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Abstract

For a number of important applications of signaling, it is sometimes
more reasonable to assume that the sender rather than nature chooses
its unobservable features (e.g. its private choice of quality). In other
situations, it makes no sense at all for nature to determine the sender’s
unobservable features (e.g. its private choice of capacity, investment,
contract or price). This paper provides a framework to analyze a wide
range of such endogenous signaling problems. An equilibrium concept
(Reordering Invariance) is proposed which is powerful in eliminating
unreasonable equilibria and relatively easy to apply. A class of mono-
tone endogenous signaling games is characterized, in which the sender
can influence the receivers’ actions to its benefit through signaling. For
such games, we show that a sender’s private choice can still have some
commitment value even though it is not observed, and that in equilib-
rium, the sender’s signals must be exaggerated. These points are illus-
trated with a simple model of costly announcements that applies to the
classic time inconsistency problem of monetary policy. The paper also
explains how to apply our framework to more complicated settings,
including to situations which have not previously been considered as
signaling problems (e.g. to loss leader pricing and to the opportunism
problem that arises when a manufacturer sells to competing retailers
through secret contracts).
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1 Introduction

The classic treatment of signaling games assumes that a sender’s unobserv-
able features (or types) are exogenously determined by nature so that the
game is one of incomplete information. While this makes sense for some
applications (for instance, where a player’s type is their innate ability), for
other applications it may be more reasonable (or just as reasonable) that
the sender’s unobservable features are actually chosen endogenously by the
sender. Examples include limit pricing and predation, where the incum-
bent’s costs are determined through its unobservable investments in cost
reducing technologies or capacity, price and advertising to reveal a firm’s
unobservable choice of product quality, and an entrepreneur’s choice of (cor-
porate) financing to reveal its unobservable choice of effort (and so likely
project quality). In some other applications it makes no sense at all for na-
ture to determine the sender’s unobservable feature. Consider the problem
of a multi-product firm choosing prices only some of which are observed (pos-
sibly through its advertising). Clearly it makes no sense to think of nature
determining the firm’s unobservable prices. Other examples where signaling
arises include unobserved capacity choices, private contracts, a country’s
military tactics, or a government’s secret inflation target (as opposed to its
announced target). Surprisingly, this class of games does not appear to have
been studied formally, at least in a systematic way. This paper attempts to
fill this gap.

We consider a class of games of imperfect information in which senders
take multiple actions, only some of which are observed by receivers. Typ-
ically, these games have a multitude of equilibria reflecting that receivers’
beliefs are not pinned down off the equilibrium path. We develop a natural
equilibrium concept for these games based on a very weak version of the
invariance condition of strategic stability. Provided each sender makes its
choices of unobservables and observables without gaining any new (payoff-
relevant) information in between, the order of these moves should not mat-
ter. Specifically, we construct a reordered game in which observable ac-
tions are chosen before unobservable actions which shares the same reduced-
normal form as the original game. This game often has a unique equilibrium
outcome which is relatively simple to characterize.1 This is taken as the re-
fined equilibrium outcome of the original game. We call the equilibria con-
sistent with an equilibrium of the reordered game RI-equilibria (RI stands
for Reordering Invariance), and the associated beliefs RI-beliefs. The beliefs
can be interpreted as a type of forward induction. Roughly speaking, upon

1 In contrast, using refinements based on the hypothesis that deviations by a sender
are interpreted as mistakes or trembles (either in observable or unobservable actions,
or both), does not lead to a unique equilibrium outcome (in settings where we have a
unique RI-equilibrium outcome) and in general requires a tedious process to characterize
equilibria.
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seeing a sender’s observable actions, the receiver infers the sender’s unob-
servable actions were chosen “optimally” with these observable actions (and
other players’ equilibrium strategies) in mind. As a result, in single-sender
games, the equilibrium outcome selected yields the highest possible payoff
to the sender among all the equilibria of the original game.

To capture the signaling aspect of the games we consider, we consider a
particular structure on the sender’s and receiver’s payoffs so as to define a
class of monotone endogenous signaling games. In these games, the sender
can influence the receivers’ actions to its benefit through its choice of signals.
Despite the fact that it is unobservable, we establish that the sender’s pri-
vate action still involves a “commitment effect” in that the sender chooses
different levels of both the unobservable and observable actions compared
to the equilibrium under passive beliefs, to its benefit. This has implica-
tions for the large literature on business strategy in which firms also choose
observable prices or quantities in the product market, showing that the lit-
erature still applies (to some extent) even when the firms’ “investments” are
unobservable.

Another implication of the monotone endogenous signaling games we
study is that a sender will exaggerate its choice of signal in equilibrium,
compared to the equivalent choice of signal in a full information game. Such
“signal exaggeration” arises in equilibrium to ensure that the sender does
not have any incentive to further manipulate beliefs by choosing a different
signal. In the case of limit pricing, starting from its normal monopoly price,
a small decrease in the monopolist’s price does not give rise to any first-
order loss. However, since it lowers the rivals’ beliefs about the level of costs
the monopolist has chosen (and therefore the rival’s likelihood of entry in
the subsequent period), it does have a first order benefit. In equilibrium,
the monopolist’s price must be exaggerated (in the downward direction) to
ensure that it does not have any incentive to further manipulate beliefs,
i.e. so the receiver is not fooled. We illustrate with an application to the
exaggeration of announcements.

The setting we consider can be generalized in many ways. We con-
sider some of these, explaining how to apply the RI-equilibrium concept to
more complicated settings including where there are multiple senders and
receivers, where both senders and receivers move at the same time, and
where senders are also receivers (as arises in business strategy settings with
multiple firms). Where senders can determine which features are observable
and which are unobservable (as arises when firms choose which prices to
advertise), we show how to use the receiver’s information partition to de-
compose the senders’ actions into observable and unobservable actions, so
as to construct the relevant reordered game. In other applications, different
receivers may have different information partitions in the reaction phase.
If the receivers’ information partitions are not appropriately ordered, more
than one reordering of the original game may be necessary to pin down the
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RI-equilibria. We illustrate this with an application to the classic oppor-
tunism problem (Hart and Tirole, 1990 and McAfee and Schwartz, 1994) of
a supplier that makes secret offers to two downstream retailers. Of the three
different types of beliefs considered in the literature, we show symmetry be-
liefs and passive beliefs are not generally consistent with our RI-equilibrium,
whereas wary beliefs are.

The rest of the paper proceeds as follows. Section 2 discusses the related
literature. Section 3 presents the theory for a class of canonical endogenous
signaling games. Section 4 adds a particular monotone structure, explores
some interesting properties of these games with an application to monetary
policy announcements, and compares our setting with classical signaling
games. Generalizations are given in Section 5, which includes an applica-
tion to the opportunism problem of vertical contracting. Section 6 briefly
concludes.

2 Related literature

It may be tempting to call the choice of the unobservable feature in our set-
ting a “moral hazard problem” and relate it to the vast literature analyzing
moral hazard problems. Actually, the problem we study is more like a cross
between an adverse selection problem and a moral hazard problem. It is
distinct from an adverse selection problem (with signaling) based on who
determines the unobservable feature(s), i.e. the sender rather than nature.
It is distinct from a moral hazard problem based on when the unobserv-
able feature(s) are chosen, i.e. they are chosen before the observable actions
(in this context, contracts) are decided, as well as which player offers the
contracts, i.e. the informed rather than the uninformed player.

As mentioned in the Introduction, there is surprisingly little existing
analysis of the class of games we consider. The one application where a size-
able literature does already exist is the study of how firms can use price to
signal their endogenous choice of quality. Prominent examples include Klein
and Leffler (1981), Wolinsky (1983), Riordan (1986), Rogerson (1988) and
Bester (1998). In contrast to classical signaling models, in this literature,
equilibria have generally been pinned down by a seemingly ad-hoc approach
to how expectations are formed for out-of-equilibrium price offers.2 In part,
this may have reflected that several of the papers considered competitive
firms in a market setting. Typically, authors assumed that although prices
and quality are set simultaneously, consumers interpret prices that are dif-
ferent from equilibrium levels as “an indication of high quality if the seller

2 Perhaps due to this ad-hoc approach, the “endogenous-quality” literature never de-
veloped the role of advertising, in addition to price, as a signal of a firm’s quality. This
contrasts with the “exogenous-quality” literature, which typically allows both price and
advertising to be signals. Using our approach, it would be straightforward to consider
both price and advertising as signals of unobservable quality.
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has no incentive to disappoint this expectation” (Bester, p. 834).3 Assuming
that the relevant constraint is that firms should not have an incentive to cut
quality, this amounts to assuming that given a price, a firm would not have
an incentive to choose a quality different from expected. Implicitly, in deter-
mining consumer expectations, it is as though price is set first and quality
expectations are pinned down by the fixed point between firm’s choice of
quality and consumer expectations.4 In the simplest setting we consider,
this is the approach implied by our RI-equilibrium. In more complicated
settings, as we show in this paper, the RI-equilibrium is more subtle and no
longer based on this approach.

Aside from models of unobserved quality choice, our framework applies
to some other existing works. In political science, our signal exaggeration
result accords with the finding of Bueno de Mesquita and Stephenson (2009)
who show a policymaking agent will overinvest in observable effort and un-
derinvest in unobservable effort (to improve the quality of regulation) in the
face of an overseer that can veto new regulation. Consistent with our Re-
ordering Invariance, they solve the game by first solving for the equilibrium
level of unobservable effort given the level of the observable effort, although
they do not explain why. Rocheteau (2009) uses our RI-equilibrium concept
to study the issue of counterfeiting in monetary economics, in which buyers
can first choose whether to counterfeit an asset which acts as a medium of
exchange and then what price to offer when paying with this asset. Mone-
tary theorists have struggled to come up with the right equilibrium concept
for games of counterfeiting (Nosal and Wallace, 2007). As Rocheteau shows,
using our RI-equilibrium concept allows some of the issues that have been
raised to be addressed. Rao and Syam (2001) consider a game of pricing
and advertising by competing supermarkets which fits into a generalized
version of our framework, in which the supermarkets choose which of two
different goods to advertise the price of, at the same time as determining
the level of the two prices. For the most part, Rao and Syam solve the game
by assuming that the unadvertised price is chosen after the other choices
are made public, thereby avoiding having to pin down out-of-equilibrium
beliefs. In Section 3.7 of their paper they state an equilibrium of the game
in which unadvertised prices are set at the same time as advertised prices

3 Wolinsky (p. 655) requires admissible consumer expectations to be such that for any
given price, “the highest quality that consumers can expect the entrant ... to produce
without being disappointed.” Riordan (p. 272) writes “I assume that consumers expect
the maximal quality that is consistent with the firm’s incentives.”

4 Rogerson (p. 223) is more explicit in stating that “A very natural method for defining
rational beliefs would be to require that they be consistent with the equilibrium quality
which actually would be supplied if a price was offered in equilibrium.” Similarly, Farrell
(1986, p. 444) who considers scale x as a signal of quality q, writes “We are skirting a subtle
game-theoretic issue here. The entrant can be regarded as “simultaneously” choosing both
x and q. ... It is not clear how buyers “ought” to infer q from x; we assume that they
assume that q will be optimal, given x.”
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but without explaining how they pin down out-of-equilibrium beliefs. We
discuss the right way to do so in Section 5.4 of our paper.

One large set of new applications of our framework is to the case of un-
observable “investment”. Such applications are a cross between the large
literature studying business strategy in which firms’ endogenous (but ob-
servable) “investments” have commitment effects and the classical models
of limit pricing and information manipulation in which firms’ unobservable
(but exogenously determined) costs are signaled through the product mar-
ket. For instance, consider limit pricing when the incumbent’s private cost
is determined endogenously by its unobservable investment in cost-reducing
R&D. Such limit pricing is a cross between the top-dog entry deterrence
strategy of Fudenberg and Tirole (1984) and the classic model of limit pric-
ing studied by Milgrom and Roberts (1982). Table 1 illustrates.

Observable case Unobservable case
Limit pricing

Nature Milgrom & Roberts (1982)
chooses Information manipulation

Riordan (1985)

Sender Business strategy Signaling private
chooses Fudenberg & Tirole (1984) choices

Table 1: Connection with existing literature

One other existing application that fits our framework is Dana’s (2001)
analysis of competition, in which firms first choose unobservable capacity
and then without observing each other’s capacity choices, they compete in
observable prices. Consumer use prices as a signal of the firms’ capacity
choices. Dana uses the “Never Weak Best Response” (NWBR) property
to find a unique equilibrium. In his setting, the implied forward induction
reasoning of NWBR corresponds to using our RI-equilibrium. In other,
more complicated settings, the two approaches may differ. Even where the
outcomes are the same, a key advantage of the RI-equilibrium concept in
the class of games we consider is that it is much simpler to apply.5

5 Hillas (1998), Hillas and Kohlberg (2002), and Govindan and Wilson (2009) have
investigated the implication of adding invariance to backward induction on forward in-
duction. Our RI-equilibrium concept exhibits a flavor of forward induction, but since the
invariance that we consider takes a particular form, our refinement is also generally weaker
than the forward induction defined by Govindan and Wilson.
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3 Canonical endogenous signaling games

In this section, we define a class of games in which senders take multiple
actions, only some of which are observed by receivers. Initially we do not im-
pose any restrictions on the payoffs so that there need not be any particular
linkage between the players’ actions. We propose an equilibrium concept for
this class of games, and investigate the optimality of the proposed equilibria.

3.1 Class of games

We consider a class of extensive-form games of imperfect information with
perfect recall. There are a finite number of players. Players are either a
sender or a receiver or both. There are at least two players: at least one
sender (S) and at least one receiver (R).

There are two phases in the game: the signaling phase and the reaction
phase. In the signaling phase, a sender or senders take(s) multiple actions
of two kinds: an action or actions that are observable and an action or
actions that are unobservable to the receiver(s) and the other sender(s).
The sender(s) take(s) the actions either sequentially or simultaneously. As
the game unfolds during the signaling phase, from a particular sender’s
perspective, no new payoff-relevant information arrives other than its own
moves. The reaction phase begins from the point of time when a receiver or
receivers start(s) to move having observed the senders’ observable actions.
The receivers may move without observing any of the senders’ actions in the
signaling phase. The senders may move in the reaction phase as well.

The simplest of such games are two-player (one sender and one receiver)
games with the following timing of moves (for example, see panel (a) of Fig-
ure 1), where T , A, and B are any sets (for example, {Apple,Beef,Cereal},
a subset of a multidimensional Euclidean space, etc.):

1. In stage 1, the sender chooses t ∈ T .

2. In stage 2, the sender chooses a ∈ A.

3. In stage 3, having observed the sender’s choice of a, but not t, the
receiver chooses b ∈ B.

Stages 1 and 2 constitute the signaling phase6 and stage 3 is the reaction
phase.

For example, in a limit-pricing game, t could be the incumbent’s unob-
servable cost-reducing investment, a could be the incumbent’s (limit) price,
and b could be the rival’s decision to enter or not. In the case of product
quality signaling, t could be a firm’s unobservable quality, a could be the

6 The analysis in this section continues to apply even if the sender chooses t and a
simultaneously.
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firm’s price and advertising, and b could be the buyer’s decision to pur-
chase or not. In a corporate finance setting, t could be the entrepreneur’s
unobservable effort to determine the likely project quality, a could be the en-
trepreneur’s offer of financing contract, and b could be the investor’s decision
to invest or not.

The payoffs are πS(t, a, b) and πR(t, a, b) to each player respectively. We
call these games “canonical endogenous signaling games,” denote this class
of games by Γo, and its typical element Go. Note that the classical signaling
games in the literature have the same structure as the canonical endogenous
signaling games except that the first move is made by nature in stage 1.

3.2 Equilibrium

For extensive-form games of imperfect information, two equilibrium concepts
are widely used in the literature: sequential equilibrium (Kreps and Wilson,
1982) and perfect Bayesian equilibrium (Fudenberg and Tirole, 1991). For
the purpose of expositional simplicity, however, we start with a less refined
equilibrium concept, subgame-perfect equilibrium (SPE). We do so because
using the concept of SPE as the basic equilibrium concept is enough to show
our results for the class of canonical endogenous signaling games (Γo). In a
later section, we adopt a version of perfect Bayesian equilibrium (Fudenberg
and Tirole) as our basic equilibrium concept for the broader class of games
that we consider. When there is no risk of confusion, in this section we also
use the term equilibrium to mean SPE. We focus on pure-strategy equilibria
except in Section 3.5 where we explain how our framework continues to hold
for behavior strategies, and omit “pure strategy” when referring to equilibria
throughout the paper wherever possible.

For canonical endogenous signaling games, subgame-perfection does not
provide any refinement to the set of the Nash equilibria, and therefore the
set of SPE coincide with the set of Nash equilibria. As a result, we typically
find many SPE. This phenomenon of multiple equilibria is quite robust.
As we will see later, even if we adopt more refined equilibrium concepts
such as sequential equilibrium or perfect Bayesian equilibrium, we typically
find many equilibria in the class of games we consider. This is due to the
indeterminacy of the off-the-equilibrium beliefs.

As one of the requirements for strategic stability (Kohlberg and Mertens,
1986), Invariance was proposed, which says that a solution of a game should
also be a solution of any equivalent game (i.e. having the same reduced
normal form). We consider a particular extensive-form game which shares
the same reduced normal form (up to the relabeling of the strategies) as
the original game. For any Go ∈ Γo, consider the following extensive-form
game, where the timing of the sender’s moves is now reversed as follows:

1. In stage 1, the sender chooses a ∈ A.
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Figure 1: Illustration of original and reordered games
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2. In stage 2, the sender chooses t ∈ T .

3. In stage 3, having observed the sender’s choice of a, but not t, the
receiver chooses b ∈ B.

The payoffs are the same as in the original game. We denote this game by
Gr, and the collection of such games Γr.

Note that for the games in Γr, the requirement for a SPE is the same as
that of a perfect Bayesian equilibrium (as defined in Section 5.2)

We call the probability distribution on the terminal nodes that is induced
by a strategy profile the outcome of the game associated with the strategy
profile. The probability distribution may be degenerate. Note that the
probability distribution on the terminal nodes is equivalent to the probability
distribution on the paths of the game tree. The following proposition, which
provides the foundation for our equilibrium concept for the games Go ∈ Γo,
then follows fairly directly (all proofs are in the appendix).

Proposition 1 (Reordering Invariance) Consider a game Go ∈ Γo
and its reordered game Gr. If an outcome (ao, to, bo) is supported by a SPE
of Gr, then (to, ao, bo) is supported by a SPE of Go.

This proposition enables us to construct equilibria of the original game
based on the equilibria of the reordered game. Specifically, among the SPE
of the original game (Go), we select only those which share the same outcome
(up to the reordering of t and a) and the same receiver’s strategy with a
SPE of the reordered game. We call these equilibria RI-equilibria and the
associated receiver’s beliefs RI-beliefs (RI stands for Reordering Invariance).
Reordering Invariance is weaker than Invariance because it requires only
that a solution of a game should also be a solution of a particular equivalent
game.

This equilibrium concept has a strong decision-theoretic justification.
Given the receiver’s beliefs at each of the receiver’s information sets are the
same across the two games, the sender’s optimal choice of multiple actions
should not depend on the order of its choices, as far as the sender makes
its choices of unobservable and observable actions without gaining any new
(payoff-relevant) information in between.

The beliefs that the receiver holds in a RI-equilibrium can be interpreted
as a type of forward induction in the following sense: when the receiver ob-
serves the signal, the receiver infers that the sender has chosen its unobserv-
able action “optimally” with the action to be observed (and other players’
equilibrium strategies) in mind. This is in contrast to another common ap-
proach to defining beliefs in the applied literature, “passive beliefs,” in which
the receiver holds the same belief about the sender’s choice of unobservable
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action regardless of the sender’s observable choices. In general, passive be-
liefs will be inconsistent with RI-equilibria given the sender’s “optimal”
private action may depend on its intended choice of signal. Proposition 4
and corollary 2 provide conditions under which one can order the equilib-
rium outcomes under these two approaches. The applications in Sections 4
and Different further illustrate the differences. Given that in our view the
RI-equilibrium is the appropriate equilibrium to focus on, these findings can
be viewed as a critique of using passive beliefs.

The RI-equilibrium provides a way to refine the set of equilibrium out-
comes of the original game, which is just the set of Nash equilibrium out-
comes of that game. Since the reordered game has proper subgames, per-
fection is used to reduce the set of equilibria in the reordered game, and
so the set of Nash equilibrium outcomes of the original game. Thus, the
RI-equilibrium concept can be powerful in reducing the number of equi-
librium outcomes in the same sense that requiring subgame perfection can
be powerful. As we will see in our applications, it often delivers a unique
equilibrium outcome of the original game. The key idea is that reordering
disentangles information sets while leaving the senders’ decision problem es-
sentially unchanged. When we consider more complicated games in Section
4, a similar idea will still apply even though the reordered game will no
longer necessarily have any proper subgames.

An important advantage of our RI-equilibrium concept in the class of
games we consider is that it is relatively easy to use in applications. Solving
for the equilibria of the original game is often cumbersome in this class of
games, unless ad-hoc belief functions (such as passive beliefs) are adopted.
However, in applications, often we only care about equilibrium outcomes. In
this respect, the RI-equilibrium concept provides an efficient way to find the
reasonable equilibrium outcomes of the original game since finding the equi-
libria of the reordered game is typically a much easier exercise. Similarly, the
RI-equilibrium concept is generally easier to apply than some other strong
equilibrium concepts, such as Myerson’s (1978) proper equilibrium, partic-
ularly when strategy sets are infinite as they are in most of the applications
we have in mind.7

3.3 Existence

It is already known that there exists at least one sequential equilibrium and
therefore at least one SPE, possibly involving behavior strategies, in any
finite extensive-form games (Kreps and Wilson, 1982). Because of Proposi-
tion 1 we also know that there exists at least one RI-equilibrium, possibly
involving behavior strategies, for any finite game Go ∈ Γo. We will be clear
about what we mean by a behavior-strategy RI-equilibrium in Section 3.5.

7 Simon and Stinchcombe (1995) extend the definition of proper equilibrium to infinite
games.

10



It may be useful to note a sufficient condition for the existence of a pure-
strategy SPE for a game Gr ∈ Γr, which in turn means the existence of a
pure-strategy RI-equilibrium for a game Go ∈ Γo.

Proposition 2 (Existence) Suppose that a game Go ∈ Γo is such that
the sets T , A, and B are nonempty compact convex subsets of a Euclidean
space, the sender’s payoff function πS is continuous in (t, a, b) and quasi-
concave in t, and the receiver’s payoff function πR is continuous in (t, a, b)
and quasi-concave in b. Then there exists a pure-strategy RI-equilibrium of
Go.

3.4 Optimality

Given the canonical endogenous signaling game we are considering has a
single sender, any RI-equilibrium has the nice property that no other equi-
libria of the original game yield better outcomes for the sender. (Obviously
this need not be the case when there are multiple senders, for example, if
the senders are competitors.)

Proposition 3 (Optimality) Consider a game Go ∈ Γo. Suppose that
the set of RI-equilibria is nonempty and the set of their payoffs to the sender
admits a maximal element. Then there exists at least one RI-equilibrium
that yields the best payoff to the sender among all the SPE. Furthermore,
any SPE that is not outcome-equivalent to a RI-equilibrium yields a strictly
lower payoff than this best payoff to the sender.

To give the main idea of the proof, suppose on the contrary there exists a
SPE that is not outcome-equivalent to a RI-equilibrium but yields the best
payoff to the sender. Since the payoff of this SPE corresponds to a Nash
equilibrium payoff in one of the proper subgames of the reordered game,
the sender could have achieved this payoff by choosing the corresponding
observable action in the first stage of the reordered game (i.e. selecting
the subgame with the best Nash equilibrium payoff). The fact the sender
did not choose this action in any RI-equilibrium, means there is another
action leading to a better Nash equilbrium payoff to the sender, which is a
contradiction. In the following corollary, we provide a sufficient condition
for the stronger result that any RI-equilibrium yields the best payoff to the
sender.

Corollary 1 (Complete Optimality) Consider a game Go ∈ Γo and its
reordered game Gr. Suppose that there is a unique Nash equilibrium payoff
to the sender in each of the proper subgames in Gr and that the set of the
Nash equilibrium payoffs to the sender admits a maximal element. Then any
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RI-equilibrium yields the best payoff to the sender among all the SPE in Go.
Furthermore, any SPE that is not outcome-equivalent to a RI-equilibrium
yields a strictly lower payoff than this best payoff to the sender in Go.

3.5 Behavior strategies

Up until this point, we have restricted our analysis to pure-strategy equi-
libria. The idea and optimality of RI-equilibrium continues to apply if we
allow behavior strategies. Proposition 1 extends trivially. Proposition 3 also
extends easily when the action sets are finite. We illustrate how to construct
an RI-equilibrium by an example. Consider the game in panel (a) of Fig-
ure 1. Suppose one finds a behavior-strategy SPE in the reordered game
(panel (b)) as follows:

• In stage 1, the sender chooses a with probability p(a) and a′ with
probability p(a′).

• In stage 2, the sender chooses t with probability qa(t) and t′ with
probability qa(t′) if it has chosen a in stage 1; the sender chooses t
with probability qa′(t) and t′ with probability qa′(t′) if it has chosen
a′ in stage 1.

• In stage 3, the receiver chooses b with probability ra(b) and b′ with
probability ra(b′) if it has observed a; the receiver chooses b with prob-
ability ra′(b) and b′ with probability ra′(b′) if it has observed a′.

The outcome assigns probabilities p(a)qa(t), p(a′)qa′(t), p(a)qa(t′), and p(a′)qa′(t′)
(followed by ra(b) and ra(b′)) to the terminal nodes ta, ta′, t′a, and t′a′ (fol-
lowed by b and b′) respectively. Then the following is a behavior-strategy
RI-equilibrium in the original game, which has the same outcome (up to the
reordering of t (or t′) and a (or a′)):

• In stage 1, the sender chooses t with probability (p(a)qa(t)+p(a′)qa′(t))
and t′ with probability (p(a)qa(t′) + p(a′)qa′(t′)).

• In stage 2, the sender chooses a with probability p(a)qa(t)
p(a)qa(t)+p(a′)qa′ (t)

and

a′ with probability p(a′)qa′ (t)
p(a)qa(t)+p(a′)qa′ (t)

if it has chosen t in stage 1 (in case
of (p(a)qa(t)+p(a′)qa′(t)) = 0, any probability distribution over a and
a′ will do); the sender chooses a with probability p(a)qa(t′)

p(a)qa(t′)+p(a′)qa′ (t
′)

and a′ with probability p(a′)qa′ (t
′)

p(a)qa(t′)+p(a′)qa′ (t
′) if it has chosen t′ in stage 1

(in case of (p(a)qa(t′) + p(a′)qa′(t′)) = 0, any probability distribution
over a and a′ will do).

• In stage 3, the receiver chooses b with probability ra(b) and b′ with
probability ra(b′) if it has observed a; the receiver chooses b with prob-
ability ra′(b) and b′ with probability ra′(b′) if it has observed a′.
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4 Monotone endogenous signaling games

Thus far, we have not put any particular structure on the players’ payoffs.
However, typically our interest in these games stems from the fact that the
sender can influence the receivers’ actions to its benefit through its choice of
signals. In this section we explore one particular structure of payoffs which
gives rise to this feature and explore some of its economic implications.

Specifically, we consider a setting which has a monotone structure, such
that (i) the sender has an incentive to induce the receiver to choose a higher
level of action; (ii) in order that the receiver prefers to choose a higher level
of action, the sender must convince the receiver that it has chosen a higher
level of the unobservable action; and (iii) the sender will want to choose a
higher level of the unobservable action when it intends to choose a higher
level of the observable action.8

We start by assuming that the sets T , A, and B are partially ordered
sets and that there exists a unique equilibrium (i.e. SPE) in the reordered
game Gr, which we denote by (a∗, t∗(a), b∗(a)) such that

a∗ ∈ arg max
a∈A

πS(t∗(a), a, b∗(a)),

t∗(a) ∈ arg max
t∈T

πS(t, a, b∗(a)) for each a ∈ A, and

b∗(a) ∈ arg max
b∈B

πR(t∗(a), a, b) for each a ∈ A.

Corresponding to the informal conditions (i)-(iii) above, suppose (i) the
sender’s payoff function πS is increasing in b, (ii) arg maxb∈B πR(t, a, b) is
nonempty and strongly increasing9 in t for each a ∈ A, and (iii) the func-
tion t∗ is increasing in a. The conditions (ii) and (iii) are satisfied if the
subgames following each a ∈ A in the reordered game are supermodular
games parameterized by a ∈ A where πS has increasing differences in (a, t)
and πR has increasing differences in (a, b) and is strictly quasi-concave in b
(see Topkis, 1978, p. 317 and Vives, 1999, p. 32 and 35). Since the term
“increasing” is based on particular binary relations over the sets, this set-
ting actually captures eight different monotone structures, corresponding to
changing “increasing” to “decreasing” anywhere in the conditions (i)-(iii),
or equivalently reversing the binary relations over the sets T , A, and B.

8 Cho and Sobel (1990, pp. 391-392) identified three main conditions (A1′, A3, and A4)
to give classical signaling games a certain monotone structure. Our first two conditions
correspond to their A1′ and A3. Our third condition is distinct from their A4, which
guarantees that the sender of higher type is more willing to send a higher signal. Instead,
in our setting what matters for the RI-equilibrium is that the sender will want to choose a
higher “type” when it intends to choose a higher signal. This reflects the difference in game
structure (i.e. who chooses the “type”) rather than any difference in payoff structure, and
sometimes leads to qualitatively different results.

9 A correspondence φ from T to S is strongly increasing if t ≤ t′, t 6= t′ implies that

for each s ∈ φ(t) and s′ ∈ φ(t′), s ≤ s′. In this case, we write φ(t)
s

≤ φ(t′) or φ(t′)
s

≥ φ(t).
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We consider these conditions on the reordered game as the primitives of
the problem we are interested in, which involves characterizing properties
of the equilibria of the original game. This takes advantage of the fact
that analyzing the reordered game is often straightforward. We call original
games satisfying the conditions (i)-(iii) on their corresponding reordered
games “monotone endogenous signaling games,” denote this class of games
by Γ+

o , and its typical element G+
o .

4.1 Commitment effect

The first property we explore is whether the sender’s private choice can still
have some commitment effect even though it is not observed. By commit-
ment effect we have in mind that the sender’s choice of the unobservable
action t can enhance its payoff through its influence on the receiver’s choice,
relative to what would happen if t were chosen at the same time as the
receiver’s choice of b. The difficulty with this definition of the commitment
effect in our context is that a, which is chosen after (or at the same time
as) the choice of t, may have a direct influence on the receiver’s choice of
b. To allow for this, we instead define the benchmark (without the commit-
ment effect) to be an equilibrium sustained by the receiver’s passive beliefs
(the receiver ignores any observable actions by the sender when forming its
beliefs about the unobservable actions) and compare it with RI-equilibrium.

We start by defining the two equilibria that we compare. Given that
there exists a unique equilibrium in the reordered game, we know by Proposi-
tion 1 that there exists a uniqueRI-equilibrium outcome (t̃, ã, b̃) = (t∗, a∗, b∗)
in the original game Go,10 supported by a strategy profile (t̃, ã(t), b̃(a)),
where b̃(a) = b∗(a) for each a ∈ A,

(t̃, ã(t)) ∈ arg max
(t,a(t))∈T×AT

πS(t, a(t), b̃(a(t))), and

b̃ ∈ arg max
b∈B

πR(t̃, ã, b).

On the other hand, a passive-belief equilibrium of G+
o , (tpa, apa(t), bpa(a))

satisfies

tpa ∈ arg max
t∈T

πS(t, apa(t), bpa(apa(t))),

apa(t) ∈ arg max
a∈A

πS(t, a, bpa(a)) for each t ∈ T, and

bpa(a) ∈ arg max
b∈B

πR(tpa, a, b) for each a ∈ A.

Note that the receiver’s belief is passive and fixed at tpa in this equilib-
rium. To make our exercise meaningful, we assume that the passive-belief
equilibrium outcome is in the interior of T ×A×B.

10 For brevity, we have suppressed the arguments of the equilibrium outcomes, that is,
ã ≡ ã(t̃), b̃ ≡ b̃(ã(t̃)), t∗ ≡ t∗(a∗), and b∗ ≡ b∗(a∗). We follow this convention hereafter.
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Proposition 4 (Weak Commitment Effect) For any game G+
o ∈ Γ+

o ,
t̃ ≥ tpa, ã ≥ apa, and πS(t̃, ã, b̃) ≥ πS(tpa, apa, bpa).

This proposition shows that in monotone endogenous signaling games,
the sender’s choices of both observable and unobservable actions at the
RI-equilibrium outcome are weakly higher than those in the passive-belief
benchmark. In the following corollary, we provide conditions under which
the sender’s choices of both observable and unobservable actions at the
RI-equilibrium outcome are strictly higher than those in the passive-belief
benchmark.

Corollary 2 (Strong Commitment Effect) Consider a game G+
o ∈

Γ+
o . Suppose the function t∗ is strictly increasing in a at apa and there

exists an a ∈ A such that πS(tpa, a, b∗(a)) > πS(tpa, apa, bpa). Then t̃ > tpa,
ã > apa, and πS(t̃, ã, b̃) > πS(tpa, apa, bpa).

Starting from the passive-belief equilibrium outcome, an increase in a has
three effects on the sender’s payoff: it may (1) directly change the sender’s
payoff (direct effect), (2) directly affect the receiver’s choice of action b and
so the sender’s payoff (strategic effect), and (3) indirectly affect the receiver’s
choice of action b through the receiver’s belief about the sender’s choice of
t and so the sender’s payoff (belief effect). The inequality assumed in the
corollary implies that the sum of these three effects is positive for some
change in a. This assumption can be motivated as follows. The passive-
belief equilibrium outcome is “optimal” with respect to the sum of the first
two effects, which means the first-order effect of the sum of the direct and
strategic effects is zero in differentiable cases. The positive belief effect that
arises from the monotone structure of the games (conditions (i)-(iii) above)
therefore explains the inequality assumed in the corollary.

The additional assumptions in the corollary can be satisfied, for exam-
ple, if the sets T , A, and B are compact intervals in IR and locally (in the
neighborhood of the passive-belief equilibrium outcome) πS is strictly in-
creasing in b and the subgames following each a ∈ A in the reordered game
are smooth strictly supermodular games parameterized by a ∈ A where
πS has strictly increasing differences in (a, t) and πR has strictly increasing
differences in (a, b) and is strictly concave in b. With these sufficient con-
ditions, the sum of the direct effect and strategic effect is zero at the the
passive-belief equilibrium outcome and the belief effect is positive (see the
appendix).

Even though the sender’s private choice is unobserved, the corollary
says it is still chosen as though it is observed, to some extent. That is, the
sender’s private choice may still have some commitment value in terms of
influencing the receivers’ choice to its benefit (relative to the outcome under
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passive beliefs). The result implies that much of the large literature studying
business strategy in which firms commit to observable “investments” so as
to benefit from strategic effects can be redone using this framework even
when investments are not observable, provided they can be signaled through
related observable actions such as repeated product market competition.

4.2 Signal exaggeration

Another interesting property of monotone endogenous signaling games is
what we refer to as “signal exaggeration,” in which the sender’s signal is
exaggerated in equilibrium, compared to the equivalent choice of signal in a
full information game. This is somewhat similar to the well-known property
of separating equilibria in classical signaling games, in which a high type
sender has to exaggerate its signal to ensure the low type sender does not
want to mimic its choice of signal. In our setting, signal exaggeration arises
in equilibrium to ensure that the sender itself does not have any incentive
to further manipulate beliefs by choosing a different signal.

To formalize what we mean by signal exaggeration, we define an observ-
able benchmark and compare the sender’s choice in the benchmark with
that in a RI-equilibrium. To make our exercise meaningful, we assume that
the RI-equilibrium outcome is in the interior of T ×A×B.

Consider a variant of the game G+
o ∈ Γ+

o where the action t is now
observed by the receiver. We denote it by Gob. Consider an equilibrium of
Gob, (tob, aob(t), bob(t, a)), where

tob ∈ arg max
t∈T

πS(t, aob(t), bob(t, aob(t))),

aob(t) ∈ arg max
a∈A

πS(t, a, bob(t, a)) for each t ∈ T, and

bob(t, a) ∈ arg max
b∈B

πR(t, a, b) for each (t, a) ∈ T ×A.

Under the same conditions as in Proposition 4, we can conclude that
the sender would choose a higher observable action at the RI-equilibrium
outcome than it would choose if the same unobservable action were observed
by the receiver.

Proposition 5 (Weak Signal Exaggeration) For any game G+
o ∈ Γ+

o ,
ã(t̃) ≥ aob(t̃).

With an additional condition we obtain a strict version of the result.

Corollary 3 (Strong Signal Exaggeration) Consider a game G+
o ∈

Γ+
o and its variant Gob. Suppose there exists an a ∈ A such that πS(t̃, a, bob(t̃, a)) >
πS(t̃, ã, b̃). Then ã(t̃) > aob(t̃).
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The assumed inequality means that starting from theRI-equilibrium out-
come, the sum of the direct and strategic effects (defined earlier) is negative.
This assumption is consistent with the fact that the sum of all three effects
(direct, strategic, and belief effects) should be zero at the RI-equilibrium
outcome in differentiable cases and that the belief effect is positive from
the monotone structure of the games. An implication is that the sender
would prefer to choose a lower action a when t̃ is observed, compared to
when it chooses a to manipulate the receiver’s belief (as it does in the RI-
equilibrium).11

To illustrate another feature of signal exaggeration, consider the case
firms can choose cost-reducing investments which are unobservable to each
other but then they compete repeatedly in the product market by choosing
observable quantities each period. For a given cost, starting from their
corresponding one-shot Nash equilibrium quantities, a small increase in the
initial quantity by a firm does not give rise to any first-order loss, but since
it lowers the rivals’ beliefs about the firm’s costs (and therefore the rival’s
best-response quantity in the subsequent period), it does have a first order
benefit. Therefore, in equilibrium, initial quantities must be exaggerated
for any given cost to ensure firms do not have any incentive to further
manipulate beliefs, i.e. so the receiver is not fooled.

In a similar setting but when firms can deter entry, limit pricing in which
prices are set below their full information (i.e. monopoly) level is an obvious
application of signal exaggeration. Signal exaggeration also provides a novel
explanation of loss-leader pricing, in which multi-product firms set (and
advertise) one or more of their products at a low price (possibly below cost).
Advertised low prices can signal to potential consumers that a firm’s other
unadvertised prices are also low, if products are substitutes and consumers
prefer one-stop shopping. In this case, advertised prices are exaggerated (in
a downward direction) to the point where a firm would not gain by further
manipulation of consumer beliefs.12

In monotone endogenous signaling games, the sender would naturally
want to reveal its true choice of its unobservable feature to the receiver,
thereby avoiding the need to engage in costly signal exaggeration. The
problem is that in doing so it has an incentive to lie. However, provided
there is some cost to lying, the sender’s announcement can still work as an
inflated signal of its true choice. A costly announcement game is therefore
a somewhat generic example of a monotone endogenous signaling game,

11 The additional assumption in the corollary can be satisfied by the same set of suf-
ficient conditions that were given for the additional assumptions of Corollary 2, except
that these sufficient conditions are now assumed to hold in the neighborhood of the RI-
equilibrium outcome. The proof of this claim is almost identical to before and is given in
the appendix.

12 See Section 5.4 for further details on how to apply our framework to such a case,
when the firm can choose which good to advertise.
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which is why we turn to it now in order to illustrate the various results of
this section.

4.3 Application to costly announcements and inflation

Consider the following simple game. In stage 1, a sender chooses its private
effort t which is unobserved by a receiver. In stage 2, the sender makes
an announcement on its level of effort a so as to try to make the receiver
believe its effort is higher. In stage 3, the receiver reacts by choosing some
action b (which could be its belief about the sender’s effort, or some action
it takes given its beliefs). To capture this situation, we adopt the standard
quadratic payoff specification of cheap-talk games as in Crawford and Sobel,
1982 (this is the first term in (1)), and modify it to introduce a cost to lying
as in Kartik et al. (2007) (the second term in (1)) and that the sender cares
about its choice of effort (the third term in (1)). The payoffs are

πS = −(b− (t+ β))2 − κ(a− t)2 − λ(t− t̂ )2 (1)

for the sender and πR = −(b− t)2 for the receiver, with κ > 0 and λ > 0.
As in cheap-talk games, the parameter β measures a bias between the

two players. The sender prefers the receiver to choose b = t + β while the
receiver would prefer b = t if t were known. Thus, the sender would like to
mislead the receiver into choosing a higher action by convincing the receiver
it has chosen higher effort than it actually has. However, to the extent the
sender’s announced effort differs from its true effort, it will suffer a penalty
which is captured by the second term in πS (e.g. this could be the sender’s
subjective disutility or expected penalty from lying). t̂ is the level of effort
that the sender would choose in a full information game, i.e. its first-best
level.

An application that fits this specification is a variation on the classic time
inconsistency problem of monetary policy (Kydland and Prescott, 1977)
in which the government privately instructs the non-independent central
bank to achieve a target level of inflation t while publicly announcing a
target level a, where t̂ represents the government’s first-best level of inflation.
After hearing the government’s announcement, the private sector chooses b
to maximize πR, which is equivalent to forming a rational expectation on
the level of inflation in Kydland and Prescott. Setting β < 0 captures
the government’s incentive to pursue expansionary policy. In the existing
literature κ = 0, implying any announcement is ignored.

In the original game there are a continuum of Nash equilibria, which
are difficult to characterize in general. Assuming differentiability of the
receiver’s strategy b(a) and second-order conditions hold, the equilibria
(t̄, ā(t), b̄(a)) are characterized by the first-order conditions t̄ = b̄(ā) = (κā+
λt̂−β)/(κ+λ) and b̄′(ā) = κ(λā−λt̂+β)/(β(κ+λ)), where ā ≡ ā(t̄). Without
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assuming differentiability of the receiver’s equilibrium strategy b(a), addi-
tional equilibria may arise. Moreover, determining whether second-order
conditions hold is not straightforward unless b̄′′(ā) = 0.

By setting b̄′(ā) = 0, we obtain the equilibrium with passive beliefs
tpa = apa = bpa = t̂ − β/λ. Since the sender’s announcement is ignored, it
may as well tell the truth. However, in equilibrium it chooses a lower level
of effort compared to its ideal level tob = t̂ due to its lack of commitment
(if it could commit to t = t̂ it would be better off). This corresponds to the
discretionary inflation level (higher than first-best) in the time inconsistency
example.

To solve the reordered game, we look for an equilibrium in the choice of t
and b for a given a. The result is that t∗(a) = b∗(a) = (aκ−β+ t̂λ)/(λ+κ).
Given this, solving for the optimal choice of a in the first stage, the unique
RI-equilibrium outcome of the original game is t̃ = b̃ = t̂ − β/(λ + κ) and
ã = t̂. Clearly, if β > 0 then t̃ > tpa and ã > apa (one can also confirm
that πS(t̃, ã, b̃) > πS(tpa, apa, bpa)) so that even though the sender’s effort is
unobserved, it is still able to obtain a commitment benefit. This corresponds
to reducing inflation towards the government’s first-best level in the time
inconsistency example, i.e. t̃ < tpa and ã < apa reflecting that β < 0. This
is not a trivial result, given that the sender chooses its announcement after
(or equivalently, at the same time as) fixing its level of effort, so that in
general the receiver need not react to the announcement at all (i.e. passive
beliefs) or in any particular way.13

Consistent with signal exaggeration, we also find announcements are
inflated: ã = t̂ > aob(t̃) = t̃ = t̂ − β/(λ + κ) if β > 0. Although the sender
still chooses less effort than its first-best level t̂, due to signal exaggeration
it turns out that its announced effort level a is exactly equal to its ideal level
t̂. This surprising result is specific to the quadratic payoff specification (in
general it may announce a somewhat higher or lower level of t compared to
t̂ ). As a consequence, in this example, while signal exaggeration increases
as lying costs get small, the level of signal exaggeration is bounded — the
equilibrium level of effort converges towards the passive beliefs level t̂−β/λ,
while the announced effort remains at t̂. Even with a very small cost of
lying, the sender will not want to exaggerate very much.

4.4 Comparison with classical signaling games

The characterization of equilibria in our setting is quite different to that of
equilibria in classical signaling games. A general difference arises from the
fact that the sender makes an additional choice in our setting (the choice
of its unobservable action), meaning there are additional ways it can devi-
ate which must be ruled out in any equilibrium. For example, an interesting

13 If instead the sender chooses its announcement first, then by announcing a high level
of effort it can obviously influence its choice of effort to obtain a commitment benefit.
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feature in a limit-pricing setting where the incumbent’s private cost is deter-
mined endogenously by its unobservable investment in cost-reducing R&D,
is that partial entry deterrence may arise. This reflects, that in contrast to
standard exogenous-cost limit pricing models, here limit pricing can alter the
incumbent’s investment incentives in the RI-equilibrium. Since investment
in cost reduction is generally more profitable under competition than under
monopoly, the rival may prefer to stay out when the incumbent expects it
to enter (and vice-versa). As a result, the unique RI-equilibrium outcome
may involve the potential rival randomizing over whether to enter or not,
and the incumbent will sometimes regret limit pricing.

In addition, what matters for RI-equilibria in monotone endogenous sig-
naling games is that the sender will want to choose a higher “type” when
it intends to choose a higher signal, whereas what matters for separating
equilibria in classical signaling games is that the sender of higher type is
more willing to send a higher signal. This distinction reflects the difference
in game structure (i.e. who chooses the “type”) rather than any difference
in payoff structure, and sometimes leads to qualitatively different results.
For example, when quality is determined by nature, a high quality firm may
choose a positive level of wasteful advertising (together with a high price) to
make it unprofitable for a low quality firm to mimic it, whereas when quality
is chosen by the firm, “burning money” will not arise as an equilibrium since
such advertising is a sunk cost, which has no bearing on the firm’s optimal
choice of unobservable quality.

Compared to classical signaling games in which the equilibrium level of
the signal is pinned down by a no-mimicking constraint, the factors affecting
the RI-equilibrium level of the signal in our setting can be very different.
Consider for example the standard signaling games with two types of sender,
“high” and “low”. A factor which increases the payoff to the sender of being
believed to be of high type will generally increase the equilibrium level of the
signal in a classical setting since mimicking will be more attractive for a low
type and so requires more costly signaling to rule it out. The same factor
will have no effect on the RI-equilibrium level of the signal in our setting
when the equilibrium is pinned down by an equivalent of the no mimicking
constraint. This is because the relevant comparison is now between the
payoffs from choosing high and low types followed by the signal for which
the receiver believes the sender is of high type. On the other hand, a factor
which increases the payoff to the sender of actually being of high type (for
given beliefs) will not affect the equilibrium level of the signal in a classical
setting since the no-mimicking constraint (for the low type) is not affected.
The same factor will tend to decrease the RI-equilibrium level of the signal in
our setting since costly signaling is less important when the sender anyway
prefers to be of a higher “type” for given beliefs.

This logic can explain why with an otherwise identical specification,
comparative results can be reversed depending on whether “types” are de-
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termined by nature or chosen by the sender. One can easily construct an
example in which an increase in consumers’ valuation for the seller of high
type would increase the equilibrium level of advertising in a classical quality-
signaling game whereas it would decrease the RI-equilibrium level of adver-
tising in an endogenous quality-signaling game.14 One can also construct
an example in which an improvement in the high type borrower’s prospects
would increase the equilibrium level of collateral in the classical signaling
model of costly collateral pledging (Tirole, 2006, pp. 251-254) whereas it
would decrease the RI-equilibrium level of collateral in an endogenous coun-
terpart of this game in which the borrower’s quality is determined by its
prior efforts. The comparative statics of this RI-equilibrium may be easier
to reconcile with the empirical evidence (Coco, 2000, p. 191), which suggests
borrowers post less collateral when their prospects improve.

5 Generalizations

The concept of RI-equilibrium and some of its properties apply to a much
broader class of games. In this section, we extend our framework beyond
canonical endogenous signaling games, starting in Section 5.1 with relatively
straightforward generalizations. In Section 5.2, we propose a stronger ver-
sion of RI-equilibrium to handle more complicated endogenous signaling
games. In Section 5.3, we allow for multiple senders. In Section 5.4, we
discuss how to decompose sender’s actions to deal with general partial ob-
servability. In Section 5.5, we discuss how to construct our RI-equilibrium
when there are multiple receivers with different information partitions, in-
cluding more complicated cases in which the receivers’ information partitions
are not appropriately ordered. Finally, in Section 5.6, we illustrate the latter
with an application to opportunism in vertical contracting.

5.1 Straightforward generalizations

We start by briefly discussing some straightforward generalizations, to which
Proposition 1 extends trivially.

1. Nature’s move. We can allow nature to move. The generalization is
straightforward if (1) the realization is not observed by any strategic players,
i.e. the senders and receivers,15 or (2) the move of nature is at the start of
the game such that the move of nature becomes common knowledge.

14 Note that an increase in consumers’ valuation for the seller of high type would
increase the payoff to the seller of being believed to be of high type (consumers are willing
to pay more for their initial purchase) and of actually being of high type (consumers will
pay more for their repeated purchase).

15 E.g. this case allows us to capture situations where the realization of a firm’s efforts
to improve quality are only determined after consumers decide whether to buy.
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2. Multiple actions. We have already allowed for the players’ action
sets to be multi-demenstional. Similarly, we can allow for the sender to
choose multiple actions in any sequence, only some of which are observed by
receivers. In this case, we rearrange the sequence of actions in the signaling
phase so that all the actions (a’s) observed by the receivers are set first
followed by the actions (t’s) unobserved by the receivers. This maintains the
same information structure except for the different sequence of the senders’
own actions.

3. Extra phase. We can have an extra phase after the reaction phase
where all the previous moves become common knowledge. In this case,
one can identify the equilibria of the continuation games and embed the
equilibrium payoffs in the payoff functions.

4. Simultaneous choices. In this case the sender(s) chooses observ-
able and unobservable actions simultaneously. Note that applying PBE or
sequential equilibrium without further refinement usually yields multiple
equilibria. For example, if the actions t and a were chosen simultaneously in
the canonical endogenous signaling games, the multiplicity problem would
still remain. In this case, we can use the same analysis of considering the
reordered games in Section 3, as was noted in the example in Section 4.3.

5. Multiple receivers. Having multiple receivers is not really an issue
if the information partitions of the receivers are the same.16 For example,
consider a quality game where there are a continuum of consumers, a fraction
of which are uninformed. In such a game, the multiplicity problem becomes
more severe because we should allow different beliefs for different uninformed
consumers at their information set off the equilibrium path. However, the
receivers’ equilibrium belief at their information set off the equilibrium path
can be (often uniquely) determined by the sender’s equilibrium strategy in
its reordered game.

6. Repeated games. Our framework generalizes to repeated games.
For example, if the stage game t → a → b repeats finitely many times and
has a unique RI-equilibrium, our refinement still pins down the equilibrium.

5.2 Equilibrium

For games with more complicated structures, using SPE in the reordered
games is usually not powerful enough given the lack of proper subgames.
We therefore make use of a more refined equilibrium concept than SPE for
our basic equilibrium concept when dealing with the games in the subsequent
sections.

Two equilibrium concepts are widely used in the literature: sequential
equilibrium and perfect Bayesian equilibrium. The sequential equilibrium

16 Even though the information partitions of the receivers are different, sometimes the
difference can be absorbed by the configuration of the payoff functions. For the general
treatment in case of different information partitions, see Section 5.5.
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concept involves some technical difficulties in defining consistency for games
with infinite action sets, which arise in many applications. Perfect Bayesian
equilibrium does not suffer from this problem, but the weak version of perfect
Bayesian equilibrium is too weak even for the simplest class of games (Γo).
For these reasons, we make use of Fudenberg and Tirole’s (1991) perfect
extended Bayesian equilibrium as our basic equilibrium concept. We will
refer to this more restricted version of perfect Bayesian equilibrium simply
as perfect Bayesian equilibrium (PBE). When there is no risk of confusion,
we also use the term equilibrium to mean PBE for the remainder of Section 5.
For games with finite action sets, our results would be unchanged if instead
we use sequential equilibrium as our basic equilibrium concept. Note that
for the simpler games such as the canonical endogenous signaling games of
Section 3, the sets of PBE and SPE coincide for reordered games so that
using the PBE concept in Section 3 would be no more restrictive.

Despite a lack of proper subgames, reordering still helps disentangle
information sets to a certain extent, so that PBE still has some bite. We in-
terpret Fudenberg and Tirole’s definition (p. 254) of general reasonableness
more broadly so that we may apply the concept of PBE to infinite-action-set
cases.

Definition A profile of strategies together with a conditional probability
system (on the set of terminal nodes) is generally reasonable if

1. the conditional belief on the nodes which are successors to a decision
node coincides with the probability distribution on the corresponding
actions implied by the behavior strategy at the information set to
which the decision node belong, and

2. the conditional belief on the nodes which can be reached by the same
action from the nodes in an information set should inherit the condi-
tional belief on the nodes in the information set,

where the conditional beliefs are induced by the conditional probability sys-
tem.

Since we focus on pure-strategy equilibria, we provide a definition for a
pure-strategy PBE.

Definition A profile of pure strategies together with a conditional prob-
ability system (on the set of terminal nodes) is a pure-strategy PBE if

1. it is generally reasonable, and

2. the profile of pure strategies together with the conditional beliefs in-
duced by the conditional probability system is sequentially rational.
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Sometimes we refer to the profile of strategies only or the profile of strategies
together with conditional beliefs only at the receiver’s information sets in
the reaction phase as a PBE, whenever no confusion arises.

For the remaining games in this section, we first find PBE in the re-
ordered games. Then among the PBE of the original game, we select only
those which share the same outcome (up to the reordering) and the same
receiver’s beliefs and strategy with a PBE of the reordered game. As before,
we call these equilibria RI-equilibria and the associated receiver’s beliefs
RI-beliefs.

5.3 Multiple senders and simultaneous moves

An important class of endogenous signaling games involve more than one
player moving within a phase. We start by considering a setting where
there are multiple senders who are uninformed of the other senders’ private
choices. An example would be competitors’ choices of price (and advertising)
to signal their choices of quality.

Consider extensive-form games with multiple uninformed senders (i ∈
{1, 2, . . . , I}) and the following timing of moves, where Ti, Ai, and B are
(possibly multi-dimensional) sets. Senders choose ti ∈ Ti simultaneously in
stage 1 and ai ∈ Ai simultaneously in stage 2. In stage 2, each sender i
knows its own choice of ti, but not t−i.17 For this reason we call the senders
“uninformed”. Having observed only the senders’ choices in stage 2, the
receiver chooses b ∈ B in stage 3. Stages 1 and 2 constitute the signaling
phase and stage 3 is the reaction phase. The payoffs are πSi(t, a, b) and
πR(t, a, b) to each player respectively, where t ≡ (ti, t−i) and a ≡ (ai, a−i).
We denote this class of games by Γmo , and its typical element Gmo (the
superscript m is for “multiple” senders).

For any game Gmo ∈ Γmo , we define its reordered game with the following
timing of moves. Senders choose ai ∈ Ai simultaneously in stage 1 and
ti ∈ Ti simultaneously in stage 2. In stage 2, each sender i knows its own
choice of ai, but not a−i. Having observed only the senders’ choices in
stage 1, the receiver chooses b ∈ B in stage 3. We denote this game by Gmr ,
and the collection of such games Γmr .

The following proposition provides the foundation for applying our RI-
equilibrium concept to the games Gmo ∈ Γmo .

Proposition 6 Consider a game Gmo ∈ Γmo and its reordered game Gmr .
Suppose that an outcome is supported by a PBE of Gmr . Provided a mild
regularity condition is satisfied (for each sender i, a best observable action

17 As usual, “−i” refers to all senders other than i.
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ai exists for any unobservable action ti it has chosen, given the equilibrium
strategies of all other players18), the outcome is supported by a PBE of Gmo .

The intuition behind Proposition 6 is similar to that of Proposition 1.
Each sender’s optimal choice of multiple actions should not depend on the
order of its choices, given all other players’ choices at each of their infor-
mation sets are the same across the two games and given the sender makes
its choices of unobservable and observable actions without gaining any new
(payoff-relevant) information in between. Compared to Proposition 1, it
involves an additional step arising from the fact that we need to construct
a PBE of the original game, rather than just a Nash equilibrium, which is
why we require the mild regularity condition.

We already know from the existing literature (Kohlberg and Mertens,
1986) that if there exists a unique sequential equilibrium outcome, possibly
involving behavior strategies, in a finite game Gr ∈ Γr there should be a
sequential equilibrium in its original game Go which is outcome-equivalent.
Proposition 6 states more than that because it does not require the unique-
ness of the equilibrium outcome and it applies to games with infinite strategy
sets as well.

Proposition 6 does not extend to games where multiple senders are in-
formed of other senders’ private choices, for example, a quality signaling
games where the competing firms are informed of other firms’ choices of
quality before choosing their own prices/advertisments. In this case, from a
particular sender’s perspective, new payoff-relevant information arrives be-
fore its own observable action, making it impossible to preserve the original
information structure in the reordered game. These games do not belong to
the class of games we analyze.

The analysis of uninformed multiple senders also applies when the senders
are receivers as well. An example would be competitors’ choices of price or
quantity to signal their choice of cost-reducing investment (unobservable to
the rivals) in a competition game (two rounds of competition, with the first
one in the signaling phase and the second one in the reaction phase). The
reordering is done in the same way as above. The timing of the original
game is t1 · · · tI → a1 · · · aI → b1 · · · bI , where “→” distinguishes the stages
and “· · ·” denotes simultaneous moves (each player i observes only ti in
stage 2). The timing of its reordered game is a1 · · · aI → t1 · · · tI → b1 · · · bI
(each player i observes only ai in stage 2). As shown in the supplemen-
tary appendix, Proposition 6 continues to hold provided that the regularity
condition is modified such that it applies to each sender’s choice of a best

18 The regularity condition holds either (1) if the sender’s observable action set is
finite, or (2) if the sender’s observable action set is infinite but compact and the sender’s
payoff function is continuous in its observable action when the receiver’s best response is
taken into account. A supplementary appendix contains a more formal statement of the
regularity condition and the proof of the proposition.
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observable action taking into account its own equilibrium choice as a receiver
in the reaction phase.

A similar analysis applies when the senders and the receivers move simul-
taneously in the signaling phase and/or the reaction phase (provided that
they don’t observe each other’s choices until the reaction phase). An exam-
ple would be a predator’s choice of price to signal its choice of cost-reducing
investment in a predation game, where the rival also sets its price at the same
time as the predator prior to deciding whether to exit or not. The reordering
is done in the same way as above. The timing of the (three-stage) original
game is t → aS · · · aR → bS · · · bR (only the sender observes t in stage 2).
The timing of its reordered game is aS → t · · · aR → bS · · · bR (only the
sender observes aS in stage 2). As shown in the supplementary appendix,
Proposition 6 continues to hold provided that the regularity condition is
modified such that it applies to each sender’s choice of a best observable
action taking into account its own equilibrium choice in the reaction phase,
if any.

5.4 Decomposing the sender’s actions

Sometimes whether an action is observable may depend on the choice of
another action. For example, consider a game in which competing super-
markets choose which goods to advertise the price of, at the same time as
determining the level of the prices. The decisions on the prices are poten-
tially unobservable and the decision on the advertisement determines which
price decision(s) will become observable. In this section, we show how to
decompose senders’ actions into observable and unobservable actions in such
a case.

We consider an example with two competing supermarkets (senders 1
and 2), two different goods (goods x and y), two price levels for each good,
high price (h) or low price (l), and advertising decisions, whether to advertise
(a) or not (n). In this case, each sender (supermarket) has sixteen choices.
For example, if for good x a supermarket chooses a low price which it ad-
vertises while for good y it chooses a high price which it does not advertise,
then we will denote its choice by lahn. We use the receiver’s (represen-
tative consumer) information partition to decompose the senders’ actions
into observable and unobservable actions. If there were only one sender, the
receiver’s (representative consumer) information partition would be

{ {haha}, {hala}, {laha}, {lala},
{hahn, haln}, {lahn, laln},
{hnha, lnha}, {hnla, lnla},
{hnhn, hnln, lnhn, lnln} },

with nine elements, each element being one of the receiver’s information sets.
We denote this partition by P . Since there are two senders, the receiver’s
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information partition will be P 2 with 81 elements (information sets).
In this case, the observable action is the decision on which of the re-

ceiver’s information set(s) should be reached and the unobservable action
is the decision on which decision node(s) of the information set(s) should
be reached. From the perspective of one particular sender, the observable
action is to choose one of the nine elements of P and the unobservable ac-
tion is to choose a decision node in the information set chosen if it is not
a singleton. As we see here, the choice set of the unobservable action now
depends on the choice of observable action. Once we have decomposed the
senders’ actions into observable and unobservable actions, we construct our
reordered game as follows:

1. In stage 1, the two senders choose one of the nine elements of P (ob-
servable actions) simultaneously.

2. In stage 2, the two senders choose a decision node in the information set
it has chosen (if the information set is not a singleton) simultaneously.

3. In stage 3, having observed only which element of the partition P 2

was reached, the receiver makes a choice.

In stage 2, each sender knows its own choice of the element in P , but not
the rival’s, as was in the uninformed multiple senders game (Section 5.3).

In general, facing situations with partial observability, we use the re-
ceiver’s information partition (the partition of the set of receiver’s decision
nodes) at the beginning of the reaction phase to decompose the senders’
actions into observable and unobservable actions.19

• Observable action: to choose an information set (or information sets
in case of uninformed multiple senders) in the receivers’ information
partition.

• Unobservable action: to choose a decision node (or decision nodes in
case of uninformed multiple senders) in the information set (or infor-
mation sets in case of uninformed multiple senders) it has chosen if it
is not a singleton.

Then the construction of the reordered game should be the same as before:
all the observable actions are set first followed by the unobservable actions.

19 We assume that the receiver’s information partition is in the form of a Cartesian
product, where each individual set is a partition showing the receiver’s information about
each sender’s actions. Otherwise, it would not be possible to preserve the original infor-
mation structure in the reordered game.
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5.5 Different information partitions

In this section, we show how we construct our RI-equilibrium when there
are multiple receivers with different information partitions (at the beginning
of the reaction phase). For simplicity we only consider the cases with a sin-
gle sender and multiple receivers at least one of which has a non-singleton
information partition (if all the receivers’ information partitions are a sin-
gleton then no receiver observes any of the sender’s actions, which is not an
interesting case).

Given the collection of the receivers’ information partitions, we add in-
formation partitions which are the infimum (according to the usual partial
order20) of any sub-collection of partitions if they are not in the collection
yet. We call these added information partitions “dummy partitions.” Pro-
vided we can order all the receivers’ information partitions together with
the dummy partitions linearly at each of the following steps, the reorder-
ing of the original game should be as follows (we don’t need to reorder the
receivers’ moves).

1. (Step 1) The sender chooses an information set in the coarsest non-
singleton information partition of all the information partitions (in-
cluding the dummy partitions).

2. (Step 2, . . ., Second last step) The sender chooses an information set
in the coarsest information partition of the partitions that divide the
information set chosen in the previous step into at least two elements,
if there are still such partitions left. (Note that this will end in a finite
number of steps because there are finite number of receivers.)

3. (Last step) If the finally chosen information set is already a singleton,
the sender does not need to make an additional choice. Otherwise, the
sender chooses one element of the finally chosen information set.

For example, consider a game with one sender and four receivers. The sender
chooses one of eight actions a1, . . . , a8. Then the receivers, R1, . . . , R4,
choose bRi ∈ BRi (i ∈ {1, 2, 3, 4}) simultaneously, having observed partially
the sender’s action according to the following information partitions:

Receiver 1: P1 = {{a1, a2, a3, a4, a5, a6, a7, a8}},
Receiver 2: P2 = {{a1, a2, a3, a4}, {a5, a6}, {a7, a8}},
Receiver 3: P3 = {{a1, a2}, {a3, a4}, {a5, a6, a7, a8}},
Receiver 4: P4 = {{a1}, {a2}, {a3, a4}, {a5, a6}, {a7, a8}}.

20 Given two partitions P and P ′ of a set, we say that P is finer than P ′, or equivalently,
that P ′ is coarser than P , if every element of P is a subset of some element of P ′. The
relation of “being-finer-than” is the partial order we use here.
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In this case, we have one dummy partition to add, which is the infimum of
the information partitions for receivers 2 and 3.

Dummy partition: {{a1, a2, a3, a4}, {a5, a6, a7, a8}}.

The reordering of the original game should be as follows:

1. In stage 1, the sender chooses between {a1, a2, a3, a4} and {a5, a6, a7, a8}.

2. In stage 2, the sender chooses between {a1, a2} and {a3, a4} if it has
chosen {a1, a2, a3, a4} in stage 1, and between {a5, a6} and {a7, a8} if
it has chosen {a5, a6, a7, a8} in stage 1.

3. In stage 3, the sender chooses one element of the information set it
has chosen in stage 2.

4. In stage 4, the receivers choose bRi ∈ BRi (i ∈ {1, 2, 3, 4}) simultane-
ously.

Once the reordered game is defined, we can find our RI-equilibria as usual.
If we cannot order all the receivers’ information partitions, including the

dummy partitions, linearly at some of the steps, we need to consider more
than one reordering of the original game. We illustrate this with an example
motivated by the opportunism problem of a supplier that makes secret offers
to two downstream retailers (see also Section 5.6). Consider a game with
one sender and two receivers. The sender chooses two actions a1 ∈ A1 and
a2 ∈ A2 either simultaneously or sequentially. Then receivers, R1 and R2,
choose bRi ∈ BRi (i ∈ {1, 2}) simultaneously, having observed partially the
sender’s action according to the following information partitions:

Receiver 1: P1 = {{a1} ×A2 : a1 ∈ A1},
Receiver 2: P2 = {A1 × {a2} : a2 ∈ A2}.

That is, receiver 1 only observes a1 and receiver 2 only observes a2. In this
case, we cannot find a coarsest non-singleton information partition in step 1
above because P1 and P2 cannot be ordered according to the partial order
and the dummy partition would be a singleton. We consider the following
two reordered games (only one of them is the reordered game if the sender
chooses the two actions sequentially in the original game). One reordering
of the original game is as follows:

1. In stage 1, the sender chooses a1 ∈ A1.

2. In stage 2, the sender chooses a2 ∈ A2.

3. In stage 3, the receivers choose bRi ∈ BRi (i ∈ {1, 2}) simultaneously.

The other reordering of the original game is as follows:
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1. In stage 1, the sender chooses a2 ∈ A2.

2. In stage 2, the sender chooses a1 ∈ A1.

3. In stage 3, the receivers choose bRi ∈ BRi (i ∈ {1, 2}) simultaneously.

With these two reordered games, we can find our RI-equilibria as follows.
Among the PBE of the original game, we select only those which share
the same outcome (up to the reordering) and the same receiver’s beliefs
and strategy with the PBE of both reordered games. As before, we re-
fer to these equilibria as RI-equilibria. More specifically, if the sender
chooses a1 and a2 simultaneously in the original game, the strategy pro-
file (ã1, ã2, b̃R1(ã1), b̃R2(ã2)) is a RI-equilibrium if

ã1 ∈ arg max
a1∈A1

πS(a1, ã2(a1), b̃R1(a1), b̃R2(ã2(a1))),

ã2 ∈ arg max
a2∈A2

πS(ã1(a2), a2, b̃R1(ã1(a2)), b̃R2(a2)),

ã2(a1) ∈ arg max
a2∈A2

πS(a1, a2, b̃R1(a1), b̃R2(a2)) for each a1 ∈ A1,

b̃R1(a1) ∈ arg max
bR1
∈BR1

πR1(a1, ã2(a1), bR1 , b̃R2(ã2(a1))) for each a1 ∈ A1,

ã1(a2) ∈ arg max
a1∈A1

πS(a1, a2, b̃R1(a1), b̃R2(a2)) for each a2 ∈ A2, and

b̃R2(a2) ∈ arg max
bR2
∈BR2

πR2(ã1(a2), a2, b̃R1(ã1(a2)), bR2) for each a2 ∈ A2.

If the sender chooses a1 and a2 sequentially in the original game, e.g. a1

then a2, the strategy profile (ã1, ã2(a1), b̃R1(ã1), b̃R2(ã2)) is a RI-equilibrium
if

ã1 ∈ arg max
a1∈A1

πS(a1, ã2(a1), b̃R1(a1), b̃R2(ã2(a1))),

ã2(a1) ∈ arg max
a2∈A2

πS(a1, a2, b̃R1(a1), b̃R2(a2)) for each a1 ∈ A1,

b̃R1(a1) ∈ arg max
bR1
∈BR1

πR1(a1, ã2(a1), bR1 , b̃R2(ã2(a1))) for each a1 ∈ A1,

ã1(a2) ∈ arg max
a1∈A1

πS(a1, a2, b̃R1(a1), b̃R2(a2)) for each a2 ∈ A2, and

b̃R2(a2) ∈ arg max
bR2
∈BR2

πR2(ã1(a2), a2, b̃R1(ã1(a2)), bR2) for each a2 ∈ A2.

5.6 Opportunism and beliefs

One can apply our framework to the opportunism problem of bilateral con-
tracting, where an upstream monopolist supplier behaves opportunistically
when it can make secret offers to competing downstream firms (Hart and
Tirole, 1990 and McAfee and Schwartz, 1994). Such opportunism prevents
the upstream supplier from fully exerting its market power. This motivates
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the use of exclusive deals, RPM or vertical integration to restore monopoly
profits.

A key issue in this literature is how downstream firms react to unex-
pected (out-of-equilibrium) offers. McAfee and Schwartz propose three types
of “beliefs” (i) symmetry beliefs, in which each downstream firm believes the
rival has received the same offer as itself, (ii) passive beliefs, in which each
downstream firm continues to believe their rival receives its equilibrium of-
fer, and (iii) wary beliefs, in which each downstream firm assumes their rival
receives the offer which is optimal for the upstream supplier given their own
observed offer. McAfee and Schwartz show that symmetry and passive be-
liefs have quite different implications, with opportunism not arising under
symmetry beliefs. Rey and Vergé (2004) show passive beliefs and wary be-
liefs also have different implications, once they allow for price competition,
or quantity competition but with interim observability.

In general, in case the receivers have different information partitions
which cannot be linearly ordered, such as in this example, then we may
need to consider more than one reordering of the original game for our RI-
equilibrium. Specifically, in the case in which there are two downstream
firms who only observe their own offers, in one reordering the monopolist
offers to retailer 1 first and then to retailer 2, while in the other reordering
it offers to retailer 2 first and then to retailer 1. Then among the equilibria
of the original game, we select only those which are consistent with the
equilibria of both reordered games. Section 5.5 provides the conditions for
the RI-equilibrium.

Using this approach, we can show that symmetry beliefs and passive
beliefs are not generally consistent with our RI-equilibrium, whereas wary
beliefs are. For example, consider the equilibrium under symmetry beliefs
described by McAfee and Schwartz for the case of quantity competition with
interim unobservability. In the equilibrium, the monopolist offers two-part
tariffs to each retailer which are the same as it would offer under publicly ob-
served offers, thereby obtaining monopoly profits. Call these the “monopoly
tariffs”. Now consider the reordered game in which the monopolist offers
to retailer 1 first. Suppose retailer 1 were offered a slightly lower whole-
sale price together with a slightly higher fixed fee such that it would be
better off accepting the offer when retailer 2 receives the equilibrium offer
(i.e. the monopoly tariff) but would be worse off accepting the offer when
retailer 2 receives the same off-the-equilibrium offer. In this case the pro-
posed equilibrium prescribes retailer 1 to reject the off-the-equilibrium offer
(due to symmetry beliefs) but one can see that accepting this offer is a prof-
itable deviation because the monopolist will still find it optimal to offer the
monopoly tariff to retailer 2. Furthermore, given retailer 1 would accept
the offer, there always exists such a deviation by the monopolist that also
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increases its profit, at the expense of retailer 2.21

6 Concluding remarks

This paper considered a setting which is widely applicable: a signaling-like
environment in which the sender rather than nature chooses its unobservable
features. We called these endogenous signaling games. Surprisingly, despite
the plethora of potential applications, endogenous signaling games have not
been systematically explored.

We proposed an approach to find reasonable equilibria of endogenous
signaling games, which involves reordering the moves of the senders in a
certain way and solving the reordered game. As well as having a strong
game theoretic rationale, our approach (which we called Reordering Invari-
ance) is relatively easy to use in applied problems. In particular, it avoids
solving directly for the set of equilibria of the original game, which can be
troublesome in the settings we consider.

In addition to analyzing some of the key economic properties of canonical
endogenous signaling games, the paper offered a guide for how to correctly
do the required reordering of moves in a wide range of more complicated
situations. These included settings in which the sender can choose which
information to make observable (e.g. through advertising) and where differ-
ent receivers have access to different information (e.g. in the case each is a
retailer receiving a private offer from a manufacturer). In the latter case, we
showed that applying our framework to the opportunism problem of verti-
cal contracts allows one to settle the issue of how retailers’ beliefs should be
formed. It implies only wary beliefs (and not passive or symmetric beliefs)
should be used.
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APPENDIX

A Proofs

Proof of Proposition 1. Suppose an outcome (ao, to, bo) is supported
by a SPE of Gr. It is also a Nash equilibrium of Gr by definition. Then the
outcome (to, ao, bo) is supported by a Nash equilibrium of Go since Go and
Gr share the same reduced normal form. As the game Go has no proper
subgame, the outcome (to, ao, bo) is also supported by a SPE of Go.

Proof of Proposition 2. Consider a subgame of Gr following the
sender’s choice of a ∈ A. In the normal form of this subgame we have
payoff functions πS(t, a, b) and πR(t, a, b) for any fixed a ∈ A. Since the
sets T and B are compact convex subsets of a Euclidean space and the
payoff functions πS and πR are continuous and quasi-concave in t and b
respectively, there exists a pure-strategy Nash equilibrium in the normal-
form game. Consider the pure-strategy Nash equilibrium correspondence
N : A → T × B. This correspondence is upper-hemi continuous, and π′S
such that π′S(a) ≡ πS(tN (a), a, bN (a)) is also upper-hemi continuous. Since
A is a compact convex subset of a Euclidean space, a selection of π′S can be
chosen so that maxa∈A π′S(a) exists.

Proof of Proposition 3. Suppose that (to, ao(t), bo(a)) is a SPE in Go.
Then

(to, ao(t)) ∈ arg max
(t,a(t))∈T×AT

πS(t, a(t), bo(a(t))) and (2)

bo ∈ arg max
b∈B

πR(to, ao, b). (3)

The inclusion (2) implies that there exists a certain function to∗ : A → T
such that to∗(ao) = to and

(to∗(a), ao) ∈ arg max
(t(a),a)∈TA×A

πS(t(a), a, bo(a)). (4)
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The inclusion (4) implies

to∗(ao) ∈ arg max
t∈T

πS(t, ao, bo). (5)

The inclusion (3) can be rewritten as

bo ∈ arg max
b∈B

πR(to∗(ao), ao, b). (6)

From the inclusions (5) and (6) we know that (to∗(ao), bo) is a Nash equilib-
rium in the proper subgame of Gr following ao.

Among the RI-equilibrium (SPE) in Go, choose (t̃, ã(t), b̃(a)) which is
outcome-equivalent to a SPE in Gr, (a∗, t∗(a), b∗(a)) such that t∗(ao) =
to∗(ao) and b∗(ao) = bo. Clearly the payoff to the sender at this SPE cannot
be lower than the payoff to the sender at the Nash equilibrium in the proper
subgame of Gr following ao. Since the set of RI-equilibrium payoffs to the
sender admits a maximal element, there exists at least one RI-equilibrium
that yields the best payoff to the sender among all the SPE.

Now consider a RI-equilibrium (SPE) in Go that yields the best payoff
to the sender among all the SPE. We denote it again by (t̃, ã(t), b̃(a)), which
is outcome-equivalent to a SPE in Gr, (a∗, t∗(a), b∗(a)). Suppose on the
contrary that a SPE inGo that is not outcome-equivalent to aRI-equilibrium
(we denote it by (to, ao(t), bo(a))) yields the same payoff as this best payoff
to the sender. Then the strategy profile (ao, t∗∗(a), b∗∗(a)) is a SPE in Gr
and outcome-equivalent to (to, ao(t), bo(a)), where

t∗∗(a) =

{
to for a = ao

t∗(a) for a 6= ao, and

b∗∗(a) =

{
bo for a = ao

b∗(a) for a 6= ao.

This means that the strategy profile (to, ao(t), bo(a)) is also outcome-equivalent
to a RI-equilibrium (SPE) in Go and we obtain the contradiction.

Proof of Proposition 4. Given arg maxb∈B πR(t, a, b) is strongly in-
creasing in t for each a ∈ A, if a is such that
t∗(a) < tpa

t∗(a) = tpa

t∗(a) > tpa

 then


arg maxb∈B πR(t∗(a), a, b)

s
≤ arg maxb∈B πR(tpa, a, b)

arg maxb∈B πR(t∗(a), a, b) = arg maxb∈B πR(tpa, a, b)

arg maxb∈B πR(t∗(a), a, b)
s
≥ arg maxb∈B πR(tpa, a, b)

 .
Since b̃(a) is unique for each a ∈ A, arg maxb∈B πR(t∗(a), a, b) is a singleton.
Therefore, b̃(a) ≤ bpa(a), b̃(a) = bpa(a), and b̃(a) ≥ bpa(a) respectively. Since
πS is increasing in b, this implies that

if a is such that


t∗(a) < tpa

t∗(a) = tpa

t∗(a) > tpa

 then


πS(t, a, b̃(a)) ≤ πS(t, a, bpa(a))
πS(t, a, b̃(a)) = πS(t, a, bpa(a))
πS(t, a, b̃(a)) ≥ πS(t, a, bpa(a))

 ,
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for each t ∈ T . Note that t∗(apa) = tpa (the receiver’s belief should be
correct on the equilibrium path). Since t∗ is increasing in a,

if


a < apa

a = apa

a > apa

 then


πS(t, a, b̃(a)) ≤ πS(t, a, bpa(a))
πS(t, a, b̃(a)) = πS(t, a, bpa(a))
πS(t, a, b̃(a)) ≥ πS(t, a, bpa(a))

 for each t ∈ T.

(7)
Note that πS(tpa, apa, bpa) = max(t,a(t))∈T×AT πS(t, a(t), bpa(a(t))). As there
exists a unique RI-equilibrium outcome, ã ≥ apa and t̃ ≥ tpa. The inequality
πS(t̃, ã, b̃) ≥ πS(tpa, apa, bpa) follows directly from Proposition 3.

Proof of Corollary 2. Let ao satisfy πS(tpa, ao, b∗(ao)) > πS(tpa, apa, bpa).
If ao ≤ apa, then from (7) in the proof of Proposition 4 we know that
πS(tpa, ao, b∗(ao)) ≤ πS(tpa, ao, bpa(ao)) ≤ πS(tpa, apa, bpa), which contra-
dicts the inequality assumed. Therefore, ao > apa.

By the definition of the equilibrium in the reordered game, we have

πS(t∗(a∗), a∗, b∗(a∗)) ≥ πS(t∗(ao), ao, b∗(ao)) ≥ πS(tpa, ao, b∗(ao)).

Combining this with the inequality assumed, we obtain πS(t∗(a∗), a∗, b∗(a∗)) >
πS(tpa, apa, bpa) = πS(t∗(apa), apa, b∗(apa)), which implies a∗ 6= apa. There-
fore, πS(t̃, ã, b̃) > πS(tpa, apa, bpa), ã > apa (from Proposition 4), and t̃ > tpa

(since t∗ is increasing in a, and strictly increasing at apa).

Sufficient conditions for additional assumptions of Corollary 2.
At the passive-belief equilibrium outcome,

dπS(t, a, b∗(a))
da

=
dπS(t, a, bpa(a))

da
+
∂πS(t, a, b)

∂b

(
db∗(a)
da

− dbpa(a)
da

)

=
∂πS(t, a, b)

∂b

− ∂2πR(t,a,b)
∂b∂t

∂2πR(t,a,b)
(∂b)2

· dt
∗(a)
da

 ,
where the second equality follows from the definition of the passive-belief
equilibrium (dπS(t,a,bpa(a))

da = 0) and the total differentiation of the relevant
first-order conditions for the receiver’s equilibrium choices of b. By assump-
tion, ∂πS(t,a,b)

∂b > 0 and ∂2πR(t,a,b)
(∂b)2

< 0. From the assumptions of strict super-

modularity and strict increasing differences, it follows that ∂2πR(t,a,b)
∂b∂t > 0

and dt∗(a)
da > 0. Therefore, dπS(t,a,b∗(a))

da > 0.

Proof of Proposition 5. Note that b̃(a) = b∗(a) ∈ arg maxb∈B πR(t∗(a), a, b)
for each a ∈ A, and bob(t, a) ∈ arg maxb∈B πR(t, a, b) for each (t, a) ∈ T ×A.
Since arg maxb∈B πR(t, a, b) is strongly increasing in t for each a ∈ A and πS
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is increasing in b, following the same argument as in the proof of Proposi-
tion 4,

if a is such that


t∗(a) < t
t∗(a) = t
t∗(a) > t

 then


πS(t, a, b̃(a)) ≤ πS(t, a, bob(t, a))
πS(t, a, b̃(a)) = πS(t, a, bob(t, a))
πS(t, a, b̃(a)) ≥ πS(t, a, bob(t, a))

 ,
for each t ∈ T . Note that t∗(ã(t̃)) = t̃. Since t∗ is increasing in a,

if


a < ã(t̃)
a = ã(t̃)
a > ã(t̃)

 then


πS(t̃, a, b̃(a)) ≤ πS(t̃, a, bob(t̃, a))
πS(t̃, a, b̃(a)) = πS(t̃, a, bob(t̃, a))
πS(t̃, a, b̃(a)) ≥ πS(t̃, a, bob(t̃, a))

 .
Note that πS(t̃, ã(t̃), b̃(ã(t̃))) = maxa∈A πS(t̃, a, b̃(a)). As there exists a
unique RI-equilibrium outcome, ã(t̃) ≥ aob(t̃).

Sufficient conditions for additional assumptions of Corollary 3.
At the RI-equilibrium outcome,

dπS(t̃, a, bob(t̃, a))
da

=
dπS(t̃, a, b̃(a))

da
+
∂πS(t, a, b)

∂b

(
dbob(t̃, a)

da
− db̃(a)

da

)

=
∂πS(t, a, b)

∂b

 ∂2πR(t,a,b)
∂b∂t

∂2πR(t,a,b)
(∂b)2

· dt̃(a)
da

 ,
where the second equality follows from the definition of the RI-equilibrium
(dπS(t̃,a,b̃(a))

da = 0) and the total differentiation of the relevant first-order con-
ditions for the receiver’s equilibrium choices of b following t̃. By assumption,
∂πS(t,a,b)

∂b > 0 and ∂2πR(t,a,b)
(∂b)2

< 0. From the assumptions of strict supermod-

ularity and strict increasing differences, it follows that ∂2πR(t,a,b)
∂b∂t > 0 and

dt̃(a)
da > 0. Therefore, dπS(t̃,a,bob(t̃,a))

da < 0.
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