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Abstract. To answer the question in the title we vary agents’ beliefs against

the background of a fixed knowledge space, that is, a state space with a par-

tition for each agent. Beliefs are the posterior probabilities of agents, which
we call type profiles. We then ask what is the topological size of the set of

consistent type profiles, those that are derived from a common prior (or a

common improper prior in the case of an infinite state space). The answer
depends on what we term the tightness of the partition profile. A partition

profile is tight if in some state it is common knowledge that any increase of

any single agent’s knowledge results in an increase in common knowledge. We
show that for partition profiles which are tight the set of consistent type pro-

files is topologically large, while for partition profiles which are not tight this
set is topologically small.

1. Introduction

Ever since the introduction of games with incomplete information by Harsanyi
(1967-8), the assumption that players’ posterior beliefs in models of differential
information are derived from a common prior has been ubiquitous in the literature.
It plays an essential role in the no agreements theorem of Aumann (1976) and in
the no trade theorems that followed. It is also a basic building block of the solution
concept of correlated equilibrium which was interpreted by Aumann (1987) as the
expression of common knowledge of rationality. As pointed out in that paper, the
assumption of a common prior, also known as the Harsanyi doctrine, is pervasively
“explicit or implicit in the vast majority of the differential information literature in
economics and game theory”. Despite its pervasiveness, the justification and the
use of the common prior assumption was, and still is, debated and challenged (see
Gul (1998) and Aumann (1998)).

The special interest in the common prior assumption leads naturally to the ques-
tion how restrictive an assumption it is, or equivalently, how common common
priors are. We study this question in a general model of differential information
that has two parts, a knowledge space and the agents’ posterior beliefs. The first
is given by a finite or countably infinite state space with a partition profile of the
state space, one for each agent, which define the agents’ knowledge. An agent’s
posterior beliefs are given by a type function which assigns to each element in the
agent’s partition a probability function on this element. A type profile—one type
function for each agent—is consistent if all the type functions are derived from one
probability on the state space—the common prior—by conditioning on the parti-
tions’ elements. In the countably infinite state space, we consider a type profile to
be consistent if it can be derived from a common improper prior via conditioning.
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Against the background of a fixed knowledge space, we vary the type profiles and
study the topological size of the set of consistent type profiles. As we show, this
size depends on the partition profile of the knowledge space, through its common
knowledge structure. We say that knowledge is tight at a state when any increase
of the agents’ knowledge in this state results in increasing common knowledge.
We say that the partition profile is tight if at some state it is common knowledge
that knowledge is tight. We show that when the partition profile is tight the
set of consistent type profiles is topologically large, and when it is not tight this
set is topologically small. We also provide a couple of other characterizations of
tightness, with one particularly simple criterion in the finite case: the tightness of
a type profile, the meet of which consists of one element, can be determined solely
by the total number of elements in the partition profile.

The precise meaning of large and small depends on whether the state space is
finite or countably infinite. For finite knowledge spaces, when the partition profile
is tight each type profile is consistent, and when it is not tight, the set of consistent
type profiles is nowhere dense. For countably infinite knowledge spaces, we endow
the set of all type profiles with a topology that makes it a Baire space. When the
partition profile is tight the set of consistent type profiles is big, as its complement
is of first category, which in a Baire space is a small set. When it is not tight, the
set of consistent type profiles is small, being of first category.

2. Preliminaries

2.1. Knowledge spaces.

A knowledge space for a nonempty finite set of agents I, is a couple (Ω,Π), where
Ω is a nonempty set called a state space, and Π = (Πi)i∈I is a partition profile,
where for each i, Πi is a partition of Ω. The knowledge space is called finite or
countably infinite when Ω is finite of countably infinite, correspondingly. An event
is a subset of Ω. For a partition Π of Ω and a state ω, Π(ω) is the element of Π that
contains ω. We say that agent i knows an event E at ω if Πi(ω) ⊆ E. We define
for each i a knowledge operator Ki : 2Ω → 2Ω, by Ki(E) = {ω | Πi(ω) ⊆ E}.
Thus, Ki(E) is the event that i knows E.

For a pair of partitions Π and Π′ and state ω, we write Π′ �ω Π when Π′(ω) ⊆
Π(ω). For the partition profiles Π and Π′, Π′ �ω Π means that for each i,
Π′i �ω Πi. The partition Π′ is a refinement of Π, denoted Π′ � Π, when Π′ �ω Π
for each state ω. The partition profile Π′ is a refinement of Π, denoted Π′ � Π, if
for each i, Π′i � Πi. For each of these four relations, a corresponding relation with
� instead of � is obtained by discarding the reflexive part of the relation �. The
two irreflexive relations describe an increase of knowledge, while the two reflexive
relations describe a weak increase of knowledge. Thus, for example, if Π′ �ω Π,
and K and K ′ are the knowledge operators associated with Π and Π′ respectively,
then for each event E, if ω ∈ K(E), then ω ∈ K ′(E), but for some events, for
example E = Π′(ω), ω ∈ K ′(E) but ω /∈ K(E).

The meet of Π, denoted ∧Π, is the partition which is the finest among all the
partitions Π that satisfy Π � Πi for each i. The knowledge operator Kc defined by
the meet partition is called the common knowledge operator (Aumann (1976)).
It can be described in terms of the knowledge operator Ki as follows. Denote
by K(E) the event that all agents know E. That is, K(E) = ∩i∈IKi(E). Then
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Kc(E) = ∩∞n=1K
n(E). For M ∈ ∧Π, the elements of Πi contained in M form

a partition of M . Thus, (M,ΠM ), where ΠM is the restriction of Π to M , is a
knowledge space.

2.2. Beliefs.

The beliefs of an agent in a given state are described by a probability distribution
over the state space. These beliefs are related to the agent’s knowledge as follows.
Denote by ∆(Ω) the set of all probability functions on Ω. A type function for Πi

is a function ti : Ω× Ω→ IR that satisfies:

(a) for each ω, ti(ω, ·) ∈ ∆(Ω),
(b) for each i and π ∈ Πi, if {ω, ω′} ⊆ π, then ti(ω′, ·) = ti(ω, ·),
(c) for each i, π ∈ Πi, and ω ∈ π, the support of ti(ω, ·) is π, i.e., ti(ω, π) = 1.

We say that ti(ω, ·) is i’s type at ω. By condition (b), the type of i is measurable
with respect to Πi, i.e., the type of i is the same in all states in π which means that
i knows her type, or equivalently, knows her beliefs. In light of (b) we sometimes
write for i and π ∈ Πi, ti(π, ·) for the type of i in all the states in π. Condition (c)
implies that whenever i knows E at ω she assigns probability 1 to it, i.e., whatever
she knows she is certain of.1

A type profile for Π is a vector of type functions, t = (ti)i∈I , where for each
i, ti is a type function for Πi. Denote by T (Π) the set of all type profiles for Π.
A type profile assigns for each i and ω an element ti(ω, ·) in ∆(Ω). Thus, we may
consider T (Π) as a subset of ∆(Ω)Ω×I . In particular, for a finite state space we
consider T (Π) as a topological space with the topology induced by the standard
topology of the Euclidean space in which T (Π) is embedded.

A prior for a type function ti is a probability function p ∈ ∆(Ω) such that for
each π ∈ Πi, p(π)ti(π, ω) = p (ω) for all ω ∈ π. A common prior (cp) for the
type profile t is a probability function p ∈ ∆(Ω) which is a prior for each agent i.2

A type profile t is consistent when it has a common prior.
The model of knowledge space with beliefs used here is the same as the model

in Aumann (1976), except that in the latter the assumption is made that there
exists a common prior. Our model is also the discrete case of the abstract S-based
belief space in Mertens and Zamir (1985), where S is Ω. Although knowledge is
not introduced explicitly in their work, the partitions of the the space into agents’
types makes it a partition model.

3. Main results

3.1. Tightness.

The commonness of consistent type profiles for a given knowledge space depends
on a property of the knowledge space we call tightness. In both the finite and the
infinite case, when the partition profile is not tight, the set of consistent type profiles

1 Conditions (b) and (c) are part of the definition of the space of knowledge and belief in
Aumann (1976). The meaning given to them here are expressed as two axioms on the relation
between knowledge and belief in Hintikka (1962).

2 Contrasting a prior for ti with the types ti(ω, ·), the latter are referred to as the posterior
probabilities of i.
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is topologically small. When the partition profile is tight this set is topologically
large.

We say that knowledge is tight at a state if increasing any agents’ knowledge at
this state must result in increasing common knowledge. A partition profile is tight
if at some state there is common knowledge that knowledge is tight. Formally,

Definition 1. For a partition profile Π, knowledge is tight at ω, when for each
Π′ � Π, if Π′ �ω Π then ∧Π′ � ∧Π. Let T be the event that knowledge is tight.
We say that Π is tight, if Kc(T ) 6= ∅.

In the following example we illustrate the notions of tight knowledge and tight
partition profiles.

Example 1. Let Ω = {ω1, ω2, ω3, ω4} and I = {1, 2}. Consider the partition profile
Π = (Π1,Π2), where Π1 =

{
{ω1, ω2}, {ω3, ω4}

}
and Π2 =

{
{ω1, ω2 ω3}, {ω4}

}
.

Obviously, ∧Π = {Ω}. Suppose that Π′ � Π, and Π′ �ω4 Π. The only way
that knowledge can increase at ω4 is by splitting the partition element {ω3, ω4}.
Thus, Π′1(ω4) = {ω4}. Therefore {ω4} ∈ ∧Π′ which means that ∧Π′ � ∧Π. We
conclude that knowledge at ω4 is tight. Consider now the partition profile Π′ where
Π′1 = Π1 and Π′2 =

{
{ω1, ω2}, {ω3}, {ω4}

}
. Then Π′ � Π, and Π′ �ω3 Π. Yet,

∧Π′ = ∧Π, which shows that knowledge at ω3 is not tight. Therefore T 6= Ω, and
hence Kc(T ) = ∅. We conclude that Π is not tight. It is easy to check that for the
last partition profile Π′ knowledge is tight at each state and therefore Π′ is tight.

The tightness of a partition profile can be expressed without explicit reference
to common knowledge, as follows. We say that Π is connected when ∧Π = {Ω}.
For each M ∈ ∧Π, ΠM , the restriction of Π to M , is connected.

Proposition 1.

(a) A connected partition profile Π is tight if and only if for any Π′ � Π, Π′

is not connected.
(b) A partition profile Π is tight if and only if there exists M ∈ ∧Π such that

ΠM is tight.

A third characterization of tightness, in terms of chains, is given in Proposition
7 below. In the finite case, there exists yet another simple characterization of the
tightness of a connected type profile, in terms of the total number of partition
elements.

Proposition 2. Let Ω be a finite state space and Π a connected partition profile.
Then

∑
i∈I |Πi| ≤ (|I| − 1)|Ω|+ 1 and equality holds if and only if Π is tight.

Observe, that the dimension of the set of types T (Π) is
∑
i∈I(|Ω| − |Πi|) =

|I||Ω| −
∑
i∈I |Πi| and the dimension of the set of priors ∆(Ω) is |Ω| − 1. Thus,

Proposition 2 characterizes the connected tight partition profiles Π as the ones with
minimal dimension of T (Π) which equals the dimension of ∆(Ω).3

3This observation suggests a proof for the smallness of the set of consistent type profiles,

for partition profiles which are not tight, based on dimensional considerations. We have elected
instead to implement an elementary combinatorial proof, which can be applied equally well for the

infinite case. In an unpublished paper, Nyarko (1991) states that in a finite Harsanyi type space

the set of consistent posteriors has measure 0. The proof requires differential geometry arguments
based on dimensionality considerations.
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3.2. The size of the set of consistent type profiles.

Theorem 1. Let (Ω,Π) be a finite knowledge space.

(1) If Π is tight then each type profile is consistent.
(2) If Π is not tight then the set of consistent type profiles is nowhere dense.4

In order to prove results similar to those of Theorem 1 for countable state spaces,
we need to generalize the notion of a common prior. A common improper prior
(cip) for a type profile t is a non-negative and non-zero function p : Ω → IR such
that for each i and π ∈ Πi, p(π) <∞ and p(π)ti(π, ω) = p (ω) for all ω ∈ π. Note
that although for any π ∈ Πi, p(π) <∞, the possibility that p(Ω) =∞ is not ruled
out, so that p may not be normalizable. Obviously, a cp is in particular a cip. Note
also that if p is a cip, then for any constant γ > 0, γp is also a cip. In particular,
if p is a cip and p(Ω) < ∞ then p(Ω)−1p is a common prior. Thus, for a finite
space, a profile type has a common prior if and only if it has a common improper
prior. In light of this the following definition of consistency for countable spaces
generalizes the one given for finite spaces. A type profile t is consistent when it
has a common improper prior and inconsistent otherwise.

To measure the topological size of sets in the countable case we use the notion of
a set of first category (called also a meager set), namely, a set which is a countable
union of nowhere dense sets. A topological space is a Baire space if every set of first
category has an empty interior. Therefore, in a Baire space, sets of first category
are considered small. We now proceed to define a topology on T (Π) for which it is
a Baire space.

Consider the complete normed vector space l1(Ω) of absolutely summable func-
tions x : Ω → IR, with the norm ||x|| = Σω∈Ω|x(ω)|. The set ∆(Ω) is closed in
l1(Ω).5 Therefore, ∆(Ω) with the metric induced on it from l1(Ω) is a complete
metric space. Hence, the product space ∆(Ω)Ω×I is a completely metrizable topo-
logical space (see Mukres (1975)). Finally, the equalities in the definition of a type
guarantee that T (Π) is closed in ∆(Ω)Ω×I and therefore T (Π) is a completely
metrizable topological space. This implies that T (Π) is a Baire space. Obviously,
in the finite case the topology just described is the standard topology on finite
dimensional Euclidean spaces.

Theorem 2. Let (Ω,Π) be a countable knowledge space.

(1) If Π is tight then the set of inconsistent type profiles is of first category.
(2) If Π is not tight then the set of consistent type profiles is of first category.

In contrast with the finite case, here the set of inconsistent type profiles of a
tight partition profile need not be empty. Example 2 in the next section shows that
we cannot even strengthen this part by changing “of first category” to “nowhere
dense”. Example 3 shows that similar strengthening is also impossible in the second
part of the theorem.

4 A set is nowhere dense if its closure has an empty interior. Such a set is considered topological
small.

5 To see this, consider the linear functional on l1(Ω) defined by f(x) = Σω∈Ω x(ω). Since

|f(x)| ≤ ||x||, f is continuous. Now, ∆(Ω) is the intersection of two closed sets: f−1(1) and the
nonnegative orthant of l1(Ω).
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3.3. Harsanyi type spaces. Of special interest are Harsanyi type spaces. In such
a space Ω = ×i∈ITi, where for each i, Ti is a set of types of player i. With each
player i we associate the natural partition of Ω, Πi, into i’s types. It is easy to
see, using Proposition 1, that the partition profile of a non-trivial Harsanyi type
space (one that has more than one state and more than one agent) is connected
and not tight. Therefore, if we vary the posterior beliefs of the types on such
a finite or countably infinite space, while keeping the sets of types fixed, the set
of consistent posterior beliefs is small. The lack of tightness of non-trivial finite
Harsanyi type spaces can be also checked using Proposition 2. Obviously, for such
a space |Πi| = |Ti|, and |Ω| = ×i∈I |Πi|. It is easy to prove that

∑
i∈I |Πi| <

(|I| − 1)×i∈I |Πi|+ 1 = (|I| − 1)|Ω|+ 1.

4. Proofs and examples

4.1. Proof of Proposition 1.

(a) Let Π be a connected partition profile. Then Ω is the only event E such that
Kc(E) 6= ∅. Thus, if Π is tight then T = Ω. If Π′ � Π, then for some ω, Π′ �ω Π,
and by tightness, ∧Π′ � ∧Π. Conversely, if Π′ � Π implies ∧Π′ � ∧Π, then
obviously, each ω is in T , and hence T = Ω, and Kc(T ) = Ω.
(b) The partition profile Π is tight iff there exists M ∈ ∧Π such that M ⊆ T . It
is easy to see that M ⊆ T iff for the knowledge space (M,ΠM ), knowledge is tight
at each ω ∈M , which is a necessary and sufficient condition for ΠM to be tight.

4.2. Chains.

We define a chain of length n ≥ 0, for the partition profile Π, from one state to
another by induction on n. A state ω0 is a chain of length 0 from ω0 to ω0. A chain
of length n + 1, from ω0 to ω, is a sequence c i→ ω, where c is a chain of length
n from ω0 to ω′, and ω ∈ Πi(ω′). Thus, a chain of positive length n is a sequence

c = ω0
i0→ ω1

i1→ · · · in−1→ ωn, such that for s = 0, . . . , n− 1, ωs+1 ∈ Πis(ωs).

Obviously, for each i, chains of length 1, ω i→ ω′, define an equivalence binary
relation and Πi is the partition of Ω into its equivalence classes. We write ω → ω′

when there is a chain from ω to ω′. The binary relation → is the transitive closure
of the union of the relations i→, and it is an equivalence relation. We say that ω
and ω′ are connected for Π, if there is a chain for Π from ω to ω′.

Claim 1. The meet of Π is the partition of Ω into the equivalence classes of →.

To see this, denote by Πcon the partition of Ω into equivalence classes of→. Since
each of the partitions Πi is finer than ∧Π, it follows by induction on the length
of chains that if ω → ω′ then ω′ ∈ ∧Π(ω). Thus, for each ω, Πcon(ω) ⊆ ∧Π(ω),
i.e., Πcon is finer than ∧Π. Also, if ω′ ∈ Πcon(ω) then for all i and ω′′ ∈ Πi(ω′),
ω′′ ∈ Πcon(ω), i.e., Πi(ω′) ⊆ Πcon(ω). Thus, each of the partitions in Π is finer than
Πcon. As ∧Π is the finest partition with this property it follows that Πcon = ∧Π.

Thus, we conclude:

Claim 2. A partition profile Π is connected if and only if every two states are
connected.
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We say that a type profile t is positive if for each i, π ∈ Πi, and ω ∈ π,
ti(π, ω) > 0. Let t be a positive type profile and (ω1, ω2) an ordered pair of states
in π ∈ Πi. The type ratio of (ω1, ω2) given i is trit(ω1, ω2) = ti(π, ω2)/ti(π, ω1).

The type ratio of a chain c = ω0
i0→ ω1

i1→ · · · in−1→ ωn of length n > 0 is trt(c) =
×n−1
k=0 trikt (ωk, ωk+1). For a chain c of length 0, trt(c) = 1. Thus, if c = c′

i→ ω
where c′ is a chain from ω0 to ω′, trt(c) = trt(c′)trit(ω

′, ω). When we discuss only
one type profile we omit the subscript t in trt.

Proposition 3. If a positive type profile over a connected partition profile has a
common improper prior p, then all its common improper priors are of the form
γp for some constant γ > 0. A type profile over a connected partition profile can
therefore have at most one common prior.

Proof. If p is a cip for a positive t, then trit(ω1, ω2) = p(ω2)/p(ω1). Substituting
the right-hand side for the left-hand side in the definition of the type ratio of chains,
we conclude that for any chain c from ω0 to ω, trt(c) = p(ω)/p(ω0). Thus, for any
cip’s for t, p and p′, and for any two states ω0 and ω, p(ω)/p(ω0) = p′(ω)/p′(ω0).

Proposition 3 was proved in Harsanyi (1967-8) for Harsanyi type spaces. Samet
(1998) noted that for finite spaces the uniqueness of a common prior can be inter-
preted as the uniqueness of an invariant probability function for an ergodic Markov
chain. The simple proof here, for countable spaces, is an extension of the proof in
Harsanyi (1967-8) to general knowledge spaces.

The following proposition is close in its content to the main result in Rodrigues-
Neto (2009).

Proposition 4. Let t be a positive type profile over a connected partition profile.
Then there exists an common improper prior for t iff for each ω0 and ω, and chains
c and c′ from ω0 to ω, trt(c) = trt(c′).

Proof. As we have shown before, if there exists a common improper prior p
for t, then all chains c connecting ω0 and ω satisfy tr(c) = p(ω)/p(ω0). Con-
versely, suppose that for each ω0 and ω, all the chains from ω0 to ω have the
same type ratio. Fix ω0 and for each ω let p(ω) = tr(c) for some c from ω0 to
ω. To see that p is a cip consider π ∈ Πi and ω ∈ π. Let c be a chain from
ω0 to ω. For ω′ ∈ π, consider the chain c′ = c

i→ ω′. Then, by the defini-
tions of tr and p, p(ω′) = tr(c′) = tr(c)tri(ω, ω′) = p(ω)ti(π, ω′)/ti(π, ω). Thus,
p(π) =

∑
ω′∈π p(ω

′) = [p(ω)/ti(π, ω)]
∑
ω′∈π ti(π, ω

′) = p(ω)/ti(π, ω) < ∞, and
p(ω) = p(π)ti(π, ω).

4.3. Proof of the second parts of Theorems 1 and 2.

We first prove our claims for a connected partition profile Π. Let P be the set of
positive types in T (Π) and C the set of consistent type profiles in T (Π).

We show first that C ∩ P is nowhere dense, that is, that the complement of its
closure is dense.

Proposition 5. If Π is connected, then cl(C ∩ P ) ⊆ (C ∩ P ) ∪ P c.

Proof. We need to show that if a sequence of type profiles tn in C ∩ P converges
to t ∈ P , then t ∈ C. Let c and c′ be chains from ω0 to ω. By Proposition 4,
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trtn(c) = trtn(c′) for each n. Since each chain involves only finitely many states,
it follows by continuity that trt(c) = trt(c′). Again, by Proposition 4, this implies
that t ∈ C.

Thus, [cl(C ∩ P )]c ⊇ [(C ∩ P ) ∪ P c]c = Cc ∩ P , and it is enough to show that
Cc ∩ P is dense.

Proposition 6. If Π is connected and not tight then Cc ∩ P is dense in T (Π).

Proof. We show that C ∩ P ⊆ cl(Cc ∩ P ). Thus, P ⊆ cl(Cc ∩ P ), and as P is
dense, the claim of the proposition follows.

Since Π is connected but not tight, there exists, by Proposition 1 a connected
partition profile Π′ which properly refines Π. We may assume that Π′ is obtained
from Π by splitting one partition element π ∈ Πi, for some i, into π1 and π2.

For t ∈ P , define a type profile t̂ for Π which agrees with t except on π.
Formally, for each j 6= i, t̂j = tj . For each π̄ 6= π in Πi, t̂i(π̄, ·) = ti(π̄, ·). For
ω ∈ π1, t̂i(π, ω) = (1 + ε)ti(π, ω)/c, and for ω ∈ π2, t̂i(π, ω) = (1 − ε)ti(π, ω)/c,
where c = 1 + ε[ti(π, π1) − ti(π, π2)] and ε 6= 0 between −1 and 1. By choosing ε
close enough to 0, t̂ can be made arbitrarily close to t.

For any type profile t in P , let t′ be the type profile for Π′ which is naturally
induced by t as follows. For each j 6= i, t′j = tj . For each π̄ 6= π in Πi, t′i(π̄, ·) =
ti(π̄, ·). Finally, for k = 1, 2, t′i(π

k, ·) = ti(π, ·)/ti(π, πk).

Now, let t ∈ P ∩ C have a cip p. We show that t̂ ∈ Cc ∩ P . Obviously, p is
also a cip for t′. Suppose that t̂ has a cip, and denote it by p̂. Then p̂ is also
a cip for t̂′. But t̂′ = t′, and as Π′ is connected, it follows, by Proposition 3,
that p and p̂ differ by a multiplicative constant. Thus, p is a cip for t̂ as well.
Hence p must satisfy ti(π, π1) = p(π1)/p(π) = t̂i(π, π1). But this does not hold as
t̂i(π, π1) = (1 + ε)ti(π, π1)/c and (1 + ε)/c 6= 1.

Now, C = (C ∩ P )∪ (C ∩ P c) ⊆ (C ∩ P )∪ P c, and we have shown that (C ∩ P )
is nowhere dense. In the finite case, P is an open dense set and thus P c is nowhere
dense, so that (C ∩P )∪P c is nowhere dense as a finite union of nowhere dense set,
and C is nowhere dense as a subset of a nowhere dense set.

For the infinite case, it suffices to show that P c is of first category. This is indeed
the case, because the set T iω of type profiles t for which ti(Πi(ω), ω) = 0 is closed
and has an empty interior, as its complement contains P which is dense. Thus, T iω
is nowhere dense. Finally, P c = ∪i ∪ω T iω.

Consider now a partition profile Π which is not connected. For M ∈ ∧Π, denote
by TM (ΠM ) the set of type profiles over the knowledge space (M,ΠM ), and let
CM be the set of consistent type profiles in TM (ΠM ). We can obviously identify
T (Π) with ×M∈∧ΠTM (ΠM ).

A type profile t for Π has a cip if and only if there exists M ∈ ∧Π for which
tM , the restriction of t to M ×M , is in CM , the set of consistent type profiles in
TM (ΠM ). Indeed, if tM has a cip pM , then the function p on Ω that agrees with
pM on M and vanishes outside M is a cip for t. Conversely, if p is a cip for t, then
for some M , p is not identically 0 on M and thus the restriction of p to M is a is
a cip for tM . We conclude that C, the set of consistent type profiles in T (Π), is
∪M∈∧Π[CM × (×M ′ 6=MTM ′(ΠM ′))].
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Since Π is not tight, it follows by Proposition 1 that for each M ∈ ∧Π, ΠM is
not tight. In the finite case, this implies that CM is nowhere dense in TM (ΠM )
and therefore each of the sets in the union is nowhere dense in T (Π). Hence, C is
nowhere dense as a finite union of nowhere dense sets.

In the infinite case, CM is of first category and therefore each of the sets in the
union is of first category in T (Π). Hence, C is of first category as a countable union
of sets of first category.

4.4. Proof of the first part of Theorems 1 and 2.

We say that a chain c is alternating if no two consecutive states, ωs and ωs+1, in
c, are the same, and no two consecutive agents, is and is+1, in c, are the same. In
particular, any chain of length 0 is alternating and any chain of length 1 from ω0

to ω 6= ω0 is alternating.
Given a connected partition profile Π, define a distance function d on Ω × Ω

such that for each ω and ω′, d(ω, ω′) is the minimal length of a chain from ω to
ω′. It is easy to see that d is a metric. A chain from ω0 to ω of the minimal length
d(ω, ω0) is called a minimal chain. It is easy to see that if ω0 . . . ωn is minimal
then ω0 . . . ωs is a minimal chain for each s = 0, . . . , n, and therefore d(ωs, ω0) = s.
Moreover, the chain must be alternating, because if either ωs = ωs+1 or is = is+1

we get a shorter chain from ω0 to ωn by omitting is→ ωs+1.
Clearly, if for some i, ω′ ∈ Πi(ω), then d(ω, ω′) ≤ 1. Thus, by the triangle

inequality, if for some i, ω′ ∈ Πi(ω), then for any ω0, |d(ω, ω0)−d(ω′, ω0)| ≤ 1. Thus,
on each partition element π, d(·, ω0) can have at most two values. In particular,

for any chain c = ω0
i0→ ω1

i1→ · · · in−1→ ωn, |d(ωs+1, ω0) − d(ωs, ω0)| ≤ 1 for
s = 0, . . . , n− 1.

Proposition 7. A connected partition profile Π is tight if and only if for any states
ω and ω′ there exists a unique alternating chain for Π from ω to ω′.

Proof. Assume that Π is not tight. Then, there exists a connected partition profile
Π′ such that Π′ � Π. Let ω, ω′ and i be such that ω′ ∈ Πi(ω) but ω′ /∈ Π′i(ω).
Since Π′ is connected, there exists a minimal chain c for Π′ from ω to ω′, which,
as we have shown, is alternating. Since Π′ is a refinement of Π, c is also a chain
for Π and it is alternating. But as ω 6= ω′, c′ = ω

i→ ω′ is also an alternating chain
for Π which is different from c, since ω′ /∈ Π′i(ω).

Assume now that Π is tight. To show that the condition in the proposition holds
we use the following two lemmas.

Lemma 1. If Π is tight then for each ω0 and ω there exists a unique minimal
chain from ω0 to ω.

We show that if there are two distinct minimal chains from one state to another

then Π is not tight. Let c = ω0
i0→ ω1

i1→ · · · in−1→ ωn and c′ = ω0
i′0→ ω′1

i′1→ · · ·
i′n−1→ ωn

be distinct minimal chains, and assume that n is the minimal number for which
such a pair exists. Obviously, n > 0. It is impossible that both i0 = i′0 and
ω1 = ω′1, because either n = 1 in which case c = c′, or else n > 1 in which case

ω1
i1→ · · · in−1→ ωn and ω′1

i′1→ · · ·
i′n−1→ ωn are distinct minimal chains of length n− 1

contrary to the minimality of n. Thus, either i0 6= i′0 or ω1 6= ω′1.
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Consider the refinement Π′ of Π obtained by splitting Πi(ω0) into {ω1} and
Πi(ω0)\{ω1}. The latter set is not empty since being minimal, c is alternating and
thus, ω0 6= ω1. We will prove that Π is not tight by showing that Π′ is connected.
To do so, it suffices to prove that every ω̂ ∈ Πi(ω0) \ {ω1} is connected to ω1 for
Π′. As ω̂ is connected to ω0 for for Π′, it suffices to show that ω0 is connected to
ω1 for Π′.

Assume first that ω1 = ω′1. Thus, i0 6= i′0 and therefore ω0
i′0→ ω1, is a chain

for Π′. Now assume that ω1 6= ω′1, which implies that n > 1. Note that all states
in Πi(ω0) are of distance not greater than 1 from ω0 and thus each of the states
ω2, . . . ωn−1, ωn and ω′2, . . . ω

′
n−1, ωn are not in this set, as their distance from ω0

is greater than 1. Thus, ω1
i1→ · · · im−1→ ωm and ω′1

i′1→ · · ·
i′m−1→ ωm are chains for

Π′ too. Also, because ω1 6= ω′1, ω0
i′0→ ω′1 is a chain for Π′ (even if i0 = i′0). Thus,

we have shown that the following relations hold for Π′: ω0 → ω′1 ω
′
1 → ωn, and

ωn → ω1, which amounts to saying that ω0 and ω1 are connected in Π′.

Lemma 2. If Π is tight then every alternating chain for Π is minimal.

The proof is by induction on n, the length of the chain. The claim is obvious
for alternating chains of lengths n = 0 and n = 1. Suppose the claim holds for
alternating chains of length n = k ≥ 1, and assume that c is an alternating chain
c = ω0

i0→ ω1
i1→ . . . ωk

ik→ ω of length k + 1. By the induction hypothesis the
alternating chain ω0 . . . ωk is minimal and thus for all s ≤ k, d(ωs, ω0) = s. In
particular d(ωk, ω0) = k and thus d(ω, ω0) is either k + 1, or k, or k − 1. We only
need to prove that the last two values are impossible. Suppose that d(ω, ω0) < k+1.

Let c′ = ω0
i′0→ ω′1 . . . ω be a minimal chain from ω0 to ω. Then it is of length k− 1

or k.
Consider the refinement Π′ obtained by splitting Πik(ωk) into {ωk} and Πik(ωk)\

{ωk}. The latter set is not empty, since by the alternation of c, ωk 6= ω. We show
that for each ω̂ ∈ Πik(ωk) \ {ωk} there is a chain for Π′ from ωk to ω̂. Note, first,
that the chain ω0 . . . ωk is a chain for Π′. To see this, observe that by alternation

ik−1 6= ik. Thus, ωk−1
ik−1→ ωk is a chain for Π′. Also the states ω0, . . . , ωk−2 are of

distance less than k− 1 from ω0 while all states in Πik(ωk) are of distance k− 1 at
least. Thus, ω0 . . . ωk−2 is also a chain for Π′. We conclude that there is a chain for
Π′ from ωk to ω0. We end the proof by showing that there is a chain in Π′ from ω̂

to ω0. First, ω̂ ik→ ω is a chain for Π′ by the construction of the latter. Moreover,
none of the states in c′ is ωk, which implies that c′ is also a chain for Π′. Indeed,
ω 6= ωk by the alternation of c, and the distance from ω0 to all of the states in c′

that precede ω is less than k, while ωk is of distance k from ω0.
The characterization of tightness in terms of alternating chains is used to prove

the following.

Proposition 8. If Π is connected and tight then every positive type profile has a
common improper prior.

Proof. We show that the condition in Proposition 4 holds. By Proposition 7 for any
states ω0 and ω there exists a unique alternating chain c(ω0, ω) from ω0 to ω. We
show that for any ω0 and ω and any chain c from ω0 to ω, tr(c) = tr(c(ω0, ω)). The
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proof is by induction on the length of c. The claim trivially holds for chains of length
0. Assume that it holds for all chains of length n−1 for n > 0 and let c = c′

i→ ω be a
chain from ω0 to ω of length n, where c′ is a chain from ω0 to ω′. By the induction
hypothesis, tr(c′) = tr(c(ω0, ω

′)). Consider the chain ĉ = c(ω0, ω
′) i→ ω. Then,

tr(c) = tr(c′)tri(ω′, ω) = tr(c(ω0, ω
′))tri(ω′, ω) = tr(ĉ), and therefore it suffices to

show that tr(ĉ) = tr(c(ω0, ω)). If ĉ is alternating then ĉ = c(ω0, ω), and we are done.
If ĉ is is not alternating, then, since c(ω0, ω

′) is alternating, one of the following two
cases holds. Case 1: ω′ = ω. In this case tr(ĉ) = tr(c(ω0, ω))tri(ω, ω) = tr(c(ω0, ω)).

Case 2: ω 6= ω′, and for c(ω0, ω
′) = ω0 . . . ωn−2

in−2→ ω′, in−2 = i. Here, tr(ĉ) =
tr(ω0 . . . ωn−2)tri(ωn−2, ω

′)tri(ω′, ω) = tr(ω0 . . . ωn−2)tri(ωn−2, ω). But the latter
is the type ratio of the chain ω0 . . . ωn−2

i→ ω, which, being alternating is c(ω0, ω).

The proof of part 1 in Theorems 1 and 2 follows readily in case Π is connected.
As before, P is the set of positive type profiles and C the set of type profiles that
have a cip. By Proposition 8, Cc ⊆ P c.

In the infinite case, we have shown that P c is of first category, and thus, Cc

is of first category. In the finite case, C is closed. Indeed, let tn be a sequence
of type profiles in C that converges to t. For each n, tn has a common prior pn

that satisfies for each i and π ∈ Πi, pn(π)tni (π, ·) = pn(·). By the compactness of
∆(Ω), a subsequence of pn converges to a probability function p. By continuity,
p(π)ti(π, ·) = p(·) for each i and π ∈ Πi. Thus, p is a common prior for t and t ∈ C.
By Proposition 8, P ⊂ C and thus, T (Π) = cl(P ) ⊆ cl(C) = C.

Suppose that Π is not connected, then Cc = ×M∈∧ΠC
c
M . As Π is tight, there

is an M̂ ∈ ∧Π such that ΠM̂ is tight. In the finite case, Cc
M̂

= ∅ and therefore
Cc = ∅. In the infinite case, Cc

M̂
⊆ P c

M̂
, and as P c

M̂
is of first category, so is Cc.

4.5. Proof of Proposition 2:

Let Π be a connected tight partition profile. The proof is by induction on the
size on Ω. If Ω is a singleton the equality in the proposition is obvious. Suppose
the equality is proved for all state spaces smaller than n > 1 and let |Ω| = n.
Since n ≥ 2 and Π is connected, there must be i and ω0 such that Πi(ω0) is not a
singleton. Consider the refinement of Π, Π̂, obtained by splitting Πi(ω0) into {ω0}
and Πi(ω0) \ {ω0}. By the tightness of Π, Π̂ is not connected.

Let Ω0 consist of all states ω such that there is a chain for Π̂ from ω0 to ω.
Fix ω1 in the set Πi(ω0) \ {ω0} and let Ω1 be the set of all ω such that there is
a chain for Π̂ from ω1 to ω. Each of Ω0 and Ω1 is an element of the meet of Π̂.
They are disjoint because if they shared a state then ω0 would be connected to ω1

which would make Π̂ connected. Each state ω is in either Ω0 or Ω1. Indeed, let c
be a minimal chain for Π from ω0 to an arbitrary ω. If c does not contain a state
ω̂ ∈ Πi(ω0) \ {ω0}, then c is a chain for Π̂ and ω ∈ Ω0. If c does contain such a ω̂,
then no state that follows ω̂ in c is ω0 (because the distance of each state in c to
ω0, other than ω0 itself, is positive). Thus, there is a chain for Π̂ from ω̂ to ω, and
trivially there is a chain for Π̂ from ω̂ to ω1, so that ω ∈ Ω1. Thus, the meet of Π̂
is exactly the set {Ω0,Ω1}, and each of Π̂0 and Π̂1, respectively the restriction of
Π̂ to Ω0 and Ω1, is connected.
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By the induction hypothesis, for k = 0, 1,
∑
i∈I |Π̂k

i | = (|I| − 1)|Ωk| + 1. By
adding the two equations and noting that

∑
i∈I |Π̂0

i | +
∑
i∈I |Π̂1

i | =
∑
i∈I |Πi| + 1

we get the desired equality.
If Π is not tight, then it must have a refinement which is tight, and therefore it

satisfies the inequality of the proposition.

4.6. Examples.

Example 2. We construct an infinite knowledge space with a tight partition profile,
such that the set of inconsistent type profiles is dense. Therefore it is not nowhere
dense, since the complement of a nowhere dense set contains a nonempty open set.
To show that the set of inconsistent type profiles is dense, it is enough to show that
it is dense in the set of positive type profiles, since the latter is dense.

Consider a knowledge space for two agents, where Ω is the set of integers Z, and
the partitions are Π1 = {πn1 | n ∈ Z}, where πn1 = {2n, 2n+ 1}, and Π2 = {πn2 | n ∈
Z}, where πn2 = {2n − 1, 2n}. The partition profile Π = (Π1,Π2) is tight, since it
is connected and any proper refinement of Π is not. Let t = (t1, t2) be a positive
type profile over Π. We construct a sequence of inconsistent type profiles tk such
that tk converges to t as k → −∞. For n ≤ k, tk1(πn1 , 2n) = 1 and tk2(πn2 , 2n) = 0.
For n > k, tk1(πn1 , ·) = t1(πn1 , ·) and tk2(πn2 , ·) = t2(πn2 , ·). Obviously, tk converges to
t as k → −∞.

To show that tk is inconsistent we prove that if p is a cip for tk, then it must
be identically 0, which is impossible for a cip. By the definition of cip whenever
for some i, π ∈ Πi and ω ∈ π, ti(π, ω) = 0, then p(ω) = 0. Now, tk1(πk1 , 2k + 1) = 0
and therefore p(2k + 1) = 0. Also, for each m ≤ 2k, either tk1(Π1(m),m) = 0
or tk2(Π2(m),m) = 0. Thus, p(m) = 0 for all m ≤ 2k + 1. We prove now by
induction on m that p(m) = 0 for all m ≥ 2k+ 1. This holds as we have shown for
m = 2k + 1. Suppose that for m = 2n + 1, p(m) = 0. Since tk2(π2n+1

2 , 2n + 1) =
t2(π2n+1

2 , 2n + 1) > 0 it follows by the definition of cip that p(π2n+1
2 ) = 0. This

implies that p(2n+ 2) = 0. The induction step when m = 2n is similar.

Example 3. We construct an infinite knowledge space for two agents with a parti-
tion profile which is not tight, such that the set of consistent type profiles is dense,
which shows that it is not nowhere dense. To show this we prove that the set of
consistent type profiles is dense in the set of positive type profiles.

Let Ω be the set N × N. Player 1’s partition consists of the rows and 2’s the
columns. That is, Π1 = {πi1 | i ∈ N}, where πi1 = {(i, j) | j ∈ N}, and Π2 = {πj2 |
j ∈ N}, where πj2 = {(i, j) | i ∈ N}.

Let t be a positive type profile for this partition profile. We define a se-
quence of consistent type profiles tn that converge to t as n → ∞. Fix a con-
sistent type profile t̂ with cip p. For each i ≤ n and j ≤ n, let tn1 (πi1, (i, j)) =
t1(πi1, (i, j))/

∑n
k=1 t1(πi1, (i, k)) and tn2 (πj2, (i, j)) = t2(πj2, (i, j))/

∑n
k=1 t2(πj2, (k, j)).

For i ≥ n+1 and j ≥ n+1, tn1 (πi1, (i, j)) = t̂1(πi−n1 , (i−n, j−n)), and tn2 (πj2, (i, j)) =
t̂2(πj−n2 , (i − n, j − n)). For i ≤ n and j ≥ n + 1, or i ≥ n = 1 and j ≤ n,
ti1(πi1, (i, j)) = tj2(πj2, (i, j)) = 0.

It is easy to check that for each i, ||tn1 (πi1, ·)− t1(πi1, ·)|| → 0 when n→∞, and a
similar convergence holds for agent 2. Thus, tn → t. To see that tn is consistent,
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we define pn by pn(i, j) = p(i−n, j−n) for i ≥ n+1 and j ≥ n+1 and pn(i, j) = 0
otherwise. It is easy to see that pn is a cip for tn.
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