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Abstract:
This paper considers a multi-player stag hunt  where players differ in their degree of conservatism, i.e. in the 
threshold of players that need to act along with them before they see benefits in collective action. Additionally, 
any player is either available for action or not. Minimal sufficient networks, which depending on their thresholds 
allow players to achieve just enough interactive knowledge about each other’s availability to act, take the form 
of  hierarchies  of  cliques  (Chwe,  2000).  We  show  that  any  typical  threshold  game  has  a  plethora  of  such 
networks, so that players seem to face a large degree of strategic uncertainty over which network to use. The 
plethora  of  networks  includes  cases  where  the  structure  of  the  network  infects  players  into  acting  more 
conservatively than is reflected in their thresholds. An extreme case of this is the core-periphery network, where 
each player acts as conservatively as the most conservative player that can exist in the population. Because of 
this feature, the core-periphery network is minimal sufficient for all possible populations. Players can thus solve 
the strategic uncertainty arising from the multiplicity of minimal sufficient networks by using the all-purpose 
core-periphery network.

The class of collective action problems known as  stag hunt games (for an overview, see 
Skyrms, 2004) are characterized by an “I’ll go if you go” mechanism: if you innovate (revolt 
against the government, use a new technological standard,…), so will I. Contrary to what is the 
case in the prisoner’s dilemma, both inaction and collective action are Nash equilibria.  But 
given the large cost of acting alone, even the slightest doubt that others do not act can induce 
the individual player not to act, for this reason it is also referred to as the trust dilemma. In the 
two-player stag hunt, each player only acts when somehow receiving assurance that the other 
player acts – for this reason this game is also known as the assurance game (Sen, 1967). In 
multi-player  stag  hunts  (Carlsson  and  Van  Damme,  1993),  players  may  moreover  differ 
according to the number of people they want to act along with them before they find it worth to 
act, and may thus also differ according to the level of assurance that they require. Granovetter 
(1978) refers to a player’s  threshold as  the critical  number  of players  that  need to act  for 
benefits of collective action to arise for him. For this reason, this type of collective action has 
also been referred to as a threshold game (Chwe, 1999, 2000). A radical, low-threshold player 
may act as soon as receiving assurance from even a single other player. A conservative, high-
threshold player on the contrary will need assurance from many others. The player population 
may span all thresholds in between these extremes. 

In terms of the network literature (Jackson and Wolinsky, 1995; Bala and Goyal, 2000), a 
message by player i to player j by which player j finds out player i’s willingness to act can be 
seen as a link from player i to player j. The question arises then: what sort of network structure 
needs to be established between the players for them to achieve collective action? Granovetter 
(1978) suggests a bandwagon network, in which players order themselves according to their 
thresholds. In the simplest case, there is one player of each threshold, including a player who 
does not require assurance from anyone, namely a threshold-1 player. As this player is still 
better off the more other players act, the threshold-1 player assures the threshold-2 player of his 
willingness to act, after which the threshold-3 player is told about the willingness to act of the 
two first players, etc. Yet, as pointed out by Granovetter, such a bandwagon does not assure 
collective action for all populations. In fact, in an only slightly different population with the 
threshold-1 player turned into a threshold-2 player and all other players as before, any attempt 
to use the same bandwagon to achieve collective action leads to complete inaction. The former 
threshold-1 player no longer acts, because she would now like information from at least one 



other player. As she does not get such information, she cannot convince the threshold-2 player 
to act. Etc. Granovetter’s reason for providing this example is to show that one cannot simply 
talk of some type of group intent, where one considers a population as an entity, and where two 
very similar populations would then be expected to act in the same manner. An alternative 
interpretation is that it would then be nice to have a general-purpose type of communication 
network,  that  works  for  any  population.  Unfortunately,  Granovetter’s  example  suggests  a 
different  type  of  communication  network  may  have  to  be  designed  for  each  individual 
population,  where  even  two  only  slightly  different  populations  may  require  a  different 
communication network.

The purpose of this paper is to show that a general-purpose network, which works for any 
population, does exist  across different threshold games. We show this by treating a modified 
version of  Chwe’s (2000)  formal  model of  the threshold game.  Just  as in  Chwe’s original 
model, we obtain that any network that makes all players act (i.e. is  sufficient) and has no 
redundant links (i.e. is minimal) takes the form of a hierarchy of cliques. A clique is a subset of 
players who all talk to each other. Any minimal sufficient network partitions the players in 
cliques,  and cliques  talk  to one another  only in  one direction.1 A chain of  cliques  is  thus 
obtained, consisting of one or more leading cliques of radicals, who communicate with cliques 
of somewhat less radical players, who again communicate with still less radical cliques, etc. 
While Chwe’s propositions do not imply such restrictions, in the examples of minimal sufficient 
networks that he provides, all players are connected in a single network, containing multi-player 
cliques. Each individual clique is homogeneous, and contains all players of a certain threshold. 
Finally,  players  are  ordered  in  the  hierarchy  according  to  their  thresholds,  in  that  higher 
threshold players are systematically at a lower rank in the hierarchy.

Our first contribution is to show that for any population, in line with Chwe’s results but 
contrary to the examples that he provides, typically a plethora of minimal sufficient networks 
exists (this result is obtained both in Chwe’s original model, and in the modified version of it 
presented in this paper). These may not only include Granovetter-like bandwagon networks 
consisting only of one-player cliques,  but also networks containing only one-player cliques 
(thus many hierarchical  ranks),  networks  containing as  few as  two hierarchical  ranks  (one 
leader clique, and follower cliques depending on it), networks containing multi-player cliques 
consisting  of  players  with  different  thresholds  (heterogeneous  cliques),  networks  where 
inherently more radical players are at a lower hierarchical rank than more conservative players, 
and networks consisting of several isolated components.

The  surprising  result  here  is  the  existence  of  minimal  sufficient  networks  consisting  of 
heterogeneous cliques and/or networks putting more radical players at a lower hierarchical rank. 
These  two effects  exist  for  the same reason,  namely  that  one needs  to  make a  difference 
between a player’s own exogenously given threshold, and the endogenous threshold enforced 
on him by his social position in the network. Consider a  three-player game where player 1 has 
threshold 2, and where players 2 and 3 have thresholds 3. At first sight, it would seem that is 
suffices that player 1 finds out that player 2 is (in principle) willing to act. Yet, this does not 
guarantee that player 2 will effectively act, as player 2 himself needs to find out first that player 
3 is willing to act. Thus, player 1 will only be willing to act if player 2 and player 3 are linked to 
one another. Moreover, this does not suffice, as player 2 could also find out that player 3 is not 
willing to act. Thus player 1 should also find out whether player 3 is willing to act. While player 
1’s exogenous threshold is 2, the structure of the social network has modified his behavioral 
threshold into 3. Similarly, consider a four-player game with one threshold-2 player and three 
threshold-3 players. Let the three threshold-3 players form a leading clique (meaning that they 
do not receive information from anyone outside of the clique). The threshold-2 player will not 
be content with finding out that one of the threshold-3 players is in principle willing to act. 

1 More correctly, in Chwe cliques can also overlap. Our simplifying assumptions exclude such cases.
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Knowing that this threshold-3 player only acts when he finds out that the two players in his 
clique are willing, the threshold-2 player will want to find out whether these two other players 
are willing as well. Effectively, the threshold-2 player behaves as a threshold-4 player, and thus 
effectively behaves more conservatively than the inherently more conservative players in the 
leading clique. This result may be seen as formalizing the sociological idea of  embeddedness 
(Granovetter,  1985),  saying  that  one’s  position  in  a  network  has  an  influence  on  one’s 
behaviour.

On the negative side,  the existence of a plethora of minimal sufficient networks shows that 
players face considerable  strategic  uncertainty.  Which of  these many networks should they 
coordinate on using? Yet, exactly because of the multiplicity of networks in each individual 
game, perhaps one type or at least a few types of minimal sufficient networks exist that work 
for all populations. In this case, such networks are bound to be focal, and the players would be 
able to resolve the problem of strategic uncertainty. Examples of such possible network types 
we investigate are networks with everyone in one-player cliques; networks with all players with 
the same threshold in  one and the same clique;  and core-periphery networks  with a  large 
number of players in a leading clique, with all other players around it in one-player follower 
cliques.  While  some  network  types  work  for  a  relatively  large  number  of  populations, 
unfortunately we are not able to find a network formation rule that works for all populations, 
thus  generalizing  Granovetter’s  intuition  that  minimal  sufficient  networks  are  population-
specific.

 Our initial result of non-existence of generally applicable network formation rules is partly 
due  to  the  requirement  of  minimal sufficiency  for  any  individual  population.  Trivially, 
eliminating the requirement of non-redundancy, players can always achieve collective action if 
they use the complete network in any population. We show that players can use less links than 
in  the  complete  network,  and  thus  still  approach  minimality,  if  they  use  a  core-periphery 
network. Denoting as tmax the threshold of the most conservative player(s) in the population, the 
core-periphery network consists  of  a  leading clique  of  any subset  of  tmax players  from the 
population, and the rest of the players in one-player cliques depending on it. Put otherwise, it 
does not matter at all where players are positioned in the network. A core-periphery network 
thus works even for players who do not have any information about the population other than 
the number of players and the threshold of the most conservative player(s). The core-periphery 
network is  still  minimal  sufficient  for  such  uninformed players,  in  that  within  each  set  of 
populations with the same number of players and the same maximal threshold, a subset of 
populations exists for which the core-periphery network is minimal.

The use of a core-periphery network to solve collective action problems has some intuitive 
appeal. First, a leading clique is formed of a size large enough to bring a consensus among even 
the most  conservative  players  about  the  desirability  to  act.  Such  a  leading  clique  may be 
considered as a committee containing a representative sample of the population. Indeed, on 
average, the players in the committee are distributed in the same manner as the population. 
Second, all remaining players receive information that the committee has reached a consensus 
on when and where to act. Given that this committee is large enough to make even the most 
conservative player act, a message from this committee suffices to any player excluded from the 
committee. Players excluded from the committee do not additionally need to talk to each other.

The paper is structured as follows. Section 2 treats a modified version of Chwe’s (2000) 
model. Section 3 treats an example of a threshold game, and shows that on top of the type of 
examples of networks suggested by Chwe and Granovetter, a plethora of other networks may be 
minimal sufficient, thus potentially leading to a large amount of strategic uncertainty. Section 4 
investigates several types of networks, with the purpose of investigating whether there is a type 
of network that is minimal sufficient for all types of populations. Section 5 treats a modified 
concept of minimal sufficiency, where minimality now means that a network is minimal for at 
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least one population in the class of populations with the same number of players and the same 
maximal  threshold.  It  is  shown that  the  core-periphery  architecture  is  the  unique  network 
formation rule that allows players to achieve a minimal (in the new sense) sufficient network 
for each class of populations,  as characterized by the number of players,  and the maximal 
threshold). The paper ends with a conclusion in Section 6.

2. Game-theoretical threshold model and minimal sufficient networks

Let  us  attempt  to  construct  in  the  simplest  manner  possible  a  game-theoretic  model  of 
sociological threshold models. As collective action should be an equilibrium, we need a stag 
hunt game rather than a prisoner’s dilemma. In order for players to have different thresholds, 
this must somehow be reflected in their payoffs. We thus obtain a multi-player stag hunt game 
with heterogeneous players. The game is played by a finite set of players { }nN ,...,2,1= . Each 

player has a threshold ti, with max2 tti ≤≤ . maxt  is the highest threshold in the game, where we 

assume that nt ≤max . Each player Ni ∈ simultaneously chooses an action { }srai ,∈ , where r is 
the risky action, which we will refer to as “action”, and s is the safe action, which we will refer 
to  as  “inaction”.  A  player  who  takes  action  s always  obtains  payoff  zero,  whatever  his 
threshold. When taking action r, the payoff of a player i with threshold ti depends on iR− , i.e. the 

number of other players than i who take action r. When )1( −<− ii tR , player i obtains payoff 

L−  when  doing  r,  where  L is  a  large  loss.  When  )1( −≥− ii tR ,  player  i obtains  payoff 

0)( >−iRM  when doing r, with 0)(' >−iRM , meaning that player i incurs a positive payoff as 
long as action with together with ti players or more, where this payoff is then larger the more 
players he acts together with.2 All aspects of the game, including the players’ thresholds, are 
common knowledge.  Common knowledge of thresholds is  in  contrast  to Chwe (2000).  We 
assume such common knowledge because we are interested in endogenous network formation 
in  a  given  population  facing  a  collective  action  problem,  and  not  in  the  properties  of 
exogenously given networks in which collective action is likely.3  

Any such stag hunt game has at least two Nash equilibria. Given that nt ≤max , an equilibrium 
exists where everyone acts. Given that nobody acts when nobody else acts, there is also an 
equilibrium where nobody acts. Let us now look at two examples. In example 1, the population 
consist of thresholds )10,9,8,7,6,5,4,3,2,2( , in example 2, the population consist of thresholds 

)10,10,9,8,7,6,5,4,3,2( . Both examples have exactly two strict Nash equilibria, namely the ones 
identified above. Given the loss when acting with less players than one’s threshold, in both 
examples the efficient equilibrium is risk dominated (Harsanyi and Selten, 1988). From a game-
theoretic perspective, the two examples would thus seem very similar. Yet, from the perspective 
of the literature on threshold models (Granovetter, 1978; for an overview of recent literature, 
see  Vanderschraaf,  2008),  the  two  examples  are  very  different.  In  example  1,  if  the  two 
threshold-2 players both expect each other to act, this induces them to act. As soon as they are 
known to act, this suffices to create a chain reaction that makes everyone act: their action will 
trigger action by the threshold-3 player, who will again trigger action by the threshold-4 player, 
etc. In example 2, however, there is no subset of lower threshold players that would act without 
knowing whether  the rest  of  the population  acts.  This  is  because,  as  can  be checked,  the 
maximal threshold in any subset is always larger than the number of players in the subset. The 

2 This  is contrast  to stag hunt  models  of partner  choice,  where players  are assumed to look for  a sufficient 
number of cooperative partners in a population (Corbae and Duffy, 2007).
3 For an overview of endogenous network formation in economics, see Jackson (2003). In sociology, see Lazer 
(2000).
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only manner for the players to achieve collective action in example 2 is for all of them to agree 
together to act.

Why are the two examples very similar in the game-theoretic model4 and very different in the 
threshold  model?  In  the  threshold  model,  the  assumption  is  that  the  threshold-2  players 
somehow assure one another that they will act. Either they now communicate their intention to 
act  to  the  threshold-3  player,  or  the  threshold-3  player  simply  observes  them acting.  The 
threshold-3 player now acts as well. Again, he communicates this to the threshold-4 player, or 
this player observes the threshold-4 player acting.  Etc.  The structure of the communication 
network, or the order in which the players move, plays an essential role in this model. Yet, in 
the game-theoretic model treated above, players make their decisions to act simultaneously. 
Moreover, communication does not make any difference in this game-theoretic model treated. 
To see why, suppose that players can communicate in a shared language to one another their 
intention to act, and suppose that the threshold-2 players in example 1, previously to playing, 
communicate to one another their intention to act. The problem with this is that such a message 
is not credible, as one has a weak incentive to send such a message even when one is not 
planning to act (Aumann, 1990). Yet, experiments have shown that pre-play communication 
leads to play of the efficient equilibrium in stag-hunt games (Cooper et. al., 1992).

In game-theoretic terms, players communicating their intentions to act only makes sense if 
there are two types of players,  namely players who do not intend to act,  and players who 
possibly intend to act.5 We could think here of players who are available for action, and players 
who are not available for action. Thus, in order to bring our model to being closer to being a 
game-theoretic  account  of  the  threshold  model,  we  need  to  turn  our  game  into  one  with 
asymmetric information. We assume that each player i, fully independently from his threshold 
ti, is with probability (1 – ε) in state w (available for action), and with probability ε in state x 
(not available for action). In state w, the player has the payoffs described above. In state x, the 
player again always obtains payoff 0 when not acting, but now always obtains payoff –L  when 
acting. When each player is in state w, we have the stag hunt game treated above. The presence 
of the state  x formalizes the individual player’s doubts about whether the other player will 
actually act. With probability  ε, the individual player goes crazy and perceives his payoffs in 
such a way that inaction is a dominant strategy.

Summarizing,  we  obtain  the  following  stag  hunt  with  asymmetric  information  and 
heterogeneous players. At stage 1, Nature determines for each player i a threshold ti, and a state 
w (probability (1 – ε)) or x (probability ε). The state occur with the same probability, whatever a 
player’s threshold. The thresholds chosen by Nature are common knowledge, the state is not. At 
stage  2,  communication  takes  place  between  players  (see  below).  At  stage  3,  each  player 
simultaneously decides to do action s or action r. At stage 4, each player obtains his payoff, as 
specified above. 

As long as  L is large, a necessary condition for a player with threshold  ti to act involves 
receiving messages from at least  )1( −it  other players signaling that they are in state  w.  It 
should be noted that an equilibrium without communication where no player acts continues to 

4 It should be noted that the examples are still quite different if one induces learning dynamics. Suppose that the 
games are played repeatedly, and that players’ strategies are subject to noise. Then in example 1, starting from 
the inefficient equilibrium, if noise happens to make both threshold-2 players act, then they will both find out 
that this makes them better off, and will stick to this new strategy. As soon as this has happened, the threshold-3, 
threshold-4,  etc.  player  will  find  out  that  it  is  better  for  them to act.  In  example  2,  however,  the  efficient 
equilibrium is only learned if noise happens to make all players play take action. But these learning dynamics 
then simply replicate the communication process that players could achieve by establishing a communication 
network.
5 A similar game where asymmetric information is added to a stag hunt game in order to make communication 
relevant is the electronic mail game (Rubinstein, 1989). The focus there is on noisy communication, and on how 
this leads players to require a large number of confirmations and reconfirmations from one another. 
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exist. Thus, our model does not solve the issue of equilibrium selection; it only ensures that, if 
the efficient equilibrium is played, this is conditional on communication having taken place. 
For  simplicity,  we  do  not  model  this  communication  strategically,  but  instead  study  the 
properties of communication networks that just still allow players to achieve collective action. 
These networks may be seen as assurance networks, establishing trust among the players that a 
sufficient number of players is in state w and that their individual thresholds will be achieved. 
Concretely,  we say that player i has a link with player j if gi,j = 1, and that player i has no link 
with  player  j if  gi,j =  0.  We  consider  the  case  where  links  correspond  to  one-way 
communication: gi,j = 1 enables agent j to access i’s information on whether i is in state w or x, 
but not vice-versa. Graphically, we denote gi,j = 1  as an arrow pointing from player i to player j: 
j is able to observe the dimension qi of player i, so that player i’s type  is communicated to j. 
However, following Chwe, we assume that link gi,j = 1 link gi,j = 1 does not give player j access 
to the information that player i may have about any information that player i may have about the 
type qh of a player h through a link gh,i = 1. In terms of the network literature, this may be seen 
as an extreme case of information decay (Bala and Goyal, 2000): as the distance in the network 
increases,  the value of information decreases – which takes place here in an extreme way. 
Another way to formulate this assumption is to say that links cannot aggregate information; any 
player can only communicate whether his own state is w or x, not what he finds out about other 
players’ states, or what other players have found out about other players’ states. A typical set of 
all player i’s links and non-links is denoted as gi, where ( )niiiiiii ggggg ,1,1,1, ,...,,,..., +−= . Define 

as a network, g, a set of sets gi for each player i, thus ( )nggg ,...,1= . We focus on networks that 
allow all players to act. If the population is such that there are also equilibria where only a few 
players act, this is justified in terms of the preferences of any player in state w, who is better off 
the more other players act.

Definition 1. 
Define as a sufficient network, any network that allows for an equilibrium where all players act 
when all players are in state w.

But  a  trivial  sufficient  network  is  then  simply  the  complete  network,  where  all  players 
observe each other’s types qi. While we do not model network formation as strategic, we can 
still impose plausible restrictions on networks, which are likely to arise upon strategic network 
formation. Given the large L, no player will want to run risk, and will thus always require at 
least the minimal number of messages assuring that his threshold is achieved. By increasing the 
number  of  messages  attended  to  above  this  minimal  number,  the  player  can  increase  the 
probability of collective action. Yet, the more links a player attends to, the more costs he will 
incur. For simplicity, we assume that these costs are always so high that the player prefers to 
pay attention to the minimal number of messages assuring that he achieves his threshold. For 
this reason, we focus on networks where each player considers each message as crucial. As 
soon as he does not receive a crucial message, he does not act and obtains payoff zero.

Definition 2
Define  as a  minimal sufficient network g (henceforth  msn),  any sufficient network with the 
following property. Consider any subset of players 'N , and denote by ggN ⊆'  the set of links 

received by these players. Let it be the case that as soon as any subset of links in 'Ng   is deleted, 
in the newly obtained communication network, no Nash equilibrium exists where the players in 
set X, with X = 'N  all act.
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Our concept of minimality differs from the one of Chwe (2000), in that in Chwe, X is equal to 
N as a whole rather than to 'N . Chwe’s concept of minimality is that any sufficient network g is 
minimal sufficient as long as there does not exist a network  gg ⊂'  that  also allows for an 
equilibrium with  collective  action  of  all  players.  Chwe’s  concept  thus  sees  a  network  as 
unstable if deletion of messages can lead to a new network that is also sufficient. In our concept 
of minimality, which lies closer to the network literature, any sufficient network g is minimal 
sufficient  as  long as  there  does  not  exist  a  network  gg ⊂'  that  allows  the  players  in  'g  
receiving less messages than in g to still act, where crucially it need not longer be the case that 
the players not in  'g  still act. Thus, in our concept of minimality, any subset of players  'N  
should consider the messages currently received as crucial. The effect of deletion of messages 
from g on the decision to act of players in the set  N\ 'N  is not taken into account. Given our 
modified concept of minimality, and given that information is local, it is easy to show that each 
msn takes the form of a hierarchy of cliques. We do this by introducing some more definitions, 
and by proving some intermediate lemmata.

Definition 3
We  say  that  there  is  a  path  from  j to  i in  g if  there  exist  agents  j1,…,jm such  that 

1... ,,, 211
==== jjjjji m

ggg .

Lemma 1. Under local knowledge (A2), if a path  1... ,,, 211
=== jjjjji m

ggg  exists in a  msn, 

given (A2), it must also the case in this msn that 1... ,,,, 21
==== jjjjjjji m

gggg .
Proof: Given that information is local, player j only observes the threshold of player jm. At the 
same time, as the network structure is common knowledge, player  j knows that players  j1,  j2,
…,jm only act when each, on this path, finding out the right thresholds. Given the high risk of 
acting with less players than the threshold, player j needs direct information from all players on 
the path. 

Definition 4.
Define as a cycle any path 1... ,,, 211

==== ijjjji m
ggg .

Definition 5.
Define as a clique a set of players j1, j2,…, jm such that for all jm, jn in this set of players, we have 

1,, ==
mnnm jjjj gg .

Corollary 1. If a msn contains a cycle, then all the players in this cycle are in one and the same 
clique.
Proof: This follows from the fact that there is path between any two players in a cycle, and from 
Lemma 1.

Corollary 1 is the natural consequence of the assumption that information is local.  If it is 
crucial to player j to receive a message from player i, then player j only acts when knowing that 
player i will act. But, knowing the network structure, in which player i only acts when receiving 
a certain number of messages, and given that information is local, player j will only act when 
also receiving all messages that player  i wants to receive. Moreover, as i reasons in a similar 
manner about messages that the players sending to him receive, player j also wants to receive 
these messages.  Etc.  Corollary 2 now shows that this implies that  cliques in a  msn cannot 
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overlap. This is contrary to Chwe (2000), whose different concept of minimality does allow for 
overlapping cliques. An example is treated after the proof.

Corollary 2. Msns can only contain two cliques that share players if these players are together 
in a single clique.
Proof: When two cliques share players, this means that there is a cycle involving all players in 
these two cliques. But then, by Corollary 1, they must be in a single clique.

We further show that if a player i in clique A talks to a player j in a separate clique B, then no 
player h in clique B can talk to any player k in clique A, and that if one player in clique A talks 
to one player in clique B, then all players in clique A must talk to all players in clique B.

Lemma 2. Consider two separate cliques in a msn, denoted as clique A and clique B. If a player 
i from clique A talks to a player j from clique B, then no player k form clique B can talk to any 
player h from clique A.
Proof: Suppose that a player i from clique A talks to a player j from clique B, and that a player k 
form clique  B talks to a player  h from clique  A. Given that in each clique, all players talk to 
each other, there is then a cycle encompassing all players in A and B. But then all these players 
should talk to each other.

Lemma 3. Consider two separate cliques in a msn, denoted as clique A and clique B. If a player 
i from clique A talks to a player j from clique B, then all players from clique A should talk to all 
players from clique B. In short, we then say that clique A talks to clique B.
Proof: This follows directly from the fact that the presence of one link implies that there is a 
path between any pair of players divided over the cliques.

THEOREM 1. Any msn for an individual population state takes the form of a partition of the 
players in cliques, where any two cliques may talk to one another in only one direction, and 
where there are no cycles among cliques.
Proof:  By Corollary 1, any players contained in a cycle of links must be in on and the same 
clique. By Lemmata 2 and 3, any two cliques can only talk to one another in one direction, 
where one clique talking to another means that all players in the former clique talk to all players 
in the latter clique. These “talking to” relations between cliques may not form cycles, since 
otherwise the players in these cycles cannot be in separate cliques.

Since by Theorem I there cannot be cycles among the cliques, any msn must contain at least 
one  leading clique,  characterized  by the fact  that  players  in  the clique  do not receive  any 
messages from players outside of the clique, and at least one end clique, characterized by the 
fact  that  players  in  the clique  do not  send any messages  to  players  outside  of  the clique. 
Moreover, any msn can be seen as a set of chains of cliques, where a chain of cliques is any 
path in a  msn between a leading clique and an end clique in the network (where a link from 
clique A to clique B on such a path means that all players in clique A talk to all players in clique 
B). In every chain of cliques, all links between cliques point from the leading clique to the end 
clique. We add the following definition.   

Definition 6. Define as a player’s rank in a clique chain the number of cliques from which his 
clique receives information, minus one.

Thus, the players in the leading clique of a clique chain have rank 1 (the highest rank) in this 
clique chain, the players in the clique receiving messages from the leading clique have rank 2 
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(the one-but highest  rank),  etc.  Following Chwe,  cliques  can be interpreted as  social  roles 
(instigators, immediate followers of the instigators, etc.), and any msn can be interpreted as a 
hierarchy of social roles.

A first intuition for why msns must take the form of a hierarchy of cliques is provided for the 
simple case in Figure 1, in which players I, II, III and IV all have threshold 3, and all know each 
other’s thresholds. An arrow denotes message(s) sent in one direction, whereas a line denotes 
messages sent in one direction. In Figure 1a, suppose that player I receives a message from 
players II and III, and sends a message to both these players. Suppose now that I finds out that 
II and III are in state w. This does not mean that II and III will act; given their thresholds, they 
will only act if they hear from two other players that they are in state w. Thus, I will only act if 
II and III also talk to one another. We then obtain a clique of three players as indicated in Figure 
1b, where we always draw a circle around the players in who are in the same clique. How about 
IV? Does it suffice that e.g. II and III tell him that they are in state w (indicated by arrows in 
Figure 1c)? It does not, because IV knows that, given the network structure, II and III only act if 
they find out from I that she is in state w. So, IV must receive a message from each player in the 
three-player clique, as indicated in Figure 1d. Effectively, we thus have a three-player clique 
talking to a one player clique. Figure 2 gives a simpler representation of the msn in Figure 1d. 
A line within a clique now denotes that people talk to each other; an arrow from one clique to 
an other clique denotes that everyone in the former clique talks to everyone in the latter clique.

(a) (b) (c) (d)

Figure 1 Clique formation

Figure 2 Notation for communication between cliques

We next treat two networks for the same example that are sufficient, but not minimal. Figure 
3 represents the complete network. Suppose that players II, III and IV require three instead of 
two messages that other players are in state w before they are willing to act. Then it is a best 
response for player I to also require three messages. Given the symmetry of the example, this 
means that requiring three messages is then a best response to every player. Yet, the entire set 
of players should jointly realize that they can still coordinate on collective action if IV does not 
send messages to I, II and III, and if I, II and III content themselves with messages among 
themselves that they are all in state w. This argument coincides with minimality as defined in 
Chwe (2000).
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Figure 3 Complete network: sufficient, but not minimal

The network in Figure 4 consists of two overlapping cliques.  I and IV now each require 
messages from both II and III that they are in state w, but do not require messages from one 
another. II and III require such a message from one another, and additionally a message from 
either I or IV (they can’t require a message from both I and IV, since otherwise I and IV will 
also want to know of one another). In Chwe (2000), this network is minimal, since one cannot 
delete links and move to a new sufficient network that allows collective action. In our modified 
version of minimality,  this network is  non-minimal,  as II  and III  would still  act  without a 
message from IV, and thus can decide not to pay attention to this message in the first place. 
However, given that IV sees that II and III do not pay attention to his messages anymore, IV is 
no longer assured that II and III act, as he does not know whether II and III found out that I is in 
state w. It follows that IV does not act. Summarizing, Chwe calls a network non-minimal if you 
can make a smaller subnetwork that is still sufficient. We call a network non-minimal if one or 
more players do not have any incentive to pay attention to all signals, and this independent of 
the fact whether we still have a sufficient network after these players stop paying attention to 
messages.

Figure 4 Overlapping cliques: sufficient, but not minimal

A second intuition underlying Theorem I can be explained by means of Figure 5. Suppose 
that cliques Mw, Mx, My and Mz are in the same clique chain. As indicated by the straight arrows, 
what we would expect this to mean is that clique Mw sends messages to Mx, Mx to My, and My to 
Mz. However, when Mx sends messages to My, My only finds out the thresholds of the players in 
Mx, but not the thresholds they themselves have observed the players in  Mw to have. Yet,  My 

knows that Mx relies on the players in Mw having certain thresholds. Therefore, My must also get 
messages from Mw. Similarly, it does not suffice that Mz gets messages from My. Mz knows that 
My wants to receives messages from Mx, and by the reasoning above, also from Mw. Therefore, 
Mz also needs to receive messages from Mx and from Mw.

Figure 5. Chain of cliques

While in the example of Figures 1 to 4, there is only a single msn, as the next section shows, 
typically any given threshold game has a plethora of msn.
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3. Multiplicity of minimal sufficient networks, and existence of endogenous thresholds

 Consider the 18-player threshold game 10,10,10,9,8,7,7,6,6,6,5,4,4,3,3,3,2,2Γ , where the numbers denote 
the players’ thresholds. Then an example of a msn in the spirit of Chwe (2000) is provided in 
Figure  6.  This  example has several  characteristics  that  raise  the question whether they are 
general. First, several of the players are in multi-player cliques. The consequence of this is that, 
starting from a particular number of players who act, the network often cannot add one extra 
player who acts at a time (when this player happens to be of type w). Instead, it is often the case 
that several players in the same clique all need to be in state w to get additional players to act. 
Put otherwise, a critical mass each time needs to be achieved to get more players to act. Second, 
each individual clique is perfectly homogeneous, in that each clique consists of players with an 
identical  threshold.  Indeed,  it  seems intuitive that similar  players would play similar  social 
roles.  Third, players are at a lower rank in the hierarchy the more conservative they are. It 
seems intuitive that there would be a one-to-one relationship between the player’s threshold and 
his rank in a chain of cliques.  Fourth, the minimal sufficient network is connected, in that it 
connects  all  players  in  a  single  network.  Fifth,  the  minimal  sufficient  network  is  quite 
hierarchical,  as  some  players  are  at  rank  4.  The  example  is  natural  in  view  of  Chwe’s 
interpretation of a msn as a hierarchy of social roles.

Figure 6. Homogeneous cliques

Yet, as we now point out, this game has many more msns, where each of the characteristics of 
the example in Figure 6 are violated.  First, as shown in Figure 7, this game has a  msn that 
consists  almost  exclusively  of  one-player  cliques,  and  contains  players  positioned  at  rank 

9)1( max =−t . In this case, starting from the situation where a number of individual players act, 
it  takes only one extra player in state  w to get extra players to act.  Second,  this game has 
minimal  sufficient  networks  containing multi-player  cliques  that  are  heterogeneous,  in  that 
cliques contain players with different thresholds. An extreme case of this is shown in Figure 8, 
where the leading clique has a maximal level of heterogeneity, in that players of every possible 
threshold are represented in it. Third, the game has minimal sufficient networks where players 
with a lower threshold (more radical players) are at a lower in a chain of cliques than players 
with a higher threshold, meaning that more radical players may only act depending on more 
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conservative players acting. An extreme case of this is shown in Figure 9, where the players in 
the one-player  follower  cliques  systematically  have a threshold lower than or equal  to the 
thresholds of the players in the large leading clique. Fourth, minimal sufficient networks exist 
that consist of three separate, mutually unconnected components, as illustrated in Figure 10.6 

Fifth, minimal sufficient networks exist that consist of only two hierarchical ranks, namely a 
leader rank and a follower rank. This is already illustrated by Figures 8 and 9.

Figure 7 Bandwagon: one-player cliques

Figure 8 Core-periphery with maximally heterogeneous core

6 It is clear that each msn should contain at least one component containing tmax = 10 players. By putting all the 
highest threshold players in such a 10-player component, one increases the chances that the remaining players 
are able to achieve collective action among themselves without any connection to the 10-player component. To 
the rest of the population,  one can now apply the same procedure.  The maximal  threshold in the rest  of the 
population is 5, so that there must be at least one 5-player component,  which we again fill up with the most  
conservative players. One final self-sufficient three-player component can then finally be constructed.
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Figure 9 Core-periphery with radical players in periphery

Figure 10 Segregated network

The  most  surprising  elements  in  these  examples  are  the  existence  of  msns  containing 
heterogeneous cliques, and the existence of msns where players are at a lower rank in a chain of 
cliques than players who are inherently more conservative than them. Both phenomena can be 
explained by the fact that a player’s exogenously given threshold  ti may be smaller than his 
endogenous threshold determined by his rank and/or social role in the hierarchy. The concept of 
a player’s endogenous threshold is formally defined in Definition 7.

Definition 7.
For any minimal  sufficient  network,  define as  the  endogenous threshold xt

~
of player  x the 

number of players he needs messages from before he acts. Note that xx tt ≥~
, and  that it may be 

that xx tt >~
. 

As an  example of a heterogeneous clique, consider the four-player clique with endogenous 
thresholds (3, 3, 4, 4) in Figure 10. Consider one of the threshold-3 players. Let a wearing a red 
hat mean that one is of type w (say, available to revolt against the government). Why does our 
threshold-3 player not content himself with receiving information that two other players of the 
clique wear a red hat? Suppose that our player would observe this. Then at least one of the two 
players that he observes wearing a red hat has threshold 4, meaning that this threshold-4 player 
only  acts  when  seeing  three  other  players  wearing  a  red  hat  as  well.  It  follows  that  our 
threshold-3 player is only assured that at least two players in the clique act when knowing that 
the threshold-4 player knows that three players in the clique beside him wear a red hat, meaning 
that the threshold-3 player himself will only act when three players beside himself wear a black 
hat. Our threshold-3 player thus forms an endogenous threshold of 4.

In  fact,  the  four-player  clique  in  Figure  10  could  equally  well  consist  of  players  with 
exogenously given thresholds (2, 3, 4, 4). Consider the threshold-2 player in such a clique. 
Suppose that he would only observe one other player beside himself wearing a red hat. At best, 
this other player has threshold 3. But then, this threshold-3 player must see two players wearing 
a red hat. Any such set of two other players that the threshold-3 player will observe will contain 
at least one threshold-4 player, who must see all players in the clique wearing a red hat. Thus, 
the threshold-3 player will form endogenous threshold 4. Knowing this, the threshold-2 player 
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will  form endogenous  threshold 4 as  well.   Proposition  1  derives  a  general  result  for  the 
threshold distribution that any individual clique in a msn may have.

Proposition 1. Consider any clique with x players in a minimal sufficient network. Let w be the 
number of messages that each member of the clique receives from players in other cliques. 
Consider any integer y, with xy <≤1 . Then:
(i) the x-player clique should not contain more than )1( −y  players with threshold )( yw +  

or lower;
(ii) the x-player clique should contain at least two players with threshold )( xw + , and no 

players with a threshold higher than )( xw + ;
(iii) the x-player clique with maximal heterogeneity is one with a single player of threshold y 

for each integer [ ])1(),2( −++∈ xwwy , and with two threshold- )( xw + players.
Proof:
(i) If a clique with more than one player contains a threshold-(w+1) player, then this player does 
not need messages from the other players, and is not in the same clique. If a clique with more 
than two players contains two players with threshold (w+1) or (w+2), then these two players 
need not receive message from other players. If a clique with more than three players contains 
three players with threshold (w+1), (w+2) or (w+3), these players only need messages from one 
another. Etc.
(ii)  By (i),  the  x-player clique should not contain more than  )2( −x  players with threshold 

)1( −+ xw  or lower. Thus, )1( −x  players with threshold )1( −+ xw  or lower is not allowed. It 
follows that there should be at least two player with threshold )( xw +  or higher. But players 
with threshold higher than )( xw +  do not have enough information to act. It follows that the 
clique should contain at least two players with threshold )( xw + .
(iii) By (i), there can not be any threshold-1 players in the clique. There can be at most one 
threshold-2 player. If there is a threshold-2 player, there can be at most one threshold-3 player. 
If  there  is  one  threshold-2-player  and  one  threshold-3  player,  there  can  be  at  most  one 
threshold-4 player. QED

As an extreme example of  a player ranked at lower rank than a more conservative player, 
consider a threshold-2 player in one of the one-player follower cliques in Figure 9. This player, 
who is inherently one of the most radical in the population is at a lower rank in the population 
than the most conservative players in the population, namely the threshold-10 players. Because 
the leading clique is heterogeneous, in fact all players in the leading clique form endogenous 
threshold 10. In the red hat example, each player in the leading clique only acts when seeing 9 
other players in the leading clique wearing a red hat. Because of this fact, observing a single 
player  in  the leading  clique  wearing  a  red  hat  does  not  suffice  to  our  threshold-2 player. 
Knowing that this player only acts when observing 9 other players in the leading clique wearing 
a red hat, the threshold-2 player will only act when seeing all 10 players in the leading clique 
wearing red hats, so that the threshold-2 player forms an endogenous threshold of 11, so that 
one of our inherently most radical players behaves like a player that is more conservative than 
one  of  the  inherently  most  conservative  players  in  the  population.  In  general,  such  a 
phenomenon is  only possible  for  players  in  one-player  cliques;  also,  any followers  of  our 
threshold-2  player  cannot  have  lower  exogenous  threshold  than  him,  since  under  local 
knowledge they in any case require messages from the leading clique as well, which suffice to 
them. These results are formally shown in Proposition 2. 
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Proposition 2. Consider three cliques directly linked in a single chain, Mx  My  Mz. x, y and 
z denote the number of players in these cliques. Denote by xt

~
 the endogenous threshold of each 

player in clique Mx. Clique y can contain a player with exogenous threshold xy tt ~≤  if:

(i) 1=y ;

(ii) the threshold of each player in clique Mz is larger than yt .
(iii) Denote  by  w the  number  of  messages  received  by  each  player  in  clique  x.  Then 

1+< wt y .
Proof:
(i) is shown by means of the example in Figure 5. To show (ii), note that a typical player in 
clique Mx is willing to act because she finds out that at least tx people are willing to act (which 
includes herself). The players in My receive the same information, but have a lower threshold. It 
follows that an individual player in My does not need any extra messages, and must therefore be 
in a one-player clique. (iii) follows by a similar reasoning: if the players in  Mz have a lower 
threshold than those in My or have the same threshold, they only need messages from Mx, and 
the messages received by Mx. QED

Proposition  2  should  be  seen  as  an  exception  to  a  rule:  the  “natural”  order  of  players 
according to their thresholds can only be broken for two consecutive ranks, but not for three 
consecutive ranks. The reason of the reversal in Figure 7 is that there are so few ranks in the 
first place. General results about the relation between a player’s exogenously given threshold 
and his rank in an msn are given in Proposition 3.

Proposition 3. Denote the ranking of cliques in an individual chain by the numbers 1, 2, …, (z 
– 2), (z – 1), z, where )1( max −≤ tz . The following rules apply for the manner in which cliques 
are ordered along individual chains.
(i) In any individual chain, a threshold-2 player can be located at rank 1 or 2. A player with 

exogenously given threshold xi > 2 is located at rank r, with )1( −≤ ixr ;
(ii) In any individual chain with highest rank z, a player with threshold (tmax – y) is located at 

rank r, with )1( −−≥ yzr .
Proof:
(i) As each player receives messages from all players higher up in the hierarchy, and as 

each clique contains at least one player, a player  i at rank r with threshold xi receives 
messages from at least  )1( −r  players at  rank  ρ such that  )1( −≤ rρ ,  from at least 

)2( −r  players at rank ρ  such that )2( −≤ rρ , from at least )3( −r  players at position 

ρ such that )3( −≤ rρ , etc. If )2( −≤ rxi , )3( −≤ rxi , etc., then player i does not need 

messages from the players at ranking r, )1( −r , etc.
(ii) A player with threshold tmax cannot be located at ranking x with )2( −≤ zx : otherwise, 

the players at ranking z do not need links to the players at ranking )1( −z . A player with 

threshold  )1( max −t  cannot  be  located  at  ranking  x with  )3( −≤ zx :  otherwise,  the 

players at ranking )1( −z do not need links to the players at ranking )2( −z . Etc.
QED

The existence of msn with endogenous thresholds does not contradict Chwe’s interpretation 
of hierarchies of cliques as hierarchies of social roles. The only correction is that a player’s 
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social  role  may  be  quite  different  from  his  endogenous  threshold.  A  player  with  leader 
capacities (= a low threshold) may be a follower, a player with few inherent capacities for 
leadership may be a leader. Very diverse players may play one and the same role, and very 
similar people may play very different roles. This is because of the discrepancy between the 
players’  inherent  tendencies,  and  the  behaviour  forced  upon  them  by  their  network 
environment. Thus, our model allows for the effect of embeddedness in a network on a player’s 
behavior  (Granovetter,  1985).  It  is  not  only  the  case  that  players’  individual  behavioral 
tendencies determine how they are positioned in a social hierarchy; the social hierarchy itself 
also determines how they behave.

Why are there so many msn? We now show some general results. A first insight that can be 
obtained that each msn of a particular n-player threshold game with maximal threshold tmax must 
contain at least one component connecting exactly tmax players. For instance, all msn in Figure 6 
to 10 contain a ten-player component.

Lemma 4. Consider any n-player threshold game with maximal threshold tmax. Then any msn 
contains at least one component connecting exactly tmax players.
Proof: Any tmax-threshold player must receive messages from at least (tmax – 1) different players. 
It follows that any msn must contain at least one component of tmax connected players.  

A second insight is that, for any subset of players containing at least one tmax-threshold player, 
one can find a minimal sufficient component.

Lemma  5.  For  any  subset  of  tmax players  containing  at  least  one  tmax-threshold  player,  a 
connected minimal sufficient component exists.
Proof: For any set of tmax players containing at least one tmax-threshold player, one can construct 
a connected minimal sufficient component by the following network formation algorithm. In 
Step 1, build as many leading cliques of size 2 as possible (containing threshold (2, 2)). Next, 
among the remaining players, build as many leading cliques of size 3 as possible ((3, 3, 3) or (3, 
3,  2)).  After that,  build among the remaining players as many leading cliques  of size 4 as 
possible ((4, 4, 4, 4) or (4, 4, 4, 3), (4, 4, 3, 3), or (4, 4, 3, 2), etc. Continue this procedure until 
it is not possible anymore to build leading cliques. Note that application of Step 1 may lead all 
tmax players to be put in a single clique. In Step 2, if there are any remaining players, connect as 
many of them as possible in follower cliques of size 1 to one or more of the leading cliques (a 
threshold-2 player connected to a two-player leading clique, a threshold-3 player connected to a 
two- or three-player leading clique; a threshold-4 player to one three-player leading clique or 
two two-player leading cliques, etc.). After this, among the remaining players connect as many 
follower cliques of size 2 to one or more of the leading cliques. Continue this procedure until it 
is no longer possible to connect players to the leading cliques. In Step 3, if any players remain, 
connect as many as possible one-player cliques to one or more of the follower cliques. Next 
two-player cliques. Etc. Continue these steps until all players have been allocated. Note that this 
procedure necessarily results in a connected component, as the  tmax player needs to receive 
messages from all other players.

A third insight is that  one can always connect the players not included in  any subset as 
defined in Lemma 5 to a minimal sufficient component defined in Lemma 5.

Lemma 6. Consider any tmax-player connected minimal sufficient component containing at least 
one tmax-threshold player. Then any remaining players in the population can be connected to this 
component in one-player follower cliques.
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Proof: Any minimal sufficient component as defined in Lemma 5 consists of a partition of ten 
players in cliques according to endogenously-formed thresholds. Denote the set of endogenous 
thresholds  contained  as  (x1,  x2,…,  xi,…,  xz).  For  any  player  not  included  in  the  minimal 
sufficient component with exogenously given threshold tj, look for the smallest xi in the set (x1, 
x2,…, xi,…, xz) such that  tj ≥ (xi – 1). Then the tj-threshold player can be connected in a one-
player follower clique to this  clique of the minimal sufficient component with endogenous 
threshold xi. QED

In order to see the plethora of msns, note first that there is a plethora of subsets containing at 
least  one  threshold-10  player  that  can  be  formed  in  game  10,10,10,9,8,7,7,6,6,6,5,4,4,3,3,3,2,2Γ .  By 
Lemmata 4 to 6, one can form a different  msn for each of these subsets, by following the 
procedure set out in Lemmata 5 to 6. Yet, often one can even form other minimal sufficient 
components for any subset of 10 players containing at least one threshold-10 players. And there 
are  often  several  ways  to  connect  the  remaining  players  to  such  a  minimal  sufficient 
component.  Moreover,  as  illustrated  in  Figure  8,  cases  exist  where  one can  form isolated 
components with the remaining players. 

Concluding this  section,  there  typically  is  a plethora of  msn,  causing the players a large 
amount of strategic uncertainty. Yet, if we see players as repeatedly being involved in threshold 
games, where the population may each time differ, then this plethora of equilibria can be seen 
as an opportunity rather than as a threat. As shown by Granovetter (1978), some msn stop being 
minimal sufficient even for small changes in the population. Yet, because of the plethora of msn 
for any typical game, perhaps there are other msn, or at least  msn with certain characteristics, 
that  work  no  matter  how the  threshold  in  the  population  changes,  i.e.  that  work  for  all 
populations. Such go-for-all msn may then be focal, and the problem of strategic uncertainty is 
then  resolved.  The  next  section  investigates  whether  such  generally  applicable  network 
formation rules exist.

4. Generalizability of network formation rules

The  purpose  of  this  section  is  to  investigate  whether  we  can  find,  across  all  allowable 
populations of players of our game, msn that have a certain common feature. If such msn with a 
common  feature  exist,  this  common  feature  may  become  focal  and  solve  the  strategic 
uncertainty arising from the multiplicity of msn. The common feature itself may then be seen as 
a rule  for successful  network formation.  We consecutively consider  the following network 
formation rules. A first rule we treat (Section 3.1) corresponds to Granovetter’s bandwagons 
(1978), and consists of putting as many players as possible in one-player cliques, and of give 
each player a rank corresponding to his order in the ranking of exogenously given thresholds. A 
second rule (Section 3.2) treated corresponds to one of the main examples provided by Chwe 
(2000) and consists of putting all players with the same threshold together in one and the same 
homogeneous  clique.  A  third  rule  (Section  3.3)  consists  of  constructing  a  core-periphery 
network, with a number of players in the leading clique equal to the largest threshold in the 
population, and the rest of the players in one-player follower cliques of this leading clique. 

 
4.1 Bandwagons

Definition 7.
Define  as  a  bandwagon a  network  where  all  players  are  in  one-player  cliques,  with  the 
exception of two threshold-2 players, who are in a two-player leading clique.
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In  sociological  terms,  a  bandwagon  is  almost  exclusively  characterized  by  weak  links 
between players (Granovetter, 1973). With the exception of the leading clique, there are no 
multi-player cliques in which strong links are formed.

Proposition 4 shows that a bandwagon exists as long as there are at least two threshold-2 
players, and as long as for any player with threshold x, there are at least (x – 1) players with a 
threshold smaller than him. Put otherwise, if there is a player with a threshold x higher than 2, 
there must be at least (x – 1) more radical players who act without receiving information from 
this player. Put otherwise, a bandwagon exists if any subset of 2, 3, 4,..., (tmax – 1) players can be 
made to act independently. The population is therefore relatively radical, as the most radical 
players  act  without  little  assurance  that  others  act.  As  the  most  radical  players  have  the 
leadership, in that nobody acts unless they act, they must also be self-sufficient.

Proposition 4.  A bandwagon exists if there are at least two threshold-2 players, and for each 
threshold-x player with x > 2 at least (x – 1) players with threshold lower than x.
Proof:
If there are less than two threshold-2 players, any msn automatically contains a leading clique 
with at least three players. Furthermore, in order for any threshold-3 player not to require being 
in a multi-player clique,  there must be at  least  two threshold-2 players from which he can 
receive individual messages. For any threshold-4 not to require being in a multi-player clique, 
there must  be at  least  three players  with threshold 3 or  lower from which he can receive 
individual messages. Etc. QED

The simplest case of a bandwagon is where there are no gaps between the players thresholds, 
as depicted in the example in Figure 5. Note that if there are more than two threshold-2 players, 
the remainder can still be linked in one-player cliques to the leading clique of two threshold-2 
players;  these  followers  than form endogenous threshold 3.  It  should also be noted that  a 
bandwagon exists even if there are gaps between the thresholds, in which case the bandwagon 
contains “loops” and no longer has a tree structure.

A bandwagon may be considered as a simple network formation rule. First, order all players 
according to their thresholds. Then, let each player receive the necessary number of messages 
from more radical  players. Unfortunately, bandwagons do not exist  for all  populations. We 
illustrate this by means of two 10-player games, which are exceptional in that only a single msn 
may exist.  For instance, in game  10,9,8,7,6,5,4,3,2,2Γ  the bandwagon is the only msn. But game 

10,10,9,8,7,6,5,4,3,2Γ ,  a  bandwagon  does  not  exist,  and  the  only  msn is  the  antipode  of  the 
bandwagon, consisting of a single clique containing all players. 

4.2 Homogeneous cliques

Definition 8.
Define as a homogeneous  msn where all players with the same threshold are in one and the 
same clique.

The idea is that all players of the same type play exactly the same social role. This may be 
seen as reflecting the often made observation of homophily in networks observed in sociology: 
similar players tend to link to one another (see McPherson, Smith Lovin and Cook, 2001). The 
similar players form strong links with one another, and are connected with dissimilar players 
only through weak links.
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Proposition 5. A homogeneous msn exists if for each y players with threshold x
(i) for players in any leading clique, it is the case that y = x.
(ii) for players in a follower clique, it is the case that y < (x – 1).
(iii) for players in a follower clique,  there must be exactly (x –  y) players with thresholds 

lower than x who can be put in homogeneous cliques.
Proof:
(i) A leading clique acts without receipt of any incoming messages. As all players must be 

in homogeneous cliques, it any leading clique it must be the case that y = x.
(ii) Threshold-x players can be in a clique of at most  x players. It there are more than  x 

players, it is not possible for all of them to be in the same clique. If there are (x – 1) 
threshold-x players in a follower clique, then these players must receive information 
from a single player. By Corollary 1, this player must be in a one-player clique. As each 
clique receives messages from all cliques higher up in a chain, this one-player clique 
can itself not be a follower clique. But not player in the considered populations can be in 
a one-player leading clique.

(iii) If there are less than y < x players with threshold x, then the threshold-x players only act 
when receiving information from exactly (x –  y) players, who must themselves be in 
homogeneous cliques.

Homogeneous msn apply only to particular populations. As any msn has at least one leading 
clique,  there  must  be at  least  one threshold level  x for  which  there are  exactly  x players. 
Moreover,  the number of players  of a certain  threshold puts restrictions on the rest  of  the 
population.  For  instance,  if  there  are  four  threshold-6  players,  there  must  be  exactly  two 
threshold-2 players. If there are three threshold-6 players, then either there must be exactly three 
threshold-3 players, or exactly two threshold-2 players and exactly one threshold-3 player. If 
there are two threshold-6 players, then there must be exactly four threshold-4 players, or exactly 
two threshold-2 players and exactly two threshold-4 players. For the exceptional case where 
there exactly ten players,  one can find examples where the only  msn is  homogeneous,  e.g. 

10,10,8,8,6,6,4,4,2,2Γ .  Yet,  in  game  10,10,9,8,7,6,5,4,3,2Γ ,  the  only  msn contains  a  single  perfectly 

heterogeneous multi-player clique containing players of all thresholds. Game  10,10,8,8,6,6,4,4,2,2Γ  
conveniently  has  gaps  between the players’  thresholds,  but  such  gaps  are  not  a  necessary 
condition for the existence of a homogenous msn. As illustrated in Figure 4, by having multiple 
chains of cliques  in a  msn,  a  homogenous msn is  possible  even without  gaps between the 
thresholds.

4.3 Core-periphery

After studying two network formation rules inspired on examples from the literature, we now 
turn to a third network formation rule. We have already noted in Lemma 5 that any network 
contains  at  least  one  minimal  sufficient  component  consisting  of  exactly  tmax  players  and 
containing at  least  one  tmax-threshold player.  By Lemma 6,  a  msn can always be found by 
constructing  a  single  such  tmax-player  minimal  sufficient  component,  and  connecting  any 
remaining players to it in one-player follower cliques. The problem now is that, for any subset 
of tmax players, many minimal sufficient components may exist, again inducing different ways to 
link the remaining players in one-player cliques, such that the problem of multiplicity is not 
solved. This is why we study the case where the tmax-player minimal sufficient component takes 
a particular form, in being complete. 
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Definition 9.
Define as a core-periphery msn any msn with tmax players in a single complete leading clique, 
and all other players in one-player follower cliques around it.

In a core-periphery network, we have a single leading clique with strong links, which has 
weak links with individual players.

Proposition 7. 
The following condition is necessary and sufficient for the existence  core-periphery msn. Let 
there exist at least one subset 'N  with NN ⊆'  consisting of a number of  tmax  players (i, j,…, 
w,  y,  z), ordered in ascending order according to the levels of their thresholds, and with the 
following characteristics. Player i has threshold ti  ≥ 2, player j has threshold tj  ≥ 3,…, player w 
has threshold tw  ≥ (tmax – 1), and players y and z both have thresholds tmax.
Proof:
This result follows directly from Propositions 1 and 3.

Again, sticking to the exceptional case of games where there are exactly tmax players, it is easy 
to  construct  examples  where  core-periphery  is  not  an  msn,  such  as   10,10,8,8,6,6,4,4,2,2Γ  (only 

homogeneous cliques)  and  10,9,8,7,6,5,4,3,2,2Γ  (only bandwagon).  Thus,  unfortunately,  the core-
periphery is not generally applicable either. Whereas the bandwagon applies to relatively radical 
populations, where instigators need few messages from other players, one can say that core-
periphery applies to relative conservative populations. For instance, if there is no option but to 
fill any core with at least two threshold-2 players, then the core-periphery is not a  msn. The 
leading clique must contain at least a few of the most conservative players; these infect the rest 
of the population, making their endogenous thresholds equal to the exogenous threshold of the 
most conservative players. Collective action only takes place if everybody agrees that collective 
action is worth a while.

Rounding up this section, we conclude that none of the treated network formation rules allow 
for the formation of a similar  msn for each possible  threshold game, and a solution to the 
problem of strategic uncertainty is thus not found. Yet there are important differences between 
the several network formation rules treated. The reason why a bandwagon or a homogenous 
clique  network are  not  minimal  sufficient  for  all  possible  populations  is  that  they are  not 
sufficient for all populations. The existence of a bandwagon msn crucially relies on there being 
at least two threshold-2 players. While the bandwagon is sufficient for game 10,9,8,7,6,5,4,3,2,2Γ , it 

is not for game 10,10,9,8,7,6,5,4,3,2Γ . In our main example 10,10,10,9,8,7,7,6,6,6,5,4,4,3,3,3,2,2Γ , if one of the 
threshold-3 player’s threshold is turned into 4, a msn where all players with the same thresholds 
are in the same homogenous cliques,  so that the three threshold-4 players are in a leading 
clique, is no longer sufficient.

The reason why the core-periphery network is not always a msn, however, is because it is not 
always minimal. Yet, the core-periphery network is always sufficient. Any player positioned 
anywhere in a core-periphery always knows that nine other players are willing to act. This fact 
yield an additional advantage to core-periphery networks. If players are willing to compromise 
on the fact that core-periphery networks are not always minimal (even they are minimal as well 
quite often), then it  does not matter  who is  where in  the network.  In order to achieve the 
bandwagon,  or a  network with homogenous cliques,  players  need to  coordinate  on who is 
positioned where in the network. Core-periphery networks on the contrary are sufficient even if 
players  are  put  at  random places  in  the  network.  The  next  section  formalizes  the  idea  of 
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unsophisticated players in treating a modified game where players additionally do not know 
each other’s thresholds.

6. Players do not know each other’s thresholds

In this section, we treat a modified game where players only know that they are playing an n-
player threshold game where any player’s maximal threshold is tmax, and their own threshold. In 
particular, for each n and tmax, there is a distribution of possible populations, and this distribution 
is  common  knowledge.  The  populations  that  occur  with  positive  probability  include  a 
population where all other players have threshold tmax. We continue to assume that, separately 
from their thresholds, players may be either willing or unwilling. Otherwise, a Nah equilibrium 
exists would exist where players take collective action even in the absence of communication. 
We continue to assume that a link gi,j = 1 enables agent j to access i’s information on whether i 
is in state  w or  x. We assume that such a link does not allow player j to find out player  i’s 
threshold.

It is easy to see now that for large enough  L, the core-periphery network is a  msn in this 
modified game. To see why, note that it continues to be the case that each msn must contain at 
least  one  component  consisting  of  tmax players.  Moreover,  given  each  individual  player’s 
uncertainty about the other players’ thresholds, this component can only be complete.  Each 
individual  player  in  this  component,  even  when  having  only  threshold  2,  considers  the 
possibility that all other players have threshold  tmax, and develops endogenous threshold  tmax. 
The players not included in the leading clique similarly develop endogenous thresholds of tmax. 
They only need messages from the players in the leading clique, so that they are automatically 
in one-player cliques. An exception is the case where n ≥ 2tmax, in which case multiple complete 
components can be formed. However, this is not possible for populations where n < 2tmax. Thus, 
the unique msn consists of putting a random sample of tmax players in a complete leading clique 
(core),  and  to  put  all  other  players  in  one-player  follower  cliques  of  this  leading  clique 
(periphery). The mechanism by which the core-periphery network is generally applicable is that 
it  changes  each  player’s  endogenous  threshold  in  such  a  way  that  he  acts  like  the  most 
conservative player in the game. Typically, the leading clique is heterogeneous. The standard 
argument for heterophily in networks (e.g. Reagans and Zuckerman, 2001) is that heterophily in 
networks promotes innovation, because of a wider range of opinions. In the present model, 
heterophily is called for because it is leads to networks that are generally applicable.

7. Conclusion

The proposed core-periphery network as a general recipe to achieve collective action in the 
threshold  game  has  some  intuitive  appeal.  First,  a  representative  committee  is  randomly 
selected from the population.  Indeed,  on average,  the committee is  distributed in  the same 
manner as the entire population. Also, the committee is large enough to convince even the most 
conservative player to act. Thus, the purpose of the committee is to achieve consensus about the 
desirability  of  collective  action.  Second,  once  the  representative  committee  has  achieved 
consensus that collective action is desirable, this is communicated to each other member of the 
population individually. Given that the committee is large enough, the other players will be 
convinced to take action, whatever their degree of conservatism.

Several issues remain to be investigated. First, we have neglected the cost of forming links. 
Because of size of the leading clique and the fact that it is complete, many links are needed in 
the core-periphery network, and the bandwagon is more economic in this sense (even though it 
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needs to be stressed that each player still needs to receive a message from each player higher up 
in a clique chain as well).  Second, one could envisage noise in the links, where with small 
probability information a player’s information does not get through to others. In this case, the 
players make themselves very vulnerable in the core-periphery. The information of a single 
player in the core not getting through suffices to disable all collective action. The more players 
there are in the core, the more likely this is to happen. In a bandwagon, however, the probability 
that messages get lost in the smaller leading clique is relatively small, so that it is likely that at 
least some players get to act. Third, it may be that a strategic player tries to disrupt collective 
action,  e.g.  by eliminating one player and doing this  with the maximal  possible  disruptive 
effect.  Given the examples  of  strikes,  revolutions  and riots,  this  is  plausible.  Consider  for 
instance the game  2,2,2,2,2,2,2,2,2,2Γ .  In the core-periphery network,  one leading clique of two 
players  is  formed,  with  the  eight  remaining  players  around  it  in  one-player  cliques.  An 
alternative (but not generally applicable) segregated network has five segregated components of 
two players. Consider a strategic adversary of the network whose purpose it is to disrupt the 
network, and who can do this by eliminating any one player. In the core-periphery network, by 
eliminating one of the players in the leading clique, the disruptor can make sure that no player 
acts. In the segregated network, the number of acting players can only be reduced to eight. If 
some players  acting is  better  than no players acting,  the segregated network,  consisting of 
segregated “cells”, is better.
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