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Abstract

We analyze discriminatory auctions with symmetric bidders having demand
for two units and single-dimensional signals of private valuations, that is, the
valuation for the second unit is a known function of the valuation for the first
unit. We show that if the distribution of signals and the valuation function
are differentiable then there exists a unique symmetric equilibrium which is
differentiable. This equilibrium leads to an inefficient allocation with positive
probability.
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1 Introduction

The study and design of multi-unit auctions has gathered considerable momentum
over the past decade. Understanding the efficiency of various auction formats in
environments where multiple units of a good are up for sale and the buyers have
multi-unit demands is important. In the individual independent private values (IPV)
paradigm it has been shown that the Vickrey Auction and the Ausubel Auction are
efficient [1].

Despite the allocative efficiency of the Vickrey and the Ausubel auctions, there
have been few real-world instances where these formats have been put to use. For
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alone.
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multi-unit auctions, the use of discriminatory and uniform-price auctions has been
more widespread, both being used, for example in the US Treasury Auctions and
electricity markets in England and Wales. In this paper we investigate the efficiency
of discriminatory auctions.

A first price auction with one unit for sale and symmetric bidders in an IPV
paradigm is efficient. However the multi-unit analogue of these auctions is not
efficient [4][6], even with symmetric bidders. Bid-pooling i.e. bidders submitting
the same bid on multiple units even if they have different valuations for them, it is
argued in the literature, results in inefficiency [6]. The question then is whether this
inefficiency disappears in the absence of bid-pooling almost everywhere.

To answer this, we develop a model in which there is almost no bid-pooling.
By developing such a model we can also investigate the main driving force behind
the inefficiency of this auction. We achieve this by comparing this auction with its
single unit analogue, the first-price auction.

The two differences between the first price auction and discriminatory auction
in an IPV paradigm are the multi-unit nature of demand of bidders and the multi-
dimensionality of valuations. To identify the main driving force of inefficiency we
remove multi-dimensionality, and analyze the auction for efficiency. We achieve this
by assuming that each bidder has a downward sloping demand for different quantities
of the object for sale and that valuation for the additional unit is a known function
of the valuation for the first unit. We find that efficiency is still not achieved even
with single-dimensional private values.

We adopt the model presented in [7]. In this paper the authors provide a neces-
sary condition for inefficiency of these auctions, though it was not the main emphasis
of the paper. We are able to strengthen their result by providing a sufficient condi-
tion as well. Explicit derivation of equilibrium strategies is not possible, even under
the assumption of a known relation between the valuations. However, we are able to
prove that the set of distributions and valuation functions that lead to an efficient
allocation is empty.

The rest of the paper is organized as follows. Section 2 introduces the model.
Section 3 establishes the existence of equilibrium and provides the first order con-
ditions for the bidders maximization problem. Section 4 provides necessary and
sufficient conditions for efficiency of such auctions. Section 5 concludes.
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2 The Model

Two units of a good are sold in a single-round discriminatory auction with N bidders.
Bidder i’s valuation is given by the vector V i = (vi1, v

i
2) where vik is bidder i’s

valuation for the k-th unit for k = 1, 2. Each vi1 is distributed independently and
identically over [0, 1] according to a c.d.f., F (·) with density function f(·) for all
i. We assume there exists a function g(·) such that vi2 = g(vi1) for all i. The
assumptions that will be maintained throughout the paper are

A1 The marginal valuations for the first and second units are given by v and
g(v), respectively, where g(0) = 0, g(v) < v for v ∈ (0, 1) and g(1) ≤ 1

A2 F and g are once differentiable and strictly increasing. Also, f(v) > 0 for
all v.

The auction uses a pay-your-bids format. Each bidder submits two sealed bids
for the two units. After receiving 2N bids, two from each bidder, the seller announces
the winning bids, which are the two highest bids, and these are the payments that
must be made. A bidder can win zero, one or two units. The tie-breaking rule is an
equi-probability rule as per the existence theorem [10].

3 Equilibrium

3.1 Existence

The equilibrium concept we use is Bayes-Nash Equilibrium. Reny [10] proves the
existence of a pure-strategy equilibrium in which the bidders employ monotonic
bidding functions in multi-unit, pay-your-bid auctions. This is done in a general
setting with possibly asymmetric bidders and K ≥ 2 units. Our model is a special
case of the set up there, hence we can apply its existence result to the existence of
β, which is a symmetric equilibrium strategy, where, β : [0, 1] → R2

+, and βk(·) is
the bid on the k-th unit

We provide proofs of continuity and differentiability of the equilibrium bidding
functions in the N bidder case in Proposition A.5 in Appendix.

Proposition 1 β is differentiable.

Note that this proves the uniqueness of equilibrium in our auction game, since
any symmetric equilibrium is differentiable and the first order conditions (f.o.c.)
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stated below give a unique solution with the initial condition β(0) = (0, 0).1

3.2 First-Order Conditions

Let bik represent bidder i’s bid on the k-th unit. Suppose the other players are using
an equilibrium bidding strategy β = (β1, β2). Note that β1(v) ≥ β2(v). The first
(highest) bid of bidder i competes with the second order statistic of the 2(N − 1)
bids, and the second bid competes with the highest of the 2(N − 1) bids. Given
these details, it is easy to write down the expected payoff function, Πi for bidder i.
For notational parsimony we will write v as bidder i’s valuation for the first unit.
Hence we have,

Π = (Pr of winning first unit)(v− b1) + (Pr of winning second unit)(g(v)− b2) (1)

Bidder i views the rival bids as random variables that depend on the value distri-
butions of the other bidders. Let Hj(b) denote the c.d.f. of j-th order statistic of
bids of the opponents. Therefore the probability of winning one unit is H2(b1) and
the probability of winning a second unit is H1(b2) where

H2(b1) = F (β−1
1 (b1))N−1 + (N − 1)F (β−1

1 (b1))N−2(F (β−1
2 (b1)− F (β−1

1 (b1))

H1(b2) = F (β−1
1 (b2))N−1

The first term in H2(b1) is the probability that bidder i’s first bid defeats N − 1
first bids. The second term is the probability the bidder i’s first bid beats N − 2
bidders’ first bids and one bidder’s second bid but not her first. The second states
that the only way bidder i can win the second unit as well is, if her second bid
defeats everyone’s first bid.

We have the payoff function of the bidder in terms of her bids. By taking first
order conditions with respect to b1 and b2, subject to b1 ≥ b2 we get two equations
which we shall use for deriving many of the results in the paper. These equations

1Given, that the equilibrium is strictly increasing and the distribution of valuations has positive
density everywhere, the system of ordinary differential equations which charecterize the equations
satisfy Lipshitz’s condition. Therefore by Picard’s existence theorem we know the solution is unique.

4



are as follows2

(N − 2)(F (β−1
2 (b1))− F (β−1

1 (b1)))f(β−1
1 (b1))

F (β−1
1 (b1))β′1(β−1

1 (b1))
+

f(β−1
2 (b1))

β′2(β−1
2 (b1))

=
(N − 1)F (β−1

2 (b1))− (N − 2)F (β−1
1 (b1))

(N − 1)(v − b1)
(2)

(N − 1)F (β−1
1 (b2))N−2f(β−1

1 (b2))
β′1(β−1

1 (b2))
=
F (β−1

1 (b2))N−1

(g(v)− b2)
(3)

where equation (2) is the differential equation with respect to b1 and the equation
(3) is with respect to b2. Using these first order conditions and the fact that the bid
functions are differentiable we can prove some useful facts about the bid functions.

Lemma 2 The equilibrium satisfies the following properties

(i) β1(v) > β2(v) for all v ∈ (0, 1) and

(ii) β1(v) = β2(v) for v = 0, 1.

Proof : (i) Let v′ = inf{v | β1(v) = β2(v), 0 < v < 1}. Suppose v′ ∈ (0, 1). Then
β1(v′) = β2(v′) = b′ and, for all v ∈ (0, v′), β1(v) > β2(v). Since β1 and β2 are
continuous the f.o.c. (2) and (3) will hold with equality at v′. Substituting for
symmetric equilibrium and β1(v′) = β2(v′) in equations (2) and (3) we get

β′1(v′) =
(N − 1)F (v′)N−2f(v)(g(v)− b′)

F (v′)N−1
(4)

β′2(v′) =
(N − 1)F (v′)N−2f(v)(v − b′)

F (v′)N−1
(5)

From here it can be easily seen that β′2(v′) > β′1(v′). Since β is differentiable
(Proposition A.5), this implies that β2(v + ε) > β1(v + ε) for all small ε > 0 which
is impossible since β1 ≥ β2 by definition. Hence, v′ = 0.

Suppose there exists γ ∈ (0, 1) such that β1(γ) = β2(γ). Then it must be the
case that for all v ∈ [0, γ], b1 = b2. If not, then there exists v̂ ∈ (0, γ) such that
β1(v̂) > β2(v̂). So, the f.o.c. hold with equality at v̂. Then, by a similar argument as
in the previous paragraph, there can be no point v ∈ (v̂, 1) such that β1(v) = β2(v),

2We are omitting writing the f.o.c.s if b1 = b2. As will be proved presently the condition b1 ≥ b2
never binds in the interior of the support.
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as this would imply β′2(v) > β′1(v) for the infimum of such points. Hence the only
way bid-pooling can occur in this model is in an interval around zero.

Suppose such a γ > 0 exists. Therefore, there exists a b̂ > 0, such that H1(b) =
H2(b) = H(b) for all b ≤ b̂ = β1(γ) = β2(γ). We can let γ be arbitrarily small.

Consider a bidder with valuation v ∈ (0, γ). We will prove that this bidder will
bid differently on the two units if his opponents pool bids on [0, γ]. This bidder’s
payoff from bidding the same on the two units is given by

Π = H(b)(v + g(v)− 2b)

Now, suppose this bidder decides to bid ε more on the first unit and ε less on the
second unit such that b+ ε ≤ b̂, b− ε ≥ 0. The new payoff is now

Π̄ = H(b+ ε)(v − b− ε) +H(b− ε)(g(v)− b+ ε)

The relative change in payoff is given by

Π̄−Π
ε

=
H(b+ ε)−H(b)

ε
(v− b)− H(b)−H(b− ε)

ε
(g(v)− b) +H(b− ε)−H(b+ ε)

Evaluating the above expression in the limit

limε→0
Π̄−Π
ε

= h(b)(v − g(v)) > 0

where h is the density of the bid distribution which exists since the bid distributions
are differentiable and the inequality follows from the fact that v > g(v). Hence there
can be no such interval. �

(ii) Suppose not. Then β1(1) > β2(1). Let v = β−1
1 (β2(1)) and β1(v) = b. Recall,

the probability of winning at least one unit is

H2(b) = F (β−1
1 (b))N−1 + (N − 1)F (β−1

1 (b))N−2(F (β−1
2 (b))− F (β−1

1 (b)))

For b′ ≥ b, the term F (β−1
2 (b′)) is equal to one. We know that H2 must be

differentiable for all b from Corollary A.6 in the Appendix. If we take the left hand
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and right density of H2 at b, and equate them we get

f(1)
β′2(1)

= 0

We know that f(1) > 0. Hence the above equation can be satisfied if β′2(1) =∞,
which is a contradiction to Proposition A.5. �

We now know that in our model there is no bid pooling occurring except at the
boundaries. Hence, the bids are separated almost everywhere.

4 Efficiency

Efficiency in our model requires that the two units be allocated to the two highest
of the 2N values. In this section we provide the efficiency condition along with the
main result of the paper.

Theorem 3 The discriminatory auction leads to an inefficient allocation with pos-
itive probability.

This theorem will be proved through a series of lemmas. We first provide a
necessary and sufficient condition for efficiency in terms of the equilibrium bid func-
tions. This condition, along with the f.o.c.s, implies a further condition on F and g
which then is shown to be violated. We now formally state the lemmas and provide
a proof of Theorem 3.

For our model, the necessary and sufficient condition for efficiency in terms of
the bid functions is summarized in the following proposition.

Lemma 4 The equilibrium allocation is efficient if and only if β2 = β1 ◦ g.

Proof : We first prove the necessity of the condition. Suppose β2(v) > β1(g(v)) for
some v. Let ε = β2(v)− β1(g(v)) > 0. Now consider two individuals with valuations
for the first unit being v and v′ where v′ ∈ (g(v), β−1

1 (β2(v)). This means g(v) <
v′ < v, which implies bidder both bidders should get one unit. However, note that
β2(v) > β1(v′). Hence, the bidder with valuation v gets both units. Therefore the
allocation is inefficient. We can similarly prove a contradiction if β2(v) < β1(g(v)).

The sufficiency condition is easily checked. Since β1(g(v)) = β2(v) for all v and
for bidders and the bid function is increasing and continuous, the auction allocation
will always be efficient given the assumption that v > g(v). �
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This condition implies that the allocation of a discriminatory auction is efficient
if and only if the bidders use a single increasing function, in this case β1(·), for
bidding on both of the units. This corresponds with Proposition 13.3 in Krishna
[[3], p. 184] Using this efficiency condition and the first order conditions we can
state the following lemma.

Lemma 5 A discriminatory auction is efficient only if the c.d.f.s of the valuations
satisfy F (v) = cF (g(v)) for all v and some c > 1.

Proof : To prove necessity of the lemma we apply conditions of symmetry of equi-
librium and β1(g(·)) = β2(·) to the f.o.c.s. From equation (2) we get

β1(g(v)) =
1

M(v)

v∫
0

g(x)dM(x) (6)

and from equation (3) we get

β1(g(v)) =
1

F (g(v))N−1

v∫
0

g(x)dF (g(x))N−1 (7)

where M(v) = (N − 1)F (v)F (g(v))N−2 − (N − 2)F (g(v))N−1. Hence

1
M(v)

v∫
0

g(x)dM(x) =
1

F (g(v))N−1

v∫
0

g(x)dF (g(x))N−1 ∀v (8)

Since this is true for all v, the slope of the LHS function must be equal to slope of
the RHS function at all v. Taking derivatives on both sides and simplifying further
we get

f(v)
F (v)

=
f(g(v))g′(v)
F (g(v))

(9)

i.e.
logF (v) = log cF (g(v)) (10)

where c is some constant. Also, since g(v) < v we know that c > 1. Hence we get
our desired results F (v) = cF (g(v)). �

Using Lemma 5 we can prove Theorem 3. The idea is that condition F (v) =
cF (g(v)) cannot be satisfied if g(1) = 1. Hence g(1) < 1 is required for efficiency.
However this fact provides a contradiction.
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Proof of Theorem 3: Lemma 6 implies the auction can be efficient only if g(1) < 1
since F (1) = cF (g(1)) for efficiency and c > 1.

We know that β1(1) = β2(1). Efficiency requires β2(v) = β1(g(v)), for all v.
Specifically, β2(1) = β1(g(1)). Since β1 is strictly increasing and g(1) < 1, β1(g(1)) <
β1(v) for all v ∈ (g(1), 1). But β1(v) < β1(1) = β2(1) which gives us the desired
contradiction. Hence no function pair (F, g) can lead to efficiency. �

5 Conclusion

Working within the independent private values paradigm we examined a single-
round discriminatory auction of two units to N bidders who have demand for both
the units. These auctions have been proven to be typically inefficient. We looked for
the source of this inefficiency by converting the multi-dimensional valuations to a
single dimension. We showed that the source of inefficiency is the multi-unit nature
of the demand and not the multi-dimensionality of signals.

Appendix

First, we will show that the equilibrium bid functions are strictly increasing. This will make
proving the continuity of the equilibrium straightforward.

Lemma A.1 β1(v) and β2(v) are strictly increasing for all v ∈ [0, 1]

Proof. The idea is that there will be no ’flat’ portions in the bid functions and hence
they will be invertible. From Reny[10] we know that there exists a monotonically increas-
ing equilibrium bidding strategy for a discriminatory auction. We want to show that this
equilibrium is in fact strictly monotone. First, let us prove this for β1.

From equation (1) it can be seen that the expected payoff from winning the first unit
can be written as

Π1 = H2(b)(v − b)

where v is the marginal valuation of the first unit and b is first bid.
Now suppose there exist v′ > v such that β1(v) = β1(v′) = b. Since β1 is monotonic,

β1(v′′) = b for all v′′ ∈ [v, v′]. For all bidders with marginal valuations on the first unit in
this interval there is positive probability of tieing with some other bidder or bidders3. Let
this probability be H2t(b) > 0. We can show that any bidder with valuation in this interval
would prefer to bid strictly more than b

3Bids on first units compete with bids on second units as well, however for this proof we do not
need β2 to be strictly monotonic. We can prove a contradiction without involving the second bids.
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Consider a bidder with valuation v̄ ∈ [v, v′]. If he decides to bid ε > 0 more on his first
unit, there is a discrete jump in his probability of winning the first unit of at least H2t(b).
So his gain from increasing his bid is greater than or equal to H2t(b)(v̄′ − b − ε) (since he
wins with a higher probability) and his loss from having to pay more is εH2(b + ε). It is
easily verified that there exists an ε > 0 such that εH2(b + ε) < H2t(b)(v̄′ − b − ε). Hence
β1 is strictly increasing. Carrying out an analogous argument it can be proven that β2 is
strictly increasing.

Now, to prove continuity we will use the fact that this equilibrium is a Nash equilibrium,
that it is monotonically increasing and that β1(v) is greater than or equal to β2(v) for all
v .

Lemma A.2 β1(v) is a continuous function for all v ∈ [0, 1].

Proof. We will prove the left continuity of β1. The right continuity can be proved similarly.
Suppose β1 is not left continuous at some v ∈ (0, 1], then limvn→v1 β1(vn) 6= β1(v) for

some sequence {vn}∞n=0. Since β1 is monotonic limvn→v1 β1(vn) = b1 exists and is smaller
than β1(v). Consider the interval ∆b = (b1, β1(v)) We claim that, β2(v′) ∩∆b = φ for all
v′. Indeed if there exists v̄, such that β2(v̄) ∈ ∆b, then the individual whose valuation is
v̄, can do strictly better by reducing his bid by ε > 0, as his second bid will still defeat the
same mass of first bids but he will pay less for the second unit.

There is no second bid in ∆b. Now consider the bidder whose valuation is v. This
individual can do strictly better by bidding β1(v) − ε, where ε > 0. The first bid of any
bidder competes with N − 2 first bids and 1 second bid. However in the region ∆b there are
no first or second bids. So the bidder can bid less, still defeat the same mass of first and
second bids and pay less if he wins. In the limit, β1(v) = limvn→v1 β1(vn). This proves the
left-continuity of β1. Similarly we can prove that β1 will be right continuous. Hence β1 is
continuous.

Lemma A.3 β2(v) is a continuous function for all v ∈ [0, 1]

Proof. We will prove the left continuity of β2. The right continuity can be proven analo-
gously.

Suppose there exists v′ such that b = limvn→v β2(vn) < β2(v′) = b′. Consider a bidder
with a valuation for the first unit equal to v = β−1

1 (b). The probability that this bidder wins
one unit is given by

H2(b) = F (β−1
1 (b))N−1 + (N − 1)F (β−1

1 (b))N−2(F (β−1
2 (b))− F (β−1

1 (b)))

Notice that since β2 is discontinuous at v′, H2 will not be differentiable at b. Specifically,
h2−(b) > h2+(b)4, where h2−(b) is the left hand slope of H2(b) and h2+(b) is the right hand

4Since the distribution F has positive density everywhere it is easy to show that if β2 is discon-
tinuous at v′ then h2−(b) 6= h2+(b)
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slope.
It is this difference in bid densities that causes bidder with valuation v to bid differently.

Let us consider the expected payoff of the bidder from winning one unit

Π1 = H2(b)(v − b)

If this bidder bids ε > 0 more or less on first unit his payoffs are approximately

Π1+ = (H2(b) + εh2+)(v − b− ε)

Π1− = (H2(b)− εh2−)(v − b+ ε)

respectively. It is easily verified that if Π1+ ≤ Π1 then it must be the case that Π1− > Π1,
a contradiction to the fact that the bidder is maximizing his payoff by bidding b on the first
unit.

In order to prove differentiability of the bidding functions we need to show that slope of
the functions if well defined at a point will be positive and finite. Since the bid functions will
be increasing therefore the slopes will be positive. We now provided the proof for finiteness
of the slopes.

Lemma A.4 β1 has positive and finite slope, i.e.

(i) limvk→v
β1(v)−β1(vk)

v−vk
< +∞, for all v ∈ [0, 1].

(ii) limvk→v
β1(v)−β1(vk)

v−vk
> 0, for all v ∈ (0, 1].

Proof. (i) Any bidder’s bid on the first unit will always be less than the valuation for the
first unit. Hence β1 will always be below the diagonal. Also, β1(0) = 0. Therefore the slope
of β1 at zero will be less than one.

Suppose there exists a v ∈ (0, 1], such that limvk→v
β1(v)−β1(vk)

v−vk
= +∞ for some sequence

{vk}∞k=1. Now consider a bidder whose valuation is given by,5 β−1
2 (β1(v)) = v̂. Consider

this bidder at v̂ reducing his bid on the second unit to β1(vk), where vk ↑ v. The benefit of
this decrease for any k is given by

(β1(v)− β1(vk))F (vk)N−1 (11)

The cost of this bid reduction is given by

(g(v)− β1(v))(F (v)N−1 − F (vk)N−1) (12)

5At this point we allow for β1(1) 6= β2(1). We will subsequently prove that this can not be the
case. Hence if β1(v) > β2(1) then we can look at the bidder whose valuation for the first unit is v
and the same proof with adjustments to the payoff function will work.
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For large k the second term in the above expression can be approximated by the density
(N − 1)F (v)N−2f(v)(v − vk), The ratio of the benefits to the cost is

(β1(v)− β1(vk))
(v − vk)

F (vk)N−1

(g(v)− β1(v))(N − 1)F (v)N−2f(v)
. (13)

The second term in the above expression is positive and finite. By our supposition the first
term is tending towards infinity as k is increasing. Hence for large K, this ratio is greater
than 1. This means that the net benefit of the bid reduction was positive. Hence the bidder
wants to reduce his bid on the second unit. A contradiction.

(ii) The proof of this part works in a similar way as that of the previous part. Hence we
mention the intuition. Suppose there exists a v ∈ (0, 1], such that limvk→v

β1(v)−β1(vk)
v−vk

= 0
for some sequence {vk}∞k=1. That is, the slope of the bidding function becomes very flat as
we get closer to v. Now consider a bidder whose valuation is given by β−1

2 (β1(v)) = v̂. If
this bidder5 increases his bid on the second unit by a little bit then, the mass of bidders
(first bids) he defeats is large since the slope at v is zero, and he pays only a little more on
winning, hence he would prefer bidding more. This makes β2 discontinuous, a contradiction.

Proposition A.5 β1(v) and β2(v) are both differentiable functions over [0, 1].

Proof. Differentiability of β1 at the boundary points is known by the fact that the bid
function has finite slopes at these points. We will prove differentiability in the interior of
the support.

Suppose β1(·) is not differentiable at some v i.e., the left hand derivative is not equal to
the right hand derivative. We can take these derivative since the derivative (slope) at any
point (if it exists) is finite (Lemma A.4). We can write the following inequality

β′1(v)− > β′1(v)+

where the right hand side is the right hand derivative which is given by

β′1(v)+ = lim
ε→0

β1(v + ε)− β1(v)
ε

which can be approximated by

β′1(v)+ ≈
β1(v + ε)− β1(v)

ε
, for ε > 0, ε small (14)

and the left hand side is similarly given (approximately) by

β′1(v)− ≈
β1(v)− β1(v − ε)

ε
, for ε > 0, ε small (15)
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The CDF of the first order statistic of the first valuations, other than the bidder’s own valu-
ation is given by F (v)N−1. Let us call J(v) = F (v)N−1. Then j(v) = (N − 1)F (v)N−2f(v),
is a well defined density function.
Consider a bidder whose valuation for the first unit is given by

v′ = β−1
2 (β1(v)) (16)

then his bid on the second unit is β2(v′) = β1(v). We will show a contradiction here6

The payoff on the second unit from bidding is

Π2 = F (β−1
1 (β2(v′)))N−1(g(v′)− β2(v′)) (17)

which can be rewritten as
Π2 = J(v)(g(v′)− β1(v))

Suppose bidder at v′ decides to bid β2(v′) + εβ′1(v)+. His payoff on the second unit is

Π2+ = F (β−1
1 (β2(v′) + εβ′1(v)+)N−1(g(v′)− β2(v′)− εβ′1(v)+) (18)

This expression can be simplified after approximating the bids

Π2+ ≈ Π2 − J(v)εβ′1(v)+ + εj(v)(g(v′)− β1(v + ε)) (19)

Similarly if the bidder with valuation v′ bids β2(v′) − εβ′1(v)− on his second unit then the
payoff is given by

Π2− ≈ Π2 + J(v)εβ′1(v)− − εj(v)(g(v′)− β1(v − ε)) (20)

If the bidder with valuation v′ is bidding optimally on his second unit then it must be
the case that

−J(v)εβ′1(v)+ + εj(v)(g(v′)− β1(v + ε)) ≤ 0 (21)

taking limits as ε goes to zero

J(v)β′1(v)+ = j(v)(g(v′)− β1(v)) (22)

Since β′1(v)− > β′1(v)+
J(v)β′1(v)− > j(v)(g(v′)− β1(v)) (23)

and therefore
εJ(v)β′1(v)− − εj(v)(g(v′)− β1(v − ε)) > 0 (24)

6If there is no such bidder then we can consider the bidder whose valuation for the first unit is
v and prove that β1 would be discontinuous.
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where ε is some small positive number. Therefore Π2− > Π2.A contradiction to the fact
that β2(v′) is optimal.

Hence β1, must be differentiable.
Using a similar argument as for β1 and proving that the slope of β2 is positive and finite,

if β2 is not differentiable at some point v, then β1 will not be differentiable at β−1
1 (β2(v)),

a contradiction. Hence β2 is differentiable.

Corollary A.6 H1 and H2 are differentiable.

Proof. The differentiability of H1 follows from the differentiability of β1.
Suppose H2(v)is not differentiable at some b. Without loss of generality assume that at

b the left hand density of H2(v) given by h2−(b) is less than the right hand density given
by h2+(b). The payoff from bidding b on the first unit is given by

Π1 = H2(b)(v − b)

Now, we will consider the change in the payoff from bidding ε more and less on the first
unit. The idea is the same as the previous proposition and Lemma A.3. It can be shown
the bidder prefers to change his bid from b on the first unit to something lower. This would
be a contradiction to the fact that the bidder is maximizing his payoff by bidding b on the
first unit.
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