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Abstract
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1 Introduction

In game theory there has been some interest in the study of the equivalence be-

tween solution concepts for non-cooperative games in normal form and those for

the abstract system (i.e., an abstract set endowed with a binary relation) associ-

ated with them.1 These analyses have focussed on de�ning a binary relation for

which the solution concepts under study coincide.2 This is important because

�nding such a binary relation contributes to improving our understanding of

how solution concepts in game theory relate to each other.

For instance, Kalai and Schmeidler (1977) associate the mixed extension of

a normal form game with an abstract system using a binary relation that only

accounts for pro�table single deviations. For this binary relation, they �nd no

equivalence between the Nash equilibrium (NE) solution (Nash, 1951) and the

admissible set (Kalai, Schmeidler and Pazner, 1976). The coincidence, however,

is achieved under a somewhat di¤erent binary relation that incorporates the

idea of rationalizability. Greenberg (1989), and Kahn and Mookherjee (1992)

for the case of in�nite games, show that the Coalition Proof Nash Equilibrium

solution is equivalent to the von Neumann and Morgenstern stable sets solution

under a binary relation that allows for coalitional deviations.

More recently, Inarra, Larrea and Saracho (2007) study the supercore (Roth,

1976) for the abstract system associated with a �nite game in normal form by

considering the binary relation used by Kalai and Schmeidler (1977). For the

case of pure strategies, a sequence of games is given and it is shown that the

supercore for the abstract system associated with the �rst game in the sequence

coincides with the set of NE strategy pro�les of the last game in that sequence.

With regard to the mixed extension of the game, it is shown that the set of NE

strategy pro�les coincides with the supercore for games with a �nite number of

NE.

Along this line of research, the purpose of this paper is to de�ne a suitable

binary relation under which we may obtain that the set of NE strategy pro�les

1Abstract systems are considered by von Neumann and Morgenstern in their book Theory
of Games and Economic Behavior, 1947. A generalization of this notion, the general system,
has been de�ned by Luo (2001).

2Greenberg (1980) considers di¤erent binary relations that associate games in normal form
with abstract relational systems.
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for the mixed extension of every �nite non-cooperative game in normal form

coincides with the supercore for the abstract system associated with it. The

new relation that we propose simply re�nes the conventional one (Kalai and

Schmeidler (1977)) by incorporating individual deviations that do not require a

strictly positive gain.

The contributions of the paper may be summarized as follows. First, using

the new binary relation we obtain that the set of NE strategy pro�les coincides

with the supercore for every �nite game. Second, using numerical examples we

show that under the standard relation this coincidence need not hold for games

with in�nite NE pro�les.3 Lastly, we establish that the two solution concepts

under study coincide if and only if there is not a non-NE strategy pro�le in

which a player�s payo¤ is equal to her payo¤ in some NE strategy pro�le and

that is only dominated by "some strategy pro�le which is dominated by some

NE strategy pro�le."

The rest of the paper is organized as follows. Section 2 contains the prelim-

inaries. In Section 3 we give some examples to provide some intuition for the

upcoming results. Section 4 contains the de�nition of the new binary relation

and the results.

2 Preliminaries

An abstract system is a pair (X;R), where X is a set of elements and R is an

irre�exive binary relation, which may be partial, de�ned on X. The relation R

reads �dominates.�Hence, if for two elements x; x0 in X we have xRx0, then we

say that x dominates x0.

For any x 2 X, let D(x) denote the dominion of x, i.e., D(x) = fx0 2 X :

xRx0g. Given a non-empty subset A of X, we may de�ne the following sets:

D(A) =
S
x2A

D(x) is the set of elements dominated by some element of A and

U(A) = X �D(A) is the set of elements undominated by any element of A.

A set A � X is the core for (X;R) if A = U(X).
3 Inarra et al. (2007) proves the coincidence result for �nite games with a �nite number of

NE pro�les. Wilson (1971) shows that in "almost all" �nite games the number of NE is �nite
and odd. See also Harsanyi (1973).
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A set A � X is a vN&M stable set of (X;R) if A = U(A). Hence A � U(A),
which is known as the internal stability condition, and U(A) � A, known as the
external stability condition.

A subsolution of (X;R) is a subset A of X such that (i) A � U(A) and (ii)
A = U2(A), where U2(A) = U(U(A)).
Let P(A) = U(A) � A be the set of elements undominated by any element

of A excluding the elements of A. Given a subsolution A, the set X may be

partitioned into three sets: A, D(A) and P(A):4 Moreover, if A � U(A), given
that U(U(A)) = U(A[P(A)) = X�D(A[P(A)) = A[P(A)�D(P(A)), then
we have U2(A) = A () P(A) � D(P(A)) and A \ D(P(A)) = ;.
The most signi�cant subsolution of (X;R) is the intersection of all subsolu-

tions which is called the supercore.5

This solution concept is a generalization of the vN&M stable set. Note that

if A is a vN&M stable set then A is a subsolution with P(A) = ;.

A �nite normal form game �N is a triple < N; fSigi2N ; fuigi2N > where

N = f1; :::; ng is the �nite set of players, Si is the �nite set of strategies for
player i and ui : S = �i2NSi �! R is player i�s payo¤ function.

A mixed extension of the game �N is a triple < N; f�Sigi2N ; fUigi2N >

where �Si is the simplex of the mixed strategies for player i, and Ui : �(S) =

�i2N�(Si) �! R, assigns to � 2 �(S), where � denotes a mixed strategy

pro�le, the expected value under ui of the lottery over S that is induced by �,

so that Ui(�) =
P
s2S
(
Q
j2N

�j(sj)ui(s)).

The strategy pro�le �� = (��1; :::; �
�
n) is a Nash equilibrium in the mixed ex-

tension of the game �N if ��i is a best response to �
�
�i = (�

�
1; :::; �

�
i�1; �

�
i+1; :::; �

�
n)

for all i 2 N . The set of NE strategy pro�les of a mixed extension of the game
�N is denoted by ��.

In order to associate an abstract system (X;R) to the mixed extension of a

�nite normal form game we follow the approach developed by Greenberg (1990).

He proposes a negotiation procedure among players that can be described as

follows.6 Suppose that the strategy pro�le � is proposed to players. Then each

4These sets are the good, the ugly and the bad in terms of Kahn and Mookherjee (1992).
5 If U(X) = ;, then the supercore of (X;R) is the empty set (Roth, 1976).
6 In Greenberg (1980) this procedure is called an individual contingent threat situation.

4



individual player can object to the prevailing pro�le and can threat the others

by saying that she will choose another strategy. If she does this, player i induces

�0 from �. The set of pro�les that player i can induce from � is de�ned as:

i(�) = f�0 2 �(S) : �0j = �j for all j 6= i; j 2 Ng.

Following this negotiation procedure among players and considering the

strategy pro�les of �(S), the following abstract system can be de�ned.

A dominance system of the mixed extension of a game �N is a pair (�(S);�)
where � is the binary relation de�ned on �(S) such that:

�0 � � if there exists i 2 N such that �0 2 i(�) and Ui(�0) > Ui(�).

To conclude these preliminaries, note that �� is included in the supercore

for the abstract system (�(S);�) since the strategy pro�les in �� are the un-
dominated pro�les in �(S). That is, Core(�(S);�) = ��.

The two examples in the following section show that in order to derive the

coincidence between �� and the supercore for the abstract system associated

with the mixed extension of the game �N it is necessary to de�ne a binary rela-

tion that is di¤erent from �. In addition, the examples provide some intuition
as to the kind of binary relation that may be required to obtain that coincidence.

3 Some Examples

Inarra et al. (2007) show that if �� is �nite then �� is the supercore for the

abstract system (�(S);�). Example 1 shows that it is not necessary that ��

is �nite to obtain �� as the supercore for (�(S);�). In Example 2, however,
there is no coincidence between �� and the supercore. As we shall see, the

strategy pro�les that belong to the supercore are the pro�les of �� and some

undominated pro�les by the elements of �� which have the following property:

In all of them there is a player with a payo¤ equal to her payo¤ in some NE

pro�le. We next analyze these examples in some detail.

Let �� 2 �� be a NE strategy pro�le. The dominion of �� is D(��) =S
��2��

D(��). Let U(��) = �(S)�D(��) and P(��) = U(��)� ��.
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Example 1. Consider the mixed extension of the following game:

b1 b2
a1 1,1 0,1
a2 0,0 0,1

Let p be the probability that player 1 chooses a1 and let q be the probability

that player 2 chooses b1. In this example U1(�) = pq, U2(�) = 1� q + pq, and
the players�best response functions are:

BR1(q, 1� q) =
�
(p; 1� p) if q = 0
(1; 0) otherwise

and

BR2(p, 1� p) =
�
(q; 1� q) if p = 1
(0; 1) otherwise.

It is easy to check that �� = f(p, 1�p, 0, 1) : 0 � p � 1g[f(1, 0, q, (1�q)) :
0 � q � 1g and D(��) = f(p; 1 � p; q; 1 � q) : 0 � p < 1; 0 < q � 1g. Since
�� [D(��) = �(S) then P(��) = ;. Hence, �� is the supercore for (�(S);�).
Since P(��) = ;, �� is the vN&M stable set for (�(S), �).

Example 2. Consider the mixed extension of the following game:

b1 b2
a1 1,0 0,1
a2 0,1 0,0

In this example U1(�) = pq, U2(�) = p(1 � q) + (1 � p)q and the players�
best response functions are:

BR1(q, 1� q) =
�
(p; 1� p) if q = 0
(1; 0) otherwise

and

BR2(p, 1� p) =

8<: (q; 1� q) if p = 1=2
(1; 0) if p < 1=2
(0; 1) if p > 1=2.

[Insert Figures 1 and 2 about here]
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It is easy to check that �� = f(p, 1 � p, 0, 1) : 1
2 � p � 1g, which is

represented by the thick line in Figure 1. The set D(��) = f(p, 1� p, q, 1� q) :
1
2 < p � 1; 0 < q � 1g is represented by the shaded area in Figure 1 and the
set P(��) = �(S) � D(��) � �� = f(p; 1 � p; q; 1 � q) : 0 � p � 1

2 ,0 � q �
1g � f 12 ;

1
2 ; 0; 1g is the remaining area

7 .

Every pro�le of P(��) is dominated by some pro�le of this set except the
pro�les in f( 12 ;

1
2 ; q; 1� q), 0 < q � 1g, the thick dotted line in Figure 1. These

pro�les are only dominated by some pro�le of D(��). Hence P(��) 6� D(P(��))
and the supercore does not coincide with ��. Further, it is important to note

that the pro�les of f( 12 ;
1
2 ; q; 1 � q), 0 < q � 1g share a common feature: The

payo¤ for player 2 U2( 12 ;
1
2 ; q; 1 � q) =

1
2 , coincides with her payo¤ in the NE

strategy pro�le ( 12 ;
1
2 ; 0; 1). The union of the set of these "tied-pro�les" and �

�

gives a new set �1 which is represented by the thick line in Figure 2. Some

pro�les of P(��) are in D(�1). Speci�cally, D(�1) = f(p, 1 � p, q, 1 � q) :
0 � p � 1; 0 < q � 1g��1, the shaded area in Figure 2. Therefore P(�1) = f(p,
1�p, q, 1�q) : 0 � p < 1

2 ; q = 0g, the thick dotted line in Figure 2. The pro�les
of P(�1) do not dominate each other, and hence the supercore does not coincide
with �1. These pro�les share a common feature: The payo¤ for player 1 U1((p,

1 � p, 0, 1) : 0 � p < 1
2 ) is equal to U1(

1
2 ;

1
2 ; 0; 1) = 0 where ( 12 ;

1
2 ; 0; 1) 2 �

�.

The union of the set �1 and the set of these additional "tied-pro�les" forms the

set �2 and P(�2) = ;. Hence �2 is the supercore for the system associated to

the game of this example, represented by the thick lines and the thick dotted

line in Figure 2. Moreover, since P(�2) = ; we have that �2 is the vN&M stable

set for (�(S), �).

Finally, let us show why �2 is the supercore for (�(S), �). Inarra et al.
(2007) observe that A is the supercore for (X;R) if and only if A is the supercore

for (Y;R) where Y = X �D(Core(X;R)) in (X;R).
In our context X = �(S) and R = �. For (�(S) �), the Core(�(S);�) =

�� and Y = �(S)�D(��). For (Y;�), the Core(Y;�) = �1 and Z = Y�D(�1).
Now, �2 is the supercore for (Z;�) since Z = �2 and the Core(Z;�) = �2.

Thus by applying the above observation we conclude that �2 is the supercore

for (�(S);�).
7Note that given �� = (pi; 1� pi; 0; 1), D(��) = f(pi; 1� pi q; 1� q), 0 < q � 1g.
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4 The Binary Relation and the Results

In this section we de�ne a binary relation � over �(S) by re�ning the relation

�, under which the supercore for (�(S);�) coincides with ��. Further we also
obtain a result concerning the behavior of the non-NE strategy pro�les in the

abstract system (�(S);�).8

De�nition A weak dominance system of the mixed extension of a game �N is

a pair (�(S);�) where � is the binary relation de�ned on �(S) such that for

any two distinct strategy pro�les �0; � 2 �(S):

�0 � � if there exists i 2 N such that �0 2 i(�) and Ui(�0) > Ui(�) or

Ui(�
0) = Ui(�) and Uj(�00) > Uj(�) for some �00 2 j(�) and j 6= i.

Let us analyze the implications of this de�nition. Consider �0 � �:

(i) In the case of Ui(�0) > Ui(�) we are under relation �, and hence �0 � �.

(ii) In the case of Ui(�0) = Ui(�), being �0 a NE strategy pro�le, the rationale

for �0 � � is to consider that player i has a preference for keeping her current

payo¤ in �, and in �0 she is "protected" from deviations by other player. For

instance, consider the strategy pro�les in Example 2: � = ( 12 ,
1
2 ,

1
2 ,

1
2 ) and

the NE pro�le �0 = ( 12 ,
1
2 , 0, 1) where �

0 2 2(�). In this case we have that
U2(�) = U2(�

0) = 1
2 . It is easy to �nd a third pro�le e.g., �

00 = (1, 0, 12 ,
1
2 )

where �00 2 1(�) such that 1
2 = U1(�

00) > U1(�) =
1
4 . Since player 1 objects

to �, player 2 objects to � by choosing �0, and therefore �0 � �. (iii) In case

of Ui(�0) = Ui(�), being �0 and � two non-NE strategy pro�les, we �nd the

following: From any of these pro�les there is some player j 6= i who objects

to � and �0; therefore we have �0 � � and � � �0. Thus relation � is not

asymmetric.

The di¤erence between the conventional relation � and the new relation �
can be also explained in the following terms: Player i has an objection to � if

there exists �0 2 i(�) in which her payo¤ is greater than in �. Hence �0 � �
and �0 � �. Moreover if there is a player j 6= i that has an objection to �, e.g.,

8We thank an anonymous referee for motivating us to study this behavior.
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by choosing �00, then player i objects to � if there exists a �0 2 i(�) in which
her payo¤ is equal to the one obtained in �. Hence �0 � � but not �0 � �.
Thus, the binary relation we propose to break ties keeps the main feature of

the conventional one while at the same time incorporates a preference for keeping

or guaranteeing one´s current payo¤. This preference for keeping the current

payo¤ may be interpreted as a form of endowment e¤ect where the endowment

in this context is the payo¤ in �:9 In order to guarantee her endowment, a player

objects to � by using �0 where she keeps her current payo¤ instead of allowing

objections to the prevailing pro�le � made by other players that could perhaps

(eventually) result in a lower payo¤. We believe that this interpretation provides

a natural justi�cation to extend the scope of the standard binary relation � to
the new one �. Further, various forms of endowment e¤ects or status quo
bias have been extensively documented in both the experimental and empirical

literature. The endowment e¤ect is also a critical ingredient of Kahneman and

Tversky (1979) prospect theory.

Before showing the coincidence between the set of NE strategy pro�les and

the supercore for (�(S);�) we introduce a lemma.

Lemma. D(��) [ �� in (�(S);�) is a closed subset of �(S).
Proof. It is known that �� is a compact subset of �(S);10 hence, �� is

closed. Therefore, it is su¢ cient to show that the closure of D(��) is contained
in D(��) [ ��.
Let us consider a sequence f�ngn2N � D(��) such that limn!1�n = �. We

will see that � 2 D(��) [ ��.
Since �n 2 D(��), there is a NE strategy pro�le ��n such that for some player

i 2 N , ��n 2 i(�n) and Ui(��n) � Ui(�n). Taking into account that the set ��

is compact and that f��ngn2N � �� we can assume without loss of generality

the existence of a pro�le �� 2 �� such that limn!1�
�
n = �

�. (If this is not the

case we may replace that sequence by the appropriate subsequence).

9This e¤ect is a general phenomenon �rst uncovered in Knetsch (1989) who demostrated
with a simple experiment that preferences are not independent of current entitlements. Sev-
eral experimental studies have con�rmed this important �nding (see e.g., Camerer (2003),
Kahneman, Knetsch and Thaler (1990)) and many references therein.)
10See for example, Fudenberg and Tirole (1991).
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Now, let N(i) = fn 2 N : ��n 2 i(�n)g for each i 2 N . It is clear that for
some j 2 N the set N(j) is countable. Hence, we can choose the subsequences

f�0ngn2N of f�ngn2N and f(��)0ngn2N of f��ngn2N such that (��)0n 2 j(�0n), and
Uj((�

�)0n) � Uj(�
0
n) for all n 2 N. Therefore, taking the limit on each side in

the last expression we have:

limn!1Uj((�
�)0n) � limn!1Uj(�

0
n).

Since limn!1(�
�)0n = ��, limn!1�

0
n = �, and Uj is a continuous function,

we have Uj(��) � Uj(�). Given that �� 2 j(�) if Uj(�
�) > Uj(�) then

�� � �. On the contrary, suppose that Uj(��) = Uj(�). Now if � =2 �� then
Uk(�

0) > Uk(�) for some �0 2 k(�) and k 2 N. Clearly k 6= j; otherwise

we would have Uj(�0) > Uj(�
�), which contradicts that �� 2 ��. Therefore

�� � �, and either � 2 D(��) or � 2 ��. Thus, the lemma follows.

Now, using Example 2 we illustrate that under the binary relation �, the
set �� [ D(��) is not closed. To see this, consider the sequence f�ng such
that �n = ( 12 +

1
n ;

1
2 �

1
n ;

1
2 ;

1
2 ) with n � 2. Note that f�ng � D(��) (see

Figure 1). Since limn!1�n = ( 12 ;
1
2 ;

1
2 ;

1
2 ) and

1
2 = U2(limn!1�n) = U2(�

�)

with �� = ( 12 ;
1
2 ; 0; 1), then (

1
2 ;

1
2 ;

1
2 ;

1
2 ) =2 D(�

�) and as ( 12 ;
1
2 ;

1
2 ;

1
2 ) =2 �

� then

( 12 ;
1
2 ;

1
2 ;

1
2 ) =2 �

� [ D(��).
On the other hand, as shown in the previous lemma under the binary relation

�, the set �� [ D(��) is closed. More precisely, under �, we have �� = f(p,
1 � p, 0, 1) : 1

2 � p � 1g, D(��) = f(p, 1 � p, q, 1 � q) : 1
2 < p � 1;

0 < q � 1g [ f( 12 ,
1
2 , q, 1 � q) : 0 < q � 1g [f(p, 1 � p, 0, 1) : 0 � p < 1

2g
(this is the shaded area and the thick dotted line in Figure 1 jointly with the

thick dotted line in Figure 2) and P(��) = f(p, 1 � p, q, 1 � q) : 0 � p < 1
2 ;

0 < q � 1g (this is the shaded area in Figure 2 minus the shaded area in Figure
1). Since P(��) � D(P(��)), �� is the supercore for (�(S);�):11

In what follows we show the coincidence of the supercore and the NE solution

under the binary relation � for every �nite non-cooperative game.

Theorem 1 �� is the supercore for (�(S);�).
11Note that as �� = U(�(S)), we have �� � U(��) and �� \ D(P(��)) = ;. Then

U2(��) = �� is equivalent to P(��) � D(P(��)) (see Section 2).

10



Proof. Given that any subsolution for (�(S);�) contains ��, it is su¢ cient
to prove that �� is a subsolution.12 That is, �� � U(��) and �� = U2(��).
Clearly, �� � U(��) in (�(S);�). If �� = U(��) then �� is a vN&M

stable set, and thus �� is a subsolution. So, let us assume that P(��) 6= ;.
Since �� = U(�(S)), it remains to show that �� = U2(��) or equivalently that
P(��) � D(P(��)).
Let � 2 P(��). We will show that there exists a e� 2 P(��) such that e� � �.

Since � =2 ��, �i is not the best response to ��i for some player i. Hence, there
is a �0 2 i(�) such that Ui(�0) > Ui(�).
Now, if �0 2 P(��) the proof is complete. If this is not the case then

set �� = �� + (1 � �)�0 for all � 2 [0; 1). By the linearity of Ui we have

that Ui(��) > Ui(�), and since �� 2 i(�), it follows that �� � �. Further,

by the previous lemma we know that D(��) [ �� is a closed subset of �(S).
Therefore, P(��) is an open subset of �(S). This implies that there exists an
" > 0 such that the open ball B(�; ") � P(��). By choosing a � 2 (0; 1) such
that �� 2 B(�; ") we have that �� 2 P(��). Since �� � � we conclude that

� 2 D(P(��)) and Theorem 1 obtains.

Hereafter, whenever we are dealing with the system (�(S);�) the dominion
of a set A and the sets of elements undominated by any element of A will be

denoted respectively as: D�(A), U�(A), and P�(A). The notation D(A), U(A)
and P(A) refers to the conventional system (�(S);�).
As mentioned in the introduction our analysis allows us to describe the

behavior of the non-NE strategy pro�les for the system (�(S);�).
Let �0 � � if there exits i 2 N such that �0 2 i(�) and Ui(�0) = Ui(�).

Then we can establish the following result.

Theorem 2 �� is not the supercore for (�(S);�) if and only if there is a
� 2 P(��) such that � � �� for some �� 2 �� and � is not dominated by any
of the strategy pro�les of P(��).

Proof. (=)) : If �� is not the supercore for (�(S);�) then �� is not a
subsolution. Hence P(��) 6� D(P(��)) and there is a � 2 P(��) such that � is
12Given a subsolution A for (�(S);�), since the Core(�(S);�) = ��, �� must be a subset

of A.
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not dominated by any strategy pro�le of P(��). Now, given that � is not a NE
strategy pro�le, then either � 2 P�(��) or � 2 D�(��). We next show that
� 2 D�(��). Assume that � 2 P�(��). In the proof of Theorem 1 it is shown

that for every � 2 P�(��) there exists a e� 2 P�(��) such that e� 2 i(�)
and Ui(e�) > Ui(�). Since P�(��) � P(��) then e� 2 P(��) and e� � � which
contradicts that � is not dominated by any strategy pro�le of P(��). Thereforee� 2 D�(��). This implies that there exists �� 2 �� such that �� � �. But

since � 2 P(��) we have that �� � � and it must be � � ��.

((=) : Since there is � 2 P(��) such that � is not dominated by any strategy
pro�le of P(��) then P(��) 6� D(P(��)). Hence �� is not a subsolution and
therefore �� is not the supercore for (�(S);�).

Summing up, under the binary relation � the set �(S) may be partitioned
into four sets: ��, D(��), the set of pro�les of P(��) where each pro�le is
dominated by another pro�le of P(��), and the set of pro�les of P(��) in
which no pro�le is dominated by another pro�le of P(��). In every pro�le of
the latter set, there is a player whose payo¤ is equal to her payo¤ in some

NE strategy pro�le.13 If the latter set is empty then �� coincides with the

supercore.14 Further, if P(��) = ; then �� coincides with a vN&M stable set

for (�(S);�).

13Since the pro�les in this set are non-NE pro�les, they are dominated only by "some
strategy pro�le dominated in turn by some NE strategy pro�le."
14This is the case for �nite games with a �nite number of NE strategy pro�les (Inarra et

al., 2007).
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