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Abstract
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1 Introduction

How to strategically interact with others? Answers to this question are given (often
dissatisfactory) by non-cooperative solution concepts that presume symmetry in the ra-
tionality of players. This symmetry is justified for methodological reasons: We do not
want to explain (trivially) ex-post differences in behavior with an assumption of ex-ante
differences among the players. Yet, in real-life situations we are often (over)confident in
our ability to outwit others. On top of it, more and more we interact with computer
programs, which obviously involve an asymmetry in the rationality of the players. For
example, calling computers call clients to schedule appointments, businesses may use
programmed trading in electronic market platforms etc. Often we view these programs
as inferior to human intelligence. After all computers can just do what they are pro-
grammed to do. Their response may be inappropriate, limited and suboptimal. Even
relatively intelligent machines who are able to learn, must use some kind of learning pro-
gramm. Such learning algorithm may adapt only slowly or with a lag to the situation,
and is prone to strategic teaching and manipulation. Given that the opponent’s ratio-
nality differs from ours, it may still not be a trivial problem to answer the question of
how to interact with such opponent optimally. In particular, how could we manipulate
him to our advantage? In this article we will investigate such problem that appears to be
straight forward but is to our knowledge neglected in the literature: How can a rational
player optimally control an adaptively learning opponent in a repeated strategic game?

For the sake of concreteness, consider a repeated symmetric Cournot duopoly in which
a player’s one-shot payoff function is given by

π(xt, yt) = max{109− xt − yt, 0}xt − xt,

in which xt ∈ R+ (resp. yt ∈ R+) denotes the action of the player (resp. opponent)
in period t. Assume further that the opponent plays a myopic best reply to previous
period’s quantity of the player,

yt+1 = max

{
108− xt

2
, 0

}
.

What is the player’s optimal strategy against the opponent? Is there a possibility to
strategically manipulate the opponent such that he plays favorable to the player? Of
course, this may require that the player forgoes some short-run profit in order to gain
more in the long run.

Note that this is a dynamic programming problem that is non-standard in the sense
as the object function is not everywhere concave and differentiable, conditions usually
required for dynamic programming (see Stokey, Lucas and Prescott, 1989). Nevertheless
we initially conjectured that the optimal strategy may involve a (current) best reply
in the last period and Stackelberg leadership in the previous periods. However, in an
experiment in which human subjects played this game against a computer programmed
to myopic best reply (see Dürsch, Kolb, Oechssler and Schipper, 2006), we discovered to
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our surprise that the subject who played the following 4-cycle of quantities (upper line in
Figure 1) obtained a much larger average profit than the Stackelberg leader profit.1 This
experimental discovery triggered the current analysis. Can such a cycle be optimal?

Figure 1: Cycle played by a subject

In this article we will show that if the two-player game satisfies a version of strategic
substitutes or strategic complements, namely decreasing or increasing differences, then
the optimal control strategy is monotone in the initial action of the opponent and over
time periods. Examples of this class of games include some Cournot duopolies, Bertrand
duopolies, Common pool resource games, Rent seeking games, Arms race etc. The key
idea is to apply methods from lattice programming (Topkis, 1978, 1998) to dynamic
programming (see Topkis, 1978, Puterman, 1994, Amir, 1995). It turns out that our
problem is analogous to a Ramsey-type capital accumulation problem solved in Amir
(1995), so that his results if appropriately “translated” can be applied to our game
theoretic problem. Note that above example of the Cournot duopoly does not satisfy
decreasing or increasing differences everywhere, which is caused by insisting on a non-
negative price (see section 3). Yet, we show how to use our general results in order
to conclude that a cycle of the four quantities (108, 68, 54, 41) is the optimal control
strategy, which is very close to the cycle (108, 70, 54, 42) actually played by a subject in

1The session is over 40 rounds. The subject played the cycle of quantities (108, 70, 54, 42). This cycle
yields an average payoff of 1520 which is well above Stackelberg leader payoff of 1458. The Stackelberg
leader quantity is 54, the follow quantity is 27 (profit 728), the Cournot Nash equilibrium quantity 36
(payoff 1296). The computer is programmed to myopic best reply with some noise. The lower line in
Figure 1 depicts the computer’s sequence of actions. See Dürsch, Kolb, Oechssler and Schipper (2006)
for details of the game and the experiment.
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an experiment discussed above.2

Our approach in this paper bears some resemblance with the literature on long-run
and short-run players (sometimes referred to also as long-lived and short-lived players)
in infinitely repeated games (see Fudenberg, Kreps and Maskin, 1990, Fudenberg and
Levine, 1989, 1994). In this literature a long-run optimizer faces a sequence of static best
reply players who play only once. This is different from our model, in which the short-run
player plays a best reply to the previous period’s action of the opponent. Nevertheless,
this literature on reputation in repeated games is close in spirit since it recognizes how
players attempt to manipulate the opponents’ learning process and try to “teach” them
how to play. As Fudenberg and Levine (1998, Chapter 8.11) point out, strategic teach-
ing has been studied in repeated games with rational players but it is less prominent
in learning theory. Camerer, Ho and Chong (2002, 2006) study adaptive experience-
weighted attraction learning of players in repeated games but allow for sophisticated
players who respond optimally to their forecasts of all others’ behavior. Their focus is
on estimating such learning models with experimental data. There are only a few the-
oretical papers on learning in games in which players follow different learning theories
(Schipper, 2006, Hehenkamp and Kaarbøe (2006), Matros, 2004, Gale and Rosenthal,
1999). They focus on the evolutionary selection or relative success of differing boundedly
rational learning rules.

The next section presents the general results. In Section 3 we discuss the cyclic ex-
ample. We conclude with a discussion in Section 4. Proofs are relegated to the appendix.

2 General Results

There are two players, a manipulator and a puppet. Let X, Y be two nonempty compact
subsets of R. We denote by x ∈ Xy (resp. yt ∈ Yxt) the manipulator’s (resp. puppet’s)
action, where Xy (resp. Yx) is an upper hemi-continuous compact valued correspondence
from Y to 2X (resp. X to 2Y ). That is, a player’s set of actions may depend on the
opponent’s action.3

Let m : X × Y −→ R (resp. p : Y ×X −→ R) be the manipulator’s (resp. puppet’s)
one-period payoff function. We write m(xt, yt) for the payoff obtained by the manipulator
if he plays xt and the puppet plays yt (analogous for the puppet). We assume that each
player’s payoff function is bounded.

Let B : X −→ 2Y be the puppet’s best reply correspondence. Moreover, define the
puppet’s best reply function b : X −→ Y as a selection of the best reply correspondence,
i.e., b(x) ∈ B(x) for any x ∈ X.

2In fact, the average payoff of the optimal cycle is 1522, only a minor improvement over the average
payoff of the subject’s cycle (1520).

3In Section 4 we explain why we do not consider here multi-dimensional strategy sets.
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Following lemma will be useful for the study of the optimization problem of the
manipulator when the puppet is a myopic best reply player.

Lemma 1 If Xy is u.h.c. and compact valued, m is u.s.c. on X×Y , and p is u.s.c. and
strictly quasi-concave in y on Yx given x ∈ X, then m̂ := m(·, b(·)) is u.s.c. on X ×X
and Xx := Xb(x) is u.h.c. and compact valued.

The proof is contained in the appendix.

In light of Lemma 1 we will assume that m is u.s.c. on X×Y and p is u.s.c. and strictly
quasi-concave on Y . Note that latter assumption is probably stronger than necessary (see
the discussion in Section 4). Note that we do not impose any concavity assumption on
m̂.

Time is discrete and indexed by t = 0, ..., T . T may be infinity. We assume that the
puppet is a myopic best reply player with a given best reply function. That is, his action
at t is

yt = b(xt−1)

for t = 1, ... and given y0 ∈ Y .

We can now consider the following Ramsey-type dynamic optimization problem

sup
T−1∑
t=0

δtm̂(xt, xt−1) (1)

s.t. x−1 ∈ X defined by y0 = b(x1) given y0, xt ∈ Xxt−1 for t = 0, 1, ..., T − 1, and
0 < δ < 1.4

By standard arguments in dynamic programming (see Stokey, Lucas and Prescott,
1989), the value function or Bellman equation satisfies

Mn(x) = sup
x′∈Xx

{m̂(x′, x) + δMn−1(x
′)} (2)

for n = 1, 2, ... with M0 ≡ 0, and

M∞(x) = sup
x′∈Xx

{m̂(x′, x) + δM∞(x′)}. (3)

Lemma 2 If Xy is u.h.c. and compact valued, m is u.s.c. on X × Y , and p is u.s.c.
and strictly quasi-concave in y on Yx given x ∈ X, then for n = 0, ... the value function
Mn is u.s.c. on X

4In the Section 4 we discuss the assumption of requiring y0 to be a response to some manipulator’s
quantity.
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The proof is contained in the appendix.

In light of Lemma 2, optimal control strategies exist. We can replace the sup in
equation (2) and (3) by max. Let Gn(x) be the set of arg max in equation (2) (resp. (3))
if n is finite (resp. infinite). Gn(x) is the set of all optimal decisions in the first period
when the problem’s horizon consists of n periods. Let gn be a selection of Gn, and ḡn and
g

n
be the maximum and minimum selection of Gn. If T is finite, we restrict attention to

Markovian control strategies defined as sequence of transition functions (d0, d1, ..., dT−1)
with di : X −→ X and di(x) ∈ Xx. When T is infinity, then we restrict us to stationary
Markovian control strategies (d, d, ...) with d : X −→ X and d(x) ∈ Xx. Such optimal
control strategies exist but there may exist other optimal control strategies as well.

Before we can study properties of the solution for our dynamic optimization problem,
we need to state some definitions and preliminary results. The first definitions concerns
a common notion of strategic complements (resp. strategic substitutes). A function
f : X × Y −→ R has increasing (resp. decreasing) differences in (x, y) on X × Y if for
x′′ > x′, x′′, x′ ∈ Xy′′ ∩Xy′ and for all y′′, y′ ∈ Yx′′ ∩ Yx′ with y′′ > y′,

f(x′′, y′′)− f(x′, y′′) ≥ (≤)f(x′′, y′)− f(x′, y′)

This function has strictly increasing (resp. strictly decreasing) differences if the inequal-
ity holds strictly. The function f has strongly increasing (resp. strongly decreasing)
differences in (x, y) on Xy × Y if X, Y ⊆ R+, Xy is a continuous, convex and compact
valued correspondence on Y , f is of class C1, and for all y′′, y′ ∈ Y with y′′ > y′,

∂f(x, y′′)

∂x
> (<)

∂f(x, y′)

∂x
.

A payoff function has positive (resp. negative) externalities if it is increasing (resp.
decreasing) in the opponent’s action.

A set of action Xy ⊆ R is expanding (resp. contracting) if y′′ ≥ y′ in Y implies that
Xy′′ ⊇ (⊇)Xy′ . A correspondence F : X −→ 2Y is increasing (resp. decreasing) if x′′ ≥ x′

in X, y′′ ∈ F (x′′), y′ ∈ F (x′) implies that max{y′′, y′} ∈ F (x′′) (resp. max{y′′, y′} ∈
F (x′)).

The following lemma shows how above conditions on the game’s payoff functions m
and p translate into properties of the objective function m̂. These properties will allow
us later on to show properties of optimal control strategies. Note that by (i) whenever
m and p have the same monotone differences, then m̂ has increasing differences.

Lemma 3 (i) The following table establishes a relationship between increasing and
decreasing differences of m, p, and m̂:
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If and then
m has p has m̂ has

strongly strictly incr. decr strongly strictly incr. decr. strongly strictly incr. decr.
differences differences differences√ √ √

√ √ √
√ √ √

√ √ √
√ √ √ √ √ √ √
√ √ √ √ √ √ √
√ √ √ √ √ √ √
√ √ √ √ √ √ √

√ √ √ √ √ √ √ √ √
√ √ √ √ √ √ √ √ √
√ √ √ √ √ √ √ √ √
√ √ √ √ √ √ √ √ √

(ii) The following table establishes a relationship between positive and negative external-
ities of m, increasing or decreasing differences of p, and monotonicity of m̂(xt+1, xt)
in xt:

If and then
m has p has m̂(xt+1, xt) is

positive negative increasing decreasing increasing decreasing
externalities differences in xt√ √ √
√ √ √

√ √ √
√ √ √

The proof is contained in the appendix.

With this lemma, the properties of solution to our dynamic programming problem
are know from analogous results on Ramsey-type problems by Amir (1996) (see Put-
erman, 1994, for related results). Below we state the results adapted to our language
(Propositions 1 to 3). The proofs follow directly from above lemmata and Amir (1996).

Proposition 1 The following conclusions hold:

(i)

If and and then
m has p has Xy is Mn is on X

positive negative increasing decreasing expanding contracting increasing decreasing
externalities differences√ √ √ √

√ √ √ √
√ √ √ √

√ √ √ √

(ii)

If and and then
m has p has Xy is

strictly incr. decr. strongly incr. decr. ascending descending incr. decr.
differences differences on X√ √ √

ḡn, g
n√ √ √

ḡn, g
n√ √ √

ḡn, g
n√ √ √

ḡn, g
n√ √ √ √ √

gn√ √ √ √ √
gn√ √ √ √ √

gn√ √ √ √ √
gn
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This proposition states that both n-period value functions and n-period optimal con-
trol strategies are monotone in the previous period’s action (n + 1) of the manipulator.

The next proposition shows that the n+1-horizon optimal control strategy (that gives
the first period’s action) is larger than the n-horizon optimal control strategy. That is,
optimal control strategies are monotone over time. Moreover, denote by ḡn(·, δ) (resp.
g

n
(·, δ)) be the largest (resp. lowest) optimal control strategy for the n-horizon problem

when the discount rate is δ. Part (ii) of Proposition 2 shows that the optimal control
strategy is increasing in the discount rate.

Proposition 2 (i) If [m has positive externalities and p has increasing differences] or
[m has negative externalities and p has decreasing differences] and Xy is expanding,
then ḡn+1 ≥ ḡn and g

n+1
≥ g

n
for n = 1, ...

(ii) If δ′′ ≥ δ′, δ′′, δ′ ∈ (0, 1), then ḡn(·, δ′′) ≥ ḡn(·, δ′) and g
n
(·, δ′′) ≥ g

n
(·, δ′).

Proposition 3 strengthens previous results to strict monotone optimal control strate-
gies. This comes at the cost of assuming strongly increasing or decreasing differences
(and hence differentiability of the payoff functions).

Proposition 3 Let gn be any interior optimal strategy for n = 1, ..., i.e. gn(x) is in the
interior of Xx.

(i) If both m and p have strongly increasing differences or strongly decreasing differ-
ences and Xy is ascending, then gn(x′′) > gn(x′) if x′′ > x′, n = 1, ...

(ii) If [m has positive externalities and strongly increasing differences, and p has strongly
increasing differences] or [m has negative externalities and strongly decreasing dif-
ferences, and p has decreasing differences] and Xy is expanding, then gn+1(x) >
gn(x) for all x ∈ X and n = 1, ...

(iii) If both m and p have strongly increasing differences or strongly decreasing differ-
ences and δ′′ > δ′, δ′′, δ′ ∈ (0, 1), then gn(·, δ′′) > gn(·, δ′), n = 1, ...

We want to compare actions and payoffs resulting from optimal control strategies
with Nash equilibrium strategies and payoffs in the one-shot game. Let (xe, ye) denote
a pure strategy Nash equilibrium profile in the one-shot game with the manipulator’s
largest or smallest Nash equilibrium action. Denote by M∗

n the n-period discounted sum
of stage-game Nash equilibrium payoffs to the manipulator corresponding to the n-period
play of such Nash equilibrium (xe, ye).

Proposition 4 Suppose that Xy is expanding, both m and p have decreasing differences
and m has negative externalities (resp. both m and p have increasing differences and m
has positive externalities). If y0 ≤ ye (resp. y0 ≥ ye) then there exists a transition path
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induced by n-optimal control strategies gn, n = 1, ... and y0 = b(x−1) such that for any
element xn for the transition path we have xn ≥ xe and for the corresponding payoffs
holds Mn(x−1) ≥ M∗

n.

The proof is contained in the appendix.

We are also interested in a comparison of actions and payoffs between the manipulator
and the puppet. Such comparison makes only sense when payoff functions are symmet-
ric. Let Pn(x) denote the n-period discounted payoff to the puppet if the manipulator
follows an n-period optimal control strategy. The next proposition shows that in games
with decreasing differences and negative externalities (e.g. some Cournot duopoly) the
manipulator is better off than the puppet if the puppet’s initial action is not to large.
This is remniscent of Stackelberg outcomes, where the manipulator takes a role similar
to the Stackelberg leader and the puppet is the Stackelberg follower.

Proposition 5 Suppose that payoff functions m and p are symmetric, i.e. m satisfies all
properties of p. Suppose further that p (and thus m) has decreasing differences, negative
externalities, Xy is expanding, and b has a slope above −1. If y0 ≤ ye then there exists a
transition path induced by n-optimal control strategies gn, n = 1, ... and y0 = b(x−1) such
that Mn(x−1) ≥ M∗

n ≥ Pn(x−1).

The proof is contained in the appendix. The assumption that b has a slope above
−1 is probably stronger than necessary. In symmetric games considered here it implies
a unique Nash equilibrium which is symmetric.

3 The Cyclic Example

Consider the Cournot duopoly discussed in the introduction. In this section we want to
show that a cycle is optimal in this example. Since the game does not satisfy decreasing
differences everywhere, previous results are not applicable. To see this note that for
instance π(100, 0)− π(50, 0) = 800− 2900 < π(100, 100)− π(50, 100) = −100− 50 while
π(40, 20)− π(30, 20) = 1920− 1740 > π(40, 30)− π(30, 30) = 1520− 1440.

Consider now a “smooth” version of the game with symmetric payoff functions given
below, in which we do not insist on a non-negative price:

η(x, y) = (108− x− y)x.

This game has strongly decreasing differences and negative externalities everywhere. The
graph of this payoff function is identical to the graph of the original payoff function for
the range of actions x ∈ [0, 109 − y]. For this range of x the original game satisfies
strictly decreasing differences. Similarly, for any n we can find the range of xn+1 where
the smooth n-period’s objective function coincides with the original n-period’s objective
function.
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We want to prove that a cycle of four actions is optimal. The idea of the proof is as
follows: Since we consider a finite repetition of the game, we can use backwards induction.
By our previous results any optimal sequence of actions must be monotonically decreasing
over time as long as xn+1 is in the range where the n-objective function coincides with
the smooth n-objective function. We show that after eight periods this assumption is
violated for the fourth period. We show that this means that there must be cycle if
n = 8, and it turns out that the 4-cycle is optimal. Using our monotonicity results, we
extend the result to n > 8.

For n = 1, 2, ..., 8, we write down recursively the n-objective functions Πn(xn+1),
5

Π1(x2) = max{109− x1 − b(x2), 0}x1 − x1 (4)

Π2(x3) = max{109− x2 − b(x3), 0}x2 − x2

+ max{109− g1(x2)− b(x2)}g1(x2)− g1(x2) (5)
...

...
...

and solve for the n-optimal control strategy gn(xn+1) under the assumption that xn+1

is in the range where the n-objective function coincides with the smooth n-objective
function:6

g1(x2) =
1

4
x2 + 27 if x2 ∈ [0, 108] (6)

g2(x3) =
4

15
x3 + 36 if x3 ∈ [44.41, 108] (7)

g3(x4) =
15

56
x4 +

270

7
if x4 ∈ [53.560, 108] (8)

g4(x5) =
56

209
x5 +

432

11
if x5 ∈ [56.264, 108] (9)

g5(x6) =
209

780
x6 +

513

13
if x6 ∈ [56.959, 108] (10)

g6(x7) =
780

2911
x7 +

1620

41
if x7 ∈ [57.142, 108] (11)

g7(x8) =
2911

10864
x8 +

3834

97
if (12)

g8(x9) =
10864

40545
x9 +

672

17
if (13)

Note that if xn+1 is outside the respective for range for which the n-objective function
coincides with the smooth n-objective function, then there is a corner solution gn(xn+1) =
108 since the graph of the n-objective function has the typical shape depicted in Figure 3.7

5To save space, we write out only the objective functions for n = 1 and n = 2.
6Interestingly, the denominator in the linear factor in gn is identical the nominator of the linear factor

in the gn+1.
7The figure depicts as example the smooth and original n-objective functions for n = 2. For n > 2,

the graph of the objective function is qualitatively similar.
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Figure 2: Objective Function for n = 2

Note further that if xn = 108 then Πn(xn+1) = k for all xn+1 > 1. That is, if
xn = 108 then the n-payoff is constant in xn+1. So it does not matter what the puppet
plays in n. In particular, the puppet could play a best reply to x1, the last period’s
action of the manipulator. We conclude that in the n-period problem, if xn+1 is outside
the respective for range for which the n-objective function coincides with the smooth
n-objective function, then there is an optimal cycle which starts with xn = 108.

In the experiment mentioned in the introduction, the initial puppet’s action was set
to y = 40. That is, if we consider the n = 8 period problem, already in the 0-period’s
x9 = 28 (defined by 40 = b(x9)) would be outside the range for which the 8-objective
function coincides with the smooth 8-objective function. Hence there must be at least
an 8-cycle in the 8-period problem.

Suppose there is such 8-cycle in the 8-period problem, then by above arguments
x8 = 108. Using the n-optimal control strategies for n = 1, 2, ..., 7 above, we can compute
the optimal path of quantities of the manipulator:

n 8 7 6 5 4 3 2 1
xn 108 68.464 57.857 54.964 54 53.036 50.143 39.536
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We note that n = 4 is the latest period, for which xn+1 = x5 /∈ [56.264, 108] (54.964 <
56.264), a contradiction that the 8-cycle being optimal for the n-period problem. Hence
a smaller cycle must be optimal. Indeed, when we compute all smaller cycles using n-
optimal control strategies gn and starting values 108, then we find that the 4-cycle is
optimal.

Consider now any problems with n > 8. Suppose that a 4-cycle is not optimal
anymore for such problem with period’s larger than 8. Then we must have that x5 in
optimal path for the n > 8 problem is strictly lower than x5 for the 8-cycle. Otherwise,
by previous arguments the 4-cycle would be optimal. This could only be true if x8 in
the optimal path of n > 8 period problem is strictly larger than x8 in the 8-cycle, since
by Proposition 1 for n = 1, ... we have that gn is monotone increasing in xn+1. However,
already for the 8-cycle we have x8 = 108, the largest undominated action. Hence, x8 in
the optimal path for the n > 8 period problem can not be larger, which implies that for
n = 5 we must have that x5 /∈ [56.264, 108] (54.964 < 56.264), a contradiction to the
assertion the 4-cycle is not optimal. This completes the proof that 4-cycles are optimal.

What happens in there is a finite repetition of the game for which the number of
periods can not be divided by 4? For all problems with less then 8 periods it is easy to
verify that in the last 4 periods the 4-cycle is optimal. In any previous periods there is an
optimal path monotone over periods since the range-assumption won’t be violated. For
problems with periods larger than 8 that can not divided by 4, the 4-cycle is optimal for
the last 4m for m = 1, 2, ... period. For any previous periods, there is an optimal path
monotone over periods since the range-assumption won’t be violated.

The result of optimal cycles may be generalized to a larger class of Cournot games in
which we insist on a non-smooth lower bounded for the price although the optimal cycle
length may depend on the parameters of the game.

4 Discussion

In this article we assumed that actions are one-dimensional although lattice programming
allows usually to prove results even if strategies are multi-dimensional. The crucial
assumption required is that payoffs are supermodular in actions. If we assume that both
m and p are supermodular in actions, then m̂ may not be supermodular even if b(x) is
supermodular in x. E.g. the composition of m(·,−b(x)) may not be supermodular in x
on X.

We used the cardinal property of decreasing and increasing differences to obtain our
results. It is unlikely that our results extend to the weaker order notions of (dual) single
crossing property. The manipulator’s objective function is a weighted sum of one-period
payoff functions. It is well know that the sum of functions each satisfying the single-
crossing property may not satisfy the single-crossing property (Topkis, 1998).

In Lemma 1 we assume that p is strict quasi-concave in y. This is probably too
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strong. We require that m is u.s.c. and b continuous, since if b is just u.s.c. the
composition m̂ may not be a u.s.c. function. E.g., if b is a u.s.c. function then −b is a
l.s.c. function. Hence m(·,−b(·)) may not be a u.s.c. function. It would suffice to obtain
a continuous selection b from B. By Michael’s Selection Theorem we would require that
B is a convex-valued l.h.c. correspondence. The Theorem of the Maximum just yields
a u.h.c. correspondence. Convex-valued-ness requires quasi-concavity of p anyway. So
strict quasi-concavity of p may be weakened to quasi-concavity and a slightly stronger
continuity property.

In our model we required the initial action of the puppet to be a best reply to some
action of the manipulator. This may be quite restrictive when period 0 is viewed as the
first period. Why should the puppet start already with a rationalizable action? After all
a motivation for learning theories is to study whether boundedly rational learning could
converge to a rational action without assuming that players start already with it. Yet,
we believe that this assumption is not restrictive because myopic best reply players are
programmed to best replies. So no matter what they play, it should be a best reply to
some of the opponent’s action. This is intuitive especially if we view period 0 not as the
first period.

At the first glance, the optimal cycle in the Cournot duopoly with a non-negative
price may look surprising. However, note that for instance it is easy to see that the
optimal control strategy against a myopic best reply player in a matching pennies game
involves a two-cycle. Such cycles are due to the “mechanistic” nature of myopic best
reply. It seems quite unrealistic that a player even if he is adaptive should not recognize
cycles after some time. Aoyagi (1996) studies repeated two-player games with adaptive
players who are able to recognize patterns such as cycles in the path of play. Indeed, it
may be worthwhile to extend our analysis and allow the best reply player to recognize
cycles.

We view our analysis as a first step of studying strategic control of adaptive learning.
We envision several possible extensions. First, one may want extend our analysis to
n-player games in order to allow for several manipulators and puppets. Second, myopic
best reply is just one adaptive learning theory. Our analysis should be extended to
other (adaptive) learning theories as well such as fictitious play, reinforcement learning,
imitation, trail & error learning, etc. or better to classes of (adaptive) learning theories.
Third, (adaptive) players may make mistakes. Would cycles in our Cournot example
survive if the myopic best reply player would tremble to any quantity with a tiny but
strict positive probability? Forth, we assumed that the manipulator knows that the
puppet plays myopic best reply but in reality such knowledge may be missing. Could
the manipulator learn the learning theory of the opponent (and the nature of the noise
if any)?
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A Proofs

Proof of Lemma 1. If p is u.s.c. in y on Yx given x ∈ X, then by the Weierstrass Theorem
an argmax exist. By the Theorem of the Maximum, the argmax correspondence is u.h.c. and
compact-valued in x. Since p is strictly quasi-concave, the argmax is unique. Hence the u.h.c.
best reply correspondence is a continuous best reply function. Since m is u.s.c. and b is con-
tinuous, we have that m̂ is u.s.c.. �

Proof of Lemma 2. Under the conditions of the Lemma we have by Lemma 1 that m̂ is
u.s.c. on X ×X. By the Theorem of the Maximum (Berge, 1963), M1 is u.s.c. on X. If Mn−1

is u.s.c. on X and m̂ is u.s.c. on X ×X, then since δ ≥ 0, m̂(x′, x) + δMn−1(x′) is u.s.c. in x′

on X. Again, by the Theorem of the Maximum, Mn is u.s.c. on X. Thus by induction Mn is
u.s.c. on X for any n.

Let L be an operator on the space of bounded u.s.c. functions on X defined by LM∞(x) =
supx′∈Xx{m̂(x′, x) + δM∞(x′)}. This function is u.s.c. by the Theorem of the Maximum.
Hence L maps bounded u.s.c. functions to bounded u.s.c. functions. T is a contraction map-
ping by Blackwell’s sufficiency conditions (Stokey, Lucas, and Prescott, 1989). Since the space
of bounded u.s.c. functions is a complete subset of the complete metric space of bounded func-
tions with the sup distance, it follows from the Contraction Mapping Theorem that L has a
unique fixed point M∞ which is u.s.c. on X. �

Proof of Lemma 3. We state the proof just for one case. The proof of the other cases follow
analogously.

(i) If p has strongly decreasing differences in (y, x) on Y × X, then by Topkis (1998) b is
strictly decreasing in x on X. Since m has strongly decreasing differences in (x, y) on X × Y ,
m̂(·, ·) = m(·, b(·)) must have strongly increasing differences on X ×X.

(ii) If p has decreasing differences in (y, x) on Y ×X, then by Topkis (1998) b is decreasing in
x on X. Hence, if m has negative externalities, m̂(x′, x) = m(x′, b(x)) must be increasing in x.�

Proof of Proposition 4. Suppose that both m and p have decreasing differences and m
has negative externalities. We focus on the Nash equilibrium (xe, ye) in which the manipulator
plays her smallest Nash equilibrium action (the proof with the largest Nash equilibrium action is
analogous, just replace g

n
by ḡn). First, consider T = 1. Since y0 = b(x−1) and p has decreasing

differences, we have y0 ≤ ye if and only if x−1 ≥ xe. Since m has decreasing differences we have
g
1
(xe) = xe and g

1
(x−1) ≥ xe for x−1 ≥ xe. This follows from Proposition 1. Consider now

T > 1. Since m has negative externalities, p has decreasing differences and Xy is expanding,
it follows from Proposition 2 that g

n+1
(x−1) ≥ g

n
(x−1) for n = 1, .... Hence we conclude

g
n+1

(x−1) ≥ xe for n = 1, ... if y0 ≤ ye.

Suppose now to the contrary that max
∑T−1

t=0 δtm̂(xt, xt−1) <
∑T−1

t=0 δtm∗, where m∗ is
the manipulator’s payoff from the one-shot Nash equilibrium (xe, ye). Since by Lemma 3,
m̂(xt, xt−1) is increasing in xt−1 we must have that m̂(xe, xt−1) ≥ m̂(xe, xe) for any t = 0, ....
Hence the manipulator could improve his payoff by deviating to her one-shot Nash equilibrium
action. Thus we have a contradiction to max

∑T−1
t=0 δtm̂(xt, xt−1) being the payoff from the
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optimal control strategy.

The proof is analogous if both m and p have increasing differences and m has positive ex-
ternalities. �

Proof of Proposition 5. Since the game is symmetric and b has a slope above −1, the
stage-game Nash equilibrium is unique and symmetric (see Vives, 1999, Section 2.3.2, Remark
17). Note that by Proposition 4, if y0 ≤ ye then Mn(x−1) ≥ M∗

n with y0 = b(x−1). Also by
Proposition 4, if y0 ≤ ye then for any element xn of the transition path induced by the optimal
control strategies gn we have xn ≥ xe. Since p has decreasing differences and the unique Nash
equilibrium is symmetric, yn ≤ ye. We want to show that p(xe, xe) ≥ p(yn, xn). Suppose to the
contrary that p(xe, xe) < p(yn, xn). If y0 ≤ ye we have by Proposition 4, xn ≥ xe, n = 1, .... By
negative externalities, p(yn, xn) ≤ p(yn, xe). Hence p(xe, xe) < p(yn, xe), a contradiction to xe

being the Nash equilibrium action. Thus Mn(x−1) ≥ M∗
n ≥ Pn(x−1). �
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