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1 Introduction

A central solution concept in the theory of equilib-
rium refinements is the notion of proper equilibria of
Myerson [3].

The normal form concept of properness can be ap-
plied to extensive games in two standard ways. An
equilibrium in behavior strategies for an extensive
form game with perfect recall is defined to be nor-
mal form proper if it is behaviorally equivalent to a
proper equilibrium of the corresponding normal form
game. This definition does not in any way restrict the
behavior of a player in information sets irrelevant for
the strategy of the player (i.e., information sets that
the player is sure will not be reached if his strategy
is played). In particular, it does not ensure subgame
perfection. Van Damme [4] suggests a slightly more
restrictive concept. He calls an equilibrium in be-
havior strategies of an extensive form game induced
by a normal form proper equilibrium if it is a limit
of behavior strategies induced by a sequence of ε-
proper equilibria of the corresponding normal form.
We shall adopt the slightly more convenient terminol-
ogy induced normal form proper equilibrium for such
an equilibrium. Van Damme showed that an induced
normal form proper equilibrium is also quasi-perfect
and hence sequential. It can be seen that the normal
form proper equilibria are simply those equilibria that
can be obtained by taking an induced normal form
equilibrium and replacing the behavior in irrelevant
information sets with arbitrary behavior. In particu-
lar, if we consider equilibria in behavior plans rather

than behavior strategies the two notions coincide.
In this paper, we study normal form proper and

induced normal form proper equilibria of two-player
zero-sum extensive form games with perfect recall.
We provide characterizations that enable these so-
lution concepts to be computed efficiently (in theory
as well as in practice) for a given game. In particu-
lar, we avoid the obvious approach of first converting
the game to normal form (this obvious approach be-
ing inherently inefficient as it involves an exponential
blowup in the size of the representation).

First, we study the case of perfect information
games and show that the induced normal form proper
equilibria of such games can be completely charac-
terized by a certain backwards induction procedure,
refining the standard backwards induction procedure
for computing a subgame perfect equilibrium. The
procedure can be easily implemented to run in lin-
ear time in the size of the game tree. As a curious
example, applying the procedure to tic-tac-toe one
finds that in any normal form proper equilibrium of
this game, the game is opened by selecting the mid-
dle square with probability 1

13 . It may seem surpris-
ing that a proper equilibrium of the perfect infor-
mation game tic-tac-toe cannot be pure. However,
our characterization establishes that this fact is typi-
cal for combinatorial games (i.e., perfect information
win/lose/draw games). Note that this is much unlike
the case of perfect information games with generic
payoffs where it is well known that there is a unique
subgame perfect equilibrium and that this equilib-
rium is pure.
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Second, we study the case of imperfect information
games with perfect recall and show that the normal
form proper equilibria of such games can be com-
pletely characterized by a procedure involving an it-
eratively defined sequence of linear programs derived
from the linear programs for Nash equilibria in se-
quence form described by Koller, Megiddo and von
Stengel [2]. Each linear program in the sequence
has a number of variables and constraints which is
at most the size of the game tree and the number of
programs in the sequence is also at most the size of
the game tree. The sequence of linear programs con-
structed is analogous to the linear programs arising
in Dresher’s procedure [1] established by van Damme
[5] as characterizing the proper equilibria of a matrix
game and the proof of correctness is based on relating
our programs to the exponentially larger programs
that would arise if Dresher’s procedure was applied
to the normal form of the game in consideration. As
Koller, Megiddo and von Stengel, we represent equi-
libria by realization plans. Realization plans are in
one-one correspondance with behavior plans. Hence,
in the imperfect information case, we characterize the
normal form proper equilibria, but not the induced
ones.

2 Perfect information games

Let G be a perfect information zero-sum game played
between Max, trying to maximize payoff and Min,
trying to minimize payoff. The game is given by a
game tree with payoffs in leaves and each internal
node belonging to either Max, Min or Chance. For
each node i in the tree we associate three number
vi ≤ vi ≤ vi. The number vi is the usual minimax
value of the node and may be computed by standard
backwards induction. The values vi and vi can be in-
formally seen as pessimistic and optimistic estimates
of the expected outcome of the game from the point
of Max, taking the possibility of mistakes being made
by either player into account.

For a leaf with payoff p we let vi = vi = vi = p.
For an internal node i, we denote the set of immediate
successors of i by S(i) and define vi, vi inductively as
follows.

If i is a node belonging to Max, we let Vi =
(∪j∈S(i){vj , vj}) \ {vi}, i.e., the set of all values and
all pessimistic estimates of all immediate successors
of i, except the value of i itself. Then we let

vi =

{
max(Vi) if Vi 6= ∅,
vi otherwise.

(1)

Also, for a node i belonging to Max, we let Ii = {j ∈
S(i)|vj = vi ∧ vj > vj} and let

vi = vi +

{
1P

j∈Ii
(vj−vj)−1 if Ii 6= ∅,

0 otherwise.
(2)

Similarly, if i is a node belonging to Min, we let Vi =
(∪j∈S(i){vj , vj}) \ {vi}, and let

vi =

{
min(Vi) if Vi 6= ∅,
vi otherwise.

(3)

Also, for node i belonging to Min, we let Ii = {j ∈
S(i)|vj = vi ∧ vj < vj} and let

vi = vi −

{
1P

j∈Ii
(vj−vj)

−1 if Ii 6= ∅,

0 otherwise.
(4)

If i is a node belonging to Chance and j ∈ S(i) is
chosen by Chance with probability αj , we let

vi = vi − min
j∈S(i)

αj(vj − vj) (5)

vi = vi + min
j∈S(i)

αj(vj − vj) (6)

In the full version of the paper we prove:

Theorem 1 A behavior strategy profile ρ for G is an
induced normal form proper equilibrium of G if and
only if the following three conditions all hold:

1. For all nodes i and immediate successors j, ρ
assigns non-zero behavior probability to j only if
vi = vj.

2. For all nodes i belonging to Max for which
Ii 6= ∅, ρ assigns behavior probability exactly

(vj−vj)
−1P

j∈Ii
(vj−vj)−1 to each j ∈ Ii.

3. For all nodes i belonging to Min for which
Ii 6= ∅, ρ assigns behavior probability exactly

(vj−vj)
−1P

j∈Ii
(vj−vj)

−1 to each j ∈ Ii.
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3 Imperfect information games

Let G be a two-player zero-sum extensive form game
with perfect recall played between Max, trying to
maximize payoff and Min, trying to minimize pay-
off. Our construction uses the sequence form of G
and is based on the linear programming characteri-
zation of Nash equilibria in realization plans due to
Koller, Megiddo and von Stengel [2]. We assume in
this extended abstract that the reader is familiar with
this paper and adopt its notation. In particular, G
is given by a payoff matrix A, and realization plan
constraint matrices E and F for Max and Min re-
spectively. Let v(0) be the value of G. We define
a series of linear programs (LPs) where the coeffi-
cients of each LP depend on the solutions of previous
LPs. We group the LPs in pairs, denoting a pair
as a round, the first being round 1. In round k, we
first consider the LP (7). The vector variables x and
q play the same roles as in the linear programs of
Koller, Megiddo and von Stengel, except that they
are now scaled by the scalar variable s. The vector
variable u is indexed by action sequences of Min.

max
x,q,u,s

1>u

s.t. −A>x + F>q + u +
∑

0<i<k

m(i)v(i)s ≤ 0

Ex − es = 0
f>q − v(0)s ≥ 0

0 ≤ u ≤ 1
x ≥ 0
s ≥ 0

(7)

All optimal solutions to (7) agree on the value of the
u-vector, which always takes the form of a 0/1-vector.
Intuitively, the 1-entries in this 0/1-vector identify
certain action sequences of Min as mistakes. Let m(k)

be this optimal u. If m(k) 6= 0, it defines (8):

max
x,q,t

t

s.t. −A>x + F>q + m(k)t ≤ −
∑

0<i<k

m(i)v(i)

Ex = e
f>q ≥ v0

x ≥ 0
t ≥ 0

(8)

Here, the vector variables x and q are no longer
scaled, and play the same roles as in the linear pro-
grams of Koller, Megiddo and von Stengel. The vari-
able t is scalar. Let v(k) be the value of t in an optimal
solution of (8). This completes a round. Informally,
the x-part of an optimal solution to (8) is a realiza-
tion plan for Max that is an optimal solution to the
versions of (8) of all previous rounds, and among such
optimal solutions optimally exploits the mistakes of
Min defined by m(k).

In some round k, an optimal solution to (7) has
u = 0 and the procedure is terminated. For this k,
let D1 be the set of optimal solutions to (8) in round
k − 1 (or, if k = 0, let D1 be the set of maximin
realization plans for Max). Interchanging the role
of Max and Min and negating the payoff matrix, we
carry out the entire procedure again. Let D2 be the
resulting set of realization plans for Min. In the full
version of the paper, we prove:

Theorem 2 D1 × D2 is the set of normal form
proper equilibria of G in realization plans.
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