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Abstract

Define a continuous game to be one in which every player’s strat-

egy set is a Polish space, and the payoff function of each player is

bounded and continuous. We prove that in this class of games the

process of sequentially eliminating “never-best-reply” strategies does

not terminate after the first uncountable ordinal, and that this bound

is tight. Also, we examine the connection between this process and

common belief of rationality in the universal type space of Mertens

and Zamir [10].

1 Introduction

A never-best-reply (NBR) strategy of a player in a game is one that is not a

best reply to any distribution of strategies of the other players. In seminal

papers, Pearce [11] and Bernheim [4] called a strategy rationalizable if it

survives repeated elimination of NBR strategies. As Pearce put it: “For

each game, rationalizability distinguishes those strategies that players could

employ without violating the implications of the common knowledge they

possess, from those that are patently unreasonable.”
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This work explores rationalizability in continuous games, i.e., games in

which the strategy set of each player is a Polish space, and the payoff function

is bounded and continuous. Such games have been investigated since the

dawn of game theory; see, e.g., Ville [13]. We shall see that in those games,

the NBR elimination process does not necessarily terminate after the “first

infinity;” a longer elimination process may be needed. That is, after ω rounds

of eliminating NBR strategies, it may be that the remaining strategy set

does not have the self-best-reply property, and more rounds of elimination

are needed. So the elimination process continues to ordinals greater than the

first infinite ordinal.

Lipman [9] also relates to this kind of phenomenon, and demonstrates

that mutual knowledge of rationality of a finite but arbitrarily high order

provides a poor approximation for the common knowledge assumption.1 Our

first goal is to characterize how large the gap is. That is, we seek a bound

for the number of rounds needed in order to get the rationalizable set. In

Theorem 1 we show that the length of the NBR elimination process cannot

exceed the first uncountable ordinal ω1. Moreover, this bound is tight; in

Subsection 3.2 we exhibit a continuous game in which exactly ω1 rounds of

NBR elimination are needed to get the rationalizable set.

Our second aim is to explore the connection between the NBR elimination

process and mutual belief of rationality. We adopt the approach of Tan and

Werlang [12] and transform such non-cooperative games into Bayesian games

with the universal type space of Mertens and Zamir [10] as their underlying

belief space. In doing so, we provide an epistemic characterization for the

NBR elimination process. In particular, we show that for natural numbers

k, a strategy si of player i survives k rounds of NBR elimination iff there

exists a type for which si is a best reply and mutual belief of rationality of

order k obtains in that type. Moreover, si is rationalizable iff there exists a

type of player i for which si is a best reply and common belief of rationality

obtains in that type.

1For a general treatment of the concept of rationalizability, see Apt [2]
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In two-player finite strategic games a strategy is a best reply with re-

spect to a probability distribution over the other player’s strategy set iff it

is not strongly dominated by any mixture of strategies. In our case, how-

ever, only one direction is true; that is, there exists an NBR strategy that is

not strongly dominated (see Example A.1). Therefore, every strategy that

survives α rounds of NBR elimination survives also α rounds of strong dom-

ination elimination, but not vice versa.

The assumption of a Polish strategy space provides a natural generaliza-

tion of the compact metric strategy space assumption. Much of the recent

work concerning incomplete information games adopts this framework (e.g.,

[6]). The difficulty that arises in this generalized setup, in both the complete

and the incomplete information case, is that the set of strategies surviving k

rounds of NBR elimination need not be a Borel measurable (Example 3.1).

The implication of our results to the incomplete information setup will be

discussed in Section 5.2.

The paper proceeds as follows. In Section 2 we begin the formal treatment

and formally present the motivation for Theorem 1. Section 3 is devoted to

the proof of Theorem 1 and some related results. In Section 4 we introduce

the concept of belief system and provide an epistemic framework for the

probabilistic NBR elimination process. In Section 5 we generalize some of

our results and sketch an example of a game with a non-Polish strategy

space and continuous payoff function, in which Theorem 1 does not hold.

In Appendix A we adduce an example of a continuous game for which an

undominated strategy is not a best reply.

2 Preliminaries

Definition 2.1. A continuous game Γ is a triple (N, (Si)i∈N , (Ui)i∈N), where

N is a finite set of players and for every i ∈ N , Si is a Polish space2 and

Ui : S1 × · · · × Sn → R is bounded and continuous.

2A Polish space is a separable, completely metrizable topological space.
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We start by assuming that N contains only two players, and deal first

with a non-probabilistic framework.3 Let Γ = ({1, 2}, (Si)i=1,2, (Ui)i=1,2) be

a two-player continuous game, where Si are the strategy sets of player i.4

Definition 2.2. For sj ∈ Sj, let bri(sj) = {si ∈ Si : si ∈ argsupSi
Ui(·, sj)}.

That is, bri(sj) is the set of strategies in Si that are best replies with

respect to sj. Obviously, bri(sj) can be empty. We call a strategy of player

i, si, rational if it is a best reply with respect to some strategy of player j,

sj. That is, si is rational if ∃sj ∈ Sj s.t. si ∈ bri(sj); otherwise we call si a

never-best-reply (NBR) strategy. Consider the following example:

Example 2.1. Assume S1 = S2 = ω + 2 = N ∪ {β1, β2} is equipped with

the discrete topology. Each player i gets a payoff of 1 if he chooses a number

strictly greater than the one j chose; otherwise he gets 0. This game is obvi-

ously a continuous game. Consider the process of simultaneous elimination

of NBR strategies (henceforth NBR elimination). After n rounds of NBR

elimination we remain with the set Si \ {1, 2, . . . , n} for each player i. Af-

ter iterated NBR elimination (i.e., ω rounds of NBR elimination) we remain

with the set Si = ({β1, β2}), for each player i. But the set {β1, β2}×{β1, β2}
is not a “fixed point” set, in the sense that it still contains NBR strategies,

namely, β1 for each player. Therefore, one more round of NBR elimination is

needed to reach Si = {β2}, which is the desired fixed point set. This example

demonstrate, a case where ω + 1 rounds of iterated elimination is needed to

reach the rationalizable set.

Note that the strategy β1 is consistent with mutual knowledge of ra-

tionality of any finite order, but is inconsistent with common knowledge of

rationality. A similar kind of example may be constructed for every countable

ordinal α.

Definition 2.3. Define by induction the NBR elimination process as follows:

3For the general case see Sections 4 and 5.1.
4Henceforth, we assume that i 6= j and i is either player 1 or 2.
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• S1
i = Si,

• S2
i = {si : ∃sj s.t. si ∈ bri(sj) }.

• For successor ordinal α, define Sαi = { si : ∃sj ∈ Sα−1
j s.t. si ∈

bri(Ui, sj) },

• for limit ordinal η, define Sηi = ∩α<ηSαi .

The assumption in the core of this process argues that if player i is ratio-

nal, he will play a strategy that is a best reply with respect to some strategy

of player j, i.e., a strategy in S2
i . If, in addition, player i assumes that the

other player is rational, his chosen strategy should be a best reply with re-

spect to a rational strategy of player j, i.e., a strategy from S3
i , and so on.

As we saw, unlike the case where the Si’s are compact or finite (see [12]), in

this case the elimination process can go beyond the first infinite ordinal ω.

For every continuous game Γ there exists a least ordinal α such that

Sαi = Sα+1
i = S∞i for i = 1, 2.5 We denote this minimal ordinal by |Γ| and

call it the rank of Γ. Each si ∈ S∞i is called rationalizable. Note that the

sets of rationalizable strategies (S∞i )i=1,2 have the best-reply property. I.e.,

for every i = 1, 2 and j 6= i, each si ∈ S∞i is a best reply with respect to some

sj ∈ S∞i . Our first goal is to give an ordinal that bounds the NBR elimination

process for continuous games. Theorem 1 argues that |Γ| is bounded from

above by the first uncountable ordinal, ω1:

Theorem 1. For every continuous game Γ, |Γ| ≤ ω1.

Without assuming any topological constraints on the strategy sets and

the payoff functions of the players, one can deduce only that the NBR process

would terminate at an ordinal with cardinality not exceeding the power of

the strategy set. So if the strategy set of each player is Polish uncountable,

then its power is a continuum ([8], Corollary (6.5)) and we can bound the

length of the NBR process with the first ordinal with cardinality greater

5S∞i might be empty.
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than the continuum. Theorem 1, however, provides a better bound for our

particular case. Moreover, we show that this bound is tight; i.e., there exists

a continuous game Γ, for which |Γ| = ω1.

The next section is devoted to the proof of Theorem 1 and its conse-

quences.

3 Proof of Theorem 1

Define the best-reply relation over the direct sum of S1 and S2 (S1

⊕
S2) as

follows: y ≺ x if and only if x ∈ Si, y ∈ Sj, i 6= j, and x ∈ bri(y). One can

identify ≺ with a subset of the space (S1

⊕
S2)

2. We begin by proving the

following lemma:

Lemma 2. ≺ defines a closed subset in Z = (S1

⊕
S2)

2.

Proof. Let {(xn, yn)}∞n=1 be a convergence sequence in Z and let (x, y) be its

limit. Assume that for each n ∈ N, yn ≺ xn. We have to show that y ≺ x.

Without loss of generality we can assume that for every n > N , xn ∈ Si

and yn ∈ Sj. So x ∈ Si and y ∈ Sj and we claim that x ∈ bri(y). To see

this, note that by definition, ∀t ∈ Si, Ui(t, yn) ≤ Ui(x
n, yn), and so by the

continuity of Ui, ∀t ∈ Si Ui(t, y) ≤ Ui(x, y).

For n ≥ 1, define Tn = (Si × Sj)
n for even-numbered values of n, and

Tn = (Si × Sj)
n−1 × Si for odd-numbered values of n. That is, T1 = Si

Tn = Tn−1×Sj for even n, and Tn = Tn−1×Si for odd n. Define T =
⊕∞

n=1 Tn

(note that T is Polish space as a countable direct sum of Polish spaces).

Definition 3.1. Define inductively a relation C over T as follows: for r ∈ T1

t ∈ T2, t C r iff projT1
t = r and projSj

t ≺ r. That is, if t = (t1, t2), then

t1 = r and t2 ≺ r. For general r, t ∈ T , t C r iff r = (r1, . . . rn) ∈ Tn,

t = (t1, . . . , tn, tn+1) ∈ Tn+1, ti = ri ∀i ≤ n and tn+1 ≺ . . . ≺ t1.

Note that C defines a closed relation in (T )2. To see this, let rm, tm ∈ T
such that ∀m, tm C rm, and (rm, tm) → (r, t). We can deduce that rm ∈
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Tn and tm ∈ Tn+1 for every n > N . By definition tmn+1 ≺ . . . ≺ tm1 and

projTn
tm = rm for all m. Since ≺ is closed and the projection function is

continuous, we have that tn+1 ≺ . . . ≺ t1 and projTn
t = r, as desired.

Definition 3.2. Let F be a set and < a binary relation on F . We define <

to be well-founded if there is no infinite descending chain · · · < f2 < f1 < f0.

Otherwise, we call < ill-founded.

For every s ∈ Si, let T (s) = {r ∈ T : projT1
r = s}, and so T (s) corre-

sponds to the closed subset of T comprised of the elements t ∈ Tn whose first

coordinate is s. We can view C as defining a tree over T (s), where the root

of the tree is (s) and for r, s ∈ T (s), r is a son of s iff for some n, s ∈ Tn
r ∈ Tn+1 s ⊂ r and rn+1 ≺ . . . ≺ r2 ≺ r1 = s.

Obviously T (s) is a closed set of T . The following lemma determines

whether s ∈ S∞i . Denote by Cs the restriction of C to T (s).

Lemma 3. Cs is ill-founded iff s ∈ S∞i .

Proof. (⇐): Assume that s ∈ S∞i . It follows that there exists s1 ∈ S∞j

such that s1 ≺ s. Since also s1 ∈ S∞j , there exists s2 ∈ S∞i such that,

s2 ≺ s1. Thus we can construct an infinite chain · · · s3 ≺ s2 ≺ s1 ≺ s = s0.

This chain induces a descending chain in T (s) with respect to Cs, i.e.,

. . . (s, s1, s2) Cs (s, s1) Cs s.

(⇒): Assume there exists a descending chain in T (s) . . . Cs s2 Cs s1

such that, s1 ∈ Tn and sk ∈ Tn+k−1. Let s1 = (s0, . . . , sn−1) since s1 ∈ T (s),

s0 = s. From s1Css2 we have projTn
s2 = s1. Therefore, s2 = (s0, . . . , sn−1, sn)

and sn ≺ sn−1 ≺ . . . ≺ s0 = s. Inductively, we construct two sets S̃i =

{s0, s2, s4, . . .} ⊆ Si, S̃j = {s1, s3, s5, . . .} ⊆ Sj such that . . . ≺ s2 ≺ s1 ≺
s0 = s. Using a simple transfinite induction one can show that S̃i ⊆ Sαi ,

S̃j ⊆ Sαj for every ordinal α and, in particular, s ∈ S∞i .

Given a well-founded binary relation < over a set F , we define the rank

function ρ< : F → ORD as follows:
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For minimal f , ρ<(f) = 0 recursively,

ρ<(f) = sup{ρ<(g) + 1 : g < f}.

ρ< maps F onto some ordinal η denoted by ρ(<), which we define as the

rank of the relation <.

For si ∈ Si \ S∞i , denote by |si| the unique ordinal α such that si ∈
Sαi \ Sα+1

i . We have the following correspondence between the rank of Cs

and |s|:

Proposition 4. For s 6∈ S∞i , we have |s| = ρ(Cs).

Proof. First note the following properties of Sηi :

a. For successor ordinal η, s ∈ Sηi iff ∃sj ∈ Sη−1
j such that sj ≺ s,

b. For limit ordinal η, s ∈ Sηi iff for every β < η ∃sj ∈ Sβj such that,

sj ≺ s.

We prove the result using transfinite induction; for s such that |s| = 1 the

result is immediate. Assume the theorem is obtained for every α such that

α < η, where η is any ordinal, and assume |s| = η. Given the definition of a

rank, we obtain

ρ(Cs) = sup{ρCs((s, r)) + 1 : r ≺ s} = sup{ρCr + 1 : r ≺ s}.

The second equality is due to the natural embedding of (T (r),Cr) in (T ((s, r)),Cs).

The theorem obtains from properties a, b, and the induction hypothesis.

Proof of Theorem 1. Let s ∈ Si be such that s 6∈ S∞i . T (s) is Polish, and

from Lemma 4 Cs is a closed relation over T (s) (and, in particular an analytic

relation; see Definition 3.3). By Lemma 3 Cs well-founded, so we can use

the fact that the rank of any well-founded analytic relation is countable (see

[8], Theorem 31.1) and deduce that |s| = ρ(Cs) < ω1. Therefore,

|Γ| = sup{ |s| | s 6∈ S∞i } ≤ ω1.
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3.1 Characterization of The Sets Sαi

In this section we characterize the sets Sαi and demonstrate that they may

not be Borel sets.

Definition 3.3. For Polish space X, a set A ∈ X is called analytic if there

exists a Polish space Y , and a continuous function f : Y → X such that

f(Y ) = A.

The class of analytic sets for an uncountable Polish space is strictly in-

clusive of all Borel sets ([8] Theorem 14.2) and closed under continuous pro-

jection and countable unions or intersections.

Example 3.1. Let X be an uncountable Polish space and let A ⊆ X be an

analytic set that is not Borel. Let Y be Polish and f : Y → X be continuous

such that f(Y ) = A. Then the set graf(f) = {(x, y) : x = f(y)} is closed in

X×Y . Let Γ be a game where S1 = X, S2 = Y and let d be any compatible

metric on X × Y such that d((x, y), (x′, y′)) ≤ 1 ∀(x, y), (x′, y′) ∈ X × Y .

Define a continuous payoff function

U1(x, y) = −d((x, y), graf(f)).

We argue that S2
i = A; to see this note that for every x 6∈ A and every y ∈ Y ,

U1(x, y) = d((x, y), graf(f)) < 0, because graf(f) is a closed set. For every

y ∈ Y there exists x ∈ X such that U1(x, y) = 0 (namely, x = f(y)).

Therefore, x is a best reply with respect to some y iff x ∈ A and y = f(x).

Proposition 5. Sαi are analytic sets for every ordinal α.

Proof. The set Ri = {(si, sj) ∈ Si × Sj : si ∈ bri(sj)} is closed; therefore

S1
i = projS1

i
R is an analytic set as a projection of a closed set. We proceed

inductively: Sα+1
i = projSi

Ri ∩ (Si × Sαj ) and Ri ∩ Si × Sαj is an analytic set

as an intersection of analytic sets and so Sα+1
i is analytic as a projection of

an analytic set. For countable limit ordinal α, the result is immediate since

a countable intersection of analytic sets is analytic. So we just have to prove

that S∞i = Sω1
i is analytic. As a consequence of Lemma 3 we know that
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s ∈ S∞i iff there exists a sequence {sn}∞n=0 such that s0 = s, sn ∈ Si for n

even, Sn ∈ Sj for n odd, and . . . ≺ s1 ≺ s0. The set of all such sequences

can be viewed as a closed subset M of (Si × Sj)N, and S∞i is the projection

of M to the first coordinate and hence analytic.

We call a space analytic if it is homeomorphic to an analytic subset of a

Polish space. Theorem 1 remains valid also for the case where the strategy

set of each player is an analytic space. To see this, assume that Si is analytic

for i = 1, 2, and let si 6∈ S∞i ; then the space T (s) is an analytic space and

Cs ⊆ [T (s)]2 is a closed relation in an analytic space hence analytic well-

founded relation. We can use again the fact ([8] Theorem 31.1) that the

rank of a well-founded analytic relation is countable in order to deduce that

|s| < ω1.

3.2 Tightness of Theorem 1

The question that remains unanswered is whether equality can be obtained

in Theorem 1. That is, does there exist a continuous game Γ for which

|Γ| = ω1? In this subsection we’ll answer this question in the affirmative and

demonstrate the existence of a two-player game Γ for which |Γ| = ω1.

Let Γ = ({1, 2}, (Si)i=1,2, (Ui)i=1,2), where S1 = S2 = TO ×N . N = NN

is the Baire space of all functions f : N→ N and TO ⊂ 2N2
is the set of total

orderings6 over N we identify each element of 2N2
with a binary relation on

N, and TO represents those relations that are total orderings. The topology

on N is the usual product topology, where N is equipped with the discrete

topology and the topology on TO is induced from 2N2
. TO is a closed subset

of 2N2
, and therefore the Si’s are Polish spaces.

Let F ⊆ (TO ×N )2 be the following set:

{((x, f), (y, g)) : [∀nf(n) <x 1] and [∀m,n m <y n⇒ f(m) <x f(n)]},
6A binary relation on some set X is a total order if it is transitive, antisymmetric, and

total.
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wherem <x n stands for x(m,n) = 1 and x(n,m) = 0. That is, ((x, f), (y, g)) ∈
F iff the relation y is embedded via f in the preface of all the elements in N
that are smaller than 1 according to x. We argue that F is a closed set. To

see this, note that for each pair m,n the set

Fm,n = {((x, f), (y, g)) : m <y n⇒ f(m) <x f(n)}

is closed. And so, the set H = {((x, f), (y, g)) : ∀nf(n) <x 1} is closed, as a

countable intersection of closed set. But F = ∩m,nFm,n∩H and is, therefore,

a closed set.

Let d be any complete bounded metric over S1 × S2, define the payoff

function for each player i as follows:

Ui((x, f), (y, g)) = −d(((x, f), (y, g)), F ),

where (x, f) ∈ Si and (y, g) ∈ Sj. Denote by WO, the subset of all total

well-orderings on N. For every x ∈ WO, let 1(x) = {m : m <x 1} be the set

of elements that are smaller than 1 according to x. For every countable or

finite ordinal α, let Dα be the following set:

Dα = {x ∈ WO : [the rank of x reduced to the set 1(x)] ≥ ω + α}.

To prove that |Γ| = ω1 we prove the following proposition:

Proposition 6.

1. For every n ∈ N and x ∈ WO, x ∈ projTOS
n+2
i iff x ∈ Dn.

2. For every countable ordinal α, x ∈ projTOS
α
i iff x ∈ Dα+1.

Proof. We prove part 1 first.

n = 0:

(⇐) : Let x ∈ WO, and assume that x ∈ D0, so that the rank of the reduction

of x to 1(x) is at least ω. Therefore, if, for example, y =≤ is the natural

ordering on N, then there exists a function f : N→ 1(x) such that m < n⇒
f(m) <x f(n) and obviously f(m) <x 1 ∀m. So ((x, f), (y, g)) ∈ F ∀g ∈ N
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and, therefore, (x, f) is a best reply with respect to (y, g) for any g ∈ N .

(⇒) : Assume that 1(x) is finite. If by contradiction (x, f) ∈ S2
i for some f ,

then by definition there exists (y, g) such that

d(((x, f), (y, g)), F ) = min(z,h)∈TO×Nd(((z, h), (y, g)), F ). (3.1)

It is not hard to see that ((z′, h′), (y, g)) ∈ F for some (z′, h′); hence the

right-hand side of 3.1 is 0. Since F is a closed set, ((x, f), (y, g)) ∈ F . By

definition of F , we deduce that the range of f is 1(x) and for every m,n,

m <y n iff f(m) <x f(n). But we assumed 1(x) is finite so there exists

m,n such that f(m) = f(n) since x is a total order, and this is obviously a

contradiction.

Proceed inductively; assume 1 is true for n− 1, we prove it for n:

(⇐) : Let x ∈ WO, such that x ∈ Dn. By definition, the rank of the

reduction of x to 1(x) is at least ω + n. Take y ∈ Dn−1 \ Dn, with 1 as a

maximal element, i.e., 1(y) = N \ {1}. Then again there exists f : N→ 1(x)

such that m <y n ⇒ f(m) <x f(n). So ((x, f), (y, g)) ∈ F ∀g ∈ N and,

therefore, (x, f) is a best reply with respect to (y, g) for any g ∈ N . By the

induction hypothesis, ∃g s.t. (y, g) ∈ Sni , and so (x, f) ∈ Sn+1.

(⇒) : Let x ∈ Dn−1 \Dn, and assume by contradiction that x ∈ Sn+2
i , again

using 3.1 ((x, f), (y, g)) ∈ F for some (y, g) ∈ Sn+1
i . y is determined via f

since ∀m,n m <y n ⇔ f(m) <x f(n). In particular, we have that y ∈ WO.

By the induction hypothesis, y ∈ Dn−1, and so the rank of y is at least ω+n,

a contradiction since y is embedded via f in a well-ordered set, 1(x), with a

rank of ω + n− 1.

We assume part 1 and prove part 2 for the case α = ω.

(⇐) : Let x ∈ Dω+1, and choose y ∈ WO such that 1 is y-maximal and the

rank of y reduced to Ay is exactly ω + ω. Choose a function f : N → 1(x)

such that ((x, f), (y, g)) ∈ F ∀g ∈ N; such an f exists since the rank of y

over N is ω + ω + 1, which is not higher than the rank of x over 1(x). From

the finite case ∀n y ∈ projTOS
n
i , so ∀n∃gn s.t. (y, gn) ∈ Sin, in particular

Ui((x, f), (y, gn)) = 0 ∀n, and so (x, f) ∈ Sωi .

(⇒) : We show that if x ∈ Dω \ Dω+1, then x 6∈ projTOS
ω
i . If by con-
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tradiction there exists f such that (x, f) ∈ Sωi , then for every n ∈ N
there exists (yn, gn) such that ((x, f), (yn, gn)) ∈ F and (yn, gn) ∈ Sni . But

since ((x, f), (yn, gn)) ∈ F , the relation yn is uniquely determined by f , i.e.,

m <yn n ⇔ f(m) <x f(n), and so ∀n yn = y. The relation y is embedded

via f to the reduction of x to 1(x), therefore y is well-ordered with a rank

less than or equal to ω + ω. I.e., the rank of y reduced to 1(y) is strictly

less then ω + ω, e.g., ω + k so y ∈ Dk \ Dk+1. But from the finite case we

conclude that y 6∈ projTOS
k+3
i , a contradiction. The proof of 2 readily follows

by using transfinite induction and applying the same kind of arguments that

were used in the proof of part 1 and in the α = ω case.

For every ordinal α < ω1, we can find a relation x such that the rank

of x reduced to 1(x) is ω + α. Using proposition 6 we deduce that for

every countable ordinal α there exists x ∈ WO such that x ∈ proj2N2Sαi \
projTOS

α+1
i ; therefore, Sαi ( Sα+1

i . This proves that |Γ| ≥ ω1 and together

with Theorem 1 we get the desired equality.

4 Knowledge, Belief, and Rationality

In this section, we adopt the approach of Tan and Werlang [12] and transform

a noncooperative game into a Bayesian decision problem. The uncertainty

faced by the player is the strategy choice of the other players. Assume that

every player forms a subjective probability distribution over the strategy set

of the other players, we explore the connection between the NBR elimina-

tion process that obtain for this case and mutual belief of rationality in the

universal type space.

In establishing the connection between an n-order NBR elimination and

mutual belief of rationality of order n, one faces the following mathematical

difficulty: Suppose si is a best reply with respect to an assessment7 µ ∈ ∆(Sj)

that gives probability 1 to “j plays a rational strategy.” The question is

whether we can embed this belief into the universal type space and find

7∆(Sj) is the set of probability distributions over Sj .
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a type that has a marginal distribution on Sj equal to µ and, in addition,

ascribes probability 1 that j plays rationally. Friedenberg [7] faced a problem

of extending probability measures from lower to higher belief-hierarchies,

subject to similar constraints. She, however, dealt with this problem by

using results on the extension of probability measures from a given σ-algebra

to a larger one. Here we adopt a different approach and use uniformization

functions.

The following definition is equivalent to Definition 5.1 in [12].

Definition 4.1. Given a continuous game Γ = (S1, S2, U1, U2), define the

probabilistic NBR elimination process as follows:

• Si(1) = Si.

• For successor ordinal α, si ∈ Siα iff ∃µ ∈ ∆(Sα−1
j ) such that si ∈ bri(µ),8

• for limit ordinal α, Si(α) = ∩β<αSi(β).

In [12] Tan and Werlang assume that the strategy set of each player is

metric compact and in that case Si(∞) = Si(ω).

As in the non-probabilistic case, denote by |Γ| the first ordinal α such

that, S1(α) = S1(α + 1) and S2(α) = S2(α + 1); also let Si(∞) = Si(|Γ|).

4.1 Rationality

Definition 4.2. Given a two-player continuous game Γ = (S1, S2, U1, U2),

a type space for Γ is a tuple T = (T1, T2, g1, g2). Ti is a Polish space and

gi : Ti → ∆(Sj × Tj) is a continuous function, for i = 1, 2 and j 6= i where

∆(Sj × Tj) is equipped with the weak* topology.

A type T space for Γ is called universal if, roughly speaking, for every

Γ-type space, T′ there exists a unique belief morphism from T to T′. In

particular a universal type space is unique up to a belief morphism and

the map gi is homeomorphism for every i. Using techniques introduced in

8Where in this case si ∈ bri(µ) iff si ∈ argsups′∈Si

∫
Sj
Ui(s′, sj)dµ(sj).
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Brandenburger and Dekel [5], and generalizing [10], it can be seen that for

continuous games a universal type space may always be constructed.9

For a given game Γ and type space T, we denote Ωi = Si×Ti, and define

the set of states of the world as Ω = Ω1×Ω2. That is, every state of the world

ω ∈ Ω includes a strategy and an epistemic type for each player. For every

type ti, let hi(ti) = margSj
gi(ti), we say that player i is rational at state of

the world ω if si ∈ bri(hi(ti)). That is, player i is rational if the strategy he

plays maximizes his payoff with respect to his belief. The event corresponds

to rationality of player i, denoted Ri
1, can be considered a subset of Ωi.

For n ≥ 2, define inductively the event corresponds to rationality and

mutual belief of rationality of order n, Rn
1 ×Rn

2 ⊆ Ω, as follows:

Rn
i = { (si, ti) | (si, ti) ∈ Ri

n−1 and gi(ti)(R
j
n−1) = 1}.

Lemma 7. Rn
i is a closed subset of Ωi for every n ≥ 1.

Proof. For n = 1 the proof is similar to Lemma 2. Assume the lemma is true

for n−1 ≥ 1. Therefore, by definition, Ri
n = Ri

n−1∩{ (si, ti) | gi(ti)(Rn−1
j ) =

1}. Using the portmantau theorem for a closed set M ⊆ (Sj × T j), the set

Bi(M) = {µ | µ ∈ ∆(Sj × Tj) s.t. µ(B) = 1 },

is closed. Therefore, using the continuity of gi, we get that Rm
i = Rm−1

i ∩
g−1
i (Bi(R

m−1
j )) is closed.

Parts 1 and 2 of the following theorem establish the connection between

the NBR elimination process described in Definition 4.1 and the mutual belief

reduction. Part 3 is the generalization of Theorem 1.

Theorem 8. For a continuous game Γ and the appropriate universal type

space T, we have that for every player i,

1. projSi
Ri
n = Si(n+ 1) for every n.

2. Ri
∞ = projSi

∩n≥1R
i
n = Si(∞).

9See subsection 4.2 for a detailed treatment on this issue.
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3. Si(∞) = Si(ω1).

Theorem 8 reveals a gap between mutual belief of rationality of a finite

order and common belief of rationality. That is, for finite n ∈ N we have

a natural correspondence between strategies that survive n rounds of NBR

elimination and mutual belief of rationality of order n. In the common belief

case we “skip” over all the ordinals larger than ω up to the fixed point set

Si(∞). The reason for this gap (as identified also in [9]) is the fixed point

property of an events that are common beliefs. That is, if in state ω an event

E is a common belief (or common knowledge), then everybody believes in ω

that E is a common belief. So if in ω rationality is a common belief, then

everybody believe in ω that rationality is common belief. This circularity

explains the gap.

The game introduced in Section 3.2 has a rank of ω1 also with respect

to the probabilistic NBR elimination process introduced in 4.1. The proof is

omitted since it is close to the one given in Section 3.2.

Proof of Part 1 of Theorem 8. For a Polish space X denote by Σ1
1(X) the

class of all analytic subsets of X. Note that from Lemma 7, projSi
Ri
n are

analytic for every n.

We prove part 1 using induction on n. For n = 1, let si ∈ Ri
1, and so by

definition, si is a best reply w.r.t. hi(ti) ∈ ∆(Sji ) for some type ti and so,

si ∈ S(2)i. For the other direction, let si ∈ bri(µ). Using universality we

can find a type ti such that hi(ti) = µ, and so (si, ti) ∈ Ri
1. Assume that

part 1 holds for n− 1, the first direction obtains directly from the induction

hypothesis similar to the n = 1 case.

For the other direction we need the following lemma:

Lemma 9. Let X, Y be a Polish space, A ⊆ X × Y a Borel subset, and

µ ∈ ∆(X) such that µ(projXA) = 1. There exists a probability measure ν

such that ν(A) = 1 and µ = projXν.

Proof of Lemma 9. By [1] (Theorem 18.22) every Borel set A ⊆ X×Y admits

a σ(Σ1
1(X))-uniformizing function, where σ(Σ1

1(X)) is the sigma-algebra gen-
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erated by the analytic sets in X. That is, there exists a σ(Σ1
1(X))-measurable

function f : projXA → Y such that graf(f) ⊆ A. By [8] (Theorem 21.10),

every set in σ(Σ1
1(X)) is universally measurable.10

Define a probability measure ν ∈ ∆(X × Y ) as follows:

ν(B) = f ◦ µ(B) = µ(f−1(B)),

for every Borel set B ⊆ X. Since f−1(B) is universally measurable, ν is well

defined and for every Borel M ∈ X we have

projXν(M) = µ(f−1(proj−1
X (M)) (4.1)

= µ(f−1(M × Y )) (4.2)

= µ(M ∩ projX(A)) = µ(M), (4.3)

where 4.3 follows from the fact that µ(projX(A)) = 1.

Let si ∈ Si(n + 1). By definition we have a probability measure µ such

that

1. si ∈ bri(µ),

2. µ(Si(n− 1)) = µ(projSi
Ri
n−1) = 1,

where 2 is due to the induction hypothesis. From Lemma 7, Rn−1
i is closed

subset of Ωj = Sj × Tj. Therefore, by Lemma 9 we can extend µ to a

probability measure ν ∈ ∆(Ωj) such that ν(Rn−1
i ) = 1 and projSjν = µ.

Using universality of the type space we get that there exists a type ti ∈ Ti
such that gi(ti) = ν and so (si, ti) ∈ Rn

i , and this complete the proof of part

1.

We sketch a proof of parts 2 and 3, despite some similarities with the

proof of Theorem 1, we believe is of special interest.

10A set B ⊆ X is universally measurable if B is in the completion of every probability

measure µ ∈ ∆(X).
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4.2 The Universal Type Space

Previous to the proof of parts 2 and 3 in Theorem 8, we shall sketch the

construction of the universal type space, which will serve us in both proofs.

Given a two-player continuous game Γ, the hierarchies of beliefs associated

with Γ, defined as follows. X0
i = Sj is the first order of uncertainty for player

i, and inductively the nth order of uncertainty is Xn
i = Xn−1

i ×∆(Xn−1
j ).

This construction of the universal type space is based on Brandenburger

and Dekel [5] (henceforth BD). Let T i0 =
∏∞

n=0 ∆(Xn
i ) be the space of all

possible hierarchies of beliefs for i, which we call types. We say that a type

t = (δ1
i , . . . , δ

n
i ) is coherent if for every n ≥ 2 projXn−2

i
δni = δn−1

i . Denote by

T 1
i the set of coherent types for player i. Applying Kolmogorov’s extension

theorems to Polish spaces, BD proved the following theorem:

Proposition 10. There exists a natural homeomorphism gi : T i :→ ∆(Sj ×
T j).

The homeomorphism is natural in the sense that each coherent belief hi-

erarchy ti = (δ0, . . . , δn, . . .) is mapped to the unique probability distribution

µ ∈ ∆(Sj × T j) satisfying projXn
i
hi(ti) = δn.

Define inductively the set of types that are coherent up to order k ≥ 2,

T ik as follows:

T ik = { t ∈ T i1 : hi(t)(Sj × T jk−1) = 1}.

Let T i = ∩k≥1T
i
k be the set of types for which common knowledge of co-

herency is obtained. BD show that T i is homeomorphic to ∆(Sj × T j) via

hi.

Proof of Part 3 of Theorem 8. For s ∈ Si let {Zn(s)}∞n=1 be disjoint copies

of the space Ti and let Z(s) be the following direct sum:

Z(s) = s

∞⊕
n=1

Zn(s).

Note that Z(s) is Polish as a countable direct sum of Polish spaces. Let ≺s

be the following binary relation over Z(s):
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1. t ≺s s iff (s, t) ∈ Ri
1 for t ∈ Z1(s).

2. t′ ≺s t iff t ∈ Zn−1(s), t
′ ∈ Zn(s), (s, t′) ∈ Ri

n and projXi
n−1
t =

projXi
n−1
t′.

We obtain the following lemma:

Lemma 11. For every strategy s ∈ Si, we have

1. ≺s is a closed relation over Z(s) (≺s⊆ [Z(s)]2).

2. ≺s is ill-founded iff s ∈ S∞i .

3. For s ∈ Si \ S∞i we have |s| = ρ(≺s).

Proof of Lemma 11. Part 1 follows from an argument similar to that of

Lemma 2. For part 2, let (s, t) ∈ Ri
∞; we have · · · ≺s t ≺s t ≺s s. For

the other direction assume that ≺s is ill-founded and so there exists a se-

quence {tk}∞k=1 = {(δ1
k, · · · , δnk , · · · )}∞k=1 such that t1 ≺ s and tk+1 ≺ tk for

k ≥ 1. Let t = (δ1
1, · · · , δnn, · · · ). Firstly, inductively one can see that t

is indeed in Ti; secondly, ∀n ∈ N, t ∈ Ri
n, since projXn

i
t = projXn

i
tn and

tn ∈ Rn
i .

The proof of part 3 of the Lemma is now obtained in a similar way to

that of Proposition 4.

Using Lemma 11, we can now finish the proof of part 3 of Theorem 8.

Similarly as in the proof of Theorem 1, for every s ∈ Si \ Si(∞), |s| = ρ(≺s

) < ω1. Therefore, Si(ω1) = Si(ω1 + 1).

Proof of Part 2 of Theorem 8. We prove part 2 using transfinite induction.

Specifically, projSiRi
∞ ⊆ Siη for every ordinal η, and so projSiRi

∞ ⊆ S∞i . For

the other direction, if s 6∈ Ri
∞ then ≺s is a closed, well-founded relation with

ρ(≺s) < ω1. But by part 2 of Theorem 11, |s| = ρ(≺s) and so by definition

s 6∈ Si(|s|+ 1), and s 6∈ Si(∞).
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5 Generalization of the Results

5.1 The n-Player Case

The case where the number of players exceeds two is a bit different from the

two-player case, although the same kind of results are obtained. When there

are three or more players, we may want to impose the independent rationality

condition. That is, a player’s beliefs regarding the strategies of the other

players should reflect the fact that the strategies of the players are chosen

independently (see also [12], Definition 5.3). Let Γ = (N, (Si)i∈N , (Ui)i∈N)

be an n-person continuous game. Define the following elimination process:

Definition 5.1. Let Suci (1) = Si. For successor ordinal α, Suci (α) = { si ∈
Sα−1
i : ∃ µ ∈ ⊗j 6=i∆(Sα−1

i ) s.t. si ∈ br(µ, Ui) },
and for limit ordinal α, Suci (α) = ∩β<αSuci (β).

A hierarchy of beliefs is uncorrelated if it holds with common belief that

players’ assessments are uncorrelated. I.e., let T = ((Ti)i∈N , (gi)i∈N) be the

universal type space for Γ. Define inductively the uncorrelated hierarchy of

belief at level k .

T 1
i = {t ∈ Ti : gi(t) = (δ1

i , . . . , δ
n
i , . . .) s.t. δ1

i ∈ ⊗j 6=i∆(Sj)}. That is T 1
i is

the set of coherent hierarchies whose first-order belief is uncorrelated.

T ki = {t ∈ Tk−1 : gi(t)(
∏

j 6=i T
k−1
j × Sj) = 1 }.

Finally, let T uci = ∩k≥1T
k
i .

Lemma 12. For every k ≥ 1, T ki is closed and gi : T uci → ∆(
∏

j 6=i Sj × T ucj )

is a homeomorphism.

Proof. For k = 1, note first that if X, Y are Polish µk = δk ⊗ βk ∈ ∆(X) ⊗
∆(Y ) and µk → µ, then µ ∈ ∆(X) ⊗∆(Y ). To see this, note that {δk}∞k=1,

{βk}∞k=1 are convergent sequences (by the portmanteau theorem) to δ and β

respectively; hence µk → δ×β. This shows that T 1
k is closed, so by induction

T ki is closed for every k. The second assertion is immediate.
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A version of Theorem 8 is valid for this case as well. In particular, let Tuc

be the universal type space of uncorrelated belief-hierarchies, then (si, ti) ∈
Ri
n iff si ∈ Suci (n+ 1)

5.2 The Incomplete Information Case

Battigalli and Siniscalchi, [3], followed by Dekel et al. [6], generalized Pearce’s

rationalizability process to incomplete information games. Our results can

be easily generalized to that case. The natural way to do so is by treating

the unknown parameter set as a strategy set of a dummy player with a trivial

payoff function. In this way, we can obtain a version of Theorem 8 for the

incomplete information setup.

5.3 Non-Polish Strategy Space

Some of our results are valid for the case where the strategy sets of each player

are analytic spaces. However, Theorem 1 fails where the strategy set of each

player is a separable metric space. For that case we construct a variant of the

example introduced in Section 3.2 with separable metric strategy sets and

continuous payoff functions for both players. In that game ω1 + 1 rounds of

elimination are needed. We use the notation introduced in Section 3.2.

Example 5.1. Let Γ̃ = ({1, 2}, (S̃i)i=1,2, (Ũi)i=1,2) be the following game:

The strategy set of player 2 remains as in the game Γ in Section 3.2, i.e.,

S̃2 = S2. The strategy set of player 1 is S̃1 = S1 ∪ {p}, where p represents

any point not in Si. Let T be the topology over 2N2 × N obtained when

we add the sets {S∞i , (S∞i )c} to the natural topology over Si. This topology

makes Si a separable metric space but not a Polish space. Equip S2 with the

topology T and equip S̃1 with the the topology obtained from the natural

topology over S1 when we add {p} as an open set; i.e., p is an isolated point.
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The new payoff function for player 1 is:

Ũ1(s, t) =


U1(s, t) if s 6= p

−1 if s = p and t ∈ S∞2
0 if s = p and t 6∈ S∞2 .

Ũ1 is continuous since U1 is continuous and the sets {p} and S∞2 are si-

multaneously closed and open sets. The payoff function of player 2 is any

continuous extension of U2. In Γ̃ we have S̃ω1
1 = S∞i ∪{p}, while Sω1+1

1 = S∞i .

If we abandon the demand for a continuous payoff function and settle for

a demand of a Borel measurable payoff function for each player, then part 1

of Theorem 8 remains valid, whereas it is not clear to us whether Theorem

1 remains so.
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A Appendix

Assume that Γ is a two-player normal-form game. When the strategy sets are

finite or the strategy sets and the payoff functions are nicely behaved, using

separation theorems, one can prove that a strategy is a best-reply strategy iff

it is not strongly dominated. In our case, however, as we shall show, this is

not true. Given a two-player continuous game Γ, a strategy s ∈ Si is strongly

dominated if there exists a mixed strategy that is strictly better than s, i.e.,

∃π ∈ ∆(Si) such that

Ui(π, sj) > Ui(s, sj)∀ sj ∈ Sj.

Clearly if a strategy is strictly dominated it cannot be a best-reply. That

is, if s ∈ Si is strictly dominated by π, then for every µ ∈ ∆(Sj) there
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s 6∈ bri(µ). To see this, note that if Ui(π, µ) > Ui(s, µ), then the set {s′ ∈
Si : Ui(s

′, µ) > Ui(s, µ)} is not empty.

In the following example we exhibit a game and an undominated strategy

for player 1, that is not a best-reply strategy.

Example A.1. We define a two-player continuous game as follows: S2 = N
and S1 = N ∪ {α}. Equivalently, S1 = ω + 1, and S2 = ω equipped with the

discrete topology. The payoff function for player 1 is

U1(p, q) =

1 if p 6= α and p ≥ q

1
2

if p = α.

Note that α is not a best-reply strategy. Since for every µ ∈ ∆(N) there

exists a large enough n s.t., µ({1, 2, . . . , n}) > 1
2
, the strategy n yields a

payoff higher than 1
2

and α is not a best-reply with respect to µ. To see

that α is not strongly dominated, let π ∈ ∆(N ∪ {α}). We can assume that

π(N) = 1. For somem, π({m,m+1, . . .}) < 1
2
, and so u(π,m) < 1

2
= u(α,m).

Therefore, α is not strongly dominated by π.
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