(o), being ¢’ and o two non-NE strategy profiles, we find the
following: From any of these profiles there is some player j # ¢ who objects
to o and o¢’; therefore we have ¢/ > o and ¢ > o¢’. Thus relation > is not

asymmetric.

The difference between the conventional relation > and the new relation >
can be also explained in the following terms: Player ¢ has an objection to o if
there exists o’ € v,(0) in which her payoff is greater than in o. Hence o’ > o

and o’ > 0. Moreover if there is a player j # i that has an objection to o, e.g.,

8We thank an anonymous referee for motivating us to study this behavior.



by choosing ¢”, then player i objects to o if there exists a 0’ € v;(0) in which
her payoff is equal to the one obtained in . Hence ¢’ > o but not ¢’ > o.
Thus, the binary relation we propose to break ties keeps the main feature of
the conventional one while at the same time incorporates a preference for keeping
or guaranteeing one’s current payoff. This preference for keeping the current
payoff may be interpreted as a form of endowment effect where the endowment
in this context is the payoff in .? In order to guarantee her endowment, a player
objects to o by using ¢’ where she keeps her current payoff instead of allowing
objections to the prevailing profile ¢ made by other players that could perhaps
(eventually) result in a lower payoff. We believe that this interpretation provides
a natural justification to extend the scope of the standard binary relation > to
the new one >. Further, various forms of endowment effects or status quo
bias have been extensively documented in both the experimental and empirical
literature. The endowment effect is also a critical ingredient of Kahneman and

Tversky (1979) prospect theory.

Before showing the coincidence between the set of NE strategy profiles and

the supercore for (A(S),>>) we introduce a lemma.

Lemma. D(X*) UX* in (A(S),>>) is a closed subset of A(S).

Proof. It is known that ¥* is a compact subset of A(S);!? hence, ¥* is
closed. Therefore, it is sufficient to show that the closure of D(X*) is contained
in D(X*) U X*.

Let us consider a sequence {0y, }neny C D(X*) such that lim,, .0, = 0. We
will see that o € D(Z*) U X*.

Since o, € D(X*), there is a NE strategy profile o} such that for some player
i€ N, ol €~,(cn) and U;(0}) > U;(0,). Taking into account that the set X*
is compact and that {0 }n,eny C X* we can assume without loss of generality
the existence of a profile o* € ¥* such that lim,, .0} = o*. (If this is not the

case we may replace that sequence by the appropriate subsequence).

9This effect is a general phenomenon first uncovered in Knetsch (1989) who demostrated
with a simple experiment that preferences are not independent of current entitlements. Sev-
eral experimental studies have confirmed this important finding (see e.g., Camerer (2003),
Kahneman, Knetsch and Thaler (1990)) and many references therein.)

10Gee for example, Fudenberg and Tirole (1991).



Now, let N(i) = {n € N: o} € v,(0n)} for each i € N. It is clear that for
some j € N the set N(j) is countable. Hence, we can choose the subsequences
{0 tnen of {0y }nen and {(0¥);, }nen of {0}, }nen such that (0%);, € v;(07,), and
U;((c*),,) = Uj(o},) for all n € N. Therefore, taking the limit on each side in

the last expression we have:

limpn—ooU;((67))) > limp—oUj(00,).

Since limy—oo(c*)), = 0*, limy 0, = o, and U; is a continuous function,
we have Uj(0*) > Uj(o). Given that o* € ~;(0) if Uj(0*) > U;(o) then
0* > 0. On the contrary, suppose that U;(c*) = U;(c). Now if o ¢ X* then
Ui(o') > Ug(o) for some o' € v,(0) and k € N. Clearly k # j; otherwise
we would have Uj(¢’) > U;(c*), which contradicts that o* € ¥*. Therefore

o* > o, and either o € D(X*) or ¢ € ¥*. Thus, the lemma follows. m

Now, using Example 2 we illustrate that under the binary relation >, the
set ¥* U D(X*) is not closed. To see this, consider the sequence {o,} such

that 0, = (3 + 1,5 — 1, 3,4) with n > 2. Note that {o,,} C D(Z*) (see

Figure 1). Since lim,—o00, = (l, L %, %) and % = Us(limp—oo0y) = Us(c™)
with o* = (3,3,0,1), then (1,1,2,1) ¢ D(E*) and as (3,1,31,1) ¢ ©* then
(3:3,3,3) € " UD(E").

On the other hand, as shown in the previous lemma under the binary relation
>, the set ¥* UD(X*) is closed. More precisely, under >, we have ¥* = {(p,
1-p,0,1): 5 <p<1},DE)={p,1-p, g 1l-9q:35<p<]1,
0<qg<1}U{(}, 3, ¢1-9:0<g<1}U{(p, 1-p,0,1):0<p< i}
(this is the shaded area and the thick dotted line in Figure 1 jointly with the
thick dotted line in Figure 2) and P(X*) = {(p, 1 —p, ¢, 1 —¢q) : 0 < p < %,
0 < g <1} (this is the shaded area in Figure 2 minus the shaded area in Figure
1). Since P(X*) C D(P(T*)), * is the supercore for (A(S),>).!!

In what follows we show the coincidence of the supercore and the NE solution

under the binary relation > for every finite non-cooperative game.

Theorem 1 X* is the supercore for (A(S),>).

INote that as ©* = U(A(S)), we have * C U(Z*) and T* N D(P(Z*)) = 0. Then
U?(Z*) = B* is equivalent to P(Z*) C D(P(Z*)) (see Section 2).

10



Proof. Given that any subsolution for (A(S),>) contains ¥*, it is sufficient
to prove that X* is a subsolution.!? That is, ©* C U(3*) and X* = U?(T*).

Clearly, £* C U(X*) in (A(S),>). If ¥* = U(X*) then £* is a vVN&M
stable set, and thus ¥* is a subsolution. So, let us assume that P(X*) # 0.
Since ¥* = U(A(S)), it remains to show that X* = U?(Z*) or equivalently that
P(Z*) C D(P(Z¥)).

Let o € P(X*). We will show that there exists a o € P(X*) such that & > o.
Since o ¢ ¥*, 0, is not the best response to o_; for some player i. Hence, there
is a 0’ € v,(0) such that U;(¢’) > U;(o).

Now, if ¢/ € P(X*) the proof is complete. If this is not the case then
set ox = Ao+ (1 — A)o’ for all A € [0,1). By the linearity of U; we have
that U;(ox) > U;(0), and since oy € v,;(0), it follows that oy > o. Further,
by the previous lemma we know that D(X*) U X* is a closed subset of A(S).
Therefore, P(X*) is an open subset of A(S). This implies that there exists an
¢ > 0 such that the open ball B(o,e¢) C P(X*). By choosing a A € (0,1) such
that o, € B(o,¢) we have that oy € P(X*). Since o) > o we conclude that
o € D(P(X*)) and Theorem 1 obtains. m

Hereafter, whenever we are dealing with the system (A(S),>>) the dominion
of a set A and the sets of elements undominated by any element of A will be
denoted respectively as: Ds, (A), Us.(A), and Ps,(A). The notation D(A), U(A)
and P(A) refers to the conventional system (A(S), >).

As mentioned in the introduction our analysis allows us to describe the
behavior of the non-NE strategy profiles for the system (A(S), =).

Let ¢’ ~ o if there exits i € N such that ¢’ € v,(0) and U;(¢’) = U;(0).

Then we can establish the following result.

Theorem 2 X* is not the supercore for (A(S),>) if and only if there is a

o € P(X*) such that o ~ o* for some o* € ¥* and o is not dominated by any

of the strategy profiles of P(X*).

Proof. (=) : If ¥* is not the supercore for (A(S),>) then ¥* is not a
subsolution. Hence P(X*) ¢ D(P(X*)) and there is a ¢ € P(X*) such that o is

12 Given a subsolution A for (A(S), ), since the Core(A(S),>) = £*, ¥* must be a subset
of A.

11



not dominated by any strategy profile of P(X*). Now, given that o is not a NE
strategy profile, then either o € Ps.(X*) or 0 € Ds.(X*). We next show that
o € D5 (¥*). Assume that o € Ps.(X*). In the proof of Theorem 1 it is shown
that for every o € P (X*) there exists a ¢ € Ps.(X*) such that 0 € v,(0)
and U;(c) > U;(o). Since Ps.(X*) C P(X*) then ¢ € P(X*) and ¢ > o which
contradicts that ¢ is not dominated by any strategy profile of P(3*). Therefore
o € Ds.(X*). This implies that there exists o* € ¥* such that ¢* > o. But

since o € P(X*) we have that o* ¥ o and it must be o ~ o*.

(«<=) : Since there is o € P(Z*) such that o is not dominated by any strategy
profile of P(¥*) then P(X*) ¢ D(P(X*)). Hence X* is not a subsolution and
therefore ¥* is not the supercore for (A(S),>). =

Summing up, under the binary relation > the set A(S) may be partitioned
into four sets: X*, D(X*), the set of profiles of P(X*) where each profile is
dominated by another profile of P(X*), and the set of profiles of P(X*) in
which no profile is dominated by another profile of P(X*). In every profile of
the latter set, there is a player whose payoff is equal to her payoff in some

13 If the latter set is empty then ¥* coincides with the

NE strategy profile.
supercore.!* Further, if P(X*) = () then ©* coincides with a vIN&M stable set

for (A(S), ).

13Since the profiles in this set are non-NE profiles, they are dominated only by "some
strategy profile dominated in turn by some NE strategy profile."

14 This is the case for finite games with a finite number of NE strategy profiles (Inarra et
al., 2007).
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