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Abstract

Curb sets [Basu and Weibull, Econ. Letters 36 (1991), 141-146] are product sets

of pure strategies containing all individual best-responses against beliefs restricted to

the recommendations to the remaining players. Prep sets [Voorneveld, Games Econ.

Behav. 48 (2004), 403-414] only require that the product sets contain at least one best-

response to such beliefs. While the concepts of curb and prep sets are set-theoretic

coarsenings of the notion of Nash equilibrium, we introduce the concepts of strong

curb sets and strong prep sets which are set-theoretic coarsenings of the notion of

strong Nash equilibrium. We require the set to be immune not only against individual

deviations, but also against group deviations. We show that every game has at least

one minimal strong curb (prep) set. Minimal strong curb (prep) sets are compared

with strong Nash equilibria, coalition-proof Nash equilibria and the set of coalitionally

rationalizable strategies. Finally, we provide a dynamic learning process leading the

players to playing strategies from a minimal strong curb set.
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1 Introduction

The main solution concept in noncooperative game theory, Nash equilibrium, requires sta-

bility only with respect to individual deviations by players. It does not take into account

the possibility that groups of players might coordinate their moves, in order to achieve

an outcome that is better for all of them. Aumann (1959) was �rst to incorporate this

consideration into the theory of noncooperative games by proposing the notion of strong

Nash equilibrium. A strategy pro�le is a strong Nash equilibrium if it is immune not

only to individual deviations, but also to coalitional deviations. More recently, Bernheim,

Peleg and Whinston (1987) have proposed the notion of coalition-proof Nash equilibrium.

A strategy pro�le is a coalition-proof Nash equilibrium if it is immune to coalitional de-

viations which are themselves immune to further deviations by subcoalitions. The main

weakness of strong Nash equilibrium and coalition-proof Nash equilibrium is that existence

is not guaranteed in a natural class of games, as opposed to the Nash equilibrium concept.

Basu and Weibull (1991) have extended the point-valued strict Nash equilibrium con-

cept to a set-valued concept: minimal curb (closed under rational behavior) sets. This

set-valued solution concept combines a standard rationality condition, stating that the

set of recommended strategies of each player must contain all best responses to whatever

belief he may have that is consistent with the recommendations to the other players, with

players�aim at simplicity, which encourages them to maintain a set of strategies as small

as possible. Recently, Voorneveld (2004) has proposed the notion of minimal prep (�prep�

is short for �preparation�) sets which are product sets of pure strategies containing not

all, but at least one best response against beliefs restricted to the recommendations to

the remaining players.1 The concepts of minimal curb sets and minimal prep sets are

set-theoretic coarsenings of the notion of Nash equilibrium.

In this paper we introduce the concepts of strong curb sets and strong prep sets which

are set-theoretic coarsenings of the notion of strong Nash equilibrium. We require the sets

to be immune not only against individual deviations, but also against group deviations.

We show that every game has at least one minimal strong curb (prep) set. Every strong

curb set is a strong prep set, so if a strong curb set is contained in a minimal strong prep

set, the two sets are necessarily equal. Minimal strong curb (prep) sets are compared

with strong Nash equilibria, coalition-proof Nash equilibria and the set of coalitionally

1Voorneveld, Kets and Norde (2005) have provided axiomatizations of minimal prep sets and minimal

curb sets. Kalai and Samet (1984) have proposed the notion of persistent retracts which also require the

recommendations to each player to contain at least one best response to beliefs in a small neighborhood

of the beliefs restricted to the recommendations to the remaining players. Voorneveld (2005) has shown

that, in generic games, persistent retracts, minimal prep sets and minimal curb sets coincide.
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rationalizable strategies.

Hurkens (1995) has proposed a dynamic learning process where players have bounded

memory and they play best responses against beliefs, formed on the basis of strategies

used in the recent past. This learning process leads the players to playing strategies from

a minimal curb set.2 Recently, Kets and Voorneveld (2008) have provided an alternative

dynamic learning process in which players display a bias towards recent choices and choose

best responses to beliefs supported by observed play in the recent past. The limit behavior

of this learning process is shown to eventually settle down in minimal prep sets. We propose

a learning process similar to the one proposed by Hurkens (1995) except that now groups

of players may coordinate their actions, and we show that this learning process leads the

players to playing strategies from a minimal strong curb set.

The paper is organized as follows. Section 2 contains preliminaries. In section 3 strong

curb sets and strong prep sets are formally de�ned. Minimal strong curb sets and minimal

strong prep sets are shown to exist in general. In section 4, minimal strong curb sets

and minimal strong prep sets are compared with strong Nash equilibria, coalition-proof

Nash equilibria and coalitional rationalizability. In Section 5 a learning process leading

the players to playing strategies from a minimal strong curb set is provided. Section 6

concludes.

2 Preliminaries

Strict set inclusion is denoted by  and weak set inclusion is denoted by �. A normal-
form game is a tuple G =



N; fAigi2N ; fuigi2N

�
, where N = f1; 2; : : : ; ng is a �nite set

of players, each player i 2 N has a nonempty, �nite set of pure strategies (or actions) Ai

and a von Neumann-Morgenstern utility function ui : A ! R, where A = �j2NAj . The
set of all games is denoted by �. Coalitions are nonempty subsets of players (J such that

J � N and J 6= ?). Let J be the �nite set of coalition structures. A coalition structure
J = (J1; J2; : : : ; JM ) is a partition of the player set N = f1; 2; : : : ; ng: Jk\Jl = ? for k 6= l
and [Mk=1Jk = N . For every X � A, let X�i = �j2NnfigXj , 8i 2 N and X�J = �j2NnJXj ,
8J � N . The subgame obtained from G by restricting the action set of each player i 2 N
to a subsetXi � Ai is denoted �with a minor abuse of notation from restricting the domain
of the utility functions ui to �j2NXj �by GX =



N; fXigi2N ; fuigi2N

�
. The set of mixed

strategies of player i 2 N with support in Xi � Ai is denoted by �(Xi). Payo¤s are

extended to mixed strategies in the usual way. As usual, (ai; ��i) is the pro�le of strategies

where player i 2 N plays ai 2 Ai and his opponents play according to the mixed strategy
2See also Young (1998).
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pro�le ��i = (�j)j2Nnfig 2 �j2Nnfig�(Aj). A mixed strategy pro�le for coalition J � N is

denoted �J = (�i)i2J 2 �i2J�(Ai), and (�J ; ��J) is the pro�le of strategies where players
belonging to coalition J play according to the mixed strategy pro�le �J 2 �i2J�(Ai) and
their opponents play according to the mixed strategy pro�le ��J 2 �j2NnJ�(Aj). For
every J � N , i 2 J , X � A, ��i = (�j)j2Nnfig 2 �j2Nnfig�(Xj), we denote by ��J�i the
marginal distribution of ��i over X�J .

Let G =


N; fAigi2N ; fuigi2N

�
be a game, let ? 6= J � N , and let � 2 �i2N�(Ai).

The reduced game of G with respect to J and � is the game GJ;� = hJ; fAigi2J ; fu�i gi2Ji
where u�i (�J) = ui(�J ; ��J) for all �J 2 �i2J�(Ai) and i 2 J . This de�nition of reduced
games is due to Peleg and Tijs (1996) and has a straightforward interpretation. Let

? 6= J � N and � 2 �i2N�(Ai). If it is commonly known among the members of J that
the members of N n J have chosen the mixed strategies �i, i 2 N n J , then the members
of J are faced with the game GJ;�.

For i 2 N and ��i 2 �j2Nnfig�(Aj),

BRi(��i) = fai 2 Ai j ui(ai; ��i) � ui(a0i; ��i) for each a0i 2 Aig

is the set of pure best responses of player i against ��i.

The notion of strong Nash equilibrium is due to Aumann (1959). A strong Nash

equilibrium is a Nash equilibrium such that there is no nonempty set of players who

could all gain by deviating together to some other combination of strategies that is jointly

feasible for them, when the other players who are not in this set are expected to stay with

their equilibrium strategies. Formally, the notion of strong Nash equilibrium is de�ned as

follows. The strategy pro�le �� 2 �i2N�(Ai) is a strong Nash equilibrium if and only if,

8J � N , 8�J 2 �j2J�(Aj), 9i 2 J such that ui(��) � ui(�J ; ���J).
Basu and Weibull (1991) have introduced the concept of strategy subset closed under

rational behavior (curb), which is a set-theoretic coarsening of the notion of strict Nash

equilibrium. Formally, curb sets are de�ned as follows.

De�nition 1 A curb set is a product set X = �i2NXi where

(a) for each i 2 N , Xi � Ai is a nonempty set of pure strategies;

(b) for each i 2 N and each belief ��i of player i with support in X�i, the set Xi

contains all best responses of player i against his belief:

8i 2 N;8��i 2 �j2Nnfig�(Xj); BRi(��i) � X:

Since the full strategy space is always curb, particular attention is devoted to minimal

curb sets. A curb set X is minimal if no curb set is a proper subset of X. Basu and
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Weibull (1991) have shown that every game G possesses at least one minimal curb set.

The set-valued solution concept that assigns to each game its collection of minimal curb

sets is denoted by min-curb. Hence,

min-curb(G) = fX � A j X is a minimal curb set of Gg .

Similarly,

curb(G) = fX � A j X is a curb set of Gg .

Voorneveld (2004) has proposed another set-valued solution concept, prep sets, which

are formally de�ned as follows.

De�nition 2 A prep set is a product set X = �i2NXi where

(a) for each i 2 N , Xi � Ai is a nonempty set of pure strategies;

(b) for each i 2 N and each belief ��i of player i with support in X�i, the set Xi

contains at least one best response of player i against his belief:

8i 2 N;8��i 2 �j2Nnfig�(Xj); BRi(��i) \Xi 6= ?:

Prep sets are product sets of pure strategies such that each player�s set of recommended

strategies must contain at least one best-reply to whatever belief he may have that is

consistent with the recommendations to the other players, while curb sets are product

sets of pure strategies containing not just some, but all best responses against beliefs

restricted to the opponents�recommendations. A prep set X is minimal if no prep set

is a proper subset of X. Voorneveld (2004) has shown that every game G possesses at

least one minimal prep set. The set-valued solution concept that assigns to each game its

collection of minimal prep sets is denoted by min-prep. Hence,

min-prep(G) = fX � A j X is a minimal prep set of Gg .

Similarly,

prep(G) = fX � A j X is a prep set of Gg .

3 Strong curb sets and strong prep sets

While the concepts of curb sets and prep sets are set-theoretic coarsenings of the notion

of Nash equilibrium, we introduce the concepts of strong curb sets and strong prep sets

which are set-theoretic coarsenings of the notion of strong Nash equilibrium. That is, we

require the set to be immune not only against individual deviations (as for curb and prep

4



sets), but also against group deviations. For � = (��i)i2N with ��i 2 �j2Nnfig�(Aj), we
denote by CBRJ(�) the set of coalitional best-responses of coalition J � N which is:

CBRJ(�) = f�J 2 �i2J�(Ai) j (i)8i 2 J , ui(ai; ��i) � ui(�J ; ��J�i ), 8ai 2 Ai and

(ii)@�0J 2 �i2J�(Ai) such that 8i 2 J; ui(�J ; ��J�i ) < ui(�
0
J ; �

�J
�i )g.

It is the set of strategy pro�les of coalition J that are preferred by each member i of

J to any individual play, given its beliefs ��i. Intuitively, a set X is a strong curb or a

strong prep set if the belief that only strategies in X are played imply that players and

coalitions have no incentives to use other strategies than those belonging to X.

Formally, strong curb sets are de�ned as follows.

De�nition 3 A strong curb set is a product set X = �i2NXi where

(a) for each i 2 N , Xi � Ai is a nonempty set of pure strategies;

(b) for each J � N and each vector of beliefs � = (��1; :::; ��N ) of the players with each

belief ��i having support inX�i, the product setXJ = �j2JXj contains the support
of all coalitional best responses of coalition J against the beliefs of its members:

8J � N;8� = (��1; :::; ��n) with ��i 2 �l2Nnfig�(Xl), i 2 N ,

either CBRJ(�) = ? or CBRJ(�) � �j2J�(Xj).

Formally, strong prep sets are de�ned as follows.

De�nition 4 A strong prep set is a product set X = �i2NXi where

(a) for each i 2 N , Xi � Ai is a nonempty set of pure strategies;

(b) for each J � N and each vector of beliefs � = (��1; :::; ��N ) of the players with

each belief ��i having support in X�i, the product set XJ = �j2JXj contains the
support of at least one coalitional best response of coalition J against the beliefs of

its members:

8J � N;8� = (��1; :::; ��n) with ��i 2 �l2Nnfig�(Xl), i 2 N ,

either CBRJ(�) = ? or CBRJ(�) \ �j2J�(Xj) 6= ?.

Strong prep sets are product sets of pure strategies such that each player�s set of rec-

ommended strategies must contain at least one coalitional best-response of each coalition,

if some exist, to whatever belief each coalition member may have that is consistent with
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the recommendations to the other players, while strong curb sets are product sets of pure

strategies containing not just some, but all coalitional best-responses of each coalition

against beliefs of each coalition member that are consistent with the recommendations to

the other players.

A set X � A is not a strong prep set if there exists a coalition having a deviation

outside the set of recommended strategies such that each coalitional member is better

o¤ by deviating for at least one possible belief concerning the play of others in the set

of recommended strategies. Notice that each coalitional member is allowed to have a

di¤erent belief concerning the play of others in the set of recommended strategies to

assess the pro�tability of the deviation. Thus, the coalitional members may disagree on

where the deviation leads to. Under the strong curb concept, a deviation is blocked if we

can �nd one player who is strictly better o¤ by blocking the deviation. Thus a deviation

occurs only if all coalitional members are at least as well o¤by deviating. Under the strong

prep concept, a deviation is blocked if at least one player is weakly better o¤ by blocking

the deviation. Thus a deviation occurs if all coalitional members are strictly better o¤ by

deviating.

A strong curb set X is minimal if no strong curb set is a proper subset of X. The

set-valued solution concept that assigns to each game its collection of minimal strong curb

sets is denoted by min-strong-curb. Hence,

min-strong-curb(G) = fX � A j X is a minimal strong curb set of Gg .

Similarly,

strong-curb(G) = fX � A j X is a strong curb set of Gg .

A strong prep set X is minimal if no strong prep set is a proper subset of X. The

set-valued solution concept that assigns to each game its collection of minimal strong prep

sets is denoted by min-strong-prep. Hence,

min-strong-prep(G) = fX � A j X is a minimal strong prep set of Gg .

Similarly,

strong-prep(G) = fX � A j X is a strong prep set of Gg .

Theorem 1 Every normal-form game G has a minimal strong curb set and a minimal

strong prep set.

Establishing existence of minimal strong curb sets (or minimal strong prep sets) in

�nite games is simple: the entire pure-strategy space A is a strong curb set (or a strong

prep set). Hence the collection of strong curb sets (strong prep sets) is nonempty, �nite
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(since A is �nite) and partially ordered by set inclusion. Consequently, a minimal strong

curb set (minimal strong prep set) exists. In the appendix we show that the existence

result holds in general. Every strong curb set is a strong prep set, so if a strong curb set

is contained in a minimal strong prep set, the two sets are necessarily equal.

If X is a minimal strong prep set of G =


N; fAigi2N ; fuigi2N

�
, then it is a minimal

strong prep set of the subgame GX =


N; fXigi2N ; fuigi2N

�
.

Theorem 2 If X 2 min-strong-prep(G) then X 2 min-strong-prep(GX).

Proof. Let X 2 min-strong-prep(G). X is a trivial strong prep set of the subgame GX :

X 2 strong-prep(GX). We will show that there is no Y  X such that Y 2 strong-
prep(GX). Suppose, on the contrary, that there exists Y  X such that Y 2 strong-
prep(GX). Since Y is not a minimal strong prep set of G, there exists a vector of beliefs

concentrated on Y and a coalition J � N such that each member of the coalition prefers

to play a strategy pro�le outside the set Y rather than playing a best-response in Y to his

belief. Formally, since Y =2 strong-prep(G) there exists J � N , �J 2 �j2J�(AjnYj) and
� = (��1; :::; ��N ) with ��i 2 �j2Nnfig�(Yj), i 2 N , such that uj(�J ; ��J�j ) > uj(aj ; ��j)
for all j 2 J for all aj 2 Yj . Since Y 2 strong-prep(GX), the aforementioned deviation of
coalition J does not belong to �j2J�(XjnYj), we have �J 2 �j2J�(AjnXj). Since X 2
strong-prep(G) and ��i 2 �j2Nnfig�(Xj) (since �j2Nnfig�(Yj)  �j2Nnfig�(Xj)), at
least one member j� 2 J prefers to play a best-response in X against the belief ��j�than

playing according to �J . Thus, we have uj�(bj� ; ��j�) � uj�(�J ; ��J�j�) for some bj� 2 Xj .
Since uj�(�J ; �

�J
�j�) > uj�(aj� ; ��j�) for all aj� 2 Yj�(Y =2 strong-prep(G)), we have

uj�(bj� ; ��j�) > uj�(aj� ; ��j�) for some bj� 2 Xj� , for all aj� 2 Yj� . This contradicts
the fact that Y 2 strong-prep(GX) since we have identi�ed a belief � which is such that
BRj

�
(��j�) \ Y = ?.

If X is a minimal strong curb set of G =


N; fAigi2N ; fuigi2N

�
, then it is a minimal

strong curb set of the subgame GX =


N; fXigi2N ; fuigi2N

�
.

Theorem 3 If X 2 min-strong-curb(G) then X 2 min-strong-curb(GX).

Proof. Let X 2 min-strong-curb(G). X is a trivial strong curb set of the subgame GX :

X 2 strong-curb(GX). We will show that there is no Y  X such that Y 2 strong-
curb(GX). Suppose, on the contrary, that there exists Y  X such that Y 2 strong-
curb(GX). Since Y is not a minimal strong curb set of G, there exists a vector of beliefs

concentrated on Y and a coalition J � N such that each member of the coalition prefers to

play a strategy pro�le outside the set Y rather than playing a best-response in Y to his be-

lief. Formally, since Y =2min-strong-curb(G), there exists J � N , �J 2 �j2J�(AjnYj) and
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� = (��1; :::; ��N ) with ��i 2 �j2Nnfig�(Yj), i 2 N , such that uj(�J ; ��J�j ) � uj(aj ; ��j)
for all j 2 J , for all aj 2 Yj . Since Y 2 strong-curb(GX), the aforementioned deviation
of coalition J does not belong to �j2J�(XjnYj), we have �J 2 �j2J�(AjnXj). Since
X 2 strong-curb(G) and ��i 2 �j2Nnfig�(Xj) (since �j2Nnfig�(Yj)  �j2Nnfig�(Xj)),
at least one member j� 2 J prefers to play a best-response in X against the belief ��j�

than playing according to �J . Thus, we have uj�(bj� ; ��j�) > uj�(�J ; �
�J
�j�) for some

bj� 2 Xj . Since uj�(�J ; ��J�j�) � uj�(aj� ; ��j�) for all aj� 2 Yj�(Y =2 strong-curb(G)), we
have uj�(bj� ; ��j�) � uj�(aj� ; ��j�) for some bj� 2 Xj� , for all aj� 2 Yj� . This contradicts
the fact that Y 2 strong-curb(GX) since we have identi�ed a belief � which is such that
BRj

�
(��j�) * Y .

4 Relationships with other solution concepts

In this section we relate the concepts of (minimal) strong curb sets and (minimal) strong

prep sets to the concepts of (strict) strong Nash equilibrium, coalition-proof Nash equilib-

rium and coalitional rationalizability. We have that (i) the product set of actions chosen

in every strict strong Nash equilibrium is a minimal strong curb set; (ii) the product set

of actions chosen in every strong Nash equilibrium in pure strategies is a minimal strong

prep set. Conversely, (i) for every minimal strong curb set composed of one action per

player, the strategy pro�le in which each player selects this action is a strict strong Nash

equilibrium; (ii) for every minimal strong prep set composed of one action per player,

the strategy pro�le in which each player selects this action is a strong Nash equilibrium.

Since every strict strong Nash equilibrium is in pure strategies, the support of every strict

strong Nash equilibrium belongs to a minimal strong curb set. One may wonder whether

every strategy in the support of a strong Nash equilibrium in mixed strategies belongs to

a minimal strong prep set. We show in Example 1 that it is not necessarily the case.

Example 1 Consider the following normal-form game G1.

L R

U 4; 1 0; 0

M 0; 0 4; 1

D 3; 2 3; 2

We have that min-strong-curb(G1) = ffUg � fLg; fMg � fRgg = min-strong-prep(G1).

The mixed strategy pro�le (�1(D) = 1, �2(L) = x) is a strong Nash equilibrium of G1 for

1=4 � x � 3=4. Thus, the action D is used in some strong Nash equilibria but does not

belong to any minimal strong curb set or any minimal strong prep set.�
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The main weakness of the strong Nash equilibrium concept is that it fails to exist in a

natural class of games. We have shown that the existence of minimal strong curb sets and

minimal strong prep sets is guaranteed in general. One question addressed here is whether

minimal strong curb sets or minimal strong prep sets allow us to improve predictions in

games in which a (strict) strong Nash equilibrium does not exist. In Example 2, we provide

a game in which a (strict) strong Nash equilibrium does not exist but the minimal strong

prep (curb) set is a proper subset of the full strategy space.

Example 2 Consider the following normal-form game G2.

L C R

U 4; 4 0; 5 0; 0

M 0; 3 2; 2 0; 0

D 0; 0 0; 0 a; 1

For a < 4 the game G2 has no strong Nash equilibrium while the minimal strong prep

(curb) set is unique: min-strong-prep(G2) = ffU;Mg � fL;Cgg = min-strong-curb(G2).

Indeed, when each player believes that the other player plays in the set, each player�s

individual best-responses lie in the set. In addition, all coalitional moves outside the set

are blocked by player 2. �

Notice that the set of minimal strong prep sets may be composed of more elements

than the product set of actions chosen in every strong Nash equilibria even when strong

Nash equilibria exist. Consider again the game G2 for a � 4. The strategy pro�le (D;R)
is the unique strong Nash equilibrium of the game. The set composed of those actions

is thus also a minimal strong prep set. However, fU;Mg � fL;Cg is another minimal
strong prep set. As a consequence, the unique strong Nash equilibrium may not be the

only reasonable prediction in this game.3

The following proposition establishes that if X � A is a strong prep set and � 2
�i2N�(Xi) is a strong (or coalition-proof) Nash equilibrium of the subgame restricted to

X, then � is a strong (or coalition-proof) Nash equilibrium of the original game.4

Proposition 1 For every game G = hN; (Ai)i2N ; (ui)i2N i, if X � A is a strong prep set
of G and � 2 �i2N�(Xi) is a strong (coalition-proof) Nash equilibrium of the subgame

GX = hN; (Xi)i2N ; (ui)i2N i, then � is a strong (coalition-proof) Nash equilibrium of the

original game G.
3For a > 4, the strategy pro�le (D;R) is the unique strict strong Nash equilibrium of G2, and the set

composed of those actions is thus also a minimal strong curb set. But, fU;Mg�fL;Cg is another minimal
strong curb set.

4Similarly, it holds that if X � A is a strong curb set and � 2 �i2N�(Xi) is a strict strong Nash

equilibrium of the subgame restricted to X, then � is a strict strong Nash equilibrium of the original game.
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Proof. Consider a game G = hN; (Ai)i2N ; (ui)i2N i. By contradiction, suppose X � A

is a strong prep set of G, � 2 �i2N�(Xi) is a strong (coalition-proof) Nash equilibrium
of the subgame GX = hN; (Xi)i2N ; (ui)i2N i but � is not a strong (coalition-proof) Nash
equilibrium of the original game G. Since � is not a strong (coalition-proof) Nash equi-

librium of the original game G, there exists a coalition J � N and a strategy pro�le

�J 2 �j2J�(Aj) which satis�es ui(�J ; ��J) > ui(�) 8i 2 J: Since X is a strong prep set

of the original game, strategies in the support of the coalitional deviation �J belong to

the set XJ (�J =2 �j2J�(AjnXj)). This contradicts the fact that � is a strong (coalition-
proof) Nash equilibrium of the subgame GX = hN; (Xi)i2N ; (ui)i2N i.

Corollary 1 In any two-player game G, every strong prep set contains the support of a

coalition-proof Nash equilibrium.

Proof. Any subgame GX = hN; (Xi)i2N ; (ui)i2N i obtained from the original two-player

game G by restricting the action set of each player i 2 N to a subset Xi � Ai satis�es the
conditions of the Glicksberg�s (1952) theorem for existence of a Nash equilibrium in mixed

strategy. In two-player games, the set of coalition-proof Nash equilibria is equivalent to

the set of Nash equilibria that are not Pareto dominated by another Nash equilibrium.

Any subgame GX of the original game thus contains at least one coalition-proof Nash

equilibrium of that subgame. If X � A is a strong prep set, it follows from Proposition

1 that the coalition-proof Nash equilibria of the subgame GX are coalition-proof Nash

equilibria of the original game.

Since the existence of a strict coalition-proof Nash equilibrium in any subgame is not

guaranteed, it does not hold that every strong curb set contains the support of a strict

coalition-proof Nash equilibrium. But, if X is a strong curb set, it is also a strong prep set,

and thus X contains the support of a coalition-proof Nash equilibrium but not necessarily

a strict one. Corollary 1 does not generalize to games with more than two players since

the existence of coalition-proof Nash equilibria is not guaranteed. However, even when a

(strict) coalition-proof Nash equilibrium exists, its support is not necessarily contained in

a minimal strong prep (curb) set. This is illustrated through the following example.
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Example 3 (Ambrus, QJE 2006) Consider the following normal-form game G3.

L C R

U 2; 1; 0 0; 0; 0 �9;�9;�9
M 2; 0; 1 1; 0; 2 �9;�9;�9
D �9;�9;�9 �9;�9;�9 �9;�9;�9

l

L C R

U 1; 2; 0 0; 2; 1 �9;�9;�9
M 0; 0; 0 0; 1; 2 �9;�9;�9
D �9;�9;�9 �9;�9;�9 �9;�9;�9

c

L C R

U �9;�9;�9 �9;�9;�9 �9;�9;�9
M �9;�9;�9 �9;�9;�9 �9;�9;�9
D �9;�9;�9 �9;�9;�9 �8;�8;�8

r

The unique (strict) coalition-proof Nash equilibrium of G3 is (D;R; r), while the unique

minimal strong prep set and the unique minimal strong curb set is: min-strong-curb(G3) =

min-strong-prep(G3) = ffU;Mg � fL;Cg � fl; cgg. The predictions obtained under the
minimal strong prep (curb) set seem more reasonable than the one given by the coalition-

proof Nash equilibrium.�

Bernheim (1984) and Pearce (1984) have proposed an iterative procedure in which at

each round strategies that are never best-response are deleted. Strategies that survive this

iterative procedure are rationalizable. Contrary to curb sets and prep sets,5 strong curb

sets or strong prep sets may include strategies that are strictly dominated or even not

rationalizable.

Example 4 Consider the prisoners dilemma G4.

L R

U 2; 2 0; 3

D 3; 0 1; 1

We have that the action U (L) is strictly dominated for player 1 (2) but belongs to the

unique minimal strong prep (curb) set of G4: min-strong-curb(G4) = ffU;Dg � fL;Rgg =
min-strong-prep(G4). �

Ambrus (2006) has extended the concept of rationalizability by considering also the

deletion of strategies by groups of players. Strategies that survive the iterative deletion
5Basu and Weibull (1991) and Voorneveld (2004) have shown that every strategy contained in a minimal

curb set or in a minimal prep set is rationalizable. The set of rationalizable strategies coincide with the

maximal tight curb set where tight curb sets are curb sets which are identical with their own best replies.
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of never-best response strategies of coalitions are coalitionally rationalizable. We �rst

provide an example where minimal strong curb sets and minimal strong prep sets have

more cutting power than the concept of coalitional rationalizability.

Example 5 (Ambrus, QJE 2006) Consider the following normal-form game G5.

L C R

U �2; 1 �1; 0 1;�2
M 0;�1 0; 0 0;�1
D 1;�2 �1; 0 �2; 1

In G5 the strategy pro�le (M;C) is a strict strong Nash equilibrium and min-strong-

curb(G5) = min-strong-prep(G5) = ffMg � fCgg. However, any action pro�le is coali-
tionally rationalizable.�

We now provide an example showing that the converse may also be true: coalitional

rationalizability may have more cutting power than minimal strong curb sets and minimal

strong prep sets.

Example 6 (Ambrus, QJE 2006) Consider the following normal-form game G6.

L R

U 2; 2; 2 0; 0; 0

D 0; 0; 0 3; 3; 0

l

L R

U 0; 0; 0 0; 0; 0

D 0; 0; 0 1; 1; 1

r

The game G6 has a unique coalitionally rationalizable strategy pro�le which is (D;R; r).

Player 1 and player 2 both recognize that they have a dominant strategy pro�le (D;R).

Anticipating this choice, player 3 selects r. On the other hand, fDg � fRg � frg is nor
a strong prep set nor a strong curb set since the deviation of the three players from it to

(U;L; l) is Pareto improving. The only strong prep set and strong curb set of G6 is A, the

full strategy space.�

5 Learning by forgetful players

In this section we propose a dynamic learning process similar to the one proposed by

Hurkens (1995) by adding the possibility that groups of players may coordinate their

actions. Players observe actions played recently and form their beliefs upon these observa-

tions. Groups of players may select a joint action if by doing so, the expected payo¤of each

member of the group is increased with respect to the payo¤ he would have obtained by
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playing an individual best-response to his belief. We will show that this learning process

leads the players to playing strategies from a minimal strong curb set.

A �nite Markov chain is characterized by a pair (X;P ), where X is a �nite state space

and P : X � X ! [0; 1] is a transition matrix. The interpretation is that P (x; x0) is the

probability that the process will move from x to x0 in one period. We will denote x x0

if there exists k 2 N [ f0g, x0; :::; xk 2 X with x0 = x, xk = x0, and P (xi; xi+1) > 0

(i = 0; :::; k�1). Now de�nes a weak order on X. We can de�ne an equivalence relation

on X: x � y , x  y and y  x. Let [x] denote the equivalence class that contains x

and let Q = f[x] j x 2 Xg denote the set of equivalence classes. A partial order � on Q is
given by: [x] � [y], y  x. The minimal elements with respect to the order � are called
ergodic sets. The other elements are called transient sets. If the process leaves a transient

set it can never return to that set. And if the process is in an ergodic set it can never leave

this set. The elements of these sets are called ergodic and transient states, respectively. A

very useful result is that in any �nite Markov chain, no matter where the process starts,

the probability after k steps that the process is in an ergodic state tends to 1 as k tends

to in�nity.

Fix a positive integer K. Suppose we have a �nite population of individuals that is

partitioned into non-empty classes V1; :::; Vn. The members of Vi are candidates to play

role i in the game, and they all have the same payo¤ function ui. Let t = 0; 1; 2; :::

denote successive time periods. The game G is played once every period. In period t, one

individual is drawn from each class Vi, and players are partitioned into coalitions to form

a coalition structure. Every possible coalition structure has a positive probability to occur

at each period. We refer to the individual that is drawn from Vi to play the game in the

current period as player i, although the identity of this player may change from time to

time. Player i receives some, but not necessarily all, information about play in the recent

K periods. Then he chooses a strategy according to some rule. Then the players are put

back in their class. This ends period t and we move up to period t+ 1.

Since we assume that all the rules are time-independent, this learning process can

be described by a stationary Markov chain on the state space H = AK . Call bh 2 H a

successor of h 2 H if bh is obtained from h by deleting the leftmost element and by adding

some element a 2 A to the right. Let r(bh) denote the rightmost element of bh 2 H. For
h = (a�K ; :::; a�1) 2 H, let �i(h) = fa�Ki ; :::; a�1i g denote the set of strategies played by
player i in the recent past.

The learning process is described by a transition matrix P 2 P, where P is the set of
transition matrices P that satisfy for all histories h, bh 2 H, P (h;bh) > 0 if and only if (i) bh
is a successor of h, (ii) for some J 2 J and � = (��1; :::; ��n) with ��i 2 �l2Nnfig�(�l(h)),
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i 2 N , we have r(bh) = [J2JaJ such that aJ 2 supp(�J) for �J 2 CBRJ(�) if CBRJ(�) 6=
?, while aJ 2 [i2JBRi(��i) if CBRJ(�) = ?.6 In words, from period to period each

player chooses a strategy. This strategy can be chosen individually or in group, and is

chosen by observing recent past play. When groups of players coordinate their move,

they choose a strategy pro�le which is such that all members of the group bene�t from

playing jointly. In state h, if coalition J � N has a best-response in mixed strategy

(�J 2 CBRJ(�)) given a pro�le of beliefs with support in the set of strategies played in
the recent past (� = (��1; :::; ��n) with ��i 2 �l2Nnfig�(�l(h)), i 2 N), then there is a
positive probability to move from state h to state h0 in which each member of coalition

J plays an action ai 2 Ai in the support of the best-response �J of coalition J (aJ 2
supp(�J)).

We assume that a su¢ cient level of diversity exists in the population. Let C 2 min-
strong-curb(G) be a minimal strong curb set of G. We say that h 2 H is a C-history if

h 2 CK . We call h a strong curb history if it is a C-history for some minimal strong curb
set C.

Theorem 4 There exists K 2 N such that for all K � K and every Markov chain with

transition matrix P 2 P :

(i) If Z � H is an ergodic set then Z � CK for some minimal strong curb set C.

(ii) For every minimal strong curb set C there exists exactly one subset Z � CK that

is ergodic.

Proof. Take K � 2M = 2(�ni=1 jAij � (n � 1)) and let K � K. Let P 2 P: Let
ht = (xK�t; :::; x1; a1; :::; at) be a particular history and assume that span(fa1; ::; atg) is
not a strong curb set. Then, there exists a partition J 2 J, a pro�le of beliefs � =

(��1; :::; ��n) with ��i 2 �l2Nnfig�(spanfa1l ; :::; atlg), i 2 N , and a pro�le of action

at+1 2 Anspan(fa1; ::; atg) such that at+1 = [J2Jat+1J with at+1J 2 supp(�J) for �J 2
CBRJ(�) if CBRJ(�) 6= ?, while aJ 2 [i2JBRi(��i) if CBRJ(�) = ?. Let ht+1 =
(xK�t+1; :::; x1; a1; :::; at+1). Then P (ht; ht+1) > 0. Starting from an arbitrary history h1

we can apply this argument repeatedly.

Let a1; :::; aT 2 A be such that at+1 =2 span(fa1; :::; atg) for all t = 1; :::; T � 1. Then
T � M . There exists a T � M such that h1  hT = (xK�T ; :::; x1; a1; :::; aT ) and

span(fa1; :::; aT g) is a strong curb set. Let C � span(fa1; :::; aT g) be a minimal strong
curb set. Since every strategy in a minimal strong curb set is an element in the support of a

coalitional best reply to some belief concentrated on the set and sinceK � 2M , there exists
6We implictly assume that if a coalition has to move, each member of that coalition is myopic in the

sense that it does not try to gain information from the decision made by other players of the coalition.
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a set fb1; :::; bMg that spans C and such that hT  hT+M = (:::; a1; :::; aT ; b1; :::; bM )  
hT+K = (b1; :::; bM ; bM ; :::; bM )  hT+K+1 = (b2; :::; bM ; bM ; :::; bM ).7 In words, from

hT , there is a positive probability that each player i 2 N draws speci�c beliefs from

�j2Nnfig�(span(fa1j ; :::; aTj g)) and are assigned in speci�c coalitions during M periods in

a row such that each player (possibly in coalition) chooses a (an element in the support

of a coalitional) best-response to its belief in each period and the process reach hT+M =

(:::; a1; :::; aT ; b1; :::bM ) after M periods. Following the same argument, once in hT+M , with

positive probability players draw the right belief from �j2Nnfig�(span(fb1j ; :::; bMj g) and
are assigned in speci�c coalitions during K �M periods in a row and the process moves

from ht+M to ht+K = (b1; :::; bM ; bM ; :::; bM ).

We have shown that from any history h, the process can reach in at most T+K periods

another history hT+K = (b1; :::; bM ; bM ; :::; bM ) such that span(fb1; :::; bM ; bM ; :::; bMg) =
C. Once in hT+K , players will select actions from C only by de�nition of P. This implies
that the set of C-histories contains an ergodic set, for any minimal strong curb set C. To

show that the ergodic set Z � CK is unique, notice that we have shown that there exists

an history h 2 CK such that for all h0 2 CK , we have h0  h. This implies that h belongs

to every ergodic set included in C. Then, the ergodic set included in C has to be unique

since the intersection between two ergodic sets is empty.

6 Conclusion

Basu and Weibull (1991) have introduced the notion of curb sets which are product sets

of pure strategies containing all individual best-responses against beliefs restricted to the

recommendations to the remaining players. Voorneveld (2004) has introduced the notion

of prep sets which only require that the product sets contain at least one best-response to

such beliefs. In this paper we have introduced the concepts of strong curb sets and strong

prep sets which are set-theoretic coarsenings of the notion of strong Nash equilibrium.

Strong curb sets and strong prep sets require sets to be immune not only against individual

deviations, but also against group deviations. We have shown that every game has at least

one minimal strong curb (prep) set. We have compared minimal strong curb (prep) sets

with strong Nash equilibria, coalition-proof Nash equilibria and the set of coalitionally

rationalizable strategies. Finally, we have provided a dynamic learning process leading

the players to playing strategies from a minimal strong curb set.
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Appendix

A Existence of strong curb sets

We will show that the existence of minimal strong curb sets holds in general. A normal-

form game is a tuple G =


N; fAigi2N ; fuigi2N

�
, where N = f1; 2; : : : ; ng is a �nite set

of players, each player i 2 N has a nonempty set of pure strategies (or actions) Ai and a

von Neumann-Morgenstern utility function ui : A ! R, where A = �j2NAj and A�i =
�j2NnfigAj . Payo¤s are extended to mixed strategies in the usual way. Assuming each
Ai to be a topological space, �(Ai) denotes the set of Borel probability measures over Ai.

Using a common, minor abuse of notation, ��i denotes both an element of �j2Nnfig�(Aj)
specifying a pro�le of mixed strategies of the opponents of player i 2 N , and the probability
measure it induces over the set A�i of pure strategy pro�les of his opponents. Beliefs

of player i take the form of such a mixed strategy pro�le. Similarly, if Bi � Ai is a

Borel set, then �(Bi) denotes the set of Borel probability measures with support in Bi:

�(Bi) = f�i 2 �(Ai) j �i(B) = 1g. As usual, (ai; ��i) is the pro�le of strategies where
player i 2 N plays ai 2 Ai and his opponents play according to the mixed strategy pro�le
��i = (�j)j2Nnfig 2 �j2Nnfig�(Aj). A mixed strategy pro�le for coalition J � N is

denoted �J = (�i)i2J 2 �i2J�(Ai), and (�J ; ��J) is the pro�le of strategies where players
belonging to coalition J play according to the mixed strategy pro�le �J 2 �i2J�(Ai) and
their opponents play according to the mixed strategy pro�le ��J 2 �j2NnJ�(Aj). For
every J � N , i 2 J , B � A, ��i = (�j)j2Nnfig 2 �j2Nnfig�(Bj), we denote by ��J�i the
marginal distribution of ��i over B�J .

Let G be the class of normal-form games G =


N; fAigi2N ; fuigi2N

�
where for each

player i 2 N : (i) Ai is a compact Hausdor¤ topoligical space; (ii) ui is su¢ ciently

measurable; (iii) ui is upper semicontinuous on Ai. Remember that for i 2 N and

��i 2 �j2Nnfig�(Aj), BRi(��i) = fai 2 Ai j ui(ai; ��i) � ui(a0i; ��i) for each a0i 2 Aig is
the set of pure best responses of player i against ��i. Since every upper semicontinuous

function on a compact set achieves a maximum, it follows that each player in a game
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G 2 G always has a nonempty set of best responses against an arbitrary belief. However,
the set of coalitional best-responses may be empty. Remember that for � = (��i)i2N with

��i 2 �j2Nnfig�(Aj), CBRJ(�) = f�J 2 �i2J�(Ai) j 8i 2 J , ui(bi; ��i) � ui(�J ; ��J�i ),
with bi 2 BRi(��i)g is the set of coalitional best-responses of coalition J � N . We provide
an example where the set of coalitional best-reponses is empty:

L R

U 2; 0 0; 0

D 0; 0 0; 2

Consider the beliefs � = (��1; ��2) with ��1(L) = 1 and ��2(D) = 1. Then, BR1(��1) =

fUg and BR2(��2) = fRg and the expected payo¤s are u1(U;��1) = 2 and u2(R;��2) =
2. Thus, we have that CBRf1;2g(�) = ?.

A strong curb set is a product set X = �i2NXi where (a) for each i 2 N , Xi � Ai

is a nonempty set of pure strategies; (b) for each J � N and each vector of beliefs � =

(��1; :::; ��N ) of the players with each belief ��i having support in X�i, the product set

XJ = �j2JXj contains the support of all coalitional best responses of coalition J against
the beliefs of its members: 8J � N;8� = (��1; :::; ��N ) with ��i 2 �l2Nnfig�(Xl),
i 2 N , either CBRJ(�) = ? or CBRJ(�) � �j2J�(Xj).

Theorem Every game G 2 G has a minimal strong curb set.

Proof. Let Q = strong-curb(G) denote the collection of all strong curb sets of G. A

is a strong curb set of G since for every J � N and � = (��1; :::; ��N ) with ��i 2
�l2Nnfig�(Al), i 2 N , we have either CBRJ(�) = ? or CBRJ(�) � �j2J�(Aj).
So Q is nonempty and partially ordered via set inclusion. According to the Hausdor¤

Maximality Principle, Q contains a maximal nested subset R. For each i 2 N , let

Xi = \Y 2RYi be the intersection of player i�s strategies in the nested set R. The set
Xi is nonempty since the conditions of the Cantor intersection principle8 are satis�ed,

i.e. (i) the collection fYi j Y 2 Rg is nested and thus satis�es the �nite intersection
property and (ii) each Yi is nonempty and compact for each strong curb set. It remains

to prove that X = �i2NXi is a minimal strong curb set. Take � = (��1; :::; ��N )

with ��i 2 �l2Nnfig�(Xl), i 2 N . We have that CBRJ(�) \ �j2J�(AjnXj) = ;
for J � N since CBRJ(�) \ �j2J�(AjnXj) = CBRJ(�) \ ([Y 2R �j2J �(AjnYj)) =
[Y 2R(CBRJ(�) \ �j2J�(AjnYj)) and CBRJ(�) \ �j2J�(AjnYj) = ; for all Y 2 R (Y
is a strong curb set). This establishes that X is a strong curb set. The fact that it is

8 In words, the Cantor intersection principle tells us that to show that the intersection of an in�nite

number of elements of a set Z is nonempty and compact, we just need to show that the intersection is

nonempty and compact for every subset of Z composed of �nite elements.
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minimal follows directly from the fact that R is a maximal nested subset of Q.

B Other proofs not in the main text

Proposition For every game G = hN; (Ai)i2N ; (ui)i2N i, if X � A is a strong curb set

of G and � 2 �i2N�(Xi) is a strict strong Nash equilibrium of the subgame GX =

hN; (Xi)i2N ; (ui)i2N i, then � is a strict strong Nash equilibrium of the original game
G.

Proof. Consider a game G = hN; (Ai)i2N ; (ui)i2N i. By contradiction, suppose X � A

is a strong curb set of G, � 2 �i2N�(Xi) is a strict strong Nash equilibrium of the sub-

game GX = hN; (Xi)i2N ; (ui)i2N i but � is not a strict strong Nash equilibrium of the

original game G. Since � is not a strict strong Nash equilibrium of the original game

G, there exists a coalition J � N and a strategy pro�le �J 2 �j2J�(Aj) which satis�es
ui(�J ; ��J) � ui(�) 8i 2 J: Since X is a strong curb set of the original game, strategies in

the support of the coalitional deviation �J belongs to the set XJ (�J =2 �j2J�(AjnXj)).
This contradicts the fact that � is a strict strong Nash equilibrium of the subgame

GX = hN; (Xi)i2N ; (ui)i2N i.
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