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Abstract

We study a model of strategic interaction between a terrorist organiza-
tion and a security agency in a transportation network carrying passengers
and freight between locations. By carrying explosives to a target location
through the transportation network, the terrorist organization can dam-
age the target and disrupt the operation of the network. While gaining
utility from the damage of the target and from the disruption of the net-
work, the terrorist organization incurs the cost of carrying explosives. A
security agency is informed of the terrorist attack. By shutting down
some transportation routes in the network, the security agency can pro-
tect the target from the attack. Since the shutdown of routes disrupts the
operation of the network, the security agency incurs the cost of shutting
down transportation routes. The security agency also loses utility from
the damage of the target. In this model we �nd an optimal security policy
under which the security agency can protect the target from devastating
terrorism and e¤ectively operate the network. To understand how the
terrorist organization commits terrorism under the optimal security pol-
icy, we �nd a class of subgame perfect equilibria of this model. We also
introduce algorithms to �nd a maximum �ow and a minimum cut in a
transportation network.
JEL classi�cation: C63; D85
Keywords: Network security; Transportation networks; Subgame perfect
equilibria; Maximum �ow; Minimum cut

1 Introduction

Network security is a crucial issue for a connected world. The use of networks
is pervasive; transportation, communication, trade, social interaction, and �-
nancial transactions are a few examples of activities carried out on networks.
Because of their importance in modern society networks may be targets for anti-
social behavior. There are many ways in which individuals may use and abuse
networks. Consider two hypothetical examples:

�E-mail: sunghoon.hong@vanderbilt.edu
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(i) A terrorist aims to damage a particular facility and disrupt the operation
of a transportation network. The terrorist can choose to carry explosives
through the network and possibly even create explosions in the transporta-
tion network itself. A security agency aims to protect the terrorist�s target
and operate the transportation network well. To prevent explosives from
being carried to the target, the agency can monitor more closely trans-
portation routes, by inspecting all backpacks and bags, for example, or,
in the event of advance information, by shutting down parts or all of the
transportation network.

(ii) A malicious hacker aims to damage a particular computer system and
disrupt the operation of a computer network. The hacker can choose to
transmit malicious code through the network. A network management
agency aims to protect the hacker�s target and operate the network e¤ec-
tively. To prevent malicious code from gaining access to the target, the
agency can choose to slow, hide, or block some connections in the network.

These examples show that it is crucial for network management agencies to
�nd ways to securely operate networks. In this paper we study how to enhance
network security against malicious attacks. We analyze this issue by combining
game theory with �ow networks.
A �ow network is a directed graph with two distinguished vertices, a source

and a sink, together with arc capacities. As �rst introduced in Ford and Fulk-
erson [2] and studied by others1 , there are numerous algorithms to �nd a max-
imum �ow or a minimum cut (or both) in a �ow network. Examples of �ow
networks are abundant: Transportation networks, computer networks, electric-
ity networks, and �nancial transaction networks. For expositional purposes,
we present all the analysis that follows in terms of the transportation network
example (i).
There is a transportation network carrying passengers and freight between

locations. By carrying explosives to a target location through the transporta-
tion network, a terrorist organization can damage the target and disrupt the
operation of the network. While the terrorist organization gains utility from
the damage of the target and from the disruption of the network, the terrorist
organization incurs the cost of carrying explosives to the target through the net-
work. A security agency is informed of the terrorist attack. By shutting down
some routes in the transportation network, the security agency can protect the
target from the attack. Since the shutdown of routes disrupts the operation of
the network, the security agency incurs the cost of shutting down transportation
routes. The security agency also loses utility from the damage of the target.
In this model we �rst �nd an optimal security policy for the security agency.

Under the optimal policy, the security agency can protect the target from dev-
astating terrorism and e¤ectively operate the transportation network. To un-
derstand how the terrorist organization commits terrorism under the optimal
security policy, we �nd a class of subgame perfect equilibria of this model. We

1See for example Goldberg and Tarjan [3].
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also introduce algorithms to �nd a maximum �ow and a minimum cut in a
transportation network.
The formation and operation of secure networks are an increasing concern

for a network economy. Hong [6] studies a decentralized formation of secure
networks; Goyal and Vigier [4] investigate a centralized formation of secure
networks. Baccara and Bar-Isaac [1] study the formation of criminal networks
and �nd optimal policies for a law enforcement agency. In this paper we focus
on the secure operation of networks.
Kalai and Zemel [7] introduce a transferable utility game in which the worth

of a coalition is de�ned as the value of a maximum �ow in the �ow network
restricted to the members of the coalition. The game is called a �ow game
and studied by various authors2 . In this paper we restrict our attention to a
non-cooperative game theoretic analysis.
This paper is organized as follows. Section 2 introduces a transportation

security game. Section 3 provides an optimal policy for the security agency and
a class of equilibria of this game. Section 4 introduces algorithms that are useful
in transportation networks. Concluding remarks follow in Section 5.

2 The model

There is a transportation network carrying passengers and freight between lo-
cations. Let V be a set of locations with two distinguished locations, a base
x and a target y. We denote generic locations by v 2 V and w 2 V . Let
A � V �V be a set of transportation routes where each transportation route is
an ordered pair of distinct locations. A transportation route (v; w) 2 A allows
passengers and freight to be carried from location v to location w. We assume
that jAj � jV j � 1. Let c : V � V ! R+ be a capacity function that associates
with each (v; w) 2 V �V a non-negative real value c(v; w). The capacity c(v; w)
of a transportation route (v; w) represents the maximum amount of passengers
and freight that can be carried along the route. We assume that c(v; w) = 0
if (v; w) =2 A. Formally, a transportation network is de�ned as a collection
G := (V;A; x; y; c).
Let G = (V;A; x; y; c) be a transportation network. There are two players,

say player 1 and player 2. Let player 1 be a terrorist organization and let player 2
be a security agency. Player 1 sets up a base in x 2 V . Player 1 aims to attack a
target in y 2 V and disrupt the operation of network G. To damage the target
and disrupt the operation, player 1 can choose to carry explosives from the
base to the target through the transportation network. More precisely, player 1
chooses his strategy s1 that is a �ow (of carrying explosives) in G. A �ow f in
G is a real-valued function de�ned on V �V satisfying the following constraints:

f(v; w) � c(v; w) for each (v; w) 2 V � V (capacity constraint), (1)

f(v; w) = �f(w; v) for each (v; w) 2 V � V (antisymmetry constraint), (2)

2See for example Granot and Granot [5], Potters, Reijnierse, and Biswas [8], and Reijnierse,
Maschler, Potters, and Tijs [9].
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f(w; v) = 0 for each v 2 V n fx; yg (conservation constraint). (3)

Choosing his strategy s1 that is a �ow f , player 1 will carry f(v; w) amount of
explosives along a transportation route (v; w).

Remark 1 The capacity constraint requires that the amount of explosives car-
ried along a route be no more than the capacity of the route. The antisymmetry
constraint says that if the amount of explosives carried from w to v is f(w; v)
then the amount of explosives carried from v to w is �f(w; v). The conservation
constraint requires that for any location v other than the base and the target,
the net amount of explosives carried to v be equal to zero. �

Let val(f) :=
P

v2V f(v; y) be the value of a �ow f . The value val(f) of a
�ow f represents the net amount of explosives carried to target y under f . A
�ow fo in G is the zero �ow if for each (v; w) 2 V � V , we have fo(v; w) = 0.
The zero �ow will ensure that every network has at least one �ow. Note that
val(fo) = 0. A �ow f� in G is a maximum �ow if for each �ow f , we have
val(f�) � val(f). How to �nd a maximum �ow in a transportation network
will be explained in Section 4.
We assume that player 1 only chooses a strategy s1 whose value is non-

negative; that is, val(s1) � 0.
We are ready to introduce examples of strategies for player 1. The zero-�ow

strategy for player 1 is a strategy s1 that is the zero �ow in G. A maximum-�ow
strategy for player 1 is a strategy s1 that is a maximum �ow in G. Let S1 be
the set of player 1�s pure strategies.
Player 2 is informed of player 1�s choice of strategy. Given the information,

player 2 aims to protect target y and operate network G e¤ectively. To prevent
explosives from being carried to the target, player 2 can choose to shut down
some transportation routes. More precisely, player 2 chooses her strategy s2(�)
such that for each s1 2 S1, s2(s1) is either a cut (of transportation routes) in G
or the empty set ;. A cut K;K in G is a partition of the location set V (that
is, K [K = V and K \K = ;) such that x 2 K and y 2 K. Given player 1�s
strategy s1, by choosing her strategy s2(�) such that s2(s1) = K;K, player 2
will shut down the transportation routes from any location in K to any location
in K. Given s1, by choosing s2(�) such that s2(s1) = ;, player 2 will shut down
no transportation route.
Let cap(K;K) :=

P
v2K;w2K c(v; w) be the capacity of a cut K;K. The ca-

pacity cap(K;K) of a cut K;K represents the total capacity of the transporta-
tion routes shut down under K;K. To simplify the exposition, we assume that
the capacity of the empty set equals to zero; that is, cap(;) := 0. A cut K�;K�

in G is a minimum cut if for each cut K;K, we have cap(K�;K�) � cap(K;K).
How to �nd a minimum cut in a transportation network will be explained in
Section 4.
We are ready to introduce examples of strategies for player 2. The empty-set

strategy for player 2 is a strategy s2(�) such that for each s1 2 S1, s2(s1) is the
empty set. A minimum-cut strategy for player 2 is a strategy s2(�) such that
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for each s1 2 S1, s2(s1) is a minimum cut in G. Let S2 be the set of player 2�s
pure strategies.
We provide an example of a transportation network, together with examples

of strategies for both players.

Example 1 Let G = (V;A; x; y; c) be a transportation network where V = fx;
v1; v2; yg is a set of locations with a base x and a target y, A = f(x; v1); (x; v2);
(v1; v2); (v2; y); (y; v1)g is a set of transportation routes, and c is a capacity
function such that c(x; v1) = 4, c(x; v2) = 1, c(v1; v2) = 2, c(v2; y) = 5, and
c(y; v1) = 2, as in Figure 1.
Player 1 chooses a maximum-�ow strategy s1 = f� such that f�(x; v1) = 2,

f�(x; v2) = 1, f�(v1; v2) = 2, f�(v2; y) = 3, and f�(y; v1) = 0, as indicated in
bold numbers. Player 2 chooses a minimum-cut strategy s2(�) = K�;K� such
that K� = fx; v1g, as indicated in solid circles. �
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Figure 1 Each of solid and blank circles indicates a location; each arrow in-
dicates a transportation route; in each pair of numbers, the �rst bold number
indicates a �ow of a route and the second light number indicates the capacity
of a route.

Once carrying explosives to target y, player 1 creates explosions to damage
y. The net amount of explosives carried to the target determines how severely
the target is damaged. Let r : R+ ! R+ be a target damage function that
associates with each q 2 R+ a non-negative real value r(q). We assume that r is
continuous, (weakly) increasing, and r(0) = 0. If player 1 chooses s1 2 S1, the
net amount of explosives carried to the target is val(s1) and thus the damage
of the target is r(val(s1)).
By shutting down some transportation routes, player 2 prevents explosives

from being carried to target y. If player 1 chooses s1 2 S1 and player 2 chooses
s2(�) 2 S2 such that s2(s1) is a cut K;K in G, player 2 shuts down all the
transportation routes from any location in K to any location in K and thus
player 1 cannot carry explosives to y. If player 1 chooses s1 2 S1 and player
2 chooses s2(�) 2 S2 such that s2(s1) is the empty set, player 2 operates the
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transportation network as usual and thus player 1 can carry explosives to y. For
each (s1; s2(�)) 2 S1 � S2, let

I(s2(s1)) =

�
0; if s2(s1) is a cut in G;
1; if s2(s1) is the empty set

be a damage indicator function. Then, for each (s1; s2(�)) 2 S1 � S2, player 1
gains r(val(s1)) �I(s2(s1)) and player 2 loses the same amount from the damage
of the target.
The shutdown of routes disrupts the operation of transportation network

G. The total capacity of the routes shut down by player 2 will determine how
severely network G is disrupted. Let ` : R+ ! R+ be a network disruption
function that associates with each q 2 R+ a non-negative real value `(q). We
assume that ` is (weakly) increasing and `(0) = 0. If player 1 chooses s1 2 S1
and player 2 chooses s2(�) 2 S2, the total capacity of the routes shut down under
s2(s1) is cap(s2(s1)) and thus the disruption of the network is `(cap(s2(s1))).
Then, for each (s1; s2(�)) 2 S1 � S2, player 1 gains `(cap(s2(s1))) and player 2
loses the same amount from the disruption of the network.
While carrying explosives to target y, player 1 incurs the cost of committing

terrorism, which is determined by the net amount of explosives carried to y. Let
h : R+ ! R+ be a terrorism cost function that associates with each q 2 R+ a
non-negative real value h(q). We assume that h is continuous, (weakly) increas-
ing, and h(0) = 0. If player 1 chooses s1 2 S1, the net amount of explosives
carried to the target is val(s1) and thus the cost of committing terrorism is
h(val(s1)).
Let b 2 R+ be a bene�t obtained by player 2 from operating transportation

network G.
For each (s1; s2(�)) 2 S1 � S2, the utility of player 1 is de�ned as

u1(s1; s2(�)) = r(val(s1)) � I(s2(s1)) + `(cap(s2(s1)))� h(val(s1)),

and the utility of player 2 is de�ned as

u2(s1; s2(�)) = b� r(val(s1)) � I(s2(s1))� `(cap(s2(s1))).

Remark 2 For each (s1; s2(�)) 2 S1 � S2, if s2(s1) is a cut in G, we have
I(s2(s1)) = 0. Thus, we have u1(s1; s2(�)) = `(cap(s2(s1))) � h(val(s1)) and
u2(s1; s2(�)) = b� `(cap(s2(s1))). For each (s1; s2(�)) 2 S1 �S2, if s2(s1) is the
empty set, we have I(s2(s1)) = 1 and cap(s2(s1)) = cap(;) = 0. Since `(0) = 0,
we have u1(s1; s2(�)) = r(val(s1))�h(val(s1)) and u2(s1; s2(�)) = b�r(val(s1)).
�

A transportation security game is de�ned as a collection � := (G;S1;S2; u1; u2).

De�nition 1 A strategy pro�le (s1; s2(�)) is a subgame perfect equilibrium of
transportation security game � if (i) for each s01 2 S1 and each s02(�) 2 S2, we
have u2(s01; s2(�)) � u2(s01; s02(�)), and (ii) for each s01 2 S1, we have u1(s1; s2(�)) �
u1(s

0
1; s2(�)).
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For a given strategy pro�le, a subgame perfect equilibrium (SPE) requires
that (i) in each subgame induced by player 1�s choice of strategy player 2 max-
imize her utility and that (ii) player 1 maximize his utility.

3 The results

Let � = (G;S1;S2; u1; u2) be a transportation security game. We show that
every transportation security game has a class of subgame perfect equilibria.
Since player 1 moves �rst and player 2 moves second, by backward induction,
we �rst study player 2�s choice of strategy.
Let � := minfq 2 R+ : r(q) = `(cap(K�;K�))g. The minimum over the

empty set is de�ned as in�nity. Clearly, `(cap(K�;K�)) represents the disrup-
tion of the network by the shutdown of routes under a minimum cut K�;K�.
Thus, � represents the minimum net amount of explosives such that the dam-
age of the target is equally severe as the disruption of the network. If � = 1,
then for each q 2 R+, we have r(q) < `(cap(K�;K�)). If � < 1, then
r(�) = `(cap(K�;K�)).
A �-threshold minimum-cut strategy for player 2 is a strategy s2(�) 2 S2

such that for each s1 2 S1,

s2(s1) =

�
K�;K�; if val(s1) � �;
;; if val(s1) < �.

If � =1, then a �-threshold minimum-cut strategy for player 2 is the empty-set
strategy for player 2. If � = 0, then a �-threshold minimum-cut strategy for
player 2 is a minimum-cut strategy for player 2.

Remark 3 Let s2(�) be a �-threshold minimum-cut strategy for player 2. For
each s01 2 S1, if val(s01) � �, we have s2(s01) = K�;K�. From Remark 2,
we have u1(s01; s2(�)) = `(cap(K�;K�)) � h(val(s01)) and u2(s01; s2(�)) = b �
`(cap(K�;K�)). For each s01 2 S1, if val(s01) < �, we have s2(s01) = ;. From
Remark 2, we have u1(s01; s2(�)) = r(val(s01)) � h(val(s01)) and u2(s01; s2(�)) =
b� r(val(s01)). �

The following lemma shows that in each subgame induced by player 1�s
choice of strategy, player 2 can maximize her utility by choosing a �-threshold
minimum-cut strategy. To put it another way, a �-threshold minimum-cut strat-
egy is an optimal policy for the security agency.

Lemma 1 If s2(�) is a �-threshold minimum-cut strategy for player 2, then for
each s01 2 S1 and each s02(�) 2 S2, we have u2(s01; s2(�)) � u2(s01; s02(�)).

Proof. Let s2(�) be a �-threshold minimum-cut strategy for player 2 and let
s01 be a strategy for player 1. We assume that � = 1. Then for each q 2 R+,
we have r(q) < `(cap(K�;K�)). Thus, we have r(val(s01)) < `(cap(K�;K�)).
Since � = 1 and val(s01) < 1, we have val(s01) < �. From Remark 3, we have
u2(s

0
1; s2(�)) = b� r(val(s01)).
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Now, let s02(�) be a strategy for player 2. First, if s02(s01) is a cut K;K,
from Remark 2, we have u2(s01; s

0
2(�)) = b � `(cap(K;K)). Since cap(K;K) �

cap(K�;K�) and ` is increasing, we have u2(s01; s
0
2(�)) = b � `(cap(K;K)) �

b� `(cap(K�;K�)). Altogether, we have

u2(s
0
1; s2(�))� u2(s01; s02(�)) � b� r(val(s01))� b+ `(cap(K�;K�))

= `(cap(K�;K�))� r(val(s01))
> 0,

since r(val(s01)) < `(cap(K
�;K�)). Next, if s02(s

0
1) is the empty set, from Remark

2, we have u2(s01; s
0
2(�)) = b� r(val(s01)) = u2(s01; s2(�)).

We now assume that � < 1. Then r(�) = `(cap(K�;K�)). We divide into
two cases.
Case 1 : Let val(s01) � �. Since s2(�) is a �-threshold minimum-cut strategy
for player 2 and val(s01) � �, from Remark 3, we have u2(s01; s2(�)) = b �
`(cap(K�;K�)).
Now, let s02(�) be a strategy for player 2. First, if s02(s01) is a cut K;K, from

Remark 2, we have u2(s01; s
0
2(�)) = b� `(cap(K;K)). Altogether, we have

u2(s
0
1; s2(�))� u2(s01; s02(�)) = b� `(cap(K�;K�))� b+ `(cap(K;K))

= `(cap(K;K))� `(cap(K�;K�))

� 0,

since cap(K;K) � cap(K�;K�) and ` is increasing.
Next, if s02(s

0
1) is the empty set, from Remark 2, we have u2(s01; s

0
2(�)) =

b� r(val(s01)). Altogether, we have

u2(s
0
1; s2(�))� u2(s01; s02(�)) = b� `(cap(K�;K�))� b+ r(val(s01))

= r(val(s01))� `(cap(K�;K�))

� r(�)� `(cap(K�;K�))

= 0,

since val(s01) � �, r is increasing, and r(�) = `(cap(K�;K�)).
Case 2 : Let val(s01) < �. Since s2(�) is a �-threshold minimum-cut strategy for
player 2 and val(s01) < �, from Remark 3, we have u2(s01; s2(�)) = b� r(val(s01)).
Since val(s01) < � and r is increasing, we have u2(s

0
1; s2(�)) = b � r(val(s01)) �

b� r(�).
Now, let s02(�) be a strategy for player 2. First, if s02(s01) is a cut K;K,

from Remark 2, we have u2(s01; s
0
2(�)) = b � `(cap(K;K)). Since cap(K;K) �

cap(K�;K�) and ` is increasing, we have u2(s01; s
0
2(�)) = b � `(cap(K;K)) �

b� `(cap(K�;K�)). Altogether, we have

u2(s
0
1; s2(�))� u2(s01; s02(�)) � b� r(�)� b+ `(cap(K�;K�))

= `(cap(K�;K�))� r(�)
= 0,
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since r(�) = `(cap(K�;K�)).
Next, if s02(s

0
1) is the empty set, from Remark 2, we have u2(s01; s

0
2(�)) =

b� r(val(s01)) = u2(s01; s2(�)). Therefore, we conclude that for each s01 2 S1 and
each s02(�) 2 S2, u2(s01; s2(�)) � u2(s01; s02(�)). �

Let val(S1) := fval(s1) : s1 2 S1g be the image of S1 under val(�). The
following lemma shows that val(S1) is a compact set.

Lemma 2 The set val(S1) is compact.

Proof. We �rst note that for each s1 2 S1, we have 0 � val(s1) � val(f�).
Thus, we have val(S1) � [0; val(f�)]. We now show that [0; val(f�)] � val(S1).
It su¢ ces to show that for each q 2 [0; val(f�)], there is s1 2 S1 such that
val(s1) = q. For each q 2 [0; val(f�)], let � = q

val(f�) and let f
0 = �f�. Since

f� is a maximum �ow in G and � 2 [0; 1], f 0 satis�es constraints (1), (2), and
(3). Thus, f 0 is a �ow in G. Since val(�f�) = �val(f�) and � = q

val(f�) , we
have val(f 0) = q. Therefore, for each q 2 [0; val(f�)], there is a �ow in G whose
value is q. Since val(S1) = [0; val(f�)], the set is compact. �

For each q 2 val(S1), let

eu1(q) = � `(cap(K�;K�))� h(q); if q � �;
r(q)� h(q); if q < �

be the utility of player 1 de�ned on val(S1) when player 2 chooses a �-threshold
minimum-cut strategy. The following lemma shows that eu1 is a continuous
function on val(S1).

Lemma 3 The function eu1 is continuous on val(S1).
Proof. We �rst assume that � = 1. Then for each q 2 val(S1), we haveeu1(q) = r(q)�h(q). Since both functions r and h are continuous and val(S1) �
R+, eu1 is continuous on val(S1). We next assume that � < 1. Then r(�) =
`(cap(K�;K�)). Since r and h are continuous, eu1 is continuous at each q 6= �.
Since r and h are continuous and r(�) = `(cap(K�;K�)), eu1 is continuous at �.
Thus, eu1 is continuous on val(S1). �

From Lemmas 2 and 3, we know that val(S1) is a compact set and that eu1
is a continuous function on val(S1). Then eu1 has a maximizer. Let

q� 2 arg max
q2val(S1)

eu1(q)
be a maximizer of eu1 on val(S1). Let �� := q�

val(f�) be the ratio of q
� to val(f�).

A q�-value �ow strategy for player 1 is a strategy s1 2 S1 such that val(s1) = q�.
An example of a q�-value �ow strategy for player 1 is s1 = ��f�.
For each (s1; s2(�)) 2 S1�S2, we say that (s1; s2(�)) is a q�-value �-threshold

strategy pro�le if s1 is a q�-value �ow strategy for player 1 and s2(�) is a �-
threshold minimum-cut strategy for player 2. Now we are ready to show that
every transportation security game has a class of subgame perfect equilibria.
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Proposition 1 Every q�-value �-threshold strategy pro�le is a subgame perfect
equilibrium of transportation security game �.

Proof. Let � = (G;S1;S2; u1; u2) be a transportation security game. Let
(s1; s2(�)) be a q�-value �-threshold strategy pro�le. Since s2(�) is a �-threshold
minimum-cut strategy for player 2, from Lemma 1, for each s01 2 S1 and each
s02(�) 2 S2, we have u2(s01; s2(�)) � u2(s

0
1; s

0
2(�)). Since s1 is a q�-value �ow

strategy for player 1, we have val(s1) = q�. Since q� is a maximizer of eu1 on
val(S1), for each s01 2 S1, we have eu1(val(s1)) � eu1(val(s01)). Since s2(�) is a �-
threshold minimum-cut strategy for player 2, we have eu1(val(s1)) = u1(s1; s2(�))
and eu1(val(s01)) = u1(s01; s2(�)). Thus, for each s01 2 S1, we have u1(s1; s2(�)) �
u1(s

0
1; s2(�)). Therefore, (s1; s2(�)) is a subgame perfect equilibrium of trans-

portation security game �. �

4 The algorithms

To damage a target location and disrupt the operation of a transportation net-
work, a terrorist organization may want to carry as many explosives as possible
through the network. In other words, the terrorist organization may want to
choose a maximum �ow of carrying explosives in the network. To protect the
target and operate the transportation network e¤ectively, a security agency may
want to shut down some routes in the network without unnecessary sacri�ce. In
other words, the security agency may want to choose a minimum cut of trans-
portation routes in the network. In this section we present an algorithm to �nd
a maximum �ow in a transportation network as well as an algorithm to �nd a
minimum cut in a transportation network.
We �rst introduce some notations. Let G = (V;A; x; y; c) be a transportation

network. A pre�ow ef in G is a real-valued function de�ned on V �V satisfying
the following constraints:ef(v; w) � c(v; w) for all (v; w) 2 V � V (capacity constraint), (4)

ef(v; w) = � ef(w; v) for all (v; w) 2 V � V (antisymmetry constraint), (5)X
w2V

ef(w; v) � 0 for all v 2 V n fxg (non-negativity constraint). (6)

For each v 2 V and each pre�ow ef , let e(v; ef) = P
w2V

ef(w; v) be the �ow
excess of v under ef . For each (v; w) 2 V �V and each pre�ow ef , let z(v; w; ef) =
c(v; w) � ef(v; w) be the residual capacity of (v; w) under ef . For each (v; w) 2
V � V and each pre�ow ef , we say that (v; w) is a residual route under ef if
z(v; w; ef) > 0. Let d : V ! N0[f1g be a labeling function that associates with
each v 2 V either a non-negative integer or in�nity d(v). For each v 2 V nfx; yg
and each pre�ow ef , we say that location v is active under ef if d(v) < 1 and
e(v; ef) > 0. For each v; w 2 V , we say that fv; wg is an (undirected) edge of G
if either (v; w) 2 A or (w; v) 2 A.
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We are ready to introduce two operations, push and relabel, which are used
repeatedly in the algorithms. For each (v; w) 2 V � V , we say that push(v; w)
is applicable if v is active, (v; w) is a residual route, and d(v) = d(w) + 1. We
apply push(v; w) by sending � units of �ow from v to w where � is the minimum
of the �ow excess of v and the residual capacity of (v; w). For each v 2 V , we
say that relabel(v) is applicable if v is active and for each w 2 V such that
(v; w) is a residual route, d(v) � d(w). We apply relabel(v) by replacing the
current labeling of v with the minimum labeling that makes a push operation
applicable. A summary of the operations appears in Figure 2.

Push(v; w).

Applicability: v is active, z(v; w; ef) > 0 and d(v) = d(w) + 1.
Action: Send � = minfe(v; ef); z(v; w; ef)g units of �ow from v to w as follows:ef(v; w) ef(v; w) + �; ef(w; v) ef(w; v)� �;

e(v; ef) e(v; ef)� �; e(w; ef) e(w; ef) + �.
Relabel(v).

Applicability: v is active and 8w 2 V such that z(v; w; ef) > 0, d(v) � d(w).
Action: d(v) minfd(w) + 1 : (v; w) is a residual route under efg.

If this minimum is over the empty set, d(v) 1.

Figure 2 Push and relabel operations

We now present the Goldberg-Tarjan Maximum-Flow algorithm. Let G =
(V;A; x; y; c) be a transportation network. Let � be an ordering of V .

Algorithm 1 Goldberg-Tarjan Maximum-Flow

At Step 0, we construct sequences of edges, initialize a pre�ow and a labeling
function, and construct a sequence of active locations, as listed as follows.

(i) For each v 2 V , we construct a sequence Ev of the edges to which v is
incident. Give an ordering to Ev according to �.

(ii) We initially set up a pre�ow ef that is equal to the route capacity on each
route leaving the base and zero on all other routes, and set up a labeling
function d that is equal to jV j on the base and zero on all other locations.

(iii) We construct a sequenceQ of all active locations under ef . Give an ordering
to Q according to �.

At Step k = 1; 2; � � � , we modify a pre�ow, a labeling function and a sequence
of active locations repeatedly. From Step k � 1, we inherited ef , d, and Q.

11



(i) If the sequence Q is empty, this algorithm terminates. We return ef . If
not, we remove the location v on the front of Q. We make the �rst edge
in Ev the current edge of v.

(ii) Let fv; wg be the current edge of v.

(iii) If push(v; w) is applicable, then we apply push(v; w). If w becomes active
during the operation, then we add w to the rear of Q.

(iv) If e(v; ef) = 0, then we go to the next step. If not, then we go to (v).
(v) If push(v; w) is not applicable and fv; wg is not the last edge in Ev, then

we make the next edge in Ev the current edge of v. We go to (ii).

(vi) If push(v; w) is not applicable and fv; wg is the last edge in Ev, then we
make the �rst edge in Ev the current edge of v. We apply relabel(v) and
add v to the rear of Q. We go to the next step. �

Goldberg and Tarjan [3] show that the pre�ow returned from Algorithm 1 is
a maximum �ow in G. They also provide an algorithm to �nd a minimum cut
in a transportation network by modifying their maximum-�ow algorithm.
For each v 2 V nfx; yg and each pre�ow ef , we say that location v is strongly

active under ef if d(v) < jV j and e(v; ef) > 0. For each pre�ow ef , let G ef =
(V;A ef ; x; y; c) be the residual transportation network under ef where A ef is the
set of residual routes under ef .
The necessary modi�cation is simple: The Goldberg-Tarjan Minimum-Cut

algorithm requires a location to be strongly active rather than to be active.
When the modi�ed algorithm terminates, the �ow excess e(y; ef) of y under ef is
the value of a maximum �ow, and the cut K;K such that K contains exactly
those locations from which y is reachable in G ef is a minimum cut.
The following example shows how to �nd a maximum �ow and a minimum

cut in a transportation network by using the Goldberg-Tarjan algorithms.

Example 2 Let G = (V;A; x; y; c) be the transportation network considered in
Example 1. Let � = (x; v1; v2; y) be an ordering of V . First, we �nd a maximum
�ow in G. At Step 0, we construct sequences of edges, initialize a pre�ow and
a labeling function, and construct a sequence of active locations. Thus, Ex =
(fx; v1g; fx; v2g), Ev1 = (fv1; xg; fv1; v2g; fv1; yg), Ev2 = (fv2; xg; fv2; v1g;
fv2; yg), Ey = (fy; v1g; fy; v2g), ef(x; v1) = 4, ef(x; v2) = 1, ef(v1; v2) = 0,ef(v2; y) = 0, ef(y; v1) = 0, d(x) = 4, d(v1) = d(v2) = d(y) = 0, and Q = (v1; v2).
At Step 1, since all of push(v1; x), push(v1; v2), and push(v1; y) are not

applicable, we apply relabel(v1). We remove v1 on the front of Q and add v1 to
the rear of Q. Thus, d(v1) = 1 and Q = (v2; v1).
At Step 2, since all of push(v2; x), push(v2; v1), and push(v2; y) are not

applicable, we apply relabel(v2). We remove v2 on the front of Q and add v2 to
the rear of Q. Thus, d(v2) = 1 and Q = (v1; v2).
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At Step 3, since all of push(v1; x), push(v1; v2), and push(v1; y) are not
applicable, we apply relabel(v1). We remove v1 on the front of Q and add v1 to
the rear of Q. Thus, d(v1) = 2 and Q = (v2; v1).
At Step 4, since push(v2; y) is applicable, e(v2; ef) = 1, and z(v2; y; ef) = 5,

we apply push(v2; y) by sending � = minfe(v2; ef); z(v2; y; ef)g = 1 unit of �ow
from v2 to y. We remove v2 on the front of Q. Thus, ef(v2; y) = 1 and Q = (v1).
At Step 5, since push(v1; v2) is applicable, e(v1; ef) = 4, and z(v1; v2; ef) = 2,

we apply push(v1; v2) by sending � = 2 units of �ow from v1 to v2. Since v1 is
still active under the modi�ed pre�ow but push(v1; y) is not applicable, we apply
relabel(v1). We remove v1 on the front of Q and add v2 and v1 sequentially to
the rear of Q. Thus, ef(v1; v2) = 2, d(v1) = 5, and Q = (v2; v1).
At Step 6, since push(v2; y) is applicable, e(v2; ef) = 2, and z(v2; y; ef) = 4,

we apply push(v2; y) by sending � = 2 units of �ow from v2 to y. We remove
v2 on the front of Q. Thus, ef(v2; y) = 3 and Q = (v1).
At Step 7, since push(v1; x) is applicable, e(v1; ef) = 2, and z(v1; x; ef) = 4,

we apply push(v1; x) by sending � = 2 units of �ow from v1 to x. We remove
v1 on the front of Q. Thus, ef(x; v1) = 2 and Q = ;.
At Step 8, since Q is empty, this algorithm terminates. We return ef . There-

fore, ef(x; v1) = 2, ef(x; v2) = 1, ef(v1; v2) = 2, ef(v2; y) = 3, and ef(y; v1) = 0.
We next �nd a minimum cut in G. Up to Step 4, the modi�ed algorithm

yields the same pre�ow, labeling function, and sequence of strongly active loca-
tions as the maximum-�ow algorithm.
At Step 5, since push(v1; v2) is applicable, we apply push(v1; v2) by sending

2 units of �ow from v1 to v2. Since v1 is active under the modi�ed pre�ow but
push(v1; y) is not applicable, we apply relabel(v1). Since d(v1) = 5 > 4 = jV j,
v1 is not strongly active. We remove v1 on the front of Q and add v2 to the rear
of Q. Thus, ef(v1; v2) = 2, d(v1) = 5, and Q = (v2).
At Step 6, since push(v2; y) is applicable, we apply push(v2; y) by sending 2

units of �ow from v2 to y. We remove v2 on the front of Q. Thus, ef(v2; y) = 3
and Q = ;.
At Step 7, since Q is empty, the modi�ed algorithm terminates. Since

e(y; ef) = 3, the value of a maximum �ow is 3. Since A ef = f(v2; y); (y; v1)g, the
cut K;K such that K = fx; v1g and K = fv2; yg is a minimum cut. �

5 Concluding remarks

In this paper we analyze strategic interaction between a terrorist organization
and a security agency. The terrorist organization sets up a base and aims to
damage a target through a transportation network. The security agency aims
to protect the target from terrorism and e¤ectively operate the transportation
network. We �nd an optimal security policy under which the security agency
can protect the target from devastating terrorism and e¤ectively operate the
network. To understand how the terrorist organization commits terrorism under
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the optimal security policy, we �nd a class of subgame perfect equilibria of this
model.
One possible extension of this model is to allow multiple bases and targets.

Another possible extension is to analyze strategic interaction between terror-
ist organizations and security agencies under incomplete information when the
agencies do not know the terrorists�whereabouts. We hope to address these
issues in our future research.
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