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Abstract. I construct a strategic model of incomplete information where many heterogeneous stu-

dents compete for seats at colleges and universities of varying prestige. I argue that the model

is strategically equivalent to an all-pay auction where agents differ with respect to their cost of

bidding. Using tools from auction theory, I characterize equilibrium behavior by deriving a set of

equations that approximate equilibrium strategies when the number of players is large. I use the

model to analyze the effects of Affirmative Action policies on effort choice and achievement gaps. I

also compare the performance of two common implementations of Affirmative Action: quotas and

admission preferences. I show that these policies have very different effects on effort, achievement

gaps, and allocation of college admissions in equilibrium. The model suggests that admissions pref-

erences (such as those previously used in undergraduate admissions at the University of Michigan)

are unambiguously detrimental to effort incentives, and are ineffective as an allocational mecha-

nism. Quotas perform better than admissions preferences, with some positive and some negative

effects on effort and achievement gaps. Both policies widen the achievement gap among the best

and brightest students.
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1. INTRODUCTION

For several decades, race-conscious admission policies have been used by American colleges

and universities with the objective of aiding underrepresented racial minority groups to over-

come competitive disadvantages. It has been widely documented that academic gaps between

minorities and non-minorities are persistent and pronounced. For example, Hickman [13] shows

that the gap between median SAT scores for minorities and non-minorities in 1996 was 150

points (out of 1600 possible); moreover, the median score among minorities (870) was at the 22nd

percentile among non-minorities. Among students who attend college, minorities are under-

represented at elite schools, and over-represented at lower-tier schools. Using methodology sim-

ilar to that developed by US News & World Report for its annual publication America’s Best

Colleges, Hickman computes rankings for a set of 1,314 colleges and universities to characterize

racial representation in American post-secondary education. Minority students made up 17.65%

of all first-time freshmen in 1996. However, they accounted for only 11.04% of enrollment at

schools in the top quartile, whereas they made up 29.71% of enrollment in the bottom quartile.1

These circumstances are viewed by many as residual effects of the institutionalized racism of

generations past, and Affirmative Action (AA) in college admissions is meant to address these

social ills.

However, despite its intentions, much debate has arisen over the possible effects of AA on the

incentives for academic achievement. Supporters claim that it levels the playing field, so to speak.

The argument is that AA motivates minority students to achieve at the highest of levels by placing

within reach seats in top universities—an outcome previously seen by many as unattainable.

In this way, it makes invesstment in costly effort more worthwhile for the beneficiaries of the

policy. Opponents claim that by lowering the standards for minority college applicants, AA

creates adverse incentives for them to exert less effort in competition for admission to college.

By making academic performance less important for one’s outcome, they argue, AA creates a

tradeoff between promoting equality and maximizing academic performance.

Economic researchers have weighed in on this debate, and there have been some economic

theory and experimental findings in support of the former viewpoint: research suggests that an

effort-equality tradeoff does not exist, and AA leads to both minority and non-minority students

exerting more effort.2 However, existing models rely on unrealistic assumptions about the nature

of the competitive disadvantage for minorities, or about the information available to the policy

maker. Moreover, there is currently no theoretical framework that allows for an adequate empir-

ical analysis of the implications of AA for academic effort. Fryer and Loury [9] hint at the need

1In generating these estimates, the working definition of the term “minority” is the union of the following three race
classifications: African-American, Hispanic and American-Indian/Alaskan Native. For a more detailed discussion,
see Hickman [13].

2See for example Fain [6], Franke [7], Fu [10, 11] and Schotter and Weigelt [23].
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for better theory and empirics on AA in their 2005 paper “Affirmative Action and its Mythology”

(p. 153):

“Our view is that confident a priori assertions about how affirmative action affects

incentives are unfounded. Indeed, economic theory provides little guidance on

what is ultimately a subtle and context-dependent empirical question. First prin-

ciples, commonsense intuitions and anecdotal evidence are simply inadequate to

the task here.”

I propose a new model of college admissions to address the deficiencies in the literature. In the

model, students are heterogeneous with respect to their academic competitiveness, quantified by

a privately-known study cost type. This private type parameterizes a function that determines

the utility cost of achieving a given grade. Students observably belong to different demographic

groups, and I allow for costs to be asymmetrically distributed across groups.3 For any student

who wishes to go to college, there is a seat open at some institution, but not all are equally

desirable. Allocations of college seats are determined by a single entity called “The Board” (short

for the college admissions board), that maps academic grades into outcomes according to some

rule. The allocation determined by The Board can be thought of as a centralized implementation

of the outcome achieved by a matching market in which college candidates submit applications

and individual schools reply with acceptance/rejection letters. The Board may incorporate race

into its allocation rule, and under the payoffs induced by a given rule, students optimally choose

their effort level, based on private costs and competition they face from other students.

I argue that this model of competition for college admissions is strategically equivalent to

an all-pay auction. Using analytic tools borrowed from auction theory, I solve for equilibrium

behavior in order to assess the implications of race-conscious admission policies for academic

incentive structures. A meaningful analysis of college admissions must be applicable to settings

where the number of competitors is very large, so I adopt a solution concept which I refer to

as an approximate equilibrium that delivers analytic and computational tractability.4. This is an

important technical innovation, as the analysis becomes unwieldy even for moderately large sets

of competitors. The approximate equilibrium is a set of equations which characterize academic

achievement to arbitrary precision as the number of competitors gets large. These, in turn,

characterize equilibrium grade distributions, which allow for a dissection of the various effects

of admission policies.

A novel feature of the model is that it allows for comparisons of alternative AA policies. The

first variety I study is a quota rule, where fixed quantities of prizes are reserved for allocation to

3My intention is not to suggest that asymmetry reflects differences of inherent ability across differing demographic
groups. I argue that a more plausible interpretation involves asymmetry arising from socioeconomic factors which
happen to be correlated with race. See Section 2 for a full discussion of the asymmetry assumption.

4For example, the US National Center for Education Statistics reported that in 2005 over 1.8 million recent high-
school graduates enrolled in college.
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competitors from each demographic group. The second variety is American-style AA, commonly

referred to as an “admission preference” or a “plus-factor” system, where members of one group

are effectively awarded extra points based on their group status. I also consider a color-blind

admissions rule that ignores race. My objective is to address four research questions. (i) What

effect do AA policies have on effort incentives? Do they encourage students to study more or

less? Do they affect all students’ achievement in the same way? (ii) What effect do they have on

racial academic achievement gaps? Do they widen or narrow the difference in achievement across

demographic groups? (iii) How effective is AA at achieving proportional enrollment in college?

In other words, if there is a behavioral response to a given policy, does it retain a comparable

effect one might expect holding behavior constant? And finally, (iv) Are there any differences

among alternative AA policies in terms of criteria (i)-(iii)?

Although a complete policy analysis is difficult for a researcher who cannot observe the social

choice function, by making some light assumptions on the preferences of the policy maker, one

can still guide the policy debate in meaningful ways. Henceforth, I assume that the policy-maker

has the following three objectives in selecting an admission policy: (1) encouraging high academic

performance; (2) narrowing the racial achievement gap (or at least to avoid widening it); and (3)

narrowing the enrollment gap, or in other words, achieving proportional allocations of college

seats. However, I make no assumptions on how the policy maker weights these three objectives.

Therefore, establishing a preference ranking between two policies will only be possible if one

performs better along all 3 criteria. My theoretical framework is convenient for this analysis

because the equilibrium grade distributions for each group are sufficient to gauge success along

each objective.

The main contribution of this paper is in showing that policy design is a very important is-

sue. The previous literature focuses on the question of AA versus race-neutrality, but this work

indicates that the more interesting question may be how alternative AA policies compare to one

another. A simple additive admission preference, such as the one formerly used in undergrad-

uate admissions at the University of Michigan, performs very poorly, while a quota does much

better. As it turns out, an admission preference erodes academic effort incentives for minori-

ties by artificially increasing their performance level. Rational students take some of the grade

boost and simply eat it, rather than using it to bolster their competitive edge. Moreover, by de-

creasing the return to effort for non-minorities, admissions preferences may also diminish their

performance as well. Moreover, in equilibrium the policy merely re-shuffles admissions at the

lowest-ranked colleges, leaving allocations at top-tier institutions unchanged from a color-blind

outcome. Thus, an additive grade boost accomplishes little, but comes at a potentially high cost.

More general admission preference rules can be designed to overcome some of the drawbacks of

the Michigan rule.
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On the other hand, quotas perform much better by altering the game so that competition for

prizes occurs only among members of one’s own group. In doing so, they mitigate discour-

agement effects for disadvantaged minorities that deter investment in effort.5 Moreover, quotas

guarantee representative allocations of seats among colleges of every caliber, by design. How-

ever, it also turns out that both forms of AA widen racial academic achievement gaps among the

highest performing students, relative to color-blind allocations.

This paper also produces some new contributions to the policy debate. I show that there are

meaningful ways in which both the proponents and the opponents of AA are correct. On the one

hand, a tradeoff between equality and effort does exist, in the sense that there is always some

segment of the population for which achievement diminishes under AA. On the other hand,

some variations of AA can indeed overcome discouragement effects for some minority students,

potentially producing an increase in average achievement in the minority group, and even in the

population as a whole.

Finally, another contribution of this work is in developing a theoretical model of AA amenable

empirical analysis. This is an advantage of the auction-like framework of academic competition:

it provides access to a powerful set of empirical tools. Since the early 1990s, structural auction

econometrics has emerged as one of the top successes in empirical analyses of strategic games

of incomplete information. In contrast, Schotter and Weigelt [23] performed an experimental

analysis of admissions preferences using a similar model, but within a complete-information

paradigm where all heterogeneity is observable. They justify their choice of laboratory experi-

ments by arguing that it is difficult to address the efficiency implications of AA and determine

whether observed behavior matches the theory using natural data. However, equilibria in auction

games of incomplete information have the appealing characteristic of establishing an intimate,

yet parsimonious link between observable behavior and latent unobservable characteristics. This

link has long been exploited by auctions researchers to uncover such abstract model primitives

as private cost distributions.6 In the case of AA, a knowledge of the distribution of private costs

would provide an invaluable glimpse into the various implications of different college admis-

sions policies. Although an empirical analysis is beyond the scope of the current exercise, this

model nevertheless lays the ground work for such an undertaking.7

The rest of this paper has the following structure: in Section 2, I briefly discuss the relation

between this work and the previous literature on AA. In Section 3, I give an overview of the

college competition model, which I specify as a non-cooperative game of incomplete informa-

tion. In Section 4 I introduce the solution concept of an approximate equilibrium which adds

5Discouragement effects are a well-known characteristic of all-pay auctions and asymmetric contests in general.
Intuitively, since all competitors forfeit the cost of competing regardless of their payoff, high-cost types recognize that
there is little point in exerting much effort since their likelihood of a favorable outcome is low.

6An in-depth discussion of the basic tools can be found in Paarsch, Hong and Haley [21].
7In ongoing work, Hickman [13] semiparametrically estimates the model using data on US colleges and college

entrance test scores.
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tractability to the model when the number of players is large. In Section 5, I derive approximate

equilibria in different variations of the college admissions game with alternative admission poli-

cies. I discuss the qualitative differences in equilibrium actions and outcomes under color-blind

allocations, quotas and admissions preferences. In Section 6, I solve the model for a special case

where costs are linear in achievement and private types are Pareto distributed. In Section 7, I

conclude and discuss avenues for further related research.

2. PREVIOUS LITERATURE

This is the first paper of which I am aware that attempts to address questions (iii) and (iv) from

Section 1. However, there are several papers which have looked at questions (i) and (ii). Coate and

Loury [5] study a labor-search model of skills acquisition where minority workers strategically

interact with employers who have tastes for racial discrimination á la Becker. Workers decide

whether to forego a fixed skill-acquisition cost and the government mandates minimal minority

employment (similar to a quota in my model). The authors find that effort decisions are given

by a threshold rule: as long as the benefit exceeds some minimum threshold, workers incur the

cost to acquire skills. Moreover, the threshold rule is such that the mandate can be gradually

increased over time so that only a desirable effect is produced on minority employment and

skills acquisition. The major difference between Coate and Loury and this paper is the choice set.

In their model, nature chooses one’s skill-acquisition cost, and agents only have a binary choice

of whether or not to acquire a fixed skill level at a fixed cost. In contrast, I allow for agents to

choose any skill level, meaning that the exact cost incurred is at the agent’s discretion. When

this is true, under any AA policy, every player’s behavior changes, regardless of his private cost

type. This creates a tradeoff between equality and effort, and outcome changes are no longer

unambiguously desirable.

Two models related to mine are Fain [6] and Fu [10, 11]. Both are two-player strategic models

of complete information, where heterogeneity among competitors is observable. The former is a

tournament and the latter is an all-pay auction. Both models study an interaction between one

advantaged player and one disadvantaged player competing for a single prize, and both find

that an admission-preference-like AA rule benefitting the disadvantaged player increases effort

exerted by both players. They then use these results to argue that colleges will admit a higher-

quality body of students if the school gives preference to the minority students by weighting

their grades more heavily. I should also mention that Schotter and Weigelt [23] perform an ex-

perimental analysis of a two-player model similar to Fain [6], with similar results. However, in

generalizing their results to a competition involving many competitors, these authors implicitly

assume that every beneficiary of the AA policy is at a competitive disadvantage to every other stu-

dent not benefitting from it. However, this assumption is inappropriate in the context of college

admissions, where AA is based only on one’s observable race, rather than one’s unobservable

characteristics which determine academic competitiveness.
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The current model produces very different results, and this is primarily due to the fact that

there are both high-cost types and low-cost types in the minority group, all of whom benefit from

AA. There are also high-cost types in the non-minority group who do not receive any benefit from

AA. In January of 2008, presidential candidate Barack Obama famously stated to ABC’s George

Stephanopoulos his view that his daughters should not be treated as disadvantaged in college

admissions decisions, and that perhaps white children raised in poverty should benefit from AA.

The results of this paper suggest that Mr. Obama’s intuition is correct: a common feature in both

types of AA considered here is a reduction in effort among both low-cost, advantaged minorities

and high-cost, disadvantaged non-minorities. For the former group, AA provides a competitive

boost that was not needed; for the latter, AA exacerbates discouragement effects.

A final related paper on AA in contests is Franke [7], who analyzes the effect of an admission-

preference-like AA policy in a contest with many players. Franke shows that when the policy

maker is fully informed on student heterogeneity, he can design a grade-weighting scheme that

raises all players’ efforts, relative to an equal-treatment (i.e., color-blind) rule. While this is

certainly an improvement over a simplistic 2-player model, Franke still relies on the strong as-

sumption of complete information to construct the beneficial policy. In that sense, the paper can

be thought of as a characterization of the “first-best” outcome, where no information is hidden

from the policy-maker. By contrast, I evaluate the choices available to a policy-maker who cannot

observe individual characteristics other than race. The college board can see what grade each stu-

dent submits, but it cannot observe the cost incurred to achieve that grade. Therefore, in keeping

with the Wilson doctrine, I constrain the current theoretical exercise to evaluating policies such

as quotas and simple admission preference schemes that can be enacted using only information

on race and grades.

3. The Model

I model the competition among high-school students for college admissions as a Bayesian

game. Students belong to two demographic groups—minorities and non-minorities—and each

is characterized by a privately-known study cost type. Students compete in grades for a set of

heterogeneous prizes—seats at colleges/universities of differing quality—and private types de-

termine the costliness of academic achievement. Students have single-unit demands and prizes

are allocated by a college admissions board (henceforth, The Board), according to grades. AA

enters the model if The Board chooses to base allocations partially on race as well. Students can

observe the set of prizes before making decisions, but they must incur a non-recoverable cost

associated with academic achievement before learning which prize they will receive. A student’s

payoff at the end of the game is the utility derived from consuming a prize, minus the utility cost

of his achieved grade. An equilibrium of the game is characterized by a set of achievement func-

tions that prescribe each student’s optimal effort level. A formal description of the components

of the game is given below.



EFFORT, RACE GAPS, AND AFFIRMATIVE ACTION 7

3.1. Costs and Benefits. The agents are a set K = {1, . . . , K} of students who observably belong

to a minority group M = {1, 2, . . . , M} or a non-minority group N = {1, 2, . . . , N}, where

M + N = K. Students are heterogeneous, and each is characterized by a privately-known study

cost type θ ∈ [θ, θ]. Agents view the private types of their opponents as independent random

variables, and there is a common prior on private types within each group, Θ ∼ Fi(Θ), i = M,N .

Students have access to a common strategy set S = R+, comprising grades/test scores. In order

to achieve grade level s, an agent must incur a cost C(s; θ), which depends on his private type.

The rewards for academic achievement are a set of prizes

PK = {pk}
K
k=1,

where pk denotes the utility of consuming the kth prize. The prizes are seats at distinct colleges

and universities, and students have single-unit demands: they can only attend one school. There

enough prizes for every student who competes (i.e., there are enough seats open to serve anyone

who wishes to go to college), but no two prizes render the same utility: pk 6= pj, k 6= j. At

the end of the game, an agent’s payoff is the utility from consuming a prize minus the cost of

achievement, or

Π(s; θ) = p − C(s; θ).

The alert reader will notice that I have implicitly assumed agents have identical preferences

over differing colleges and universities. However, it is not essential to the model for all students to

place the same value on a seat at a given college; the important assumption here is that students

rank prize values the same. Without this assumption, a policy discussion concerning admission

outcomes is impossible, and the researcher is left with the unsatisfying conclusion that policy has

no role to play because fewer minorities attend elite institutions simply because they prefer it that

way. An alternative view of the homogeneous ranking assumption is that students have similar

preferences over school attributes such as per-pupil spending, graduation rates, student-faculty

ratios, etc.

3.2. College Admission Policies. Grades are mapped into payoffs as the outcome of a matching

market with three stages: students send reports of their achievement level to various colleges/

universities, admissions boards make acceptance/rejection decisions, and students choose among

the options given to them by the market. I assume that there are no frictions in the matching

market, so that its outcome can be implemented by a centralized entity called “The Board,”

who observes the set of grades s = {sM,1, . . . , sM,M, sN ,1, . . . , sN ,N} achieved by all students and

allocates prizes according to some rule.

A simple “color-blind” admission rule is one in which The Board assortatively matches prizes

with grades. Thus, the student submitting the highest grade is awarded the most valuable prize,
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and so on. In what follows, it will be convenient to treat a competition with color-blind admis-

sions as the baseline model. This will facilitate evaluations of different race-conscious policies by

comparison to a color-blind rule.

As for AA, consider first a quota system similar to what’s known as “Reservation Law” in

India. This law mandates that a certain percentage of seats be set apart for allocation only

to certain demographic groups. There are many possible quota rules indexed by a number

q ∈ {1, 2, . . . , M} of prizes reserved for minorities. However, for simplicity I will consider only

the case of a full quota rule, where exactly M prizes are reserved for minorities. Under a full

quota rule, students compete only with members of their own group. It is also necessary to

specify how prizes are selected for reservation. There are many possibilities once again, but for

simplicity I will focus on the case where a representative set of M prizes is set aside. This can be

accomplished by either randomly selecting M prizes from the set PK, or it can be by first ordering

prizes by quality and selecting out every mth prize, where m = M+N
M . In what follows, it will be

easiest to consider the random selection method, but this is without loss of generality: when the

set of prizes is large, the overall effect will be the same.

The form of AA as implemented in the US is different, due to a 1978 Supreme Court ruling

that quotas are unconstitutional. Since then, American higher education institutions have since

been forced to seek other means by which to implement AA. These alternative implementations

are commonly referred to as “admission preferences.” I model an admission preference rule as

a grade transformation function S̃ : R+ → R+ that the Board uses to match prizes assortatively

with non-minority grades and transformed minority grades

{sN ,1, . . . , sN ,N , S̃(sM,1), . . . , S̃(sM,M)}.

In other words, under an admission preference The Board views each minority student with a

grade of s as if he had submitted a grade of S̃(s) instead. Regardless of the admission policy,

in the event of a tie between two or more scores (some of which may be transformed), they are

ordered randomly for the purpose of comparisons.

Before making study decisions, agents observe the set of prizes PK and the exogenous admis-

sions rule, R ∈ {cb (color-blind), q (quota), ap (admission preference)}. Under the payoff cor-

respondence Π(s; θ) induced by a particular admission rule, students optimally choose grades

based on their own private costs and their opponents’ optimal behavior. A (group-wise) symmetric

equilibrium of the Bayesian game Γ(M, N, PK,R) is a set of achievement functions γi : [θ, θ] →

R+, i = M,N which generate optimal grades, given that ones’ opponents behave similarly.

Equilibrium achievement functions and private cost distributions induce a population grade dis-

tribution G(s) and a set of group-specific grade distributions, GM and GN . These are ultimately

the objects of interest from a policy standpoint, as they fully characterize achievement, achieve-

ment gaps and allocation gaps in equilibrium.



EFFORT, RACE GAPS, AND AFFIRMATIVE ACTION 9

3.3. Assumptions. In order to guarantee existence of a pure-strategy equilibrium, it will be nec-

essary to make the following assumptions on the form of the study cost function:

Assumption 3.1. ∂C
∂s > 0; ∂C

∂θ > 0; ∂2C
∂s2 ≥ 0; and ∂2C

∂s∂θ ≥ 0.

In words, costs are assumed to be convex and increasing in achievement and private type;

marginal costs are assumed to be increasing in private costs. This specification of costs lends

itself to several interpretations. It could be reflective of an underlying labor-leisure tradeoff

where students differ either by preferences for leisure, or by the amount of labor input required

to produce a unit of s. Alternatively, it could reflect some psychic cost of exerting mental effort

to learn new concepts, where the amount of effort required to produce a given grade differs

among students. The above cost structure could also reflect many other external factors affecting

students’ academic performance such as home conditions, affluence, school quality, and access

to things like health-care and tutors.

It is also necessary to make the following assumptions on beliefs:

Assumption 3.2. The private cost distributions FM(θ) and FN (θ) have continuous and strictly

positive densities fM(θ) and fN (θ), respectively.

One aspect of the model is worth mentioning here. By assuming that private cost distributions

are static and exogenous, I am implicitly taking a short-run view of policy implications. One

could certainly conceive of a broader model in which The Board designs a policy today so as

to affect the evolution of private costs for future generations (i.e., the children of today’s college

freshmen), but such an undertaking is beyond the scope of the current exercise, and is left for

future research. Instead, I shall concentrate on the implications of the policy-maker’s choices

for actions and outcomes of older school children and today’s college candidates, whose private

costs can reasonably be viewed as fixed.

For the purpose of the theoretical exercise, it will be helpful to assume the following relation

between private cost distributions across groups:

Assumption 3.3. FN (θ) < FM(θ), θ ∈ (θ, θ).

In other words, I assume that the game is asymmetric in the sense that private costs in the

minority group stochastically dominate non-minority private costs. This asymmetry assumption

is not intended to imply that there are fundamental differences in inherent ability across the two

groups, as private costs reflect a myriad of environmental factors as well. Rather, it is in keeping

with arguments made by proponents of AA regarding systemic competitive disadvantages for

minorities, due to various historical factors. For example, White children in the United States, on

average, are more affluent and attend primary and secondary schools that are better funded than

African-Americans. The idea behind cost asymmetry is that an average minority student must
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expend more personal effort to overcome the environmental obstacles—poverty, poor health-care,

lower quality K-12 education, etc.—eroding his competitive edge.8

Finally, when considering an admission preference rule, I shall restrict attention to policy

functions S̃ satisfying certain sensibility criteria.

Assumption 3.4. S̃(s) is a strictly increasing function lying above the 45◦-degree line.

Assumption 3.5. S̃(s) is continuously differentiable.

Assumption 3.4 corresponds to the notion that the policy is geared toward assisting minorities,

effectively moving each minority student with a grade of s ahead of each non-minority student

with a grade of S̃(s) ≥ s. Moreover, it states that a policy-maker will not choose to reverse the

ordering of any segment of the minority population, so that some students are awarded prizes of

lesser value than other students within their own group whose grades were lower. Assumption

3.5 implies that the policy-maker does not make abrupt jumps in either the assessed grade boost

(i.e., S̃ is continuous), or the marginal grade boost. Aside from characterizing the behavior of a

sensible policy-maker, Assumptions 3.4 and 3.5 also guarantee that introducing S̃ into the model

does not interfere with existence of the equilibrium.

3.4. An Auction-Theoretic View of the Game. The model defined above is strategically equiva-

lent to a special type of game known in the contests literature as an all-pay auction.9 An all-pay

auction is a strategic interaction in which agents compete for a limited resource by incurring

some type of unrecoverable cost before learning the outcome of the game. Although they are not

explicitly implemented in the real world like other auction mechanisms, all-pay auctions have

been useful for modeling various winner-take-all games such as political lobbying and R&D

races. Likewise, in my model of college competition, high school students cannot recover lost

leisure time or disutility incurred by study effort if they discover that they didn’t make it into the

college they had hoped for.

The Board is analogous to an auctioneer, who auctions off a set of heterogeneous prizes ac-

cording to a pre-determined mechanism. Students are similar to bidders, and the grades they

work for are analogous to bids. The value here in recognizing the connection to auction theory

is that I can import a well-developed set of analytic tools for characterizing the equilibrium. For

8There is some empirical evidence consistent with this view. Neal and Johnson [19] find that for the Armed Forces
Qualification Test, “family background variables that affect the cost or difficulty parents face in investing in their
children’s skill explain roughly one third of the racial test score differential” (pg. 871). Fryer and Levitt [8] analyze
data on racial test-score gaps among elementary school children in an attempt to uncover the causes. They find that
by controlling for socioeconomic status and other environmental factors which vary substantially by race, test-score
gaps significantly decrease, but not entirely. They test various hypotheses to explain the remainder of the gap, and
find that disparities in school quality is the only one not rejected by the data.

9Some seminal papers in the contests literature are Tullock [24], Lazear and Rosen [17] and Baye, Kovenock and de
Vries [3, 4].
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example, as the following proposition shows, I can conclude a priori that a monotonic equilib-

rium exists. As I will shortly demonstrate, existence and monotonicity provide an invaluable step

toward analytic and computational tractability of the model when K is large, as it is in college

admissions.

Proposition 3.6. In the college admissions game Γ(M, N, PK,R) with R ∈ {cb, q, ap}, there exists a

unique symmetric pure-strategy equilibrium (γM(θ), γN (θ)) where achievement is strictly decreasing in

private costs; therefore, Gi(s) = 1 − Fi

(
(γi)

−1(s)
)
.

Proof: Existence and monotonicity is a straightforward application of Athey [2, Theorem 3] who

proves existence and monotonicity of a pure-strategy equilibrium in a general class of auction-

related games. The relation between the grade distributions and the achievement functions fol-

lows immediately from the fact that achievement is a strictly decreasing function of private cost

types. A formal proof of uniqueness is a bit more involved and is under construction. Briefly

though, it follows the same logic as Hickman [12, Proposition 3.3, Theorem 3.4]. Given the well-

behaved nature of the private cost distributions, it can be shown that any symmetric, monotonic

equilibrium must also be differentiable. From differentiability, it follows that the equilibrium

achievement functions must satisfy the first-order conditions of an agent’s objective function.

The first-order conditions define a standard initial value problem, and the fundamental theorem

of differential equations can be invoked to show that a unique solution exists. Since any sym-

metric equilibrium of the college admissions game must be consistent with the unique solution

of the first-order conditions, it follows that the symmetric equilibrium is unique. �

4. Equilibrium Analysis

4.1. Solution Concept: “Approximate Equilibrium”. In this section I introduce an alternative

solution concept that I adopt for tractability. For large K = M + N, this equilibrium is analytically

and computationally intractable, because a decision-maker’s objective function is a complicated

sum of functions based on the order statistics of opponents’ costs. Agents know that their ex-post

payoff depends on their rank within the grade distribution, and under monotonicity this is the

same as their rank within the realized cohort of opponents. Thus, expected equilibrium payoffs

are a weighted average of the prizes, where the weight on the kth best prize is one’s probability

of being the kth lowest order statistic among K competing private costs.

For simplicity and tractability, I assume that the number of competitors is large enough so that

one has a very good idea of one’s rank within the realized sample of private costs. I approximate

this large, finite model by considering the limiting case as K → ∞, but in order to do so I must

first introduce some additional notation. Let µ denote the asymptotic mass of the minority group:

as each new agent is created, nature assigns him to group M with probability µ, and then he

draws a private cost from the appropriate group-specific distribution. Given this assumption,

with probability 1 the limiting sample of competitors is a dense set on the interval [θ, θ], and
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each knows with certainty that his sample rank is the same as his rank in the unconditional

private cost distribution µFM(θ) + (1 − µ)FN (θ).10

For analytic convenience, I also assume that prizes are generated as independent draws from

a compact interval P = [p, p] ⊂ R+ according to a known prize distribution FP(p) satisfying

Assumption 4.1. FP has a continuous density fP(p), which is strictly positive on P ; and

Assumption 4.2. (zero surplus condition) p = C(0; θ).

Even though prize values are ex-ante observable, framing them in this way provides an intuitive

view of the limiting set of prizes: as K → ∞, PK becomes a dense set on P , and the rank of a

prize with value p converges to FP(p).

Assumption 4.2 is necessary because it provides a boundary condition that is used to solve

the equilibrium equations. Although the current theoretical exercise focuses solely on the com-

petition among high-school students for college admissions, the zero surplus condition can be

thought of as reflecting broader market forces not explicitly included in model. In the broader

model, prize values are the additional utility one gains from going to college versus opting out,

and [θ, θ] is the set of individuals who demand a college seat, being a subset of a larger group

of individuals, some of whom choose the outside option. If schools and firms can freely choose

to enter the market and supply either college seats or jobs for unskilled laborers, the marginal

college candidate—the highest private cost type opting for college, θ—will be just indifferent

between attending college and entering the work force as an unskilled laborer. This point high-

lights a limitation of the current model: it attempts to characterize student behavior conditional on

participation in the post-secondary education market, and it is not intended to provide insights into

the decision of whether to acquire additional education. This aspect of the college admissions

problem is left for future research.

With that out of the way, I can treat both agents and prizes as if they belong to a continuum,

rather than a finite set. This allows me to avoid framing decisions in terms of the distributions of

complicated order statistics, and it reduces each agent’s decision problem to a simple objective

function expressed in terms of θ, µ, FM, FN and FP. Given the well-behaved nature of the

model primitives, the maximizers of the finite objective functions converge to the maximizer

of the limiting objective function, which allows me to derive what I refer to as an approximate

equilibrium.

Definition 4.3. Consider a generic game Γ(K, S, Π), where K is the set of players, Si ⊆ R is the

strategy space for the ith player, and Π(s1, . . . , sK) characterizes payoffs on S = S1 × · · · × SK.

10The fact that the limiting sample is a dense set can be seen by applying the following logic: given any two
numbers θ, θ′ ∈ [θ, θ], where θ < θ′, the probability mass assigned to the interval (θ, θ′) is strictly positive under my
assumptions on FΘ. Therefore, as the number of iid draws from FΘ gets large, the probability of hitting the interval
(θ, θ′) at least once approaches one. Thus, a countably infinite random sample of agents will be everywhere dense on
[θ, θ].
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Given δ > 0, a δ-approximate equilibrium is an K-tuple sδ = (sδ
1, . . . , sδ

K), such that there exists an

equilibrium s∗ = (s∗1 , . . . , s∗K) of Γ, where ‖sδ − s∗‖sup < δ.

The approximate equilibrium concept is more relevant for my purposes than the ε-equilibrium

introduced by Radner [22], which is a profile of strategies generating payoffs that are ε close to

payoffs in some equilibrium of Γ. The drawback of an ε-equilibrium is that it need not resemble

the equilibrium strategies which generate the payoffs being approximated.11 In my case, the

strategies are a principal concern: I wish to concentrate on the effects of admission policies on

both payoffs and achievement choices. However, there is a connection between the two concepts,

as the following remark demonstrates.

Remark 4.4. For a Nash equilibrium s∗ of Γ, if s∗ ⊂ U ⊂ S, where U is a neighborhood of s∗,

and if the payoff function Π is continuous on U, then the set of payoffs generated by ε-equilibria

and δ-approximate equilibria form bases of neighborhoods of equilibrium payoffs. That is, given

an ε-equilibrium associated with s∗, there exists δ > 0 such that for a δ-approximate equilibrium

we have

‖Π(sδ) − Π(s∗)‖sup < ε.

Conversely, given a δ-approximate equilibrium associated with s∗, there exists ε > 0 such that

for an ε-equilibrium we have

‖Π(sε) − Π(s∗)‖sup < ‖Π(sδ) − Π(s∗)‖sup. �

In the context of the college admissions model, I seek to characterize a set of approximate

achievement functions (γ∞
M(θ), γ∞

N (θ)) such that, given a fixed tolerance level δ > 0, the functions

approximate actual equilibrium achievement to δ-precision for large enough K.

My approximate equilibrium concept is similar to the oblivious equilibrium developed by Wein-

traub, Benkard and Van Roy [25, WBR] to approximate Markov Perfect Equilibria in dynamic

oligopoly games. In such models, firms (and researchers) must compute a complex and in-

tractable state transition process in order to exactly determine equilibrium strategies. Instead,

WBR assume that firms make nearly optimal decisions based on a long-run average industry

statistic which is inexpensive to compute. This issue of computational tractability leads to an

alternative interpretation of approximate equilibria. Aside from being a useful approximation

of equilibrium behavior, one could also view them as an exact characterization of the behavior

of agents with bounded information processing ability. Rather than exactly tracking expected

payoffs based on all of the order statistics of a large set of competitors, a cognitively constrained

11Radner [22] used an ε-equilibrium to resolve a dilemma in dynamic Cournot oligopoly games. For a fixed set of
firms, as long as the number of periods is finite, the unique subgame perfect equilibrium involves static equilibrium
strategies being played every period, whereas collusion suddenly becomes possible in the limit. Radner showed that
there is a collusive ε-equilibrium of the finite-horizon Cournot game in which cartels are sustainable. Equilibrium
payoffs can be replicated to arbitrary precision (i.e., it is nearly optimal to collude if the time horizon is far enough
away), even though the ε-equilibrium strategies are excluded from a neighborhood of equilibrium strategies.
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agent with private cost θ might find it more attractive to base decisions on his limiting rank Fi(θ)

instead.

5. APPROXIMATE EQUILIBRIA UNDER AFFIRMATIVE ACTION

I shall proceed by deriving the maximizers of an agent’s limiting objective function as the nat-

ural processes described in Section 4.1 generate increasingly large sets of competitors and prizes.

I then prove that the resulting derivations satisfy Definition 4.3 above. From this point on, all

discussion and derivations will be in terms of the approximate equilibrium, (γ∞
M(θ), γ∞

N (θ)),

so I shall drop the ∞ superscript for notational ease. Moreover, to avoid tedious verbosity I

shall henceforth refer to the approximate equilibrium and the approximate achievement func-

tions simply as “the equilibrium” and “the achievement functions,” unless the context requires

more specificity. If it becomes necessary to distinguish between the actual equilibrium of a game

with K agents and the approximate equilibrium, I shall refer to the former as the “finite equi-

librium” and I shall abuse the notation slightly and denote the former by γ(·; K), listing K as a

parameter. Keeping in mind the processes generating agents and prizes, this notational abuse

is not entirely unreasonable: by the law of large numbers, any two randomly generated games

Γ(M, N, PK,R), M + N = K, and Γ(M′, N′, P′
K,R), M′ + N′ = K, will be nearly the same (prob-

abilistically) for large K.

Superscripts will henceforth be used to keep track of the admission policy which defines

payoffs in the game. Under policy R ∈ {cb, q, ap}, the achievement functions and grade dis-

tributions are denoted by γR
M(θ), γR

N (θ), GR, GR
M, and GR

N . Finally, in what follows it will

sometimes be convenient to work with the inverse achievement function, which I denote by

ψR
i (s) ≡

(
γR

i

)−1
(s).

5.1. The Color-Blind Game. Recall that a color-blind allocation rule means simple positive as-

sortative matching of prizes with grades. I claim (proof to follow later) that in the limit, in

equilibrium, this process is equivalent to the Board using the following reward function for a

student submitting a grade of s:

πcb(s) =F−1
P

[
Gcb(s)

]

=F−1
P

[
µGcb

M(s) + (1 − µ)Gcb
N (s)

]

=F−1
P

[
1 −

(
µFM

[
ψcb(s)

]
+ (1 − µ)FN

[
ψcb(s)

])]
.

Intuitively, on receiving grades from each competitor, the Board observes the population grade

distribution Gcb(s), and then maps the grade quantiles into the corresponding prize quantiles.
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Since individuals’ limiting payoffs do not depend on race, it follows that γcb
M(θ) = γcb

N (θ) =

γcb(θ); hence, the lack of subscripts on the inverse achievement functions in the third line.12

In equilibrium, the limiting net payoff for an agent with cost type θ submitting grade s is

Πcb(s; θ) = F−1
P

[
1 −

(
µFM

[
ψcb(s)

]
+ (1 − µ)FN

[
ψcb(s)

])]
− C(s; θ).

Differentiating, I get the following FOC:

(1) −
µ fM[ψcb(b)] + (1 − µ) fN [ψcb(b)]

fP

(
F−1

P [1 − (µFM [ψcb(s)] + (1 − µ)FN [ψcb(s)])]
) dψcb(s)

ds
= C ′(s; θ).

Using the fact that dψcb(s)
ds = 1

(γcb)′(ψcb(s))
, and the fact that in equilibrium we have ψcb(s) = θ, I can

substitute to get

(2) (γcb)′(θ) = −
µ fM(θ) + (1 − µ) fN (θ)

fP

(
F−1

P [1 − µFM(θ) − (1 − µ)FN (θ)]
)
C ′[γcb(θ); θ]

.

This differential equation partially solves for equilibrium achievement, but a boundary condition

is also needed.

By monotonicity, a student with cost type θ is sure to be awarded the lowest quality prize, so

the Assumption 4.2 implies the following boundary condition:

(3) γcb(θ) = C−1(p; θ).

With that, I am ready to prove that the derivations above provide meaningful insights into

the equilibrium of a finite college admissions games where the number of competitors is large.

The proof is fairly involved, but it is based on simple ideas. I first prove that the finite objective

functions converge pointwise in probability to the limiting objective function listed above. By

viewing a K-player game as being randomly generated by the natural processes outlined in

Section 4.1, one can think of a player’s objective function as a random variable; hence the concept

of convergence in probability. Using pointwise convergence, I can invoke Egorov’s Theorem to

deliver uniform convergence of the sequence of finite objective functions. Finally, using uniform

convergence, I can invoke the theorem of the maximum to show that the finite maximizers are

close to the solution of equation (2) and boundary condition (3) for large K.

Theorem 5.1. Given ρ, ε, δ > 0, there exists K∗ ∈ N, and a set E ⊂ [θ, θ] having (Lebesgue) measure

m(E) < ρ, such that for any K ≥ K∗, on any closed subset of [θ, θ] \ E we have the following:

12The theorist with experience in asymmetric auctions may find this statement puzzling, but one must keep in
mind that it merely applies to limiting payoffs. In a two-player game, differing behavior arises from the fact that
a minority and a non-minority with the same private cost type will view their likely standing in the distribution
of realized competition differently, due to the asymmetry in the cost distributions. However, the likely difference
between their expected ranks vanishes as the number of players gets large.
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(i) γcb(θ) as defined by equation (2) and boundary condition (3) generates an ε-equilibrium of the

K-player color-blind game, and

(ii) γcb(θ) is a δ-approximate equilibrium for the K-player color-blind game, or

‖γcb(θ) − γcb
i (θ; K)‖sup < δ, i = M,N .

Proof: For notational ease, I shall drop the “cb” superscripts for the duration of the proof. Also,

recall that finite functions are denoted by the presence of a parameter K, whereas limiting func-

tions lack the extra argument. I begin by ordering the sample of K prizes from lowest quality to

highest, denoting the kth order statistic by p(k:K). Since γi(θ; K) is monotonic for i = M,N , the

equilibrium expected payoff function in the K-player game can be written as

Πi(s, θ; K) =
K

∑
k=1

p(k:K) ∑
ki≤min{k,Ki},

kj=k−ki

[(
Ki − 1
ki − 1

)
Fi

(
γ−1

i [s; K]
)Ki−ki

[
1 − Fi

(
γ−1

i [s; K]
)]ki−1

×

(
Kj

kj

)
Fj

(
γ−1

j [s; K]
)Kj−k j

[
1 − Fj

(
γ−1

j [s; K]
)]k j

]

− C(s; θ).

In order for a player from group i to win the kth prize, it must be the case that exactly k − 1 of his

opponents have private costs above his own. For each opponent in his own group, this occurs

with probability 1 − Fi

(
γ−1

i [s; K]
)

, and for each opponent in the other group, this occurs with

probability 1 − Fj

(
γ−1

j [s; K]
)

. The binomial coefficients and the second summation operator in

the expression above are designed to cover all the possible ways in which exactly k− 1 opponents

have higher costs. Thus, the term within the inner summation is the probability of winning the

kth prize, and the overall objective function is a weighted sum of all K prizes, giving the expected

prize won in equilibrium.

Recall my claim that the limiting equilibrium payoff function is given by

Π(s, θ) = F−1
P

[
1 −

(
µFM

[
γ−1
M(s)

]
+ (1 − µ)FN

[
γ−1
N (s)

])]
− C(s; θ).

I wish to show that for large K, it is nearly optimal to act as if one were maximizing Π(s, θ),

rather than Π(s, θ; K). Since costs never change with K, I shall drop the cost terms and focus

solely on convergence of the gross payoff functions π(s, θ; K) to their limit π(s, θ).

For l ∈ [0, 1], define

p(l; K) ≡

{
p(t:K) : t = argmin

k∈{1,...,K}

∣∣∣∣l −
k

K

∣∣∣∣

}
, 13

13If there are multiple maximizers (there can be at most two) then choose t to be the lesser.
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Intuitively, {p(l; K)}∞
K=1 can be thought of as a random sequence of the tth order statistic in the

sample of prizes, where for each K, t is chosen so that p(t:K) approximates the lth sample quantile

as closely as possible. Since
∣∣l − i

K

∣∣ ≤ 1
2K for all l ∈ (0, 1), in the limit the tth order statistic will

be precisely at the lth quantile within the sample of K prizes. Furthermore, since the sample

distribution converges to FP by the law of large numbers, it follows that plim
K→∞

p(l; K) = F−1
P (l).

For some i = M,N , fix θ ∈ [θ, θ] and let

l = 1 − µFM

[
γ−1
M(s)

]
− (1 − µ)FN

[
γ−1
N (s)

]
,

where s = γi(θ). Notice that

plim
N → ∞

p(l; K) = F−1
P

(
1 − µFM

[
γ−1
M(s)

]
− (1 − µ)FN

[
γ−1
N (s)

])
= π(s, θ).

Moreover, For each K I can rewrite the finite expected gross payoff function as

πi(s, θ; K) = p(l; K) ∑
ki≤min{t,Ki},

kj=t−ki

[(
Ki − 1
ki − 1

)
Fi (θ)Ki−ki [1 − Fi (θ)]ki−1

×

(
Kj

kj

)
Fj

(
γ−1

j [s; K]
)Kj−k j

[
1 − Fj

(
γ−1

j [s; K]
)]k j

]

∑
k=1,...,N,

k 6=t

p(k:K) ∑
ki≤min{k,Ki},

kj=k−ki

[(
Ki − 1
ki − 1

)
Fi (θ)Ki−ki [1 − Fi (θ)]ki−1

×

(
Kj

kj

)
Fj

(
γ−1

j [s; K]
)Kj−k j

[
1 − Fj

(
γ−1

j [s; K]
)]k j

]
.

(4)

Let

k∗i ≡ argmin
1≤k≤min{t,Ki}

∣∣∣∣(1 − Fi(θ)) −
k

Ki

∣∣∣∣
14

and note that the following can be extracted from the first term in (4):

p(l; K)

[(
Ki − 1
k∗i − 1

)
Fi(θ)Ki−k∗i (1 − Fi(θ))k∗i −1

]

×

[(
Kj

t − k∗i

)
Fj

(
γ−1

j [s; K]
)Kj−t−k∗i

[
1 − Fj

(
γ−1

j [s; K]
)]t−k∗i

]
.

The second and third components of the above product represent the probability that exactly

Ki − k∗i group-i players have costs below θ and exactly Kj − t − k∗i group-j players achieve grades

14If there are multiple maximizers (there can be at most two) then choose k∗i to be the lesser.
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below γi(θ; K). Letting

µi =

{
(1 − µ) i = N and
µ i = M,

this can be restated as the probability that fraction

Ki − k∗i
Ki

= 1 −
k∗i
Ki

K
−→ Fi(θ)

of group-i players have costs below θ and fraction

Kj − t + k∗i
K

K
−→ µj − l + µi(1 − Fi(θ))

= µj − 1 + (1 − µ)iFi(θ) + µjFj(γ−1
j [s; K]) + µi(1 − Fi(θ))

= µjFj(γ−1
j [s; K])

of all agents come from group j and achieve equilibrium grades below γi(θ; K). In each of the

previous two expressions, the convergence over K term follows from the law of large numbers.

Since the probability associated with this event is one in the limit, it follows that the pointwise

probability limit of (4) is π(s, θ), for i = M,N .

Given that {Π(s, θ; K)}∞
K=1 is a sequence of measurable functions converging pointwise to

Π(s, θ) on a measurable set of finite measure, by Egorov’s Theorem it follows that for any ρ > 0

there exists a set E ⊂ [θ, θ] having measure m(E) < ρ, such that {Π(s, θ; K)}∞
K=1 → Π(s, θ)

uniformly on the set [θ, θ] \ E.

This is the same as saying that on the set [θ, θ] \ E, it is nearly optimal to choose one’s bid

as if one’s opponents were adopting a strategy of γ(θ), rather than γ(θ; K). Thus, given ε > 0,

there exists Kε such that for any K ≥ Kε, γ(θ) generates an ε-equilibrium of the K-player finite

game. Furthermore, since all of the model primitives are well-behaved–θ is strictly bounded

away from zero; P is compact; FM, FN , and FP are absolutely continuous; and for each θ the

set of undominated bids is compact-valued–I can invoke the Theorem of the Maximum on any

compact subset of [θ, θ] \ E to show that the maximizers of Π(s, θ; K) and Π(s, θ) are close for

large K. That is, given δ > 0, there exists Kδ such that for any K ≥ Kδ, γ(θ) is a δ-approximate

equilibrium of the K-player finite game, or

‖γ(θ) − γ(θ; K)‖sup < δ.

Finally, given ε > 0 and δ > 0, then for any K ≥ K∗ ≡ max{Kε, Kδ}, γ(θ) is a δ-approximate

equilibrium which generates an ε-equilibrium of the K-player finite game on any closed subset

of [θ, θ] \ E. �
Before moving on, I should note that Theorem 5.1 can be strengthened slightly, to show that

an ǫ-equilibrium and a δ-approximate equilibrium obtains on the entire set [θ, θ], rather than on

a subset with close to full measure. However, the proof of the stronger version of the theorem



EFFORT, RACE GAPS, AND AFFIRMATIVE ACTION 19

invokes results from the econometric theory literature less familiar to economic theorists, con-

cerning uniform convergence in probability of stochastic functions. See the appendix for details.

5.2. Affirmative Action: The Quota Game. I now depart from the baseline color-blind model,

and I derive the approximate equilibrium in the presence of race-conscious admission policies,

beginning with quotas. Recall that a quota system in the finite game can be thought of the Board

randomly selecting M prizes and setting them aside for allocation to group-M agents. This

effectively splits the single asymmetric competition apart into two separate, symmetric competi-

tions. As K gets large, the sample distributions of prizes reserved for each group both converge

in probability to FP. Thus, the limiting quota rule involves the Board using a set of group-specific

reward functions of the form

π
q
i (b) = F−1

P

[
G

q
i (b)

]
, i = M,N .

Intuitively, the Board observes the group-specific grade distributions, and maps the quantiles of

these into the corresponding quantiles of the prize distribution.

In equilibrium, the utility for a group-i student with cost θ achieving a grade of s is

Π
q
i (s, θ) = F−1

P

[
G

q
i (s)

]
− C(s; θ) = F−1

P

(
1 − Fi

[
ψ

q
i (s)

])
− C(s; θ).

This is identical to payoffs in the color-blind game, except that the unconditional cost distribution

has been replaced with Fi for group i = M, N . By symmetry then, equilibrium achievement

will be determined by

(5) (γ
q
i )

′(θ) = −
fi(θ)

fP

(
F−1

P (1 − Fi(θ))
)
C ′(γ

q
i (θ); θ)

and boundary condition (3).

Theorem 5.2. Given ρ, ε, δ > 0, there exists K∗ ∈ N, and a set E ⊂ [θ, θ] having (Lebesgue) measure

m(E) < ρ, such that for any K ≥ K∗, on any closed subset of [θ, θ] \ E we have the following:

(i) γ
q
i (θ), i = M,N as defined by equation (5) and boundary condition (3) generates an ε-equilibrium

of the K-player quota game, and

(ii) γ
q
i (θ) is a δ-approximate equilibrium for the K-player quota game, or

‖γ
q
i (θ) − γ

q
i (θ; K)‖sup < δ, i = M,N .

Proof: The logic of the proof is very similar to that of Theorem 5.1, but it is simpler because there

is only one distribution to work with. Once again, I drop the “q” superscripts for the remainder of

the proof and I begin by ordering the random sample of K prizes from lowest quality to highest,

denoting the kth order statistic by p(k:K). Since γ(θ; K) is monotonic, the equilibrium expected
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payoff function in the K-player game can be written as

Π(s, θ; K) =
K

∑
k=1

p(k:K)

[(
K − 1
k − 1

)
Fi(θ)K−k(1 − Fi(θ))k−1

]
− C(s; θ).

The first term is a weighted average of the order statistics, where the weights are the probabilities

of winning each prize.15 Recall my claim that the limiting equilibrium payoff function is given

by

Π(s, θ) = F−1
P

(
1 − Fi(γ−1

i (s))
)
− C(s; θ).

I wish to show that for large K, it is nearly optimal to bid as if one were maximizing Π(s, θ),

rather than Π(s, θ; K). Since the cost of submitting a given bid never changes, I drop the sec-

ond term from each payoff function and focus on convergence of the reward function sequence

{π(θ; K)}∞
K=1 to its limit π(θ).

For l ∈ [0, 1], define

p(l; K) ≡

{
p(t:K) : t = argmin

k∈{1,...,K}

∣∣∣∣l −
i

K

∣∣∣∣

}
, 16

and once again, {p(l; K)}∞
K=1 can be thought of as a random sequence of the tth order statistic

in the sample of prizes, where for each K, t is chosen so that p(t:K) approximates the lth sample

quantile as closely as possible. Note that by the same logic as in the proof of Theorem 5.1, we

have plim
N→∞

p(l; K) = F−1
P (l). Fix θ ∈ [θ, θ] and let l = 1 − Fi(θ). Notice that

plim
K → ∞

p(l; K) = F−1
P (1 − Fi(θ)) = π(s, θ).

Moreover, For each K I can rewrite the finite expected gross payoff function as

π(s, θ; K) =p(l; K)

[(
K − 1
t − 1

)
Fi(θ)K−t(1 − Fi(θ))t−1

]

+
t−1

∑
k=1

p(k:K)

[(
K − 1
k − 1

)
Fi(θ)K−k(1 − Fi(θ))k−1

]

+
K

∑
k=t+1

p(k:K)

[(
K − 1
k − 1

)
Fi(θ)K−k(1 − Fi(θ))k−1

]
.

(6)

15In order for a player to win the kth prize, there must be exactly K − k competitors with lower costs and k − 1
with higher costs. The probabilities of these two events are Fi(θ)K−k and (1 − Fi(θ))k−1, respectively. Finally, there
are (K−1

k−1) ways in which the intersection of the two events can occur. Thus, the probability of winning the kth prize is

(K−1
k−1)Fi(θ)K−k(1 − Fi(θ))k−1.

16If there are multiple maximizers (there can be at most two) then choose t to be the lesser.
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Note that
[(

K − 1
t − 1

)
Fi(θ)K−t(1 − Fi(θ))t−1

]
= Pr[exactly K − t competitors have costs lower than θ]

= Pr[fraction
K − t

K
have lower costs]

= Pr[fraction
(

1 −
t

K

)
have lower costs]

K
−→ Pr[fraction (1 − l) have lower costs]

= Pr[fraction Fi(θ) have lower costs]

=1,

where the convergence over K follows from the law of large numbers. Since probabilities must

sum to one, equation (6) reveals that π(θ; K) increasingly resembles p(l; K) as K gets large. Fur-

thermore, since plim
N→∞

p(l; K) = F−1
P (l), it follows that the pointwise probability limit of π(θ; K) is

π(θ).

With pointwise convergence out of the way, the remainder of the proof is identical to the

second half of the proof of Theorem 5.1. �
As before, by using a more complicated proof technique, this result can be strengthened to

demonstrate that γ
ap
i generates an ε-equilibrium and a δ-approximate equilibrium on the entire

set [θ, θ], rather than on a subset with nearly full measure. See the Appendix for details.

Having solved for the achievement functions, some interesting observations can be made about

how achievement changes when moving from a color-blind policy to a quota. It turns out that

with quota admissions, and under the assumption that the minority cost distribution stochas-

tically dominates the non-minority cost distribution, the highest performing minority students

decrease their academic achievement and the lowest performing students increase it. For non-

minorities the change is exactly the opposite: high performers increase their effort and low

performers decrease it. This result is formalized in the following proposition.

Proposition 5.3. If FM(θ) < FN (θ), ∀θ ∈ (θ, θ), then when moving from a color-blind admission policy

to a quota admission scheme, there exists some θ∗ ∈ (θ, θ) such that

(i) for minorities, the grade distribution conditional on θ ∈ [θ∗, θ] shifts to the right and the grade

distribution conditional on θ ∈ [θ, θ∗] shifts to the left; and

(ii) for non-minorities, the grade distribution conditional on θ ∈ [θ∗, θ] shifts to the left and the grade

distribution conditional on θ ∈ [θ, θ∗] shifts to the right.

Sketch Proof: The proof of this result uses the rank-based method for analysis of auctions de-

veloped by Hopkins [14], where the equilibrium is derived in terms of the rank of one’s private

type (cost in this case), rather than one’s actual private type. If we define r = Fi(θ) and let γ̂i(r)
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denote the achievement function in terms of rank, then as Hopkins showed, there is a simple

change of variables relating the two equilibrium functions:

γ′(θ) =
dγi(θ)

dθ
=

dγ̂i(r)

dr

dr

dθ
= γ̂′

i(r) fi(θ).

First consider the case of minorities. The rank-based equilibrium under color-blind allocations

and quotas are, respectively,

(γ̂cb
M)′(r) = −

1

fP

[
F−1

P (1 − r)
]
C ′
(

γ̂cb
M(r); F−1

Θ
(r)
)

and

(γ̂
q
M)′(r) = −

1

fP

[
F−1

P (1 − r)
]
C ′
(

γ̂
q
M(r); F−1

M (r)
) .

From these equations it can be shown that there exists a unique rank r∗ ∈ (0, 1) such that

γ̂
q
M(r∗) = γ̂cb

M(r∗), and moreover, by stochastic dominance it follows that (γ̂
q
M)′(r∗) > (γ̂cb

M)′(r∗).

Then, by a result proven in Hopkins [14, Lemma 1, Corollary 1, p. 3], result (i) follows. Result (ii)

follows from similar logic, where the inequality is reversed. Finally, given that FΘ is a mixture of

FM and FN , it follows that a single θ∗ holds for both (i) and (ii). �
Theorem 5.3 highlights some interesting facets of a student’s decision problem. The intuition

behind the result is that, for a high-cost (i.e., low-performing) student, when faced with compet-

ing against the overall population there is a discouragement effect coming from the fact that there

are relatively many students with lower private costs. Since study costs are non-recoverable, it is

not worthwhile for a high cost student to put forth much effort. However, if a high-cost minor-

ity student instead competes only with members of his own group, where costs are on average

lower, the discouragement effect is mitigated somewhat and effort increases.

For low-cost minorities, the effect is reversed: when competing typically higher-cost com-

petitors, there is less need to aggressively outperform the competition, so effort decreases. For

non-minority students in each category, the effects are exactly the opposite, by similar intuition.

The discouragement effect for high-cost non-minorities is exacerbated by moving to a quota sys-

tem, and low-cost non-minorities must compete more aggressively against a set of competitors

whose costs are on average lower.

As for the overall effect in terms of average grade change within groups and within the over-

all population, it is unclear whether general statements can be made for arbitrary prize and

cost distributions, so this issue remains an empirical question. The effect on the overall racial

achievement gap, as to whether a widening or a narrowing can be expected, is also empirical.

However, one qualitative conclusion can be drawn, that a quota system negatively impacts the

achievement gap among the set of highest-performing students since low-cost minorities decrease

achievement and low-cost non-minorities increase achievement, whereas all like cost types have
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identical achievement under a color-blind rule. As far as allocations go, one attractive quality of

the quota system is that it guarantees an allocation gap of zero, in the sense that the distributions

of prizes allocated to each race group will be identical, by construction.

5.3. Affirmative Action: The Admission Preference Game. In 1978, the Supreme Court of the

United States ruled in the case of Regents of the University of California v. Bakke that quotas ex-

plicit quotas are unconstitutional. Subsequently, American higher education admissions boards

have been forced to seek other means by which to implement AA. These alternative implemen-

tations are sometimes referred to as “admissions preferences.” An admission preference rule is

modeled as a grade transformation function S̃ : R+ → R+, where S̃(s) is increasing and S̃(s) ≥ s.

In assessing the admission preference, The Board assortatively matches prizes with non-minority

grades and transformed minority grades

{sw1, . . . , swW , S̃(sm1), . . . , S̃(smM)}.

In what follows, it will be convenient to derive the equilibrium in terms of the inverse grade

choice rule. Under an admission preference, the Board repositions group-M students ahead of

their group-N counterparts with grades of S̃(s) or less. Thus, the limiting gross payoff function

for group M is

(7) π
ap
M(s) = F−1

P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (S̃(s))

]
+ µFM

[
ψ

ap
M(s)

])]

and the gross payoff function for group N is

(8) π
ap
N (s) = F−1

P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (s)

]
+ µFM

[
ψ

ap
M(S̃−1(s))

])]
.

The intuition for the above expressions is as follows: after the preference is assessed, a minority

student’s standing with respect to his own group doesn’t change, but his standing with respect

to members of the other group changes in a positive direction according to S̃. For non-minorities,

standing with respect to other non-minorities doesn’t change, but standing with respect to mi-

norities changes in a negative direction according to S̃−1 (since S̃ lies above the 45◦-line, it follows

that S̃−1 lies below it).

However, the introduction of a preference function S̃ introduces some complications into the

analysis. Note that equation (8) only holds for s such that S̃−1(s) ≥ 0, because one can only invert

grades in the range of the function ψ
ap
M. If S̃ passes through the origin, this condition is satisfied

for every grade in the choice set. On the other hand, there is an interesting class of admission

preference rules which do not pass through the origin. An example is an affine rule of the form

S̃(s) = ∆1 + ∆2s,
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where minority students receive a fixed subsidy of ∆1, regardless of their grade.17 In that case,

non-minorities whose grades are less than S̃(0) are placed behind all minority students, meaning

that they compete only with other non-minority students whose grades are less than S̃(0). This

leads to the following proposition:

Proposition 5.4. In the college admissions game, assume that The Board uses an admission preference

rule S̃, where S̃(0) = ∆ > 0. Then it follows that group-N players with equilibrium grades below S̃(0)

behave as they would under a quota rule.

Proof: Let θ∆ denote the non-minority private cost type who’s equilibrium grade is ∆ and let

p∆ = F−1
P (1 − [(1 − µ)FN (θ∆) + µFM(θ∆)])

denote the highest prize awarded to agents whose transformed bids are ∆ or less. Also, let

P∆ = [0, p∆]. On the interval [θ∆, θ], group N agents know that they are competing only among

themselves for the lowest mass

ν = (1 − µ)FP(p∆) = (1 − µ)
[
1 −

(
(1 − µ)FN

[
ψ

ap
N (∆)

]
+ µFM

[
ψ

ap
N (∆)

])]

of prizes. Note that ν is also the mass of high-cost, group-N agents receiving prizes in P∆. From

their perspective, it is as if they are playing a quota game where the prize distribution is

FP∆
(p) =

FP(p)

ν
, p ∈ [0, F−1

P (ν)]

and where the distribution over competition is

Fw∆
(θ) =

FN (θ) − (1 − ν)

ν
, θ ∈ [θ∆, θ].

Thus, the limiting objective function for high-cost agents from group N is

F−1
P∆

(
1 − Fw∆

[
ψ

ap
N (s)

])
− C(s; θ).

Since F−1
P∆

(r) = F−1
P (νr), r ∈ [0, 1], the objective can be rewritten and rearranged as follows:

F−1
P

[
ν

(
1 −

FN
[
ψ

ap
N (s)

]
− (1 − ν)

ν

)]
− C(s; θ)

= F−1
P

(
1 − FN

[
ψ

ap
N (s)

])
− C(s; θ),

which is exactly the same limiting objective function as under a quota. Since the boundary

condition is also the same it follows that on the interval [θ∆, θ], we have γ
ap
N (θ) = γ

q
N (θ) and θ∆ =

17An additive admission preference S̃(s) = s + ∆ was explicitly used in undergraduate admissions at the University
of Michigan, prior to 2004. Admissions decisions were based on an index ranging from 0-120, computed based on
applicants’ qualifications, with a bonus of 20 points being assessed to all students from underrepresented racial
minority groups. This policy was in place until 2003 when the Supreme Court ruled, somewhat vaguely, in a joint
opinion on Gratz v. Bollinger and Grutter v. Bollinger, that the bonus was too “narrowly defined” and “mechanical.”
However, the ruling should not be interpreted as a ban on additive admissions preferences: in the same opinion the
court also upheld universities’ right to consider race as a “plus factor” in admissions decisions, making it unclear
whether the court ruled out all subsidies or that particular level of subsidy.
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ψ
q
N (∆) from which the result follows. This also provides a boundary condition γ

ap
N

[
ψ

q
N (∆)

]
= ∆

for the solution of γ
ap
N on the lower interval [θ, θ∆]. �

Knowing how γ
ap
N behaves on the upper cost interval (if there is one), I have a boundary

condition for non-minorities on the lower interval [θ, θ∆] for general S̃. Before proceeding, it will

be useful to observe that the gross payoff functions satisfy π
ap
M(s) = π

ap
N (S̃(s)).

On the lower interval, the limiting objective functions for groups M and N are, respectively,

F−1
P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (S̃(s))

]
+ µFM

[
ψ

ap
M(s)

])]
− C(s; θ), s ≥ 0

and

F−1
P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (s)

]
+ µFM

[
ψ

ap
M(S̃−1(s))

])]
− C(s; θ), s ≥ S̃(0)

and the FOCs are

M : −
(1 − µ) fN

[
ψ

ap
N (S̃(s))

]
(ψ

ap
N )′(S̃(s))S̃′(s) + µ fM

[
ψ

ap
M(s)

]
(ψ

ap
M)′(s)

fP

[
Π

ap
M(s)

] = C ′(s; θ)

and

N : −
(1 − µ) fN

[
ψ

ap
N (s)

]
(ψ

ap
N )′(s) + µ fM

[
ψ

ap
M(S̃−1(s))

]
(ψ

ap
M)′(S̃−1(s)) 1

S̃′(S̃−1(s))

fP

[
Π

ap
N (s)

] = C ′(s; θ).

In equilibrium, it will be true that ψ
ap
i (s) = θ for group i, so by substituting and rearranging I

get

(9) (ψ
ap
M)′(s) = −

C ′
[
s; ψ

ap
M(s)

]
fP

[
Π

ap
M(s)

]

µ fM
[
ψ

ap
M(s)

] −
(1 − µ) fN

[
ψ

ap
N (S̃(s))

]

µ fM
[
ψ

ap
M(s)

] (ψ
ap
N )′(S̃(s))S̃′(s)

and

(ψ
ap
N )′(s)S̃′(S̃−1(s))

= −
C ′
[
s; ψ

ap
N (s)

]
fP

[
Π

ap
N (s)

]
S̃′(S̃−1(s))

(1 − µ) fN
[
ψ

ap
N (s)

] −
µ fM

[
ψ

ap
M(S̃−1(s))

]

(1 − µ) fN
[
ψ

ap
N (s)

] (ψ
ap
M)′(S̃−1(s)).

(10)

Equations (9) and (10), with boundary conditions complete the solution for (γ
ap
M, γ

ap
N ). By eval-

uating equation (10) at S̃(s) and substituting it into the FOC for minorities, equation (9) reduces

to

(11) C ′
[
s; ψ

ap
M(s)

]
= C ′

[
S̃(s); ψ

ap
N (S̃(s))

]
S̃′(s),

which provides a relation between grade selection in the two groups. As it turns out, equation

(11) is important for characterizing the effects of S̃ on minority bidding. The solution for equi-

librium grades under a general admission preference S̃ is given by Proposition (5.4); equations

(10) and (11) and boundary condition ψ
ap
N (∆) = ψ

q
N (∆) = θ∆, where ∆ = S̃(0). Of course, the

following theorem is needed to validate this claim.
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Theorem 5.5. In the college admission game with an admission preference S̃, given ρ, ε, δ > 0, there

exists K∗ ∈ N, and a set E ⊂ [θ, θ] having (Lebesgue) measure m(E) < ρ, such that for any K ≥ K∗, on

any closed subset of [θ, θ] \ E we have the following:

(i) an ε-equilibrium of the K-player admission preference game is generated by γ
ap
i (θ), i = M,N

as defined by Proposition (5.4), equation (10), equation (11), boundary condition (3) for non-

minorities and boundary condition

C ′ [0; θ∗] = C ′ [∆; θ∆] S̃′(0)

for minorities, where θ∗ = inf
{

θ : γ
ap
M(θ) = 0

}
, θ∆ = ψ

ap
N (∆), and ∆ = S̃(0); and

(ii) γ
ap
i (θ) is a δ-approximate equilibrium for the K-player quota game, or

‖γ
ap
i (θ) − γ

ap
i (θ; K)‖sup < δ, i = M,N .

Proof: The proof is similar to that for Theorem 5.1. �
As before, by using a more complicated proof technique, this result can be strengthened to

demonstrate that γ
ap
i generates an ε-equilibrium and a δ-approximate equilibrium on the entire

set [θ, θ], rather than on a subset with nearly full measure. See the Appendix for details.

6. Special Case: Linear Disutility

In order to simplify the analysis, I henceforth assume that the cost function is linear in both θ

and s: C(s; θ) = θs. Under this assumption, equation (11) reduces to

(12) ψ
ap
M(s) = ψ

ap
N (S̃(s))S̃′(s).

As mentioned previously, this equation reveals much about minority grade selection under pref-

erence rules. It turns out that the marginal performance subsidy at a grade of s = 0 plays an

important role, as outlined in the following proposition.

Proposition 6.1. In the college admissions game, assume that study costs are of the form C(s; θ) = θs

and The Board uses an admission preference rule S̃ : R+ → R+, where S̃(s) ≥ s and S̃′(s) ≥ 0, ∀ s > 0;

moreover, define ∆ ≡ S̃(0) and θ∆ ≡ ψ
ap
N (∆) = ψ

q
N (∆). Then the following results follow:

(i) If S̃′(0) ≥ (>) θ
ψ

ap
N (∆)

the grade achieved by a minority student with the highest possible private

cost is non-negative (strictly positive).

(ii) If θ

ψ
ap
N (∆)

< S̃′(0) <
θ

ψ
ap
N (∆)

there is a positive mass ζ ∈ (0, 1) of minority students who choose

equilibrium grades of zero.

(iii) If S̃′(0) <
θ

ψ
ap
N (∆)

all minority students choose equilibrium grades of zero.

Proof: From equation (12) it follows that

inf ψM(0) = ψN (∆)S̃′(0),
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which solves for the lowest minority cost type who achieves a grade of zero. Statements (i), (ii)

and (iii) then follow from substituting the left-hand side to test whether

θ R ψN (∆)S̃′(0)

and

θ R ψN (∆)S̃′(0). �

At this point I will further simplify the analysis by adopting a simple additive preference

policy S̃(s) = s + ∆. This rule is similar to that previously used at the University of Michigan in

undergraduate admissions, so I shall henceforth refer to it as “the Michigan rule.” In that case,

equation (11) reduces to

(13) ψ
ap
M(s) = ψ

ap
N (s + ∆).

This indicates that a minority student with private cost θ will achieve a grade of exactly ∆ less

than his non-minority counterpart with the same private cost. In this case, non-minority students

whose grades are less than ∆ will achieve the same grades as under a quota rule, giving a

boundary condition of

(14) ψ
ap
N (∆) = ψ

q
N (∆) = θ∆,

and minority students with costs above θ∆ choose a grade of zero.Equation (13) can in turn be

substituted back into the decision problem of N agents to get

F−1
P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (s)

]
+ µFM

[
ψ

ap
N (s)

])]
− θs,

which gives the familiar FOC:

(15) (γ
ap
N )′(θ) = −

(1 − µ) fN (θ) + µ fM(θ)

fP

[
F−1

P (1 − [(1 − µ)FN (θ) + µFM(θ)])
]

θ
.

Recall that this is the same as the FOC under the color-blind rule.

Proposition 6.2. If achievement costs are linear, then under a Michigan admission rule with fixed grade

boost ∆, a given competitor from group M will choose a grade of exactly ∆ less than a group-N competitor

with the same private cost, unless the latter’s equilibrium grade is less than ∆. In that case, the group-N

student chooses his grade as if a quota system were in place and the group-M student with a comparable

private cost will achieve a grade level of zero.

Proof: This result follows immediately from equation (13) and from the fact that γ
ap
N (θ) < ∆ on

the interval [θ∆, θ]. �
This result is significant for several reasons. First, it indicates that with linear costs and an

additive subsidy, bidding for group-N agents with high costs resembles bidding under a quota

system. If ∆ is not very large, this implies that equilibrium achievement in group N shifts
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downward for all students, relative to color-blind allocations. This is because under a quota sys-

tem, high cost non-minorities decrease their achievement. Behavior for low-cost non-minorities

parallels color-blind behavior, but with a lower boundary condition.

Second, it highlights an interesting aspect of the behavioral response among beneficiaries of

the admission preference policy. Although the policy-maker may wish for students to use the

grade boost to bolster their competitive edge, equation (13) indicates that when costs are linear, a

rational student will simply eat the entire grade boost: for N agents bidding above ∆, M players

with comparable costs achieve the same grades, less ∆ and all other group-M students simply

achieve a grade of zero. In other words, under linear costs, an admission preference creates no

change in the relative standing between the two groups for low-cost agents.18 This means that

additive grade subsidies also lead to a leftward shift of the minority grade distribution, as well

as the overall population grade distribution. The implication is that a Michigan-type admission

preference is unambiguously bad for effort choice.

Third, given the above facts about the relation between minority and non-minority achieve-

ment under a Michigan rule, it immediately follows that the policy will lead to a widening of

the racial achievement gap at every point in the private cost support, relative to a color-blind

policy. This is because like types have the same achievement under a color-blind rule, whereas

the difference in achievement between a minority and a non-minority with private cost θ under

the Michigan rule is min{∆, γ
ap
M(θ)}, which is strictly positive for any θ < θ.

Finally, these facts also imply that an admission preference rule is a somewhat ineffective

mechanism for shifting allocations. Indeed, with linear costs, a Michigan rule has no allocational

effect among students with costs below ψ
ap
N (∆). The only effect is in re-shuffling allocations in

the lower tail of the prize distribution so that minorities get the top mass µ of the set of least

desirable prizes. In other words, under the Michigan rule, enrollment at more selective schools

will be identical to enrollment under a color-blind admission policy. Clearly, additive grade

subsidies appear to be an ineffective and costly means of promoting racial equality.

6.1. Example: Uniform Prizes and Pareto Private Costs. The results proven so far provide some

good intuition for how the model equilibrium is affected by different admission policies, but

some results are difficult to derive analytically. For example, it has been shown above that

different segments of the population react differently to AA, but it is unclear how the overall

population grade distribution changes. Another interesting but analytically difficult question

involves a comparison between the alternative AA policies: what must an admission preference

grade boost be in order to produce the same average allocative effect as a quota, and how might

that grade boost affect performance?

18When costs are convex in achievement, the effect is less straightforward (see equation (11)) and complete con-
sumption of the grade boost will not obtain in general. However, it will generally be the case that the beneficiaries of
an admission preference will use at least some portion of the grade boost as a direct utility subsidy, rather than using
it only to bolster their competitive edge.
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To illustrate the model, I consider a simple special case where prizes are distributed uniformly

on the interval [0, 100], so that FP(p) = p
100 . The fraction of minority college candidates is µ = 0.25

and private costs follow a Pareto distribution, with the upper tail truncated to the interval [1, 5].

More precisely, for group i the private cost distribution is

Fi(θ) =
1 − θ−κi

1 − θ
−κi

, κi > 0, i = M,N ,

where κM = 0.1 and κN = 1.5, so that stochastic dominance holds. All parameters in this section

were chosen for purely illustrative purposes, with the exception of ∆, which is discussed below.

With the above parameters specified, solving for the equilibrium is a simple mater of integrating

differential equations.

A value of ∆ was specifically chosen to facilitate comparisons between equilibria under a

quota and a Michigan admission preference rule. The key characteristic of a quota is that it

ensures that the average prize value allocated to members of each group is the same. Thus,

I choose a fixed grade subsidy ∆∗ so that the average prize value awarded to each group is

the same. This allows me to compare the outcomes under two different AA policies which are

implemented so as to achieve a common objective. Computing ∆∗ under uniformly-distributed

prizes is fairly simple. Recall from the section on admission preferences above that when costs

are linear, an additive grade subsidy only alters equilibrium allocations among agents who grade

less than ∆. Once again, let θ∆ denote the player type that submits a grade of ∆ for group N and

let p∆ = F−1
P [1 − {(1 − µ)FN (θ∆) + µFM(θ∆)}] denote the top prize allocated to players whose

transformed grades are ∆ or less.

Within the interval [0, p∆ ], the top µ mass of prizes are awarded to students from group M and

the rest are given to group N . Thus, the average prize given to candidates with costs c ≤ θ∆ in

group M and N are, respectively, (p∆ + µp∆)/2 and µp∆/2. The average prize awarded to players

of either group with private costs above θ∆ are the same–recall that transformed equilibrium

grades are the same for a given θ in this interval–and are given by (p + p∆)/2. Therefore, the

average prize allocated to group M candidates is

(16) [1 − FM(θ∆)]
p∆ + µp∆

2
+ FM(θ∆)

p + p∆

2

and the average prize for group N is

(17) [1 − FN (θ∆)]
µp∆

2
+ FN (θ∆)

p + p∆

2
.

Thus, ∆∗ is determined by the following equality

[1 − FM(θ∆∗)]
p∆∗ + µp∆∗

2
+ FM(θ∆∗)

p + p∆∗

2

= [1 − FN (θ∆∗)]
µp∆∗

2
+ FN (θ∆∗)

p + p∆∗

2
.

(18)
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In the special case of Pareto private costs, ∆∗ is 23.15% of the maximal grade achieved by group

M. In other words, in order for a Michigan rule to deliver the same average effect as a quota,

the subsidy must be quite large.19

19One might wonder whether this is an artifact of the left-skewed private-cost distribution, but this does not appear
to be the case. If the numerical example from this section is re-computed using a normal distribution with an interior
mode, or a right-skewed power distribution, results are very similar.
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Figure 1 plots several objects of interest. The top two panes are the distributions and densities

of private costs. The middle pane displays group-specific grade distributions under each of

the three admission policies. A color-blind rule is denoted by a dotted line, a Michigan rule is

denoted by a dashed line, and a solid line denotes a quota. For pairs of lines with the same

style, the one lying to the left is the grade distribution for minorities. The bottom pane displays

population grade distributions, following a similar convention. When comparing two grade

distributions, keep in mind that if distribution i lies to the right of distribution j in some region,

that indicates an interval of students who are enticed to achieve a higher academic output under

policy i.

The middle plot gives an idea of how within-group behavior changes, and also how the

achievement gap changes under different policies. As Propositions 6.1 and 6.2 suggest, the pic-

ture for an additive admission preference is dismal. A striking feature of the plot is the size of

the mass point a policy-maker must settle for in order to equalize average outcomes for each

group. Notice also the substantial leftward shift in non-minority grades associated with the

quota-comparable Michigan rule. Recall also that allocations in the upper tail of the prize distri-

bution are unaffected, even with this extreme version of the policy. Although producing a more

definitive analysis is ultimately an empirical exercise, this example shows that an ill-designed

admission preference can lead to a substantial social loss, while producing little positive change.

As outlined in Proposition 5.3, a quota rule produces some interesting benefits, relative to a

color-blind system. The middle pane shows that all minorities below the 80th grade percentile

and all non-minorities above the 30th grade percentile increase their performance, relative to

a color-blind system. Of course, there are also costs involved, as all other students decrease

academic output. Although it is difficult to tell from the lower pane, it turns out that a quota

produces a very slight stochastic dominance shift in the overall population grade distribution. In

contrast, the difference from Michigan-rule grades for both color-blind and quota admissions is

quite stark.

Although these observations paint a fairly dismal picture for American-style AA, it is impor-

tant to note that it is possible to design a more general form of the admission preference rule so

as to overcome some of the drawbacks of the Michigan rule. Indeed, the main shortcoming of

the Michigan rule is that the additional weight it places on a student’s grade does not take into

account the student’s performance: whether you score 0 or 100, the grade boost is the same.

However, if one were to consider a more general affine admission preference,

S̃(s) = ∆0 + ∆1s

then as Proposition 6.1 suggests, the slope coefficient could be chosen so as to eliminate the

mass point of minority students achieving grades of zero. On the other hand, this may present

a problem from the policy-maker’s perspective, in that optimal selection of the transformation

function parameters would require knowledge of the underlying distributions of private costs.
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This highlights another advantage of a quota rule over an admission preference: the former is

simple to administer, whereas optimization under the latter may require strong assumptions on

the amount of information available for policy decisions.

7. Conclusion

In this paper, I have explored the qualitative implications of different AA policies in college

admissions. It turns out that the way in which AA is implemented can have significant effects

on effort choice. On the one hand, it appears that the critics of AA are correct in assuming that a

tradeoff exists between equality and academic performance incentives, although the exact nature

of the tradeoff—whether it results in a socially desirable change—cannot be resolved theoret-

ically. On the other hand, proponents of AA are also correct in assuming that race-conscious

admissions can potentially increase academic performance for some minorities by diminishing

discouragement effects. However, in the process of leveling the playing field for some minority

students, the situation is made worse for disadvantaged (i.e., high-cost) non-minorities. More-

over, advantaged minorities find diminished incentives for academic performance in an environ-

ment where the competition they face is less fierce. Once again, the exact nature of the tradeoff

cannot be determined without a meaningful empirical analysis.

As for AA and allocations, somewhat more can be said qualitatively about the relation be-

tween quotas and admission preferences. Namely, by construction quotas achieve 100% equal

allocations in the sense that the racial makeup of student bodies at schools of all quality levels

will be reflective of population proportions. On the other hand, the effectiveness of admission

preferences in rearranging allocations is hampered by the rational behavioral response to this

type of policy. Clearly, a policy-maker should not treat behavior as fixed when predicting equi-

librium allotments of college seats to different groups under different policies. Indeed, in the

case of a Michigan-type additive admission preference, such an assumption may result in a near

total nullification of any intended change.

In ongoing work building on the theory presented in this paper, Hickman [13] performs a

structural estimation of the model using data on US colleges and college entrance test scores.

The object of that exercise is to quantify the social costs and benefits of different AA policies—

such as quotas and general admission preferences—in an attempt to better understand the social

costs and benefits, and whether a superior alternative can be named.

There are two other interesting directions for further research. First, as alluded to in Foot-

note 14, an important related question would be how AA might affect educational attainment

decisions among minorities. The current model focuses on student behavior, conditional on par-

ticipation in the higher education market, but there is another interesting group of individuals

to consider as well: those whose college/work-force decisions may be affected by a given policy.

This question could be addressed by formalizing the “supply-side,” being comprised of poten-

tial colleges and firms who may enter the market and supply post-secondary education services
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and unskilled jobs. Such a model might illuminate how the marginal agent (i.e., the individual

indifferent between attending college and entering the workforce) is affected by a given college

admission policy. This would help to characterize the effect of Affirmative Action on the total

mass of minorities enrolling in college.

Finally, the eventual goal for this line of research should be to answer the question of how AA

helps or hinders the objective of erasing the residual effects of past institutionalized racism. This

will require a more general dynamic model in which the policy-maker is not only concerned with

short-term outcomes for students whose private costs are fixed; but also with the long-run evolu-

tion of the private cost distributions. Empirical evidence suggests that academic competitiveness

is determined by things such as affluence and parents’ education. If AA affects performance and

outcomes for current minority students in a certain way, the next question is what effect it might

that have on their children’s competitiveness when the next generation enters high school. If

a given policy produces the effect of better minority enrollment and higher achievement in the

short-run then one might conjecture that a positive long-run effect will be produced. However,

given the mixed picture on the various policies considered in this paper, it seems evident that

a long-run model is needed in order to give meaningful direction to forward-looking policy-

makers. The theory developed here will hopefully serve as a basis for answering these important

questions in the future.

APPENDIX

ALTERNATIVE PROOF OF EQUILIBRIUM APPROXIMATION:

As mentioned in the body of the paper, the various results on equilibrium approximation can

be strengthened to demonstrate that the derivations accurately reflect equilibrium actions and

outcomes on the entire support of private costs. The cost of the stronger result is application of

a more complicated proof which invokes results that may be less familiar to economic theorists.

The logic is very similar under all three cases of color-blind admissions, quotas and admission

preferences, so here I merely state and prove the alternative claim in the case of a quota rule,

where the notation is simplest.

Theorem 7.1. Given ε, δ > 0, there exists K∗ ∈ N, such that in the college admission game with a quota

rule, we have the following:

(i) γ
q
i (θ), i = M,N as defined by equation (5) and boundary condition (3) generates an ε-equilibrium

of the K-player quota game, and

(ii) γ
q
i (θ) is a δ-approximate equilibrium for the K-player quota game, or

‖γ
q
i (θ) − γ

q
i (θ; K)‖sup < δ, i = M,N .
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Proof: The first part of the proof involves showing that the finite objective functions converge

pointwise in probability to the proposed limiting objective. The argument is identical to the one

in the first half of the proof of Theorem 5.2

Using pointwise convergence, I can then invoke Newey’s [20, Theorem 2.1] uniform conver-

gence theorem to show that Π̃(θ; K) converges uniformly in probability to Π(θ) on the entire

interval [θ, θ]. In order to do so, I must first verify a regularity condition and stochastic equiconti-

nuity of the sequence Π̃(θ; K). For this part of the argument, it will be easier to think in terms of

l, rather than θ. The regularity condition is that l(θ) = 1 − Fi(θ) must live on a compact interval.

Since θ lives on a compact interval and since Fi is continuous and monotonic, l(θ) attains values

of 0 and 1 for finite values of θ.

At this point, all that remains is to verify equicontinuity of the sequence of functions Π̃(θ; K).

For deterministic functions, it is known that pointwise convergence on a compact interval to a

continuous limit implies uniform convergence if the sequence is equicontinuous. There is also an

analogous condition for sequences of random functions, known as stochastic equicontinuity. In

the context of my model, it basically means that for any point θ, Π̃(θ; K) must be continuous at θ

at least with probability close to one for large K.20 More precisely, {Π̃(θ; K)}∞
K=1 is stochastically

equicontinuous if for any ǫ, ǫ′ > 0 there exists τ > 0 such that

lim sup
K→∞

Pr

[
sup

l∈[0,1], l′∈Bτ(l)

∣∣Π̃(l; K) − Π̃(l′; K)
∣∣ > ǫ′

]

= lim sup
K→∞

Pr

[
sup

l∈[0,1], l′∈Bτ(l)

∣∣∣∣∣
K

∑
i=1

p(k:K)

[(
K − 1
i − 1

)
(1 − l)K−i(l)i−1

]

−
K

∑
i=1

p(k:K)

[(
K − 1
i − 1

)
(1 − l′)K−i(l′)i−1

] ∣∣∣∣∣ > ǫ′

]
< ǫ,

where Bτ(l) is an open ball centered at l with radius τ.

By similar arguments as above, it is apparent that

K

∑
i=1

p(k:K)

[(
K − 1
i − 1

)
(1 − l)K−i(l)i−1

]
→ F−1

P (l) and

K

∑
i=1

p(k:K)

[(
K − 1
i − 1

)
(1 − l′)K−i(l′)i−1

]
→ F−1

P (l′).

Therefore, I can satisfy stochastic equicontinuity by choosing τ∗ so that for all l ∈ [0, 1] and

l′ ∈ Bτ∗(l), the following is true:
∣∣∣F−1

P (l) − F−1
P (l′)

∣∣∣ < ǫ′.

20For a more detailed discussion on stochastic equicontinuity, see Andrews [1, Section 2.1].
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Since FP is continuous and P is compact, such a τ∗ indeed exists. Thus, by Newey’s uniform

convergence theorem, it follows that for all ǫ > 0, I have

lim
K→∞

Pr
[
‖Π̃(θ; K)− Π(θ)‖sup > ǫ

]
= 0.

In other words, When K is large, the equilibrium grade distribution under a monotonic equi-

librium is such that it is nearly optimal to maximize as if one’s (equilibrium) objective function

were Π(θ, s) = F−1
P (1 − Fi(θ)) − C(s; θ).

This is the same as saying that it is nearly optimal to choose one’s grade as if one’s opponents

were adopting a strategy of γ(θ), rather than γ(θ; K). Thus, given ε > 0, there exists Kε such

that for any K ≥ Kε, γ(θ) generates an ε-equilibrium of the K-player finite game. Furthermore,

since all of the model primitives are well-behaved–θ is strictly bounded away from zero and

lives in a compact set, P is compact, Fi and FP are absolutely continuous and for each θ the

set of undominated grades is compact-valued–the Theorem of the Maximum implies that the

maximizers of Π̃(s, θ; K) and Π(s, θ) are close for large K. That is, given δ > 0, there exists Kδ

such that for any K ≥ Kδ, γ(θ) is a δ-approximate equilibrium of the K-player finite game, or

‖γ(θ) − γ(θ; K)‖sup < δ.

Finally, given ε > 0 and δ > 0, then for any K ≥ K∗ ≡ max{Kε, Kδ}, γ(θ) is a δ-approximate

equilibrium which generates an ε-equilibrium of the K-player finite game. �
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