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Abstract

Type space is of fundamental importance in epistemic game theory. This paper shows

how to build type space if players approach the game in a procedural way advocated by

rationalizability. If an agent fixes a strategy profile of her opponents and ponders which

of their beliefs about her set of strategies make this profile optimal, such an analysis is

represented by transition probabilities and yields disintegrable beliefs. Our construction

requires that underlying space is separable.

1 Introduction

Fix a game played by Ann and Bob with their strategy sets, Sa and Sb, respectively. Ann’s first-

order belief is her conjecture over Bob’s choices. It is natural to assume that Bob ponders Ann’s

strategies, as well, and that Ann knows this. Hence, she tries to link Bob’s alternatives with his

first-order beliefs. Ann fixes Bob’s strategy sb and selects his conjectures that make sb optimal.

Bob conducts the same analysis and, in consequence, we obtain infinite structures representing

players’ thinking about the game. This way of interactive reasoning lies behind the concept of

rationalizability introduced by Bernheim [1] and Pearce [14]. According to the former:

Since the state of the world, as perceived by A, is uncertain, he must construct some

assessment of B’s action and optimize accordingly. (...) A knows that B has an as-
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sessment of what A will do for which B’s strategy is a best response. (...) A must not

only have an assessment of what B will do subject to which A’s choice is a best response,

but for every forecast of B’s strategy to which A ascribes positive probability, A must

also be able to construct some conjecture of B’s assessment of A’s action, for which

this forecast of B’s strategy is a best response. Since conformity with Savage’s axioms is

common knowledge, this reasoning can be extended indefinitely. If it is possible to jus-

tify the choice of a particular strategy by constructing infinite sequence of self-justifying

conjectured assessments in this way, then I call the strategy "rationalizable."

The infinite hierarchy of beliefs and type space were introduced by Harsanyi [6] (see Myerson [12]

for a non-technical review). Type space is an essential tool of epistemic game theory (see a recent

three-article survey by Brandenburger [3], Heifetz [8], and Siniscalchi [16]). In particular, we want to

know whether the collection of all of Ann’s hierarchies, T a, and the space of her beliefs over Sb×T b,

P a(Sb×T b) are homeomorphic. Proving this establishes the existence of the universal type space (see

Siniscalchi [16] and Friedenberg [5] for discussion of universal, terminal, and complete type spaces).

Coherency of agents’ conjectures is a minimal condition. That is, we require the higher and lower

order beliefs to agree on appropriate spaces. If this is not true, then it is impossible for an infinite

hierarchy to induce a unique belief over Sb×T b. However, coherency is not enough, as it is shown by

Heifetz and Samet [9]. Their result is based on violating topological assumptions in the Kolmogorov

Extension Theorem. In order to obtain a positive answer, we need to introduce restriction on either

underlying space or on agents’ hierarchies. Mertens and Zamir [11] and Brandenburger and Dekel [4]

focus on topological constraints. The former assumes the space of uncertainty to be compact, while

the latter considers a Polish space. In Heifetz [7], that space is Hausdorff separable1 , and agents’

beliefs are defined as regular probability measures.

Our construction of the universal type space is based on reconceptualizing the idea of an agent’s

belief. We want to capture a procedure leading to rationalizability and, for that reason, we call

our belief and type procedural. Ann’s first-order belief is defined as a probability λa over the set

of Bob’s strategies, Sb. However, instead of defining higher-order beliefs in a standard way directly

on product spaces, we use the notion of a transition probability. A second level of Ann’s hierarchy

consists of λa and a family of transition probabilities between Sb and P b(Sa). For each of Bob’s

strategies, sb, a transition probability, v, assigns Ann’s conjecture, v(sb), over the set of Bob’s first-

order beliefs, P b(Sa). In the words of Bernheim, "A must also be able to construct some conjecture

of B’s assessment of A’s action, for which this forecast of B’s strategy is a best response." Ann’s

belief, λa, and transition probability, v, generate unique belief over Sb × P b(Sa). The collection of

transition probabilities that constitutes a part of the second-order belief is determined by the notion

1Separability of S is not stated directly in the paper. However, it is implied by the regularity of probability measures,

as support of such a measure is separable (see Section II.3 in Parthasarathy [13] or Appendix III in Billingsley [2]).
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of equivalency. We say that v and ṽ are equivalent with respect to λa, if they are the same except

for the set of measure zero.

In our construction, the second-order belief includes the first-order belief. Defining the former

solely as a family of transition probabilities might seem more natural. After all, at the second

level, Ann only connects Bob’s alternatives with his first-order conjectures. This process does not

involve Ann’s first-order belief and is represented by transition probabilities. However, we show that

excluding first-order belief from the definition of the second-order belief is not desirable as it would

not allow us to injectively relate beliefs to the probabilities they generate. In consequence, building

homeomorphism between T a and beliefs over Sb × T b would be impossible.

We assume that the underlying space of uncertainty is separable topological, and we prove the

existence of the universal type space in this setup. It is important to note that we do not require

Sa and Sb to be even topological spaces, in order to prove the existence of a bijective map between

Ann’s types and her beliefs about Sb × T b. However, we do need separability for the continuity of

this map. This is distinct from the previously mentioned literature, where topological assumptions

are necessary for the existence of such a map.

In Section 2, we discuss the idea of a procedural belief, a key element of our analysis. We also propose

a topology associated with the set of these beliefs. This topology, as expected, is closely related to the

standard weak-* topology on the set of measures. In Section 3, we prove the existence of canonical

homeomorphism. In Section 4, we compare the standard construction with our construction of

type space. In particular, we show that adding disintegrability conditions to the standard notion of

coherent type is equivalent to our procedural approach. Appendix includes proofs not discussed in

the main text.

2 Procedural Beliefs

Let X and Y be separable topological spaces endowed with Borel σ-algebras E and F, respectively.

E and F are generic elements of E and F , respectively. We endowX×Y with the product σ-algebra.

B is its generic element and B(x) is a section of B at x. P (X) denotes a collection of probability

measures on X with the weak-* topology assigned to it.

ν : X × F → R is a transition probability between X and Y , if for each x, ν (x; .) is probability

measure on Y , and for each F ∈ F , ν (.;F ) is measurable function. If λX is a probability measure

on X, then for a given ν, there is the unique probability λX×Y on X × Y , such that for each B

λX×Y (B) =

∫

X

ν(x;B(x))dλX . (1)
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Any measure on X ×Y that can be represented as in (1) will be called disintegrable with respect to

(its marginal) λX .

Under what assumptions is a measure disintegrable? Using Valadier [17], we can prove the Disinte-

gration Theorem: if X and Y are Polish, then every probability measure on X × Y is disintegrable.

We say that two transition probabilities, ν and ν̃, are equivalent with respect to λX , if for any F ,

ν (x;F ) = ν̃ (x;F ) λX-a.s. Let [ν] /λX denote the family of transition probabilities equivalent to ν,

with respect to λX . Since equivalent ν and ν̃ differ only on the set of measure zero, it is easy to

show the following result.

Lemma 2.1

Let ν and ν̃ be equivalent with respect to λX . For each measurable B ⊂ X × Y ,

λX×Y (B) =

∫

X

ν (x;B(x)) dλX =

∫

X

ν̃ (x;B(x)) dλX = λ̃
X×Y

(B).

Lemma 2.1 is essential to understanding our definition of a procedural belief, as well as the con-

struction of the topology on the set of procedural beliefs.

Definition 2.1 Procedural Belief

Fix measurable spaces X and Y . For a probability λX and a transition probability ν, between X

and Y , procedural belief is λX together with a family of transition probabilities equivalent to ν, with

respect to λX .

Let K(X;Y ) denote the collection of procedural beliefs on X×Y . Let Kα be a procedural belief for

some (λXα , να). Lemma 2.1 says that each procedural belief yields unique disintegrable probability

on X × Y . In Lemma 2.2, we show the inverse: for a λX×Y that is disintegrable with respect to its

marginal λX , there exists a unique procedural belief that generates it.

Lemma 2.2

Take distinct and disintegrable λX×Y and λ̃
X×Y

. There exist unique and distinct K and K̃ that

generate λX×Y and λ̃
X×Y

, respectively.

The reader may ponder why we require λX to be part of a procedural belief. Alternatively, we

could define procedural belief as a collection of transition probabilities equivalent to some ν, with

respect to some measure. This might seem to be a more natural construction. If the first-level

belief is a probability measure on X, then the second-level belief would be some family of transition

probabilities between X and Y . However, this definition would make it impossible to bijectively

relate procedural beliefs to probabilities on X×Y . The result in Lemma 2.3 serves as our argument.
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Lemma 2.3

Fix a transition probability v. There are distinct λX and λ̃
X

such that [ν] /λX = [ν] /λ̃X .

To prove Lemma 2.3, consider two probabilities that are absolutely continuous with respect to each

other. Both assign measure zero to exactly the same sets. In consequence, ν and ν̃ are equivalent

with respect to λX and λ̃
X
. For a given transition probability, ν, both probabilities generate the same

family of equivalent transition probabilities. Thus, collection of such families cannot be injectively

mapped to the set of measures on X.

Observe that a procedural belief is a linear bounded operator on the space of real-valued, continuous

bounded functions on X × Y , CB (X × Y ). We assign the weak-* topology to K(X;Y ). That is,

Kα converges to K if and only if, for every f ∈ CB(X × Y ),
∫

X

dλXα

∫

Y

fνα (x;dy)→

∫

X

dλX
∫

Y

fν (x; dy) . (2)

From the (generalized) Fubini Theorem, we know that
∫
X
dλXα

∫
Y
fνα (x; dy) =

∫
X×Y

fdλX×Yα ,

where λX×Yα is the unique measure constructed from Kα. Thus, the convergence of procedural

beliefs is a weak-* convergence of the measures these beliefs yield.

For a product of more than two spaces, ν0,..,n−1;n will denote a transition probability between

X1× ...×Xn−1 and Xn. Let K
0,...,n−1;n be a procedural belief induced by λ0,...,n−1 and ν0,..,n−1;n.

Let P̃ (X0× ...×Xn) denote the collection of fully disintegrable measures on X1× ...×Xn. That is,

λ0,...,n ∈ P̃ (X0×...×Xn), if there is a probability λ
0 onX0 and a collection of transition probabilities

{ν0;1, ν0,1;2, ..., ν0,...,n−1;n} such that for any measurable B ⊂ X0 × ...×Xn, we have:

λ0,...,n (B) =

∫

X0

dλ0
∫

X1

ν0;1 (x0; dx1) ...

∫

Xn

1Bν
0,...,n−1;n (x0, ..., xn−1; dxn)

where 1B is an indicator function. We can construct P̃ (X0 × ... ×Xn) inductively. First, we take

the elements of P (X0) and combine these with all transition probabilities ν
0;1, as in (1). We obtain

P̃ (X0×X1). Next, we take these probabilities and combine them with transition probabilities ν0,1;2,

again using (1) to obtain P̃ (X0×X1×X2), and so on. It is important to note that the construction

of P̃ (X0 ×X1 ×X2) cannot be based on P (X0 ×X1). Instead, we need P̃ (X0 ×X1); otherwise, we

obtain non-fully disintegrable measures.

Our choice of topology for K(X;Y ) turns out to be very useful. First, it implies that K(X;Y ) and

P̃ (X × Y ) are topologically equivalent spaces.

Lemma 2.4

There exists a homeomorphism, γ : K(X;Y )→ P̃ (X × Y ).
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Second, following Varadarajan [18], we can show that if X and Y are separable (Polish) metric

spaces, then K(X;Y ) is metrizable as a separable (Polish) metric space. Metrizability is required

and expected, as similar results obtain for a set of Borel probabilities.

The existing literature uses the standard construction of beliefs on products. That is, these prob-

abilities are directly defined on X × Y . Our notion of belief is different and less general because

not all probabilities on X × Y can be represented, as in (1). However, topological assumptions in

Mertens and Zamir [11] and Brandenburger and Dekel [4] eliminate their advantage of a more general

definition of belief. According to the Disintegrability Theorem, their agents’ beliefs are disintegrable

and, hence, can be represented as procedural beliefs. Heifetz [7] assumes less in terms of topological

requirements than the Disintegrability Theorem demands. However, his construction is not more

general than ours. Beliefs in Heifetz [7] are defined as regular probability measures and as shown

in Leão Jr., et al. [10], they are disintegrable. On the other hand, we can construct a disintegrable

measure on X × Y that is not regular. Suppose that both X and Y are separable metric spaces;

however, X is not complete. There is a probability measure, λX , on X that is not regular. In

consequence, λX and a transition probability, ν, generate a non-regular measure, λX×Y , on X × Y

(see Remark 2, Appendix III in Billingsley [2] for details).

3 Procedural Type Spaces

Let S be a topological space endowed with Borel σ-algebra. This is an uncertainty space faced by

the players. A procedural type is an infinite collection of procedural beliefs. In order to construct

it, we inductively define spaces:

Ω0 := S

Ω1 := P (S)

Ω2 := K(S;P (S)) = K(Ω0; Ω1)

...

Ωn := K(Ω0 × ...×Ωn−2; Ωn−1).

LetW0 := ×
i=1
Ωi be the (canonical) space of procedural types, with generic element, w := (λ

0,K0;1,K0,1;2, ...).

Each K0,...,n−2;n−1 consists of a measure, λ0,...,n−2, on Ω0 × ... × Ωn−2 and a family of equivalent

transition probabilities between Ω0 × ... × Ωn−2 and Ωn−1. Equivalency is defined with respect to

λ0,...,n−2. Belief K0,...,n−2;n−1 generates a unique disintegrable probability over Ω0 × ...×Ωn−1.

We say that type w is coherent, if, for each n ≥ 2, λ0,...,n−2 is a probability induced by the preceding
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level. Let W1 be the set of coherent types. W is the set of types that satisfy both coherency and

the common belief of coherency. To believe an event means to assign measure 1 to it.

We want to show that W and P̃ (S ×W ) are homeomorphic. First, we prove that p : W1 →

P̃ (S ×W0) is a homeomorphism.

Lemma 3.1

If S is separable, then there exists a homeomorphism, p :W1 → P̃ (S ×W0).

To show that p is a function, we take w ∈ W1. The Ionescu-Tulcea Theorem (see Chapter II.9 in

Shiryaev [15]) demonstrates the existence of a unique probability, λ∞, on S ×W0, which we denote

as p(w). To show injectivity, take distinct w and w̃. There is n such that w and w̃ generate distinct

λ0,...,n and λ̃
0,...,n

. Since w and p(w) agree on cylinders, p(w) �= p(w̃). Surjectivity is a consequence

of taking P̃ (S ×W0), instead of P (S ×W0), as a range of p.

The standard method of constructing type spaces is based on the Kolmogorov Extension Theorem. In

contrast to that approach, we do not need to make any topological assumptions to prove the existence

of p. However, we require S to be separable for the continuity of p, as we use the convergence-

determining-class technique (see Chapter 1.2 in Billingsley [2]).

In order to prove that q : W → P̃ (S ×W ) is a homeomorphism, we use the approach based on

Proposition 2 in Brandenburger and Dekel [4].

Proposition 3.1

If S is separable, then there exists a homeomorphism, q :W → P̃ (S ×W ).

First, we prove thatW1 is closed inW0. Take a sequence of coherent types {wt} that converge to w.

Each wt generates an infinite hierarchy of probabilities (λ
0
t , λ

0,1
t ...). That is, we have convergence

(λ0t , λ
0,1
t ...) −→ (λ0, λ0,1...). Note that if {λ0,...,nt } converges to λ0,...,n, then the sequence of marginals

of {λ0,...,nt } converges to the marginal of λ0,...,n. Hence, w is coherent. Based on this result, we

conclude that eachWn := {w ∈W1 : p(w)(S ×Wn−1) = 1} is also closed inW0. Note thatW0 ⊃W1

and, by induction, W0 ⊃ W1 ⊃ W2.... We define W as an intersection, W =
⋂
∞

n=1Wn. Using the

continuity of probability measure and the fact that {Wn} is a decreasing sequence, we can show

that W = {w ∈W1 : p(w) (S ×W ) = 1}. From this, we derive that p(W ) = {λ∞ ∈ P̃ (S ×W0) :

λ∞ (S ×W ) = 1}. Since {λ∞ ∈ P̃ (S ×W0) : λ
∞ (S ×W ) = 1} and P̃ (S ×W ) are homeomorphic

and p(W ) and W are homeomorphic, we deduce the desired relation.
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4 Procedural and Standard Type Spaces

We inductively define the standard type:

X0 := S

X1 := X0 × P (X0)

...

Xn := Xn−1 × P (Xn−1).

T0 := ×
i=0

P (Xi) is the space of standard types with a generic element, t = (µ
0, µ0,1, ...). We say that a

standard type is disintegrable if each µ0,..,n is disintegrable, as in (1). However, such a type does not

to have to be coherent, as in Brandenburger and Dekel [4]. Hence, we say that a type is coherently

disintegrable if disintegration of the n-level conjecture is conducted with respect to the n − 1-level

belief. Let T1 be the set of standard types that satisfy coherent disintegrability, while T is the set of

types that satisfy both coherent disintegrability and the common belief of coherent disintegrability.

We prove the existence of homeomorphisms, f : T1 → P̃ (S × T0) and g : T → P̃ (S × T ).

Lemma 4.1

If S is separable, then there exists a homeomorphism, f : T1 → P̃ (S × T0).

Proposition 4.1

If S is separable, then there exists a homeomorphism, g : T → P̃ (S × T ).

The existence of f does not require S to be Polish, as in the Kolmogorov Extension Theorem. This

is derived from the fact that the beliefs are disintegrable and, hence, representable, as in (1). Once

again, we use the Ionescu-Tulcea Theorem. Proof of bijectivity and bicontinuity follows the same

technique we employed in the previous section.

Note that, in terms of topological assumption, we require less than Brandenburger and Dekel [4].

However, this not a gain at zero cost. Our requirement of beliefs being coherently disintegrable is

stronger than the sole coherency they require.

The next proposition describes the relationship between the procedural and standard types.
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Proposition 4.2

Suppose that S is separable; we have the following commutative diagram:

W
Ψ

−−−−→ T

q

�
�g

P̃ (S ×W ) −−−−→
ϕ

P̃ (S × T )

In Propositions 3.1 and 4.1, we established the existence of homeomorphisms, q and g. Next, we show

that two notions of type space — the procedural under coherency and common belief of coherency, as

well as the standard under coherent disintegrability and common belief of coherent disintegrability

— are topologically equivalent.

Proposition 4.3

There exists a homeomorphism, Ψ :W → T .

In order to show that P̃ (S ×W ) and P̃ (S × T ) are homeomorphic spaces, we need the following

result.

Lemma 4.2

Suppose Ψ1 : X1 → Y1 and Ψ2 : X2 → Y2 are homeomorphisms. Then there exists homeomorphism,

ϕ : P̃ (X1 ×X2)→ P̃ (Y1 × Y2).

In order to apply Lemma 4.2, replace both X1 and Y1 with S, X2 with W and Y2 with T . Let

Ψ1 be an identity function, i, and let Ψ2 be Ψ from Proposition 4.3. Since both i and Ψ are

homeomorphisms, there exists a homeomorphism, ϕ : P̃ (S ×W )→ P̃ (S × T ).

Finally, we need to show the commutativity. That is, for any w ∈ W and measurable B ⊆ S × T ,

we have ϕ (q(w)) (B) = g (Ψ(w)) (B). Note that q is a restriction of p on W . Hence, q(w)(A) =

p(w)(A) for any measurable A ⊆ S ×W . By the construction of ϕ in Lemma 4.2, we know that

ϕ (q(w)) (B) = q(w)(Ψ
−1
(B)) = p(w)(Ψ

−1
(B)), where Ψ := (i,Ψ) is a homeomorphism Ψ : S ×

W → S × T . According to Claim 5.5 in the Appendix, p(w)(Ψ
−1
(B)) = f (Ψ(w)) (B). Thus,

ϕ(q(w))(B) = f (Ψ(w)) (B). Since g and f are related in the same way as p and q, we have

f (Ψ(w)) (B) = g (Ψ(w)) (B). This concludes our proof of commutativity.
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5 Appendix

Proof of Lemma 2.2

Fix disintegrable λX×Y . From (1), we obtain marginal λX and transition probability, v. Collecting

all transition probabilities equivalent to v with respect to that marginal creates a procedural belief,

K. We need to prove that different procedural beliefs generate different probabilities on X × Y .

Take distinct K and K̃. Either marginals on X or families of transition probabilities that make

these two differ. If λX �= λ̃
X
, then λX×Y �= λ̃

X×Y
as their marginals disagree. Thus, consider the

case of [ν] /λX �= [ν̃] /λ̃X . This implies that neither ν is a member of [ν̃] /λ̃X nor ν̃ is a member of

[ν] /λX . We need to prove the following result.

Claim 5.1 Let ν and ν̃ be such that ∀B, λX×Y (B) = λ̃
X×Y

(B). Then, ν and ν̃ are equivalent

transition probabilities with respect to λX = λ̃
X
.

Proof: Fix some measurable subset, F of Y . Let X = C1 ∪C2 ∪C3 be a disjoint decom-

position of X, such that C1 := {x : ν (x;F ) > ν̃ (x;F )}, C2 := {x : ν (x;F ) < ν̃ (x;F )},

and C3 := {x : ν (x;F ) = ν̃ (x;F )}. We know that these sets are measurable events, since

ν and ν̃ are measurable functions. By assumption,
∫
Ck

ν (x;F ) dλX =
∫
Ck

ν̃ (x;F ) dλX

for k = 1, 2, 3. Take C1 and suppose that λX (C1) > 0. Then,
∫
C1

ν (x;F ) dλX >
∫
C1

ν̃ (x;F ) dλX . Since this is a contradiction, λX (C1) = 0. The same holds for C2. �

Assume that λX×Y = λ̃
X×Y

. The above claim implies that ν and ν̃ are equivalent transition

probabilities. Contradiction. �

Proof of Lemma 2.4

Let γ : K(X;Y ) → P̃ (X × Y ) be a natural relation, where γ (K) is a probability measure induced

by procedural belief, K. By Lemma 2.1, γ exists as each K induces unique probability, λX×Y . By

Lemma 2.2, γ is injective and surjective. To show the continuity of γ, take {Kα} that converge to

K. The Fubini Theorem implies that
∫
X×Y

fdλX×Yα →
∫
X×Y

fdλX×Y ∀f ∈ CB(X × Y ), where

λX×Yα = γ (Kα) and λX×Y = γ (K). That is, {γ(Kα)} weak-* converges to γ (K). Continuity of

γ−1 can be proved in the same way. �
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Proof of Proposition 4.3

Summary of the proof:

1. We define a special space, T̃0.

2. We show that W0 and T̃0 are homeomorphic under Ψ (Claim 5.2).

3. We show that Ψ(Wk) = Tk for k = 1, 2, ... (Claim 5.7).

4. Take T = ∩Tk = ∩Ψ(Wk) = Ψ(∩Wk) = Ψ (W ), where we use the fact that Ψ is the inverse

of Ψ−1. Thus, Ψ restricted to W carries it homeomorphically to T .

We inductively define a special space, T̃0.

Z̃0 := X0 = S

Z̃1 := P (Z̃0)

Z̃2 := P̃ (Z̃0 × Z̃1)

...

Z̃n := P̃ (Z̃0 × ...× Z̃n−1)

Let T̃0 = Z̃1 × Z̃2 × Z̃3 × .... Note that T1 ⊆ T̃0 ⊆ T0. If t ∈ T̃0, then at each level, we have

disintegrable belief. In fact, it is commonly believed that players have disintegrable beliefs, but

neither coherency nor belief in coherency is sustained.

Let µ0,...,n−1 be a generic element of Z̃n. It is a fully disintegrable probability on Z̃0 × ... × Z̃n−1.

Let λ0,...,n be a fully disintegrable probability on Ω0 × ...×Ωn.

Claim 5.2 There exists a homeomorphism, Ψ :W0 → T̃0.

Proof: We constructΨ explicitly. Takew ∈W0 and writeΨ((w1, w2, ...)) := (ψ1(w1), ψ2(w2), ...).

We need to inductively define ψ1 : Ω1 → Z̃1, ψ2 : Ω2 → Z̃2, ....

Since Ω0 = Z̃0 = S and Ω1 = Z̃1 = P (S), we define ψ0 : Ω1 → Z̃1 and ψ1 : Ω1 → Z̃1

as identity functions. Since Ω2 = K(Ω0; Ω1) = K(Z̃0; Z̃1) and Z̃2 = P̃ (Z̃0 × Z̃1), we set

ψ2 := γ2, where γ2 is from Lemma 2.4.

For n ≥ 3, we conduct a four-step procedure:

1. Let γn : Ωn → P̃ (Ω0 × ...×Ωn−1) be a homeomorphism of Lemma 2.4.

2. Define Ψ0,...,n−1 : Ω0 × ... × Ωn−1 → Z̃0 × ... × Z̃n−1 as Ψ0,...,n−1(w0, ..., wn−1) :=

(ψ0(w0), ..., ψn−1(wn−1)). Below, we show that this is a homeomorphism.
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3. Let ϕn : P̃ (Ω0 × ... × Ωn−1) → P̃ (Z̃0 × ... × Z̃n−1) be a homeomorphism of Lemma

4.2, constructed with the help of Ψ0,...,n−1.

4. Combine results, ψn := ϕn ◦ γn : Ωn → Z̃n.

We show inductively thatΨ0,...,n−1 is a homeomorphism. First, note thatΨ0,1 = (ψ0, ψ1)

is homeomorphic. Thus, ϕn exists and is a homeomorphism, making the ψn homeomor-

phism. Hence, Ψ0,1,2 = (ψ0, ψ1, ψ2) is a homeomorphism, and so on. Since every ψn is

homeomorphic, Ψ is homeomorphic, as well. �

The next two Claims, 5.3 and 5.4, are auxiliary results that we need in order to prove Claim 5.6.

We omit their proofs, as they are easily replicated manipulations.

Claim 5.3 Take wn ∈ Ωn and wn+1 ∈ Ωn+1, such that γn (wn) = λ0,...,n−1 is a probability on

Ω0 × ...×Ωn−1, which is a part of wn+1. Then

(a) γn+1(wn+1) = λ0,...,n is disintegrable with respect to γn(wn) = λ0,...,n−1; and

(b) ψn+1(wn+1) = µ0,...,n is disintegrable with respect to ψn(wn) = µ0,...,n−1.

Claim 5.4 Take µ0,...,n ∈ Z̃n+1, which is disintegrable with respect to µ0,...,n−1 ∈ Z̃n. Then

(a) ϕ−1n+1(µ
0,...,n) = λ0,...,n is disintegrable with respect to ϕ−1n (µ

0,...,n−1) = λ0,...,n−1; and

(b) ψ−1n (µ0,...,n−1) = wn and ψ−1n+1(µ
0,...,n) = wn+1 are such that λ0,...,n−1 generated by wn via γn

is a probability on Ω0 × ...×Ωn−1, which is a part of wn+1.

The next result relates homeomorphisms, p and f , of Lemmas 3.1 and 4.1, respectively. We will also

use this to prove Claim 5.7.

Claim 5.5 Let Ψ := (i,Ψ).

(a) For any w ∈W1, p(w)(Ψ
−1
(B)) = f(Ψ(w))(B), where B ⊆ S × T̃0.

(b) For any t ∈ T1, f(t)(Ψ(A)) = p(Ψ−1(t)) (A), where A ⊆ S ×W0.

Proof: First, we show that our claim holds for cylinders. Extending it to all measurable

events follows the technique based on the Sierpinski Class Lemma.

(a) Take w ∈ W1. Let λ0,...,n = γn+1(wn+1). Take arbitrary n and any measurable

B0,...,n ⊂ Z̃0 × ... × Z̃n. Let C
n := B0,...,n × Z̃n+1 × ... be a cylinder with base B0,...,n.

12



Observe that Ψ
−1
(Cn) = Ψ−10,...,n(B

0,...,n)×Ωn+1 × ....

p(w)(Ψ
−1
(Cn)) = p(w)(Ψ−10,...,n(B

0,...,n)×Ωn+1 × ...)

= λ0,...,n(Ψ−10,...,n(B
0,...,n))

= ϕn+1(λ
0,...,n)(B0,...,n)

= ϕn+1(γn+1(wn+1))(B
0,...,n)

= ψn+1(wn+1)(B
0,...,n)

= f(Ψ(w))(Cn)

The second equality follows the Ionescu-Tulcea Theorem. The third, forth, and fifth use

constructions of ϕn+1 and ψn+1, which we conducted in Claim 5.2. Coherency implies

the last equality.

(b) Take t. There is unique w, such thatΨ(w) = t. Take that w. By (a), p(w)(Ψ
−1
(B)) =

f(Ψ(w))(B). That is, p(Ψ−1(t))(Ψ
−1
(B)) = f (t) (B) for any B. Take B, such that

B = Ψ(A). Then, p(Ψ−1(t)) (A) = f (t) (Ψ(A)). �

Claim 5.6 Ψ(W1) = T1.

Proof: Takew ∈W1. We show that ψ(w) ∈ T1. Notice thatΨ(w) := (ψ1(w1), ψ2(w2), ...) =

(µ0, µ0,1, ...). According to Claim 5.3, µ0,...,n is disintegrable, with respect to µ0,...,n−1.

Thus, (µ0, µ0,1, ...) satisfies disintegrability. Take t ∈ T1. We show that Ψ
−1(t) ∈ W1.

Notice that Ψ−1(t) = (ψ−11 (µ
0), ψ−12 (µ

0,1), ...) = (w1, w2, ...). According to Claim 5.4,

from a couple (µ0,...,n−1, µ0,...,n), where µ0,...,n is disintegrable with respect to µ0,...,n−1,

we obtain a couple (wn, wn+1), where λ0,...,n−1 generated by wn is a probability on

Ω0 × ...×Ωn−1 that is a part of wn+1. Thus, (w1, w2, ...) satisfies disintegrability. �

Claim 5.7 Ψ(Wk) = Tk for k = 1, 2, ...

Proof: The proof is solved by induction. k = 1 is proved in Claim 5.6. Suppose that claim

is true for k, and we verify it for k+1. Take w ∈Wk+1. By assumption, p(w)(S×Wk) = 1,

and Wk = Ψ
−1(Tk). Thus, p(w)(S ×Ψ

−1(Tk)) = p(w)(Ψ
−1
(S × Tk)) = 1. According to

Claim 5.5, this means that f (Ψ(w)) (S×Tk) = 1. That is, Ψ(w) ∈ Tk+1. Take t ∈ Tk+1.

By assumption, f(t)(S × Tk) = 1, and Wk = Ψ−1(Tk). Thus, f(t)(S × Ψ(Wk)) =

f(t)(Ψ (S ×Wk)) = 1. According to Claim 5.5, this means that p(Ψ
−1(t))(S ×Wk) = 1.

That is, Ψ−1(t) ∈Wk+1. �
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Proof of Lemma 4.2

Fix topological spaces X1, X2, Y1, and Y2. Let E1, E2, F1, and F2 be their Borel σ-algebras,

respectively. To show the existence of ϕ, take λ1,2 ∈ P̃ (X1 ×X2). Then, take F1 ∈ F1 and F2 ∈ F2.

We construct µ1,2 ∈ P̃ (Y1 × Y2). We disintegrate λ
1,2 with respect to its marginal λ1. Let ν1;2 be

a transition probability that satisfies λ1,2 (E1 ×E2) =
∫
E1

dλ1
∫
E2

ν1;2 (x1; dx2), where E1 ∈ E1 and

E2 ∈ E2.

We construct µ1,2 by producing marginal, µ1, and transition probability, ω1;2. Assign µ1 (F1) :=

λ1(Ψ−11 (F1)). This definition makes sense since Ψ
−1
1 (F1) ∈ E1 as Ψ1 is homeomorphic. In a standard

way, we can verify that this yields a measure.

Assign ω1;2 (y1;F2) := ν1;2(Ψ−11 (y1) ;Ψ
−1
2 (F2)). This definition makes sense because Ψ

−1
1 (y1) is a

singleton, as Ψ1 is injective. We can verify that ω
1;2 (y1; .) is a probability measure, as we did this

for µ1. Measurability of ω1;2 (.;F2) comes from the fact that it is a composition of two measurable

functions, ν1;2(.; Ψ−12 (F2)) ◦Ψ
−1
1 .

Let Ψ := (Ψ1,Ψ2) : X1×X2 → Y1×Y2. This is a homeomorphism. Then, take E ∈ E1⊗E2. We show

that λ1,2(E) = ϕ(λ1,2) (Ψ(E)). For simplicity, ϕ(λ1,2) = µ1,2. Since probability is uniquely defined

on rectangles, we take E = E1×E2. Now, we have Ψ(E) = Ψ(E1×E2) = Ψ1(E1)×Ψ2(E2) = F1×F2.

We need the following result:

Claim 5.8 Let h : (X, E) → (Y,F) be measurable and bijective. Let λ be measure on X and

let f be real-valued, non-negative function defined on X. Define measure and function on Y by

µ(F ) := λ(h−1(F )) and g(y) := f(h−1(y)). These definitions make sense, due to assumptions on h.

Then, ∫

Y

g(y)dµ =

∫

X

f(h−1(y))dλ.

We omit the proof, as it is derived in a standard way from the Monotone Convergence Theorem.

Fix F2. Following notation from Claim 5.8, we take Ψ1 ≡ h, µ1,2 ≡ µ, λ ≡ λ1,2, 1F1ω
1;2(.;F2) ≡ g

and 1Ψ−1

1
(F1)

ν1;2(Ψ−11 (.) ;Ψ−12 (F2)) = f . We obtain the desired result:

µ1,2(F1 × F2) =

∫

Y1

1F1ω
1;2 (y1;F2) dµ

1

=

∫

X1

1Ψ−1

1
(F1)

ν1;2
(
Ψ−11 (.) ;Ψ−12 (F2)

)
dλ1

= λ1,2(Ψ−1 (F1 × F2)).

14



In the same way, we show that λ1,2 (E1 ×E2) = µ1,2(Ψ(E1 × E2)). This implies that λ
1,2 (E) =

µ1,2(Ψ(E)), and µ1,2 (F ) = λ1,2(Ψ−1 (F )).

To show that ϕ is injective, take distinct λ1,2, λ̃
1,2

∈ P̃ (X1 × X2). Then, there is E ∈ E1 ⊗ E2,

such that λ1,2(E) �= λ̃
1,2
(E). Let F := Ψ(E). Thus, ϕ(λ1,2)(F ) �= ϕ(λ̃

1,2
) (F ). To show that ϕ is

surjective, take µ1,2 ∈ P̃ (Y1 × Y2). We define disintegrable measure on X1 ×X2, using Ψ1 and Ψ2

in the same way that we constructed a measure on Y1 × Y2, based on λ1,2, at the beginning.

Continuity of ϕ and ϕ−1 is based on the Portmanteau Theorem. We prove only the former. Let

λ1,2n weak-* converge to λ1,2. Let µ1,2n := ϕ(λ1,2n ) and µ1,2 := ϕ
(
λ1,2

)
. Let F be µ1,2-continuity

set. That is, µ1,2 (∂F ) = 0, and λ1,2(Ψ−1(∂F )) = 0. We know that Ψ−1 (∂F ) = ∂Ψ−1 (F ).

As such, λ1,2(∂Ψ−1(F )) = 0, which implies that Ψ−1 (F ) is λ1,2-continuity set. Thus, by the

Portmanteau Theorem limλ1,2n (Ψ−1(F )) = λ1,2(Ψ−1(F )), and since λ1,2n (Ψ−1(F )) = µ1,2n (F ) and

λ1,2(Ψ−1(F )) = µ1,2(F ), we have limµ1,2n (F ) = µ1,2 (F ). Thus, we have convergence on all µ-

continuity sets which, according to the Portmanteau Theorem, implies that µ1,2n weak-* converge to

µ1,2. �
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