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Extended Abstract

Consider a situation where a group of agents wishes to share the costs of their joint actions, and needs to
determine how to distribute the costs amongst themselves in a fair manner. For example, a set of agents may
agree to process their jobs together on a machine, and share the optimal cost of scheduling these jobs. This
kind of situation can be modelled naturally as a cooperative game.

In this work, we are concerned with cooperative games with supermodular costs. A set function
r : 2N

7→ R is supermodular if

r(S ∪ {i})− r(S) ≤ r(T ∪ {i})− r(T ) ∀S ⊆ T ⊆ N\{i}.

Our primary motivation behind studying these games is that many problems from combinatorial optimization
have optimal costs that are supermodular. In particular, we show the following theorem (for notational
convenience, for any vector x we define x(S) :=

∑
i∈S xi ):

Theorem. Let N be a finite set, and let r : 2N
7→ R be a supermodular function such that r(∅) = 0. If

dj ≥ 0 for all j ∈ N, then the function v : 2N
7→ R defined by

v(S) = min
{∑

j∈S

dj x j : x(A) ≥ r(A) ∀A ⊆ S
}
∀S ⊆ N (1)

is supermodular on N.

A variety of machine scheduling problems can be modeled as an optimization problem of the form in (1),
including minimizing the sum of weighted completion times on a single machine. Some other combinatorial
optimization problems that can be formulated as an optimization problem of the form in (1) include the
minimum-cost spanning tree problem, and more generally, finding the minimum weight basis of a matroid.

It is well known that cooperative games with submodular, or decreasing marginal costs always have
nonempty cores. This result is very intuitive. As the number of players increases, the average cost per player
decreases, making the idea of sharing costs more appealing. On the other hand, cooperative games with
supermodular, or increasing marginal costs always have empty cores. Similar intuition still holds: the average
cost per player increases as the number of players increases, diminishing the appeal of sharing costs with
other players.

Since the prospect for cooperation in supermodular cost cooperative games is bleak, we are led to ask,
“how much do we need to penalize a coalition for defecting in order to achieve cooperation?” This notion
is captured in the least core solution concept. The least core of a cooperative game (N , v) is the set of all
optimal cost allocations x to the following linear program:

z∗ = minimize z (LC)

subject to x(N ) = v(N )

x(S) ≤ v(S)+ z ∀S ⊆ N , S 6= ∅, N .
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We call z∗, the optimal value of (LC), the least core value of (N , v). The least core value of a cooperative
game can be interpreted as the minimum penalty for defection necessary to achieve cooperation among all
players.

The main focus of our work is the computational complexity and algorithmic aspects of computing the
least core value of supermodular cost cooperative games. Along the way, we also uncover some structural
properties of the least core of these games.

In terms of computational complexity, we show:

Theorem. Computing the least core value of supermodular cost cooperative games is NP-hard.

In our proof of the above theorem, we reduce any instance of finding the maximum cut of an undirected graph
to our problem. As a result, we immediately obtain the following inapproximability result.

Corollary. There is no ρ-approximation algorithm1 for computing the least core value of supermodular cost
cooperative games, where ρ < 1.0624, unless P=NP.

The above negative results indicate that it is rather unlikely that we will be able to find exact polynomial
time algorithms for computing the least core value of supermodular cost games. This motivates us to design
methods with polynomial running time that approximate the value of z∗.

As a first attempt at approximation, we fix a cost allocation x such that x(N ) = v(N ), and then try to
determine the minimum value of z such that (x, z) is feasible in the optimization problem (LC). Since we are
looking for the smallest value z such that z ≥ x(S)− v(S) for all S ⊆ N , S 6= ∅, N , we can determine z by
the maximization problem

z = max
S⊆N

S 6=∅,N

{x(S)− v(S)}. (2)

For any x , we call the maximization problem in the right hand side of (2) the x-maximally violated constraint
(x-MVC) problem for (N , v). But how should we fix x? Inspired by the properties of vertices of supermodular
polyhedra, we define the cost allocation x̄ as

x̄i :=
1
2

(
v
(
{1, . . . , i}

)
− v

(
{1, . . . , i − 1}

))
+

1
2

(
v
(
{i, . . . , n}

)
− v

(
{i + 1, . . . , n}

))
(3)

for i = 1, . . . , n. When we fix the cost allocation to x̄ , the smallest value of z̄ such that (x̄, z̄) is feasible in
(LC) is within a factor of 2 of the least core value. In other words, we are able to show that in some sense, x̄
as defined above is “almost” an element of the least core:

Theorem. Suppose (N , v) is a supermodular cost cooperative game. Let z∗ be its least core value. Then,

max
S⊆N

S 6=∅,N

{x̄(S)− v(S)} ≤ 2z∗.

This result allows us to translate the approximability of the x̄-maximally violated constraint problem to the
approximability of computing the least core value of supermodular cost cooperative games. In particular,

Theorem. Suppose (N , v) is a supermodular cost cooperative game, and there exists a ρ-approximation
algorithm for the x̄-maximally violated constraint problem for (N , v). Then there exists a 2ρ-approximation
algorithm for computing the least core value of (N , v).

1A ρ-approximation algorithm (ρ ≥ 1) is an algorithm that always finds a solution whose objective value is within a factor ρ of
the optimal value, and whose running time is polynomial in the size of the input.
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One might wonder if we can do better by computing a cost allocation on the fly, instead of fixing a cost
allocation in advance. If we assume that for any x such that x(N ) = v(N ), we can approximately solve the
x-maximally violated constraint problem for (N , v), then with the help of the ellipsoid method and binary
search, we can show that this is indeed the case:

Theorem. Suppose (N , v) is a supermodular cost cooperative game, and there exists a ρ-approximation
algorithm for the x-maximally violated constraint problem for (N , v), for any x such that x(N ) = v(N ).
Then there exists a ρ-approximation algorithm for computing the least core value of (N , v).

As mentioned earlier, our primary motivation for studying cooperative games with supermodular costs is
that many machine scheduling problems have supermodular optimal costs. We apply our results to a particular
supermodular cost cooperative game arising from a classic scheduling problem. Consider a situation where
agents each have a job that needs to processed on a machine, and any coalition of the players can potentially
open their own machine. Suppose each agent i ∈ N has a job whose processing time is pi ∈ N and weight is
wi ∈ N. Jobs are independent, and are scheduled non-preemptively on a single machine, which can process at
most one job at a time. A schedule planning game is a cooperative game (N , v) where v(S) is the minimum
sum of weighted completion times of jobs in S. The least core value of schedule planning games can be
interpreted as the amount we need to charge for opening a new machine in order to achieve cooperation.

For schedule planning games, we are able to make more explicit characterizations of properties of the
least core. In particular,

Theorem.

1. The cost allocation x̄ defined in (3) is an element of the least core of schedule planning games.
2. The least core value of schedule planning games is

z∗ =
1
2

max
S⊆N

S 6=∅,N

{v(N )− v(S)− v(N\S)}.

Since the cost allocation x̄ defined in (3) is in fact an element of the least core of schedule planning games, we
are able to get tighter bounds when we translate the approximability of the x̄-maximally violated constraint
problem to the approximability of the least core value problem:

Theorem. Suppose there exists a ρ-approximation algorithm for the x̄-maximally violated constraint problem
for schedule planning games. Then there exists a ρ-approximation algorithm for computing the least core
value of schedule planning games.

In addition, for schedule planning games, we design approximation algorithms for the x̄-maximally
violated constraint problem. We show that the x̄-maximally violated constraint problem is in fact equivalent to
finding the maximum cut in a complete undirected graph, with particular edge weights. This observation lets
us use any approximation algorithm for the maximum cut problem for the x̄-maximally violated constraint
problem. In addition, we attack the x̄-maximally violated constraint problem directly, and design a fully
polynomial time approximation scheme2. As a consequence, we get the following result:

Theorem. There exists a fully polynomial time approximation scheme for finding the least core value of
schedule planning games.

2A fully polynomial time approximation scheme is an algorithm that finds a solution whose objective function value is within a
factor (1+ ε) of the optimal value for any ε > 0, and whose running time is polynomial in the input size and 1/ε.

3


