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Abstract

We investigate the behavior of two learning rules, Stochastic Best Response (SBR) and
Replicator Dynamics, in a model with aggregate and time-correlated shocks to payoffs. The
main difference between the two behavior of the two rules is that under SBR corners are
not absorbing. We study a setting where there are two actions and many states of nature
and the transition between states follows a Markov chain. We find that the SBR converges
to a behavior similar to probability matching. On the other hand, the Replicator Dynamics
selects the optimal action only if the average payoff of both actions is different enough.
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1 Introduction

Despite the many applications Markov processes have for modeling real life environments, few
papers are devoted to study the evolutionary properties of models with such processes. To our
knowledge, only Ben-Porath et al. (1993) and Rustichini (1999) deal with this issue.

Ben-Porath et al. (1993) present a model that is framed within an environment that changes.
They study two types of changing environment. One in which the change is deterministic and
another in which the changes in environment follow a Markov chain. In their model, players
actions are subject to random mutations. They characterize the mutation rate that maximizes
population growth in the long run. On the other hand, Rustichini (1999) presents a paper that
focuses on the optimality of two different population dynamics within a Markovian environment.
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In his model, the environment changes according to a Markov chain and for any state in the chain
there is a unique action that maximizes payoff. Rustichini studies the optimality properties of
linear and exponential (logit) adjustment process under different informational settings about
payoffs of actions. In section 5.1 we dedicate more time to discussing Rustichini’s work.

In this paper we present a model where the environment changes according to a Markov
chain and for any state in the chain there is only one action that maximizes payoff. Players
do not know how does the payoff matrix look like. What is more, they don’t know how many
states there are or what are the transition probabilities between states. To motivate the idea
behind this setting, consider the following practical example. Assume there is a firm that faces
a random demand. The demand follows a Markov process with m states and the firm does not
know the value of m. The probability of transiting from state i to state j is given by θij ∈ (0, 1].
We can think of this demand as a demand that follows fashions. In some states the product 1 is
on fashion and most of the costumers buy product 1. Of much better product sells will depend
of the specific state of the demand. On the other hand, in the rest of states product 2 is on
fashion most of the costumers buy product 2. Assume that the profit for the firm of producing
good i when state is j equals πij . Assume for simplicity that the cost of producing each good
is zero. However, the firm has a fixed productive capability of measure 1. This means that the
amounts of good 1 and good 2 produced must always add up to 1 or less. The firms’ problem
is to choose how much of either good to produce. However, the firm does not know how many
states nature has. Neither she knows what are the values of πij and θij for all i ∈ {1, 2} and
j ∈ {1, . . . ,m}. The firm just observers that his profits from selling either product change over
time. In this paper we show how the two different learning rules we consider will behave in such
setting.

Within the setting we just presented, we study the behavior of two learning rules: Stochastic
Best Response and Replicator Dynamics. The two rules are very well known and have been
widely used in the literature because of their appealing interpretation and their match with real
life behavior. Intuitively, the main difference between the two rules is that the Stochastic Best
Response is an individual leaning rule (or non-selection rule) while the Replicator Dynamics is a
population learning rule (or selection rule). The implications of this differences for our analysis
will be clear later on. With this paper we aim at exploring how the two rules we consider behave
in a setting with markovian changes in the state of nature. In particular, the question we want
to address is the following: Are the rules considered here able to select, in the long run, the best
action?

The Stochastic Best Reply is an individual learning rule because players do not learn form
their neighbors but from their own experiences. It is a reinforcement rule in that more successful
actions today are likely to be adapted for tomorrow. Under the Stochastic Best Reply, at any
period players observe the performance of both actions. A player increases the probability of
playing a given action for the next period if and only if that action yielded higher payoff than the
others in the current period. The increase in the probability of playing the action will depend
in the difference between the payoffs achieved by all actions and in the current probability of
playing the action. In particular, the Stochastic Replicator Dynamics incorporates opportunity
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cost considerations. If action 1 yields more payoff today and the player is already playing it
with high probability, the increase in the probability of playing action 1 is small because the
players feels she is already doing quite well. That is, the opportunity cost of not increasing
the probability of playing action 1 is low. However, if action 1 yields more payoff today than
the other actions but the player is playing it with very low probability, then the increase in the
probability of playing action 1 is big because the player feels she is doing quite badly. That is, the
opportunity cost of not increasing the probability of playing action 1 is high. The opportunity
cost consideration has its more extreme manifestation in the case where the player use the
deterministic Best Response. Under the deterministic Best Response the player plays tomorrow
with probability 1 the action that yielded higher payoff today. The deterministic Best Response
is just the degenerated case of the Stochastic Best Responses.

Under the Replicator Dynamics, players learn by observing actions and payoffs of other
players. Every period, each player observes the average payoff of the population. If the payoff of
a player is higher than the average payoff of the population, then she will increase the probability
of playing the action she played. The magnitude of this increase will depend on the difference
between her payoff and the average payoff of the population.

Learning rules can be divided into two categories. The individual (or non-selection) learning
rules and the population (or selection) learning rules. Concerning the individual learning rules,
we focus our attention to the Stochastic Best Response. The Stochastic Best Response gathers
many of the aspects that real life agents’ decision exhibit. Mainly, it captures the idea of
reinforcement learning. That is, actions that were more successful today are more likely to
adapted for tomorrow. For two excellent detailed expositions on reinforcement learning and its
relationship with real life behavior the reader is referred to Roth and Erev (1995) and Erev and
Roth (1998) and Camerer and Ho (1999).

Concerning the population learning rules, we decided to use the Replicator Dynamics. The
Replicator Dynamics is the most commonly used learning process for population learning in
economics and in biology. The literature on selection learning rules is extensive. Other repre-
sentative rules may include various types of imitation, etc. However, it has been shown that the
behavior of many of these rules converges to that of the replicator dynamics. For example, Schlag
(1998) shows that the Proportional Imitation Rule converges to replicator dynamics. Moreover
the Replicator Dynamics can be derived from behavioral axioms as shown by Easley and Rusti-
chini (1999). Hence, by focusing on the Replicator Dynamics we are indirectly considering other
population learning rules.

In our results, we show the following two facts. First, when the agents play according to the
Stochastic Best Response, the long run behavior of the population resembles to what is know
as probability matching. Probability matching prescribes that if an action is better than the
other x percent of the time, then the population will play it with a frequency of x. We show
that if an action is on average better than the other, then the population will be playing it
more often, but not always. The frequency by which the each action is played will depend on
two things. First, the difference in average payoffs between the two actions. Second, on the
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probabilities that the limiting distribution of the Markov chain for states puts on each state.
The probability matching behavior is clearly suboptimal. While some experimental papers
report that this behavior is observed in real life (see, for example, Rubinstein (2002), Siegel
and Goldstein (1959)). There seem not to be consensus whether probability matching is in fact
present in the behavior of real life agents (see, for instance, Vulkan (2000) and Shanks et al.
(2002)).

Our results for the Stochastic Best Response are closely related by the findings by Kosfeld
et. al. (2002). They study a setting where a finite set of players repeatedly play a normal-form
game. Players adapt their strategies by increasing the probability of playing a certain action
only is this action is a best reply to the actions played by the other agents. Hence, the rule they
use a particular case of the Stochastic Best Response in which the magnitude of the payoffs is
irrelevant for the updating of strategies. Kosfeld et. al. (2002) find that the system converges
to a best-reply matching equilibrium. In a best-reply matching equilibrium each player plays an
action with a probability that is equal to the probability that this action is a best response to
the actions of the other players. Our setting is different from theirs in that players do not play
against other players but against nature. The probability matching behavior we find in games
against nature is the equivalent to the best-reply matching equilibrium Kosfeld et. al. (2002)
find. In Section 5.3 we discuss this issues in more depth.

In our second result, when players play accordingly to Replicator Dynamics, we show that
the population may end up playing a suboptimal action forever. On the other hand, if the
difference between the average payoff of the two actions is high enough, then the population
will for sure end up playing the action that has higher average payoff. That is, if the differences
in payoffs are not too high, the population may end up playing either action in the long run.
Hence, the system may exhibit lock out on a suboptimal action.

A rule that has recently attracted some attention is the Börgers et. al. (2004) best monotone
learning rule (BMS rule henceforth). Under the BMS rule, if the payoff achieved by the action
played is higher than an endogenous aspiration level, then the probability of playing the action
increases. How this aspiration level is formed depends on the initial probability of playing each
action. A rule is defined to be monotone if the expected probability of playing the action that is
best given today’s state increases. A rule is said the be the best monotone rule if the expected
increase in playing the best action form period to another is highest among all monotone rules.
Börgers et. al. (2004) derive a rule that is the best monotone individual learning rule when
the environment changes independently of its past values and foregone payoffs are not observed.
We show that the BMS rule has a very similar behavior in the long run that the Replicator
Dynamics. Whether BMS rule is more likely to select the best action in the long run than the
Replicator Dynamics will depend on the specific value of the parameters of the model. A deeper
analysis of BMS rule is presented in Section 5.2.

The contribution to the literature of our work is twofold. First, we have mentioned already
the fact that very few papers study the situation in which the future realization of the state
of nature depends on its past realizations. Most of the papers on learning consider either that
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the environment doesn’t change or that it changes independently of past realizations. This is
probably due to the technical difficulties involved in dealing with correlated realizations of states.
In this paper we show how this difficulties can, at least partially, be overcome. Our proofs for
the result for the Stochastic Best Response show how one can deal with dependent randomness
by showing that for any possible realization of states of nature, the position of the system in
the future can be approximated by simply the differences in speed of convergence towards each
action.

The proof of our result for the Replicator Dynamics learning extends the result on Ellison
and Fudemberg (1995) to the case of dependent state realizations. We show that the behavior
of a system that evolves according to a Markov Chain can be approximated by the behavior
of a system in which the probability of each state occurring is independent and equal to the
limiting distribution of the Markov Chain. Hence, our first contribution to the literature is that
we introduce new techniques for dealing with correlated states of nature.

Our second contribution to the literature is of an informative nature. The two rules we are
considering here have been widely studied before. However, to our knowledge, there is no paper
that shows of these rules will perform in a setting with correlated states. While our conclusion
for the Replicator Dynamics may not seem very unexpected, we find the fact that Stochastic
Best Response yields probability matching behavior quite surprising.

The rest of the paper is organized as follows. Section 2 presents the model. The two learning
rules considered are introduced in Section 3. Results are developed in Section 4. Section 5
presents a discussion and a deeper comparison of our work with the existing literature. Finally,
Section 6 concludes.

2 The Model

Consider a continuum of identical players of measure 1. Every period t = 1, 2, . . . players in
the population have to choose between action 1 or action 21. The payoff of each player at time
t depends on her action and on the value of a random variable st. The variable st follows a
Markov process P with states m states. The probability of transiting from state i to state j is
given by θij ∈ [0, 1]. We assume the Markov chain to be ergodic. Hence, if θij = 0 for some
i, j then there exists a sequences of states k1, k2, . . . , kn such that θik1 , θk1,k2 , . . . , θkn,j 6= 0. We
define µ ∈ [0, 1]m as the limiting distribution of the Markov Chain P where µi is the weight the
limit distribution puts in state i.

If a player chooses action i and the state equals j then she gets a payoff πij . We assume
that πij ∈ [0, 1] for all i, j ∈ {1, 2}. Further we assume that there is no weakly dominant action.
That is, there exists no i ∈ {1, 2} such that πij ≥ π−ij for all j ∈ {1, . . . ,m}. Without loss of
generality we assume that for some h < m, π1j ≥ π2j for j ≤ h and π2j > π1j for j > h. That

1Increasing the number of actions will make computations and exposition less transparent and won’t add any

extra strategic value to the case with 2 actions.
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is, in the first h states action 1 yields at least the same payoff as action 2. In the rest of state,
action 2 yields more payoff than action 1.

One could think of adding idiosyncratic perturbations to payoffs by adding εht to each
πij . Where εht are normally distributed zero mean random variables that are independent
across players h and time t. However, since the Stochastic Best Response can treat payoffs in
a non linear way (exponential, square, etc.) it is not true that the process will converge to
the same value as for the case without noise. The reason is the same as why, for instance,
E(x2) 6= E ((x + ε)) with E(ε) = 0. However, it can be easily verified that adding noise makes
no change in the results for Replicator Dynamics and the Stochastic Best Reply when payoffs
enter linearly in the learning rule.

Players have very limited information about the game they are playing. They don’t know
the payoff matrix nor how nature evolves or how many states there are. The only thing players
know is that they have two actions at their disposal. Furthermore, players have limited memory.
In particular, the only information they keep from period to period is the current strategy they
are playing. Next we explain this in more detail.

The timing within each time period works as follows. First, players choose actions according
to their strategies. Then, nature decides the state. Third, payoff are realized and players observe
their payoff. At this stage, only under the Stochastic Best Response, players also observe foregone
payoffs2. Finally, players updates their strategies. A strategy is the probability of playing each
action. When updating their strategies, players use the following information: their strategy
at the beginning of the period, the action they played and the payoff they got and, under the
Stochastic Best Response, the payoff the other action would have yielded (foregone payoffs).
Hence, the only information that players carry over to the next period is the strategies they
have. That is, players have limited memory about payoffs or the actions they played in the
past. The only information that players have about past payoff realizations is via their current
strategy. Hence, their current strategy can be seen as an aggregation or summary of past payoff
experiences.

Given that the two learning rules we consider only take into account the present realization
of payoffs, players having full memory won’t change our results. One might argue that if players
had long memory they could observe different payoff realizations and easily have a significant
information about the world they are living in (transition probabilities, etc.). However, this
is not true since players do not know how many states nature has. The number of states of
nature can be huge and players do not know how many states there are. Thus, players having
long, but limited, memory won’t guarantee them to learn about the environment they are living
in. Hence, the question if players are able to select the best action in the long run is still open.
Moreover, experimental results show that players do not tend to have very long memory (see, for
example Erev and Roth (1998)). Furthermore, as showed by Rustichini (1999), even if players
had infinite memory, it is not true that they will learn the best action for sure. This issue is

2Whether players observe forgone payoff under the Replicator Dynamics case or not is completely irrelevant

as will be clear later on
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further discuss in section 5.

A learning rule is a function b such that b : [0, 1]×{1, 2}2× [0, 1]2 → [0, 1]. That is, a function
that maps three arguments, strategy for the present period, action played and payoff gotten and
action not played and foregone payoff, into the strategy from the next period. The functional
form of the function b will depend on the specific learning rule we consider.

Denote by z the probability that a player from the population plays action 2. The variable zt

refers to the value of z at the end of period t− 1 and the beginning of period t. Note that given
our setting, the variable z is a continuous Makorv process on [0, 1] and this process is ergodic.

Since we are dealing with a continuum of population, Law of Large Numbers applies and
we have that z is also the fraction of players playing action 2 deterministically. In an abuse of
notation, throughout the paper we will refer to z as both the probability for a single player of
playing action 2 and the fraction of the population playing action 2.

3 The Learning Rules

3.1 Stochastic Best Response

To save notation we simply write zt+1,i,j to denote the value of zt+1 given that action i yielded
a higher payoff at the current period and the current state of nature is j. The Stochastic Best
Response is characterized by

zt+1,1,j = zt + ztµf(Πj)

zt+1,2,j = zt + (1− zt)µf(Πj)

where µ ∈ [0, µ̂] is a learning speed parameter. The use of the learning speed parameter will be
discussed later in the paper. The value of µ̂ is set such that zt+1 remains always between 0 and
1. Πj are the payoff gotten and the forgone payoff of both actions at state j and f is a function
on the payoffs. Function f must satisfy a the following assumption.

Assumption 1.

f(Πj) ≤ 0 for j ∈ {1, . . . , h} with strict inequality if and only if 0 < zt ≤ 1,

f(Πj) ≥ 0 for j ∈ {h + 1, . . . ,m} with strict inequality if and only if 0 ≤ zt < 1.

As an example, we present a rule in which payoffs enter exponentially in the function f .

zt+1,1,j = zt + ztµ
eπ2j − eπ1j

eπ1j + eπ2j
(1)

zt+1,2,j = zt + (1− zt)µ
eπ2j − eπ1j

eπ1j + eπ2j
(2)

Another example could be the following.

zt+1,1,j = zt + ztµ(π2j − π1j)

zt+1,2,j = zt + (1− zt)µ(π2j − π1j)
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The intuition behind the Stochastic Best Response is the following. Each period, every player
observes the payoff of the action chosen and the payoff of the other action. Then she updates
her strategy in the following way. She increases the probability of playing action 1 in the next
period if and only if action 1 yielded higher payoff than action 2 in the current period. The
increase in the probability of playing action 1 will depend on the difference in payoffs between
the two actions.

A different interpretation of this same rule uses the fact that z can be considered as the
fraction of population playing action 2 deterministically. Under this consideration, at every
period, any player that didn’t play the best action, will change her action (best response to
the environment) with some probability. The probability of changing action depends on the
difference in payoff between the two actions. The Stochastic Best Response is an individual
learning rule because actions played by other players have no effect on the updating of the own’s
strategy. That is, players learn only from own experiences.

3.2 Replicator Dynamics

The functional form for the Replicator Dynamics is the same independently on which action
yielded higher payoff. We write zt+1,j to denote the value of the variable z at time t given that
the state at time t was j. The Replicator Dynamics is characterized by the following equation.

zt+1,j = zt + zt(π2j − ((1− zt)π1j + ztπ2j))

The intuition behind the Replicator Dynamics is the following. Every period, each player
observes the average payoff of the population (this is the term ((1 − zt)π1j + ztπ2j) in case
state equals j). If her payoff is bigger than the average payoff of the population, then she will
increase the probability of playing the action she played. The magnitude of this increase will
depend on the difference between her payoff and the average payoff of the population. Another
interpretation of the replicator Dynamics is based on imitation. Every period, every player
observes the action and payoff of another player and imitates the action of the other player if
and only if the other player got a higher payoff than herself.

4 Results

4.1 Stochastic Best Response

Before going to the formal results, we present a small discussion on the behavior of the learning
rule. First, note that under the two rules we consider, the learning process always puts more
weight tomorrow in the strategy that was more successful today. The biggest difference in
the behavior of the two rules that we consider lies in the way they behave when z is close to
the corners (0 and 1). In particular, under the Stochastic Best Response the corners are not
absorbing. On the other hand, under the Replicator Dynamics both corners are absorbing.
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Assume for this discussion that there are only 2 states of nature. Under the Stochastic Best
Response, the speed at which a player adapts an action slows down as the probability of playing
that action increases. That is, consider that action 1 is played with a high probability and that
today action 1 yielded a higher payoff than action 2. Then the increase in the probability of
playing action 1 will be low. On the other hand, consider that action 1 is played with a low
probability and today action 1 yielded higher payoff than action 2. In this case the probability
of playing action 1 next period will have a high increase. Figure 1 shows how z changes over
time under the Stochastic Best Response.

Figure 1: Stochastic Best Response

Figure 1 shows the movements of the probability of playing action 2 (z) as a response to an
action being better than the other in the current period. As we mentioned before, assume that
an action is played with a high probability. Then the increase in playing that action in case it
yielded a higher payoff than the other action at the present period is low. This characteristic of
the Stochastic Best Reply will be exploited for the proofs of our results..

As one could possibly guess already, the Stochastic Best Response won’t converge to any
of the corners. The variable z will be always going back and forth. To study convergency,
we consider the limit case when µ, which can be view as the size of the changes in z, goes
to 0. Once such a limit is taken, the Stochastic Best Response converges to a single point.
This issue can be seen much clearer by looking at Figure 2, where a simulation is conducted.
The specific rule used is given by 1 and 2. The value of the parameters is set to m = 2,
π11 = 0.5, π12 = 0.3, π21 = 0.1, π22 = 0.6 and θ12 = θ21 = 0.3. The initial value of z was set to
z0 = 0.4.

By studying the behavior of the system when µ is made arbitrarily small we are characterizing
the asymptotic behavior of z. When µ is taken to zero the adjustment in the strategies is made
arbitrarily small. However, as time goes to infinity the number of times the adjustments take
place is also made arbitrarily big. For papers that use this continuous time limit approximation
in setting somewhat different form ours see, for example, Börgers and Sarin (1997) and Benäım
and Weibull (2003).

The following proposition characterizes the convergence of the Stochastic Best Response
when µ is arbitrarily small.

Proposition 1. Define z̃ =
Ph

i=1 µif(Πj)Pm
i=1 µif(Πj)

. For any ε > 0 there exists a µ̄ ∈ (0, µ̂] such that if
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Figure 2: Simulation - Stochastic Best Response

µ < µ̄ then
lim

h→∞

∣∣zt+h − z̃
∣∣ < ε.

The proof is presented in the appendix. Below we present a sketch of the proof. The point z̃

corresponds to the point where an expected increase in zt due to action 2 yielding higher payoff
at time t than action 1 would be equivalent to the expected decrease in zt from action 1 yielding
more payoff than action 2. That is, with m = 2, z̃ is such that |zt+1,1,1 − zt| = |zt+1,2,2 − zt|.
In Figure 1, the point z̃ would be such that the size of the arrows (or jumps) towards the left
form a given point z is the same as the size of the arrows towards the right from this same point
z. Hence, z̃ is the point where the marginal movements towards action 1 and towards action 2
is equalized. One can easily check that if action 1 is better in the long run, which happens if∑h

i=1 µif(Πj) >
∑m

i=h+1 µif(Πj), then it will be played more often than action 2. However, it
will never be the case that action 1 is played with frequency 1. In our simulation above we have
that z̃ = 0.43. That is, in the long run at any given period action 2 is played with probability of
0.43. The behavior under Stochastic Best Response in the limit when µ goes to 0 resembles the
intuition behind the probability matching behavior explained in the introduction. This behavior
is clearly suboptimal as if

∑h
i=1 µif(Πj) >

∑m
i=h+1 µif(Πj) then the z that maximizes payoff is

z = 0. That is, playing action 1 always is better than playing action 1 with probability 1− z̃ for
z̃ > 0.

We now present an sketch of the proof of our result. For studying the convergence of the
variable z we first show that it suffices to study the convergence of a variable y that evolves in
a world with just 2 states of nature and symmetric transition matrix. Define h < m, as the
maximum j such that π1j ≥ π2j . Define y as yt = zt and

yt+1 =

{
yt + 2yt

∑h
i=1 µif(Πj) with probability 1/2

yt + 2(1− yt)
∑m

i=h+1 µig(Πj) with probability 1/2.
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The following result, whose proof is presented in the appendix, states that both z and y converge
in probability to the same value.

Lemma 1. For any ε > 0 there exists a µ̂ > 0 and a k ∈ N such that for any µ < µ̂ and h > k

we have that
P (|zt+h − yt+h| > ε) = 0.

The intuition is as follows. Assume that we are at time k. Hence, for t > k big enough we
can rewrite the evolution of the variable z as follows.

Ek(zt+1) =



zt + ztf(Π1) with probability µ1

...
zt + ztf(Πh) with probability µh

zt + (1− zt)f(Πh) with probability µh+1

...
zt + (1− zt)f(Πm) with probability µm

Note that the variable y evolves according to the expected movement in the long run of the
variable z. It can be easily seen that Ek(zt+1) = Et(yt+1). By time invariance of both z and y

we can extend this to Ek(zt+h) = Et(yt+h).

Furthermore, by making µ arbitrarily small we make the variance of both random variables
z and y to shrink to zero. Thus, we must have that their limiting distribution puts weight on a
single point. In other words, z and y converge in probability to a fix value z̃ and ỹ respectively.
Since Ek(zt+h) = E(yt+h) for t big enough and for all h > 0, we must have that z̃ = ỹ. Hence,
instead of studying the convergence of the variable z we focus on the convergence of the variable
y.

For simplicity of the exposition, assume for now that θ < 0.5. Imagine that we start at a
point y to the right of ỹ. From that point take a sequence of the next k states of nature where
states 1 occurred at least the same times as state 2. Call this sequence {st+h}k

h=1. Take now the
sequence that is exactly opposite to {st+h}k

h=1 except for st and call it {s̄t+h}k
h=1. That is, if

the second state in the sequence {st+h}k
h=1 is 2 then the second state in the sequence {s̄t+h}k

h=1

would be 1 and so on. Given that the transition probability between states is symmetric,
the probability that the sequence {s̄t+h}k

h=1 occurs equals θ
1−θ times the probability that the

sequence {st+h}k
h=1 occurs. The only different between the two probabilities is due to the value

of the state of nature at time t.

For any point y to the right of ỹ, we will have that the one-step movement towards action 1 is
bigger than the movement towards action 2. In graphical terms the arrows towards the left are
longer than the arrows towards the right if you are at a point to the right of ỹ. Figure 3 presents
a representation of this situation. A point like y1 > ỹ is such that the one-step movements
towards the left (towards action 1) are bigger than the one-step movements towards the right
(action 2). Exactly the opposite happens to a point such as y2 < ỹ.

Consider now our sequences {st+h}k
h=1 and {s̄t+h}k

h=1. It can be shown that the value of
z after the sequence {st+h}k

h=1 occurs is smaller than its initial value zt. However, it is not
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Figure 3: Movement under Stochastic Best Response

necessarily true that the value of z after the sequence {s̄t+h}k
h=1 occurs is bigger than its initial

value zt. It can be shown that the change in z starting off at zt > z̃ and after the sequence
{st+h}k

h=1 happens, is significantly higher than the change in z starting off at zt and after the
sequence {s̄t+h}k

h=1 occurs. In particular, the value of θ
1−θyt+k under the sequence {st+h}k

h=1

plus the value of yt+k under the sequence {s̄t+h}k
h=1 is smaller than yt. This is true for any

sequence {s̄t+h}k
h=1 where states 1 occurred at least the same times as state 2.

Hence, the sum over all possible sequences {st+h}k
h=1 of θ

1−θyt+k({st+h}k
h=1)+yt+k({s̄t+h}k

h=1)
is smaller than yt. That is, if we start at yt > ỹ, then the expected value of y after k periods, will
be smaller than yt

3. That is, for yt > ỹ and some k, Et(yt+k) < yt. This same reasoning applies
to show that for yt < ỹ and some k, Et(yt+k) > yt. With this information, we can conclude that
for some k Et(yt+k) = ỹ. The reasoning why we can extend this fact to any k bounded from
below is more technical and only presented in the appendix.

Once we have that for k big enough Et(yt+k) = ỹ. It only remains to explain the intuition
why when µ goes to zero, yt+h goes to ỹ as h increases. It can be easily seen by the equation
of the Stochastic Best Response that as we decrease µ, the statistical variance of y decreases as
well. Hence, since Et(yt+k) = ỹ and the variance of y tends to zero as µ goes to zero, we must
have that yt+h tends to ỹ as h goes to infinity and µ goes to zero.

4.2 Replicator Dynamics

The Replicator Dynamics has a completely different behavior than the Stochastic Best Response.
Under the replicator dynamics, the changes in the variable z become smaller as it gets closer
to either bound. For example, assume that m = 2 and consider that action 1 is played with a
high probability. Then the change in z will be small independently of whether action 1 yielded
higher payoff than action 2 or the other way around. Figure 4 shows how the transitions work
for the Replicator Dynamics.

As we see, the process will spend almost no time in intermediate values of z. This will
allows to draw our conclusions from analyzing only the behavior of z in the neighborhoods of

3The value of k must be bounded above and below. Intuitively, we need k to be bounded below so that the

value of the current state of nature is almost not influencing the value of yt+k. We need k to be bounded above

so that y does not hit a ỹ. For any sequence of nature and any value of yt there exists a µ̄ such that for µ < µ̄

we can always find such a k. See formal proof in the Appendix for the details.
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Figure 4: Replicator Dynamics

its bounds. In this respect, our analysis will rely partially on the approach by Ellison and
Fudemberg (1995).

Figure 5 shows the same simulation as Figure 2 but with the Replicator Dynamics Learning
instead of the Stochastic Best Response. That is, the parameters used are the same but the
learning rule is different. Figure 5 shows the result of the same simulation performed with two
different random seeds.

Figure 5: Simulation - Replicator Dynamics

As we see, the Replicator Dynamics quickly converges to a situation in which all the pop-
ulation plays the same action a fraction 1 of the time. An interesting thing to note is that it
is not necessarily the case that the action selected by the Replicator Dynamics coincides with
the best action. The simulation in the right hand size shows a situation in which the Replicator
Dynamics converges to a situation in which everybody is playing the suboptimal action. As we
show below, this fact will be the result of the two actions performing not too differently in terms
of payoffs in the long run.

Define γj = 1 + π2j − π1j and γ̂j = 1 − π2j + π1j for all j ∈ {1, . . . ,m}. The following
proposition characterizes the convergence of the variable z when it evolves according to the
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Replicator Dynamics equation.

Proposition 2. Consider the two inequalities:

m∑
j=1

µj log γj > 0 (3)

m∑
j=1

µj log γ̂j > 0. (4)

1. If both (3) and (4) hold, then z does not converge to any value.

2. If (3) holds but (4) does not then z converges to 1.

3. If (4) holds but (3) does not then z converges to 0.

4. If neither (3) nor (4) hold then z converges to either 0 and 1, both with positive probability.

An important fact that the proposition above is revealing is that the process may fail to
converge to the best action. Action 1 is weakly better than action 2 in the long run if and only∑m

j=1 µjπ1j ≥
∑m

j=1 µjπ2j . This condition can be rewritten as
∑m

j=1 (µj + µj(π2j − π1j)) ≤ 1.
Which in turn can be rewritten as

∑m
j=1 µjγj ≤ 1. Similarly, action 1 is weakly better than

action 2 in the long run if and only
∑m

j=1 µj γ̂j ≥ 1. However, even if
∑m

j=1 µj γ̂j ≥ 1 holds it
may happen that 4 does not hold. For making this point more clear consider the case in which
m = 2 and µ1 = µ2 = 0.5. That is, there are only two states of nature and both states are
equally likely in the long run. The following proposition characterizes the convergence of z in
this case when action 1 is better in the long run than action 2.

Proposition 3. Assume m = 2, µ1 = µ2 = 0.5 and π11 + π12 > π21 + π22.

• If
π11 + π12 − π21 − π22 − (π11 − π21)(π22 − π12) > 0

then the process converges to z = 0.

• If
π11 + π12 − π21 − π22 − (π11 − π21)(π22 − π12) ≤ 0

then the process converges to either z = 0 or z = 1, both with positive probability.

Proof. We can rewrite Proposition 2 for the case with m = 2 and µ1 = µ2 = 0.5 as follows.
Consider the two inequalities:

1− p

p
> − log γ1

log γ2
(5)

1− p

p
> − log γ̂2

log γ̂1
. (6)

1. If both (5) and (6) hold, then z does not converge to any value.
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2. If (5) holds but (6) does not then z converges to 1.

3. If (6) holds but (5) does not then z converges to 0.

4. If neither (5) nor (6) hold then z converges to either 0 and 1, both with positive probability.

Moreover, the condition in (5) can be rewritten as

− log(1− b)
log(1 + a)

< 1

with 1 > b > a > 0. The equation above can be rewritten as

log(1− b) + log(1 + a) > 0

1− b >
1

1 + a
.

Hence, (5) implies −b + a − ab > 0 which is impossible if 1 > b > a > 0. Therefore, if
π11 + π12 > π21 + π22 condition (5) can not hold. Thus, we must have that either z converges
to 0 or z can converge to both 0 and 1.

For the process to select the best action, the two actions need to perform significantly
different. That is, having π11 +π12−π21−π22 > 0 (action 1 better than action 2) is not enough
for the Replicator Dynamics to select the best action. We must have π11 + π12 − π21 − π22 −
(π11 − π21)(π22 − π12) > 0.

Here we present the intuition for the proof when there are only 2 states of nature. The proof
of Proposition 1 relies partially on the analysis by Ellison and Fudemberg (1995). Their trick
is the following. Assume, as in their paper, that there are only 2 states and the realization of
states is independent. Let p be the probability by which of state 2 occurs. Since the process
spends almost no time at its intermediate value, only the boundaries, it suffices to examine the
convergence of the variable z when it is close to its boundary values (0 and 1). Imagine that
z is arbitrarily close to 0. Then, we can rewrite the equations for the Replicator Dynamics as
follows,

zt+1,1 = γ1zt + o(zt)

zt+1,2 = γ2zt + o(zt)

where γ1 = 1 + π21 − π11, γ2 = 1 + π22 − π12 and o(zt) it’s a term that goes to zero at a higher
rate than zt. Since action 1 is better in the long run than action 2, that is π11 +π12 > π21 +π22,
we have that γ2 > 1 > γ1 > 0.

The variable z converges to 0 if and only if the variable x = log(z) converges to −∞. The
process for x when z is close to 0 can be approximated by

xt+1,1 = xt + log(γ1)

xt+1,2 = xt + log(γ2)
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where xt+1 = xt+1,1 with probability 1 − p and xt+1 = xt+1,2 with probability p. Therefore,
Et(xt+1) = (1 − p) log(γ1) + p log(γ2) + xt. Hence, if (1 − p) log(γ1) + p log(γ2) > 0 then
Et(xt+1) > x which implies that x is a super-martingale. Thus, by the Martingale Convergence
Theorem, if (1− p) log(γ1) + p log(γ2) > 0, then x cannot converge to −∞.

The result by Ellison and Fudemberg (1995) is presented here for the readers convenience.4

Lemma 2 (Ellison and Fudemberg (1995)). Let xt be a Markov Process on (0,1) with

xt+1 =

{
H1(xt) with probability 1− p

H2(xt) with probability p

}
.

Suppose that Hi(xt) = γixi + o(xt), with γ2 < 1 < γ1.

(a) If
1− p

p
> − log(γ1)

log(γ2)
.

then xt cannot converge to 0 with positive probability.

(b) If
1− p

p
< − log(γ1)

log(γ2)
.

then there are strictly positive δ and ε such that Prob[xt → 0|x0 ≤ δ] ≥ ε.

(c) If
1− p

p
> − log(γ1)

log(γ2)
.

there is a x∗ > 0 such that for all x0 > 0, Prob[xt < x∗∀t|x0] = 0.

The difference between Ellison and Fudemberg setting and ours is that in our model the
nature evolves according to a Markov chain not as independent realizations of a bernoulli random
variable.

So how do we get from our setting to profit from their result? Under our setting, the state
of nature tomorrow depends on the state of nature today. However, the state of nature many
periods ahead is independent of the state of nature today. This means that by the law of large
numbers, we can use Ellison and Fudemberg’s setting taking their probability of each state being
realized p as the limiting distribution of the Markov chain that governs states under our setting.

5 Discussion

5.1 The Infinite Memory Case - Rustichini (1999)

As mentioned in the introduction, Rusthichini (1999) presents a model where the environment
changes according to a Markov change and for any state in the chain there is a unique action that

4What we here write as p is written as 1 − p in the original paper. Moreover, what in the original papers is

written as γ1 (γ2) we write it here as γ2 (γ1).
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maximizes payoff. Rustichini considers the case of many actions and many states as opposite
to just two actions. The two main difference between his analysis and ours are the rules he
considers and the fact that he assumes that players have infinite memory. Rustichini explores
two situations, one in which players observe only own payoffs (partial information) and another
one in which players also observe foregone payoffs (full information). He shows that exponential
procedures (Logit learning) selects in the long run the best action under the full information case
but not under the partial information case. On the other hand, linear procedures select the best
action in the partial information case but not under the full information set. The exponential
procedures are defined as follows. Under full information denote by Πit the payoff that action i

yielded at time t. Under partial information, write Πit to denote the payoff that action i yielded
at time t if it was played by the agent, write Πit = 0 otherwise. The exponential procedure is
defined by

zt+1 =
e
Pt

h=0 Π2h

e
Pt

h=0 Π1h + e
Pt

h=0 Π2h
.

On the other hand, the linear procedure is defined by

zt+1 =
∑t

h=0 Π2h∑t
h=0 Π1h +

∑t
h=0 Π2h

.

5.2 Börgers et. al. (2004) Best Monotone Learning Rule

In this subsection we use our analysis above to study the convergence of the Best Monotone
rule in Börgers, T., Morales, A. and Sarin, R. (2004) (BMS rule henceforth). The BMS rule is a
fairly recent rule that is attractive because of its optimal properties. In particular, it is the best
monotone rule (to be explained later) among all the individual learning rules in setting were
foregone payoffs are not observed.

The BMS rule is derived from the Cross (1973) learning rule. Under Cross learning rule,
players increase the probability of playing the action they just played. The increase is propor-
tional to the payoff archived by the action they chose. Note that the probability of playing the
action the player chose increases for the next period even if the payoff achieved was low. Another
important point to note here is that under BMS or Cross learning rule players do not observe
foregone payoffs5. As opposite to the Cross learning rule, BMS rule incorporates an endogenous
aspiration level. If the payoff achieved by the action played is higher than the aspiration level,
then the probability of playing the action increases. How this aspiration level is formed depends
on the initial probability of playing each action. Börgers, Morales and Sarin (2004) show that
this rule is the best monotone rule.

A rule is defined to be monotone if the expected probability of playing the action that is
best given today’s state increases. Since Börgers et. al. (2004) study a setting in which the
realization of states is independent of its past value, the action that is best today is the action

5One could assume that players observe foregone payoffs but don’t use this extra information in the way they

update their strategies
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that that is best forever. In our setting the action that is best today may not be the best action
tomorrow due to the markovian evolution of the states of nature. This particular difference will
have big consequences in the optimality properties of the BMS rule. A rule is said the be the
best monotone rule if the expected increase in playing the best action form period to another is
highest among all monotone rules.

In the Börgers et. al. (2004) setting there is a single decision maker instead of a continuum
of population. Let σ1

t+1,j be the probability by which the decision maker plays action 2 at time
t+1 given that action 1 was played at time t and state at t equals j. Note that since the decision
maker does not observe forgone payoffs she conditions the way she updates her strategies in the
action she played but not in which action yielded higher payoff. Let z0 be given exogenously and
define A = −min{1−z0,z0}

max{1−z0,z0} , B = 1
max{1−z0,z0} . The BMS rule when there are two actions available

is defined as follows.

σ1
t+1,j = σt − σt (A + Bπ1j)

σ2
t+1,j = σt + (1− σt) (A + Bπ1j)

Notice the similarity between BMS rule and the Stochastic Best Response rule. The main
difference lies in the fact that under the Stochastic Best Response, the probability of playing
action i increases if and only if that action was better than the other. On the other hand, under
BMS rule, the expected probability of playing action i increases if the action yielded higher
payoff than the endogenous aspiration level determined by A and B.

Since we are dealing with a continuum of population, Law of Large applies and we can define
our variable z as follows. Let z1

t+1,j be the probability by which the population (alternatively,
the fraction of people in the population) that plays action 2 at time t + 1 given that action 1
was played at time t and state at t equals j. Then we can write the evolution of the variable z

as follows.

zt+1,j = zt (1 + (1− zt)B(π2j − π1j))

For studying the convergence of the variable z under the BMS rule we proceed in a similar
fashion as in the Replicator Dynamics case. We focus on the convergence of z when it is close
to the corners. First, if z is arbitrarily close to the borders we can rewrite the value of zt+1,j as

zt+1,j = ztβj

where βj = (1 + B(π2j − π1j)). Once we have this, using the same steps as in the proof of
Proposition 1 we can get the following result.

Proposition 4. Define βj = (1 + B(π2j − π1j)) and β̂j = (1−B(π2j − π1j)). Consider the two
inequalities:

m∑
j=1

µj log βj > 0 (7)

m∑
j=1

µj log β̂j > 0. (8)
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1. If both (7) and (8) hold, then z does not converge to any value.

2. If (7) holds but (8) does not then z converges to 1.

3. If (8) holds but (7) does not then z converges to 0.

4. If neither (7) nor (8) hold then z converges to either 0 and 1, both with positive probability.

The only difference in the conditions for convergence between BMS rule and the Replicator
Dynamics lie in the parameter B. Next we compare which of the two rules is more likely to
select the best action in the long run.

We have that B = 1
max{1−z0,z0} , thus, 1 ≤ B ≤ 2. Hence, γj ≥ βj for j ∈ {1, . . . , h} and

γj ≤ βj for j ∈ {h + 1, . . . ,m}. That is, under BMS rule the process moves faster towards the
action that is better given today’s state as compared with the Replicator Dynamics. However,
the action that is better given today’s state needs not to be the action that is better in the long
run. Hence, moving faster towards the action that was better given today’s state maybe a bad
thing if that action is not the one that is actually the best in the long run. Moreover, what
matters for the convergence of z in the long run are not the values of γj and βj but the values
of log γj and log βj . We find that whether BMS rule is more likely to select the best action in
the long run for sure than the Best Response ill depend on the specific payoffs and transition
matrix we are dealing with.

5.3 Relating our results for the Stochastic Best Response with

Kosfeld et. al. (2002)

Kosfeld et. al. (2002) present a setting were a finite set of players play a normal-form game.
Each period players update their strategies myopically in the following way. They increase the
probability of playing an action if and only if that action is a best response to the action played
by the other players. In case there are many actions that are a best response, the increase
in probability is shared among these actions. Formally, let σt

i(sj) be the probability by which
player i plays action j at time t. Define s−i as the actions played by all the players but i. Finally,
let Bi(s−i) be the set of actions that are a best response to s−i for player i. The change in the
strategies of every player i is governed by

σt+1
i (si) =

{
(1− θ)σt

i(si) + θ/|Bi(s−i)| if si ∈ Bi(s−i),
(1− θ)σt

i(si) otherwise.

where θ ∈ (0, 1) is exogenously given.

Comparing this rule with the Stochastic Best Response there are two points worth noting.
First, in our model players play against nature and not against themselves. Hence, in Kosfeld
et. al. (2002) setting, players best responds the actions of other players while in our setting
players best respond the actions of nature. Second, and most important, in our setting how fast
an action is adapted depends on whether it is a best response to the environment and in the
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payoffs it yields. On the other hand, in Kosfeld et. al. (2002) how fast an action is adapted
depends only on whether it is a best response to the actions of the other players.

Kosfeld et. al. (2002) show that the continuous time limit of their process converges to a
so called best-reply matching equilibrium. The best reply matching equilibrium is a situation
in which for every player the probability of playing a given action is equal to the probability of
that action being a best response given the strategies of the other players. It is clear from this
definition that the set of pure strategy best reply matching equilibria coincides with the set of
pure strategies Nash equilibria.

Their result and our result for the Stochastic Best Response have the same intuition behind
and in some setting are equivalent. Consider the Stochastic Best Response in which the magni-
tude of the payoffs doesn’t matter. That is, consider the following equation for the evolution of
the variable z.

zt+1,1,j = zt + ztµ (9)

zt+1,2,j = zt + (1− zt)µ (10)

In Proposition 1 we show that the process above converges in probability to z̃ =
Ph

i=1 µif(Πj)Pm
i=1 µif(Πj)

=
Ph

i=1 µiPm
i=1 µi

. That is, z, which is the probability of playing action 2, converges to the limiting prob-
ability that action 2 is a best response to the environment. Hence, the population strategies
are matching the nature’s strategies, exactly what the best-reply matching equilibrium would
prescribe.

In our results for the Stochastic Best Response we consider a much bigger set of rules than
Kosfeld et. al. (2002) do6. However, for the specific rule in which the magnitude of payoffs do
not matter, as in equations (9) and (10), our result is a particular case of theirs.

6 Conclusions

In this paper we investigate the behavior of two well known and widely used learning rules
in a model with aggregate and correlated shocks to payoffs. In particular, the payoff of each
possible action depends on the state of nature. The transition between states follows a Markov
Chain and, hence, there is correlation between today’s state and tomorrow’s state of nature.
The learning rules we studied, Stochastic Best Response and Replicator Dynamics, represent in
our opinion the paradigm of individual and population learning rules. Our contribution to the
literature relies on the fact that we studied the behavior of these two rules in a setting where
the realization of the state of nature is correlated with the past.

The literature has focused its attention to the study of such rules only in setting where the
realization of states (or the shocks to payoffs) is independent. The most likely reason being the
technical complexities involved in dealing with correlated realization of states.

6In particular, they only consider one rule
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There are several questions that we have been unable to answer in this paper. For the
Stochastic Best Response, we had to assume that the transition matrix between states is sym-
metric. The characterization of the behavior of the Replicator Dynamics we presented is only
partial. That is, in the cases where z can can converge to either end point, we are unable to
specify with which probability z converges to each of the two end points.

We expect that in the future more papers dealing with correlated environments will appear.
The present piece of work has tried to shed some light on the techniques one could use for dealing
with such environments.
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Appendix

Proof of Lemma 1

Define h < m, as the maximum j such that π1j ≥ π2j . Define y as yt = zt and

yt+1 =

{
yt + 2yt

∑h
i=1 µif(Πj) with probability 1/2

yt + 2(1− yt)
∑m

i=h+1 µig(Πj) with probability 1/2.

Hence, we have that Ek(yt+1) = Ek(zt+1). Moreover, since both z and y have time invariant
distributions we have that Ek(yt+h) = Ek(zt+h) for all h ∈ N.

Lemma 3. For any ε > 0 there exists a µ̂ > 0 and a k ∈ N such that for any µ < µ̂ and h > k

we have that V ark(yt+h) < ε and V ark(zt+h) < ε.

Proof. Given the definition of z and y, as µ is taken to zero the variance of both y and z goes
to zero as well. The lemma follows.

Hence, we have that the variable y as the same expected value in the long run than z and
it’s variance collapses to zero in the long run as µ goes to zero. Thus, we can show the following
result.
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Lemma 1. For any ε > 0 there exists a µ̂ > 0 and a k ∈ N such that for any µ < µ̂ and h > k

we have that
P (|zt+h − yt+h| > ε) = 0.

Proof. Assume the opposite. As µ goes to zero the variance of z and y goes to zero. Hence both
variables will converge in probability to a single point. If this point is different them we must
have that Ek(zt+m) 6= Ek(yt+m) for some m. Which represents a contradiction.

Proof of Proposition 1

We can rewrite the process for y as follows

yt+1,1,1 = b(yt, µ, 1)

yt+1,2,2 = b(yt, µ, 2)

Define
bk(yt, µ, {si}t+k

t ) = b(b(. . . b(b(yt, µ, st), µ, st+1), . . .), µ, st+k)

with k ∈ N.

We now establish a set of facts about the function b.

Fact 1. For all µ ∈ [0, µ̂] we have that

b(yt, µ, 1) ≤ yt with strict inequality if and only if 0 < yt ≤ 1 and µ > 0,

b(yt, µ, 2) ≥ yt with strict inequality if and only if 0 ≤ yt < 1 and µ > 0,

lim
h→∞

bh(yt, µ, {1}h) = 0 for all yt ∈ [0, 1),

lim
h→∞

bh(yt, µ, {2}h) = 1 for all yt ∈ (0, 1].

Fact 2. For any yt, st and µ ∈ [0, µ̂], the function b(yt, µ, st) is in C2 with respect to yt.
Furthermore,

∂
(
b(yt, µ, 1)− yt

)
∂yt

≤ 0,

∂
(
b(yt, µ, 2)− yt

)
∂yt

≤ 0.

Fact 3.

b(0, µ, 2) > 0

b(1, µ, 1) > 0

Fact 4. For any yt ∈ [0, 1] we have that

b(yt, 0, st) = yt.

23



Fact 5. For any yt and st, the function b(yt, µ, st) is twice continuously differentiable with
respect to µ ∈ (0, µ̂]. The function b(yt, µ, 1) is weakly convex and b(yt, µ, 2) is weakly concave
with respect to µ ∈ (0, µ̂]. Furthermore,

∂b(yt, µ, 1)
∂µ

≤ 0 with strict inequality if and only if 0 < yt < 1.

∂b(yt, µ, 2)
∂µ

≥ 0 with strict inequality if and only if 0 < yt < 1.

Fact 6. For ỹ =
Ph

i=1 µif(Πj)Pm
i=1 µif(Πj)

we have that:

• For any yt = ỹ then the following must hold.

|b(yt, µ, 1)− yt| = |b(yt, µ, 2)− yt|

• For any yt ∈ (ỹ, 1] then the following must hold.

|b(yt, µ, 1)− yt| > |b(yt, µ, 2)− yt|

• For any yt ∈ [0, ỹ) then the following must hold.

|b(yt, µ, 1)− yt| < |b(yt, µ, 2)− yt|

For proving Proposition 1 we first proof the following result.

Proposition 5. For any ε > 0 there exists a µ̄ ∈ [0, µ̂] and h̄ such that for µ < µ̄ and h > h̄ we
have that

P (|yt+h − ỹ| > ε) = 0.

First, we aim at showing that limh→∞ limµ→0 Et(yt+h) → ỹ. Define the variable xt ∈ [z̃, 1]
as follows,

xt =

{
ỹ if yt ≤ ỹ

yt if yt > ỹ

Similarly, define wt ∈ [0, z̃] as follows,

wt =

{
yt if yt < ỹ

ỹ if yt ≥ ỹ

Given the definition of xt and wt we have that for any t, h ∈ N, Et(yt+h) ≤ Et(xt+h) and
Et(yt+h) ≥ Et(wt+h). The strategy for the proof will be to show that limh→∞ limµ→0 Et(xt+h) ≤
ỹ and limh→∞ limµ→0 Et(wt+h) ≥ ỹ.

First we show that limh→∞ limµ→0 Et(xt+h) ≤ ỹ.
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Definition 1. Define
xk = inf{xt such that bk(xt, µ, {1}k) > z̃}

and
x̄k = sup{zt such that bk(xt, µ, {1}k) < 1}.

Lemma 2. For any xt such that xt ≥ x2 and any and x̄t ∈ [x1, 1] there exists an η > 0 such
that |b(xt, µ, 1)− xt| − |b(x̄t, µ, 2)− x̄t| > η.

Proof. Assume that xt < x̄t. By Fact 2 we have that |b(xt, µ, 2) − xt| ≥ |b(x̄t, µ, 2) − x̄t|.
Furthermore, by Fact 6, |b(xt, µ, 1)−xt| > |b(xt, µ, 2)−xt|. Hence we have that |b(xt, µ, 1)−xt| >
|b(x̄t, µ, 2)− x̄t|.

The proof for the cases in which x̄t > xt follow the same logic as above. Finally, we define
η = arg minxt,x̄t {|b(xt, µ, 1)− xt| − |b(x̄t, µ, 2)− x̄t|}. Such η is strictly positive and well defined
due to what we shown in the preceding paragraph and the fact that xt, x̄t are bounded.

Define η̄ = min{η such that {|b(xt, µ, 1)− xt| − |b(x̄t, µ, 2)− x̄t|} ≥ η for all xt, x̄t ∈ [x2, 1]}.
From Lemma 2 we have that η̄ > 0.

Assume that learning is slow. In particular, µ is such that xk < 1
2 for k = d 2

η̄ + 1e. In other
words, learning is such that if you start somewhere below 1

2 , you need at least 2
η̄ +1 consecutive

periods where the state is always 1 to get to 0. Note that we are still not imposing that µ should
go to zero.

Finally, for any given sequence of states of nature {si}t+k
t define 1{si}t+k

t = {#1 ∈ {si}t+k
t }.

Lemma 3. Take k ∈ N ≥ 2. For any two sequences of states of nature {si}t+k−1
t and {s̄i}t+k−1

t

such that 1{si}t+k−1
t > 1{s̄i}t+k−1

t and si = {1, 2} r s̄i for each i ∈ {t + 1, . . . , t + k − 1} with
st = s̄t, we have that |bk(xt, µ, {si}t+k−1

t )− xt| − |bk(xt, µ, {s̄i}t+k−1
t )− xt| > kη̄ for xt ≥ xk.

Proof. Because of the fact that 1{si}t+k−1
t > 1{s̄i}t+k−1

t and si = {1, 2} r s̄i for each i ∈
{t + 1, . . . , t + k − 1} we know that 1{si}t+k−1

t ≥ k
2 . Hence, we have the following,∣∣∣bk(xt, µ, {si}t+k−1

t )− xt

∣∣∣ ≥ (
1{si}t+k−1

t −
(
k − 1{si}t+k−1

t

))
min

xt∈(xk,1]
{b(xt, µ, 1)}

+
(
k − 1{si}t+k−1

t

)
η̄. (11)

By the same token, we have that,

|bk(xt, µ, {s̄i}t+k−1
t )− xt| ≤

(
k − 1{s̄i}t+k−1

t − 1{s̄i}t+k−1
t

)
max

x̄t∈[0,x̄k)
{b(x̄t, µ, 2)}

−1{s̄i}t+k−1
t η̄ (12)

Because of the fact that si = {1, 2} r s̄i for each i ∈ {t + 1, . . . , t + k − 1} and st = s̄t it is
true that

k − 1{si}t+k−1
t = 1{s̄i}t+k−1

t − 1 (13)
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Hence, combining equations 11, 13 and the fact that, by definition of η̄, minzt∈(xk,1]{b(xt, µ, 1)} >

η̄, we get the following.∣∣∣bk(xt, µ, {si}t+k−1
t )− xt

∣∣∣ >
(
k − 1{s̄i}t+k−1

t − 1{s̄i}t+k−1
t

)
min

xt∈(xk,1]
{b(xt, µ, 1)}

+1{s̄i}t+k−1
t η̄ (14)

Combining 12 and 14 we get to the following result.

|bk(xt, µ, {si}t+k−1
t )− xt| − |bk(xt, µ, {s̄i}t+k−1

t )− xt| >(
k − 1{s̄i}t+k−1

t − 1{s̄i}t+k−1
t

) (
min

xt∈(xk,1]
{b(xt, µ, 1)} − max

x̄t∈[0,x̄k)
{b(x̄t, µ, 2)}

)
+

21{s̄i}t+k−1
t η̄ (15)

Now, by the definition of η̄ we have that

min
xt∈(xk,1]

{b(xt, µ, 1)} − max
x̄t∈[0,x̄k)

{b(x̄t, µ, 2)} ≥ η̄ (16)

Finally, combining 15 and 16 we get that

|bk(xt, µ, {si}t+k
t )− xt| − |bk(xt, µ, {s̄i}t+k

t )− xt| > kη̄

Lemma 4. Take k ∈ N ≥ 2. For any θ ∈ (0, 1) there exists a 2−xt
η̄ + 1 < k ≤ 2

η̄ + 1 such that
for any xt ≥ xk and any two sequences of states of nature {si}t+k−1

t+1 and {s̄i}t+k−1
t+1 such that

1{si}t+k−1
t+1 > 1{s̄i}t+k−1

t+1 and si = {1, 2} r s̄i for each i ∈ {t + 1, . . . , t + k − 1} we have that
bk(xt, µ, {st, {si}t+k−1

t+1 }) + bk(xt, µ, {st, {s̄i}t+k−1
t+1 }) < xt − η̄.

Proof. The fact that 1{si}t+k−1
t+1 > 1{s̄i}t+k−1

t+1 and si = {1, 2}rs̄i for each i ∈ {t+1, . . . , t+k−1}
with st = s̄t implies that by Lemma 3,

|bk(xt, µ, {si}t+k−1
t )− xt| − |bk(xt, µ, {s̄i}t+k−1

t )− xt| > kη̄ (17)

Finally, note that bk(xt, µ, {si}t+k−1
t )− xt ≤ 0. We now distinguish two cases.

Case 1. bk(xt, µ, {s̄i}t+k−1
t )− xt ≥ 0.

In this case by equation 17 we have that

bk(xt, µ, {si}t+k−1
t ) + bk(xt, µ, {s̄i}t+k−1

t ) ≤ 2xt − kη̄ < 2− kη̄

Take k = d2−xt
η̄ + 1e. With such k the result of the lemma in this case holds true.

Case 2. bk(xt, µ, {s̄i}t+k−1
t )− xt < 0.

In this case we have that, proceeding as in the previous case,

bk(xt, µ, {si}t+k−1
t ) + bk(xt, µ, {s̄i}t+k−1

t ) < 2bk(xt, µ, {s̄i}t+k−1
t )− kη̄ < 2− kη̄.

Take k = d2−xt
η̄ + 1e. With such k the result of the lemma in this case holds true, which

completes the proof.
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Define the probability that the sequence of events {si}t+k−1
t+1 takes place given the current

state of nature st and a given value for θ as P (st, {si}t+k−1
t+1 |θ, st). We can write the expected

value of xt+k as

Et(xt+k) =
∑

{si}t+k−1
t+1

P
(
st, {si}t+k−1

t+1 |θ, st

)
bk

(
xt, µ, {st, {si}t+k−1

t+1 }
)

That is, the sum over all possible sequences of states of nature of the product between the
probability that a particular sequence occurs times the value of xt+k if that particular sequence
happens.

Define St+k−1
t+1 =

{
{si}t+k−1

t+1 ∈ {1, 2}k−1 such that st+1 = st

}
.

Lemma 5. Let st be given and let {si}t+k−1
t+1 be a sequence of states of nature such that st+1 = st.

Define {s̄i}t+k−1
t+1 with ŝi = {1, 2}r si. Then we have:

1. θ
1−θP

(
st, {si}t+k−1

t+1 |θ, st

)
= P

(
st, {ŝi}t+k−1

t+1 |θ, st

)
2.

∑
{si}t+k−1

t+1 ∈St+k−1
t+1

P
(
st, {si}t+k−1

t+1 |θ, st

)
= 1− θ

3.
∑

{si}t+k−1
t+1 6∈St+k−1

t+1
P

(
st, {ŝi}t+k−1

t+1 |θ, st

)
= θ

Proof. We begin by proving the first equality. Note that, given the transition probabilities, for
any sequence {si}t+k−1

t+1 and any values st and θ, the term P
(
st, {si}t+k−1

t+1 |θ, st

)
is a polynomial

of the form θs(1− θ)k−s with s ≤ k.

For proceeding with the proof, we are going to construct the terms of P
(
st, {si}t+k−1

t+1 |θ, st

)
and P

(
st, {ŝi}t+k−1

t+1 |θ, st

)
. Because st+1 = st, the first term in P

(
st, {si}t+k−1

t+1 |θ, st

)
is 1 −

θ. On the other hand, st+1 = st implies st 6= ŝt+1 which means that the first term in
P

(
st, {ŝi}t+k−1

t+1 |θ, st

)
is θ.

If st+2 = st, then st+2 = st+1 and the second term in P
(
st, {si}t+k−1

t+1 |θ, st

)
is again 1 − θ.

Reasoning as before, st+2 = st implies st+2 = st+1 which in turn implies ŝt+1 = ŝt+2. Hence,
the second term in P

(
st, {ŝi}t+k−1

t+1 |θ, st

)
is also 1− θ.

On the other hand, if st+2 6= st then st+2 6= st+1 and the second term in P
(
st, {si}t+k−1

t+1 |θ, st

)
equals θ. Moreover, if st+2 6= st then st+2 6= st+1 which implies ŝt+2 6= ŝt+1 and the second
term in P

(
st, {ŝi}t+k−1

t+1 |θ, st

)
also equals θ. If we continue in this fashion we get that all the

terms from the second to the kth in P
(
st, {si}t+k−1

t+1 |θ, st

)
and P

(
st, {ŝi}t+k−1

t+1 |θ, st

)
are the

same. The only term that differs is the first one. In the function P
(
{si}t+k−1

t+1 |θ, st

)
the first

term equals (1− θ) and in the function P
(
st, {ŝi}t+k−1

t+1 |θ, st

)
the first term equals θ. Hence, we

can write that θ
1−θP

(
st, {si}t+k−1

t+1 |θ, st

)
= P

(
st, {ŝi}t+k−1

t+1 |θ, st

)
which completes the proof of

the first equality.
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The second and third equality in the lemma follow easily. For the second one, note that,∑
{si}t+k−1

t+1 ∈St+k−1
t+1

P
(
st, {si}t+k−1

t+1 |θ, st

)
+

∑
{si}t+k−1

t+1 6∈St+k−1
t+1

P
(
st, {si}t+k−1

t+1 |θ, st

)
= 1.

Hence, since θ
1−θP

(
st, {si}t+k−1

t+1 |θ, st

)
= P

(
st, {ŝi}t+k−1

t+1 |θ, st

)
, we have that

∑
{si}t+k−1

t+1 ∈St+k−1
t+1

P
(
st, {si}t+k−1

t+1 |θ, st

)
+

θ

1− θ

∑
{si}t+k−1

t+1 ∈St+k−1
t+1

P
(
st, {si}t+k−1

t+1 |θ, st

)
= 1.

The third equality in the lemma follows by proceeding as above.

Using Lemma 5 we can the rewrite the expression for the expected value of xt+k at time t

as follows.

Et(xt+k) =
∑

{si}t+k
t+1∈St+k−1

t+1

P
(
st, {si}t+k−1

t+1 |θ, st

) [
bk

(
xt, µ, {st, {si}t+k−1

t+1 }
)

+
θ

1− θ
bk

(
xt, µ, {st, {ŝi}t+k−1

t+1 }
) ]

(18)

Similarly,

Et(xt+k) =
∑

{si}t+k
t+1 6∈St+k−1

t+1

P
(
st, {si}t+k−1

t+1 |θ, st

) [
1− θ

θ
bk

(
xt, µ, {st, {si}t+k−1

t+1 }
)

+bk
(
xt, µ, {st, {ŝi}t+k−1

t+1 }
) ]

(19)

Lemma 6. For any θ ∈ (0, 1) there exists a 2−xt
η̄ + 1 < k ≤ 2

η̄ + 1 such that if xt ≥ xk then
Et(xt+k) < max{(1− θ), θ}(xt − η̄).

Proof. From Lemma 5 we have that

max
{ ∑
{si}t+k−1

t+1 ∈St+k−1
t+1

P
(
st, {si}t+k−1

t+1 |θ, st

)
,

∑
{si}t+k

t+1 6∈St+k−1
t+1

P
(
st, {si}t+k−1

t+1 |θ, st

) }
=

max{(1− θ), θ}. (20)

Moreover, in the sequence {si}t+k−1
t+1 ∈ St+k−1

t+1 state 1 occurred more times than state 2
if and only if in the sequence {ŝi}t+k−1

t+1 state 2 occurred more times than state 1. Hence, by
Lemma 3, if θ ≤ 0.5 we have that

bk
(
xt, µ, {st, {si}t+k−1

t+1 }
)

+
θ

1− θ
bk

(
xt, µ, {st, {ŝi}t+k−1

t+1 }
)

< (xt − η̄). (21)

On the other hand, if θ ≥ 0.5 we have that

1− θ

θ
bk

(
xt, µ, {st, {si}t+k−1

t+1 }
)

+ bk
(
xt, µ, {st, {ŝi}t+k−1

t+1 }
)

< (xt − η̄). (22)
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Therefore, if θ ≤ (≥)0.5 combining equations 18 (19), 20 and 21 (22) with Lemma 4 we get
the following.

Et(xt+k) < max{(1− θ), θ}(xt − η̄)

Lemma 7. Assume xt ≥ zk for 2−xt
η̄ +1 < k ≤ 2

η̄ +1. For any m ∈ N such that (1−θ)(xt−mη̄) ≥
xk we have that Et(xt+mk) < max{(1− θ), θ}(xt −mη̄).

Proof. The proof will be carried out assuming 1 − θ > θ. For the case were 1 − θ < θ one just
has to follow the same steps.

We proceed by computing first the value of Et(xt+2k). In this case we have the following.

Et(xt+2k) =
∑

{si}t+2k
t+1

P
(
st, {si}t+2k−1

t+1 |θ, st

)
b2k

(
xt, µ, {st, {si}t+2k−1

t+1 }
)

For any sequence {si}t+2k−1
t+1 define {s1

i }
t+k−1
t+1 as the sequence with the first k − 1 states of

nature in the sequence {si}t+2k−1
t+1 . Similarly, define {s2

i }
t+2k−1
t+k as the sequence with the states

of nature from the kth to the (2k−1)th in the sequence {si}t+2k−1
t+1 . Then we have the following.

Et(xt+2k) <
∑

{s2
i }

t+2k−1
t+k

max
ŝ2
t+k∈{1,2}

P
(
ŝ2
t+k, {s2

i }t+2k−1
t+k+1 |θ, ŝ

2
t+k

)
 ∑
{s1

i }
t+k−1
t+1

P
(
st, {s1

i }t+k−1
t+1 |θ, st

)
bk

(
bk(xt, µ, {st, {s1

i }t+k−1
t+1 }), µ, {2, ŝt+k, {s2

i }t+2k−1
t+k+1 }

)
Note that

∑
{s2

i }
t+2k−1
t+k

maxŝ2
t+k∈{1,2} P

(
ŝ2
t+k, {s2

i }
t+2k−1
t+2 |θ, ŝ2

t+k

)
= 1. This is due to the fact

it is the sum of the probabilities in all possible scenarios, whether we start at ŝ2
t+k = 1 or at

ŝ2
t+k = 2. Define Xt(k) = {xt such that xt ∈ [bk(xt, µ, {1}k), bk(xt, µ, {2}k)]}. The equation

above implies the following.

Et(xt+2k) <
∑

{s2
i }

t+2k−1
t+k

max
ŝ2
t+k∈{1,2}

P
(
ŝ2
t+k, {s2

i }t+2k−1
t+k+1 |θ, ŝ

2
t+k

)
[
Et(xt+k) + max

xt∈Xt(k)

(
bk(xt, µ, {ŝ2

t+k, {s2
i }t+2k−1

t+k+1 })− xt

)]

Define x̂t(k) = arg maxxt∈Xt(k)

(
bk(xt, µ, {2, {s2

i }
t+2k
t+1 })− xt

)
. Applying lemma 6 to the

equation above we get that.

Et(xt+2k) < (1− θ)(xt − η̄) + [(1− θ)(x̂t(k)− η̄)− x̂t(k)]

Which since (1− θ)(x̂t(k)− η̄)− x̂t(k) < −(1− θ)η̄ implies the following.

Et(xt+2k) < (1− θ)(xt − 2η̄)
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Showing the result of the lemma for Et(xt+3k), Et(xt+4k), etc. can be done proceeding in
a similar fashion as above. The only difference is in the step where any sequence of events
is divided into two. In general, {s1

i }
t+(m−1)k−1
t+1 has to include the first (m − 1)k − 1 terms of

{si}t+mk
t+1 and {s2

i }
t+mk−1
t+(m−1)k has to include the latest k terms of {si}t+mk

t+1 .

Lemma 8. For all xt ∈ [z̃, 1] we have that

lim
h→∞

Et(xt+h) ≤ xk.

Proof. Given any h > 1
η̄

(
1− xk

max{1−θ,θ}

)
k and g < h, we have that

Et(xt+h) ≤ Et(xt+h|st = 2)

≤ Et+1(xt+h|st = 2, st+1 = 2)

≤ . . .

≤ Et+h−g(xt+h|{si}t+h−g
t = {2}h−g+1)

≤ Et+h−g(xt+h|zt+h−g = 1, st+h−g = 2)

= Et(xt+g|zt = 1, st = 2).

The last equality is due to the time invariant distribution of xt. Fix g = mk with m =⌈
1
η̄

(
1− xk

max{1−θ,θ}

) ⌉
and k = 2

η̄ + 1. By the Lemma 7 we have that Et(xt+g|xt = 1, st = 2) <

max{(1− θ), θ}(xt−mη̄). Which given the value of m implies that Et(xt+g|zt = 1, st = 2) < xk.
Hence Et(xt+h) < xk when h > mk. If we take limits when h goes to infinity on both sides we
the get that

lim
h→∞

Et(xt+h) < xk.

Lemma 9. For any k ∈ N and any ε > 0 there exists a µ̄ > 0 such that if µ < µ̄ then xk < ỹ+ε.

Proof. By definition, xk is the infimum x such that after k periods the process is till on the right
of ỹ (or just reached ỹ). By Facts 4 and 5, this value goes to z̃ as µ goes to 0.

Lemma 10. For any ε > 0 there exists µ̄ > 0 such that if µ < µ̄ then

lim
h→∞

Et(xt+h) ≤ ỹ + ε.

Proof. Follows from lemmas 8 and 9 above.

The lemma above can be rewritten as limh→∞ limµ→0 Et(xt+h) ≤ ỹ. Which concludes
the first part of the proof that limh→∞ limµ→0 Et(yt+h) → ỹ. Next, we have to show that
limh→∞ limµ→0 Et(wt+h) ≥ ỹ. This is straightforward once one notes the fact that our analysis
above can be applied to state that limh→∞ limµ→0 Et(−wt+h) ≤ −ỹ. This considerations yield
to the following lemma.

30



Lemma 11. For any ε > 0 there exists a µ̄ ∈ [0, µ̂] such that if µ < µ̄ then,

lim
h→∞

∣∣Et(yt+h)− ỹ
∣∣ < ε.

Finally, from Lemma 11 one can easily get to the desired result.

Proposition 3. For any ε > 0 there exists a µ̄ ∈ (0, µ̂] and h̄ such that for µ < µ̄ and h > h̄

we have that
P (|yt+h − ỹ| > ε) = 0.

Proof. We know by Lemma 11 that for any ε > 0, as µ collapses to zero then limh→∞
∣∣Et(zt+h)−

z̃
∣∣ < ε. By Facts 4 and 5, µ going to zero implies that the statistical variance of z goes to zero

as well. Hence, given that if µ → 0 then limh→∞Et(zt+h) → z̃ and V ar(z) → 0, we must have
that once the process as been undergoing for a sufficiently long amount of time, z = z̃ almost
surely.

Now one just has to combine Lemma 1 with Proposition 5 to get the result in Proposition 1.

Proof of Proposition 2

Whenever the process is arbitrarily close to z = 0, we can use the same reasoning as Ellison
and Fudemberg (1995). That is, for zt close to zero we have that,

zt+1,j = zt(1 + π2j − π1j) + o(zt).

Define γj = 1 + π2j − π1j for al j ∈ {1, . . . ,m}. Hence we have that γi < 1 < γj for i ≤ h

and j > h.

Lemma 12. For any z, ε > 0 there exists a zt < z and a t̄ > 0 even such that

P
(∣∣zt+1 − ztΠm

j=1γ
µj

j

∣∣ > ε
)

= 0

for t > t̄.

Proof. Follows from the Law of Large numbers for Markov Chains: The long run distribution
of the states of nature puts weight µj to state j. Hence, as the number of realizations of states
increases, the probability of observing any sequence in which the frequency of state j is not µj

shrinks to zero. Therefore, if the process evolves during a sufficient amount of time and zt is
sufficiently close to z = 0, the result follows.

Lemma 13. The process can not converge to 0 if
m∑

j=1

µj log γj > 0.

There is a positive probability that the process converges to 0 if
m∑

j=1

µj log γj < 0.
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Proof. Reasoning as in the proof of Lemma 1 in Ellison and Fudemberg (1995), the variable
z can converge to zero if and only if the variable y = log z can converge to −∞. Using again
the proof from Lemma 1 in Ellison and Fudemberg (1995) and Lemma 12 in this appendix, the
variable y can converge to −∞ only if

∑m
j=1 µj log γj < 0. The result follows.

For studying the situation in which the process is arbitrarily close to 1, we proceed as follows.
First, we define xt = 1− zt. Then we apply the analysis above to the variable xt. We have the
following,

xt+1 ' xtΠm
j=1γ̂

µj

j

However, this time we have that γ̂j = 1− π2j + π1j . Hence,γi > 1 > γj for i ≤ h and j > h.
An analogous to the lemma above for z close to 0 is the following when z is close to 1.

Lemma 14. The process z can not converge to 1 if

m∑
j=1

µj log γ̂j > 0.

There is a positive probability that the process z converges to 1 if

m∑
j=1

µj log γ̂j < 0.

Summing up our results from the previous lemmas the results in Proposition 2 follows.
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