
Efficient Online Mechanisms for Persistent,

Periodically Inaccessible Self-Interested

Agents

Ruggiero Cavallo ∗ David C. Parkes† Satinder Singh‡

First draft: June 5, 2007
This draft: July 7, 2007

Abstract

We consider the problem of implementing a system-optimal decision policy in the

context of self-interested agents with private state in an uncertain world. Unique to

our model is that we allow both persistent agents, with a an agent having a local

MDP model to describe how its local world evolves given actions by a center, and

also periodically-inaccessible agents, with an agent unable to report information while

inaccessible. We first review the dynamic-VCG mechanism of Bergemann and Valimaki

(2006), which handles persistent agents. We offer an independent, simple proof of its

correctness. We propose a generalized mechanism, dynamic-VCG#, to allow also for

inaccessibility, and identify conditions for its correctness. In closing, we observe that

the mechanism is equivalent to the earlier online-VCG mechanism of Parkes and Singh

(2003) in a restricted model.

1 Introduction

Mechanism design (MD) is the problem of“inverse game theory.”One considers a multi-agent

setting with a centralized decision maker (or center) and self-interested agents, each with pri-

vate inputs relevant to the decision and a utility function on decisions. The MD problem is

to design a game such that, in the non-cooperative equilibrium in which each agent follows a

strategy that maximizes its individual utility, the decision selected upon termination of the
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game satisfies some desired set of properties. The Vickrey-Clarke-Groves (VCG) (Jackson,

2003) is a celebrated solution, and provides (economic) efficiency, i.e. a decision that max-

imizes the total utility of agents, in a simple, dominant-strategy equilibrium. The VCG

mechanism also runs without a deficit in reasonable environments, so that the center does

not need to subsidize the incentive mechanism.

In extending MD to dynamic environments, and while retaining the goal of efficiency, one

seeks to implement a sequence of utility-maximizing decisions in an uncertain environment.

Two kinds of problem variants have been studied in the literature. In one variant, the agents

are persistent and the agent population fixed, and each agent receives private information over

time, perhaps in a way that depends on decisions that are made by the center (Cavallo et al.,

2006; Bergemann and Valimaki, 2006). In another variant, the agent population is dynamic,

with each agent inaccessible for some period of time, but once accessible an agent knows all

of its private information and this can be reported in a single period (Lavi and Nisan, 2000;

Parkes and Singh, 2003). An inaccessible agent cannot send messages to the center and, in

the usual case, cannot be charged.1

Unique to our model is that we allow both persistent and periodically-accessible agents.

We first review the dynamic-VCG mechanism of Bergemann and Valimaki (2006), which

handles persistent agents. We offer an independent, simple proof of its correctness. We

propose a generalized mechanism, dynamic-VCG#, to allow also for periods of inaccessibility,

and identify conditions for its correctness. In doing so, we are able to unify these two threads

of research. that the dynamic-VCG# mechanism is equivalent to the earlier online-VCG

mechanism of Parkes and Singh (2003) in a restricted model. We close with some remarks

to indicate the breadth of multi-agent domains that can be coordinated via these mechanisms.

2 A Fixed Population of Accessible Agents

Let us first consider the standard multi-agent environment, with a fixed set of N = {1, . . . , n}

agents able to communicate with a central decision maker (center). Each agent i has a private

and local state (∈ Si) that evolves over time depending on the decisions taken by the center.

The center also has state S0 which collects additional information to make this an MDP. For

example, if needed it state s0 ∈ S0 keeps track of actions. We denote the joint state space

by S = S0 ×S1 × . . .×Sn and the state space with i hidden as S−i. The set of decisions is A

and the center chooses from feasible decisions A(s) ⊆ A in each state s, over a time horizon

of K (which may be infinite). The dynamics for agent i is defined by a stochastic transition

function τi : S × A → Si such that for all s ∈ S and a ∈ A,
∑

s′
i
∈Si

P (τi(s, a) = s′i) = 1.

1We refer the interested reader to Parkes (2007) for a survey of online MD. Athey and Segal (2007) also

work in the persistent, accessible model and provide an interim incentive-compatible mechanism that is

budget-balanced on average.
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Similarly, agent i receives reward ri(s, a) when the center takes action a in joint state s.

Thus, agent i is defined by a time-invariant MDP model Mi =< Si, A, τi, ri >.

The goal of the center is to maximize the discounted summed rewards obtained by the

agents over the time horizon K. Let st, st
i, and st

−i denote respectively the joint state,

agent i’s state, and the joint state of all agents but i at time t. Furthermore, let π be a

decision policy that maps joint states to actions. We define V π
i (s) to be agent i’s expected

value for π given state s, i.e., V π
i (s) = Es≥t [

∑K

k=t γ
k−trk

i (s
k, π(sk))], where the expectation

is taken w.r.t. the distribution on future states, denoted s≥t = (st, . . . , sK), with sk =

τ(sk−1, π(sk−1)), ∀k > t, and where 0 < γ ≤ 1 is the discount factor. We write r(s, a) to

denote
∑

i∈N ri(s, a), V π(s) to denote
∑

i∈N V π
i (s), and V π

−i(s) to denote
∑

j∈N\{i} V π
j (s).

We use π∗ to denote the optimal decision policy (in space of all decision policies Π), i.e.,

π∗ = arg maxπ∈Π V π(s), ∀s ∈ S. We write V ∗(s) as shorthand for V π∗

(s). We will at times

consider the policy that is optimal over a subset of agents; π∗
−i will denote the policy optimal

for N \ i, i.e., π∗
−i = arg maxπ−i∈Π−i

V
π−i

−i (s), ∀s ∈ S. We write V
π−i

−i (s) rather than V
π−i

−i (s−i)

because agent i remains present in the world even though its value is ignored and this can

matter; e.g., there might be an interdependence with state si changing the dynamics or

reward of some agent j 6= i. For convenience we adopt notation V ∗
−i(s−i) for V

π∗
−i

−i (s), where

agent i’s state is left implicit, because we will make an independence assumption that removes

this issue except for dynamic populations (in Section 3.2).

2.1 Online Mechanisms

An online mechanism is defined by a decision policy π and a payment policy T , which maps

reported state information to a payment made to each agent. (Note the sign convention).

Formally, T = {T1, . . . , Tn}, and ∀i ∈ N , Ti : S → R. Each agent i will report state

information according to some strategy fi : Si → Si. We use Fi to denote the set of all

strategies available to agent i (i.e., all possible mappings of a true state to a reported state).23

We write f(s) to denote (s0, f1(s1), . . . , fn(s)), i.e., the reported joint state when the true

joint state is s. Hereafter, a policy π is a mapping from reported state to action because the

center’s view of state s is limited to f(s). Fix some policy π. Let Es≥t [
∑K

k=t γ
k−tg(sk)|fi] =

E
s
≥t [

∑K

k=t γ
k−tg(sk)], where s

k is the state reached in period k given that agent i misreports

its local state to the policy. This expectation is, throughout the paper, taken w.r.t. the true

joint model. We assume quasilinear utility, so that net utility in period t is the expected

discounted reward plus expected discounted payments.

2We can assume that any strategy for agent i depends only on the current state, as any historical state

or decision information can be incorporated into the current state representation.
3For simplicity, we assume that an agent cannot make a misreport that materially changes the set of

available actions that the center believes are available. Such a misreport could be caught and punished with

a large fine.
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Definition 1 (interim incentive compatibility) A dynamic mechanism (π, T ) is interim
incentive compatible if and only if, at all times t, for all agents i, for all possible true states
st ∈ S, and for all fi ∈ Fi,

Es≥t

[

K
∑

k=t

γk−t
(

ri(s
k
i , π(sk

i , s
k
−i))+Ti(s

k
i , s

k
−i)

)]

≥Es≥t

[

K
∑

k=t

γk−t
(

ri(s
k
i , π(fi(s

k
i ), s

k
−i))+Ti(fi(s

k
i ), s

k
−i)

)

|fi

]

A mechanism is interim incentive compatible (IC) if each agent maximizes his payoff (or

expected, discounted utility) by reporting truthfully, given that the other agents do the same.

This includes truthfully reporting its model in period t = 0.4

The following impossibility result from static MD is instructive in identifying an addi-

tional requirement that we impose in our dynamic environment.

Proposition 1 (entailed by Jehiel and Moldovanu (2001), Theorem 4.3) In static en-

vironments where agent valuations may be arbitrarily interdependent, there exists no efficient5

and interim incentive compatible mechanism.

Interdependent valuations are those in which one agent’s utility for a decision depends

on the private (valuation) information of another agent. Without a further restriction, we

can provide a reduction (omitted in the interest of space) from the static, interdependent

value problem to the dynamic, multi-agent model. Given this, we require:6

Assumption A1 Each agent’s reward and transition functions are conditionally indepen-

dent of other agents’ states given an action, i.e., ∀i ∈ N ; ∀si ∈ Si; ∀s−i, s
′
−i ∈ S−i; ∀a ∈ A,

we have ri((si, s−i), a) = ri((si, s
′
−i), a) and τi((si, s−i), a) = τi((si, s

′
−i), a).

We will accordingly write ri(si, a) and τ(si, a) to denote, respectively, an agent’s reward

and transition when action a is taken while i is in state si, regardless of s−i.

2.2 The Dynamic-VCG Mechanism

The dynamic-VCG mechanism makes decisions according to the optimal policy, and specifies,

at every time step, a payment to each agent i equal to i’s “flow marginal contribution” at

that time-step, i.e., the positive impact that i has on the ability for the other agents to

obtain value in the current time-step and in the future. This impact is via i’s presence in

4Note that it does not matter whether or not the agent knows the current joint state st, nor that it knows

the joint transition model, because the inequality is established for all possible current joint states and all

possible joint models, under the assumption that the other agents report truthfully.
5We will use the term“efficient” for any mechanism that achieves a decision policy that maximizes utility

summed over all agents.
6An assumption this strong is technically not required to achieve efficiency and interim incentive com-

patibility, but in this paper we do not wish to delve into technical requirements akin to the single-crossing

condition (see (Cremer and McLean, 1985)), so we use this broad stroke.
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the world, its model, and its current state and occurs indirectly, through the impact of i on

the decisions made by the policy.

Mechanism 1 (Dynamic-VCG) (Bergemann and Valimaki, 2006)

At every time step t (in state st):

1. Each agent i reports to the center a claim, fi(s
t
i), about its current state.

2. The center selects action at = π∗(f(st)), where π∗ is the optimal policy given reported

agent models.

3. The center pays to each agent a payment:

T t
i (f(st)) = V ∗

−i(f−i(s
t
−i) | π

∗(f(st))) − V ∗
−i(f−i(s

t
−i))

= Q∗
−i(f−i(s

t
−i), π

∗(f(st))) − V ∗
−i(f−i(s

t
−i)), (1)

where the expected values (V ∗
−i, Q

∗
−i) are taken w.r.t. the reported agent models.

Note that in the first period only, part of an agent’s report is a claim about its MDP

model. Moreover, agents make claims about states and only about rewards indirectly, via

the model described in t = 0. Here we adopt standard notation, with Q∗(s, a) = r(s, a) +

γEs[V
∗(τ(s, a))], and the same “−i” syntax for its variants without agent i as was defined for

V ∗.

The payment to agent i in dynamic-VCG is equal to the difference between the value the

other agents get from the action selected because agent i is present, followed by the optimal

sequence of actions for agents 6= i in the future, and the value they would get from the

optimal sequence of actions forward from the current state.

Example 1. Consider a simple two agent example, portrayed in Figure 1.7 Assume discount

factor γ = 1 (i.e., no discounting). The optimal policy should allocate to agent 1 in state

BE, to agent 2 in states {CG, CH}, to agent 1 in state CI and make no allocation in states

{AD, BF}. No payments are made in initial state AD. Because of the special structure

of this domain, the VCG payment to agent i in state st is −V ∗
−i(s

t
−i) when it is allocated,

because Q∗
−i(s

t
−i, π

∗(st)) = 0 since the other agent cannot get the item. Otherwise, the

payments are always zero except when the presence of agent i in state st
i precludes the

other agent from being allocated now. In this case, the payment is the cost of delay in the

allocation to the other agent (if any). To be concrete, consider (true) state BE. If agent 2

reports E (“med value”) agent 1 is allocated for payment −4 and agent 2’s payoff is zero. If

agent 2 reports F (“poss. high value”) its payment is −6 (this is the externality it imposes on

7Nodes represent states, the initial joint state is AD, probabilistic transitions are annotated with the

probability (.x). The terminal states are denoted → 1 or → 2 to indicate a joint action a was taken that

allocated to agent 1 or 2, respectively. Only these actions have non-null rewards, and these rewards are

indicated in bold.
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agent 1.) Continuing, the (true) next state is CG. If agent 2 reports G or H it is allocated

for payment −2, if it reports I agent 1 is allocated for payment −1. Agent 2 should report

one of {G, H}, but its net payoff from this deviation is −6 + 4 − 2 = −4 and it should have

reported state E truthfully. Other misreports can be checked, and none are useful. The

up-shot is that agent 2 will truthfully report states E and I when they occur, and the center

gains the information it needs to know when to allocate to agent 1.

→ 1 → 1

A B C → 2

8 2

0

(a) Agent 1’s world.

→ 1 → 1

E G → 2

D → 1

F H → 2

I → 1

→ 1 → 2

.2

0 0

4

.8

.1

.5

0

20

.4

0 0

1

(b) Agent 2’s world.

Figure 1: Demonstration of the dynamic-VCG mechanism.

2.3 Dynamic-VCG is Interim Incentive Compatible

We proceed by offering a simple proof for the correctness of the dynamic-VCG mecha-

nism in an environment with persistent, accessible agents. Our proof is short, and empha-

sizes the connection to the simple theory of (static) Groves mechanisms.8 Let V π(st|fi) =

Es≥t

[

∑K

k=t γ
k−tr(sk, π(fi(s

k
i ), s

k
−i))|fi

]

. This is the total expected discounted reward forward

from state st, given policy π, where the expectation is taken w.r.t. the true joint model, and

with agent i adopting strategy fi in misreporting its state.

Lemma 1 A dynamic mechanism (π, T ) is interim incentive compatible with persistent,

always-accessible agents, if:

i) ∀s ∈ S, policy π(s) = π∗(s), where policy π∗ is optimal given reported agent models.

8Bergemann and Valimaki (2006)), who discovered this mechanism, provide an alternate proof.

Cavallo et al. (2006) earlier proposed a related mechanism, but it satisfies the weaker property of ex ante IR.
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ii) Agent i’s expected payoff, (with respect to the true joint model) in any (true) state st,

given strategy fi, and given that all other agents report truthfully, is:

V π(st|fi) − Ci(s
t), (2)

where Ci(s
t) is a constant and, in particular, independent of strategy fi (i.e., including

the reported model of agent i.)

Proof : Fix agent i and suppose agents 6= i are truthful. Assume, for contradiction, that IC

fails. Then, there must be some strategy fi and some state st, for which

V π(st|fi) − Ci(s
t) > V ∗(st) − Ci(s

t), (3)

where the form of the LHS and RHS follow from (ii), the RHS is the payoff to agent i from

reporting truthfully, by property (i), and V π(st|fi) as defined above, and thus the payoff

to i (w.r.t. its true model and whatever the MDP model is for agents j 6= i.) But now,

if V π(st|fi) > V ∗(st) for misreport fi, where the model it reports influences the choice of

π and its state misreports influence the way in which π is applied, then we can construct

policy π′(sk) = π(f(sk
i ), s

k
−i) on the underlying (true) states with V π′

(st) > V ∗(st), which is

impossible. �

Payments in Eq. (2) align each agent’s interest with that of the total value achieved by

the system given policy π and strategy fi, which is maximized by truthful report so that

the policy is optimal and the center has a correct view of the current state. Agent i’s payoff

is affected by some other term, Ci(s
t), but this depends only on the current state and is

otherwise independent of the agent’s strategy.

Theorem 1 The dynamic-VCG mechanism is interim incentive compatible (at every time

step) with persistent, always-accessible agents.

Proof : Property (i) in Lemma 1 holds by construction. Fix some agent i, strategy fi, some
state st, and assume agents 6= i are truthful. Fix policy π = π∗, where π∗ is optimal w.r.t.
to the reported model of agent i and true model of the other agents. The payoff to agent i

forward from this state is:

Es≥t

[

K
∑

k=t

γk−tri(s
k
i , π

∗(fi(s
k
i ), s

k
−i))+

K
∑

k=t

γk−t(Q∗
−i(s

k
−i, π

∗(fi(s
k
i ), s

k
−i))−V ∗

−i(s
k
−i))|fi

]

(4)

The expectation is taken w.r.t. the true joint model, for states reached given that agent i

plays fi, with the Q∗
−i and V ∗

−i terms defined for the optimal policy for the problem without
agent i and w.r.t. the correct model of agents 6= i (since they are truthful). This is equivalent
to:

V ∗(st|fi) − Es≥t

[

K
∑

k=t

γk−t(V ∗
−i(s

k
−i) − γV ∗

−i(s
k+1
−i ))|fi

]

(5)
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V ∗(st|fi) comes from combining the first term in Eq. (4) with the stream of single-period
rewards to the other agents within the Q∗

−i term in Eq. (4) (and leveraging assumption A1,
by which

∑

j 6=i rj(s, a) =
∑

j 6=i rj(s−i, a).) Look at the second term in Eq. (5). The expected

values of components V ∗
−i(s

k
−i) (directly from Eq. (4)) and component −γV ∗

−i(s
k+1
−i ) (from

expanding the corresponding Q∗
−i term in Eq. (4 in state sk

−i for one period) are both taken
w.r.t. the same distribution, i.e. that on states distributed according to policy π∗ on the
joint state given strategy fi. Now consider the second term in Eq. (5), rearranging this is:

−V ∗
−i(s

t
−i) − Es≥t

[

K
∑

k=t+1

γk−tV ∗
−i(s

k
−i) − γ

K
∑

k=t

γk−tV ∗
−i(s

k+1
−i )|fi

]

= (6)

−V ∗
−i(s

t
−i) − Es≥t

[

K
∑

k=t+1

γk−t(V ∗
−i(s

k
−i) − V ∗

−i(s
k
−i))|fi

]

= −V ∗
−i(s

t
−i), (7)

where Eq. (7) follows since V ∗
−i(s

K+1
−i ) = 0, and by a simple change of variable in the index

of the second summation in Eq. (6). This completes the proof by correspondence to the form

of Eq. (2), since V ∗
−i(s

t
−i) = V

π∗
−i

−i (st) = Ci(s
t), and independent of fi (including the reported

model of agent i by Assumption A1 and since this is the MDP value of the optimal policy

without i.) �

We see that the dynamic-VCG mechanism is defined so that agent i’s expected discounted
utility in equilibrium, and forward from any state, st, is:

V ∗(st) − V ∗
−i(s

t
−i) (8)

Given this, and for the reasonable assumption of non-negative marginal product (NNMP),9

with V ∗(st) ≥ V ∗
−i(s

t
−i) in each period, we have:

Theorem 2 The dynamic-VCG mechanism is interim individual rational at every time-step

with persistent, always-accessible agents, and non-negative marginal product.

Interim individual-rationality means that it is rational for an agent to continue to partic-

ipate in every period; it will have non-negative payoff for doing so. On the other hand, the

dynamic-VCG mechanism is not ex post individual rational. Consider again the example in

Figure 1. Agent i’s payment in state F is -6, but if it transitions to state G or I in the next

period, its final payoff is −6+4−2 = −4 or −6 respectively. On the other hand, its expected

payoff is non-negative forward from every state. In state F , for example, its expected payoff

is p(G|F )(−4) + p(H|F )(12) + p(I|F )(−6) = (0.1)(−4) + (0.5)(12) + (0.4)(−6) = 3.2. Thus

non-negative payoff is only achieved in expectation, and not ex post.

9NNMP would be expected to hold unless an agent, just by its presence, negatively effects the total value

that is possible in the system (including the value to itself). A setting with physical congestion might violate

this; e.g., an extra robot prevents any robot from doing anything useful.
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3 Introducing Periods of Inaccessibility

We consider now the possibility that an agent may be inaccessible for some period of time.

By inaccessible, we mean that an agent cannot report any information its local state or

be charged by the center. Naturally, an agent cannot claim to be accessible (by sending a

message) when it is actually inaccessible. On the other hand, an agent can pretend to be

inaccessible when it is in fact accessible by not sending a message; we model this as a“report”

of inaccessibility, and null message fi(s
t
i) = φ. Sections 3.1 and 3.2 consider two different

variations.

3.1 Persistent Agents with Periodic Inaccessibility

We retain a fixed set of agents. Each agent i may now also be accessible or inaccessible

to the center. To motivate this model, we have in mind an environment in which an agent

might lose communication for a while with the center, or leave and do something else for

a while. State si ∈ Si now includes whether agent i is accessible, captured with predicate

H(si) ∈ {T, F}. For simplicity, we assume that every agent is accessible (and able to report

a model) in period t = 0. In our examples we will assume that accessibility is determined

via an independent, stochastic process, and that agents have no reward for actions while

inaccessible. Our results, however, are general and allow transitions and rewards to depend

on actions while an agent is inaccessible, and whether or not an agent is accessible can also

depend on previous actions.

The main question that we ask is the following: Can we design an efficient mechanism

in which an agent will truthfully report its state information whenever it can, i.e. whenever

it is accessible? To see the new difficulty, consider a simple Groves-based mechanism with

a naive policy that ignores the existence of any inaccessible agents, following the optimal

policy for just the accessible agents. Couple this with a payment scheme that pays each

accessible agent in a period with the reward of the other agents based on the action and

their reported models.

Example 2. Modify the example in Figure 1 so that agent 1 is always accessible while agent

2 is inaccessible in period 0, but will become accessible in period 1 or 2 and (with a negligible

probability, ǫ > 0) not at all. If agent 2 is not accessible in period 1 then agent 1 should

pretend to be inaccessible, to avoid receiving the item and so that agent 1 will receive the

item, and likely a higher reward (and thus payment to agent 1) in period 2.

In fact the optimal, joint policy should reason about the distribution of possible states

for an agent that is currently inaccessible. To model this we adopt the Partially Observable

MDP (POMDP) formalism, because the center may only have partial information about the

state of agent i, i.e. that consistent with the last message it received. We formulate this as

a belief-state MDP. Let BS = S0 ×BS 1 × . . . ×BSn, and BS = ∆(Si), such that bsi ∈ BS i,
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i ∈ N , defines a probability distribution on agent i’s state and bs0 is used by the center to

keep appropriate history in order to make this a MDP. For cooperative agents, the POMDP

transition model is defined so that bs t
i = st

i if H(st
i), and updated according to the agent’s

model and the action taken otherwise.10 Agent MDPs induce reward r(a, bs t) =
∑

i ri(a, bst
i)

by expectation over the belief state. The optimal POMDP policy π∗ : BS → A, maximizes

the expected discounted reward in every belief state. The dynamic-VCG mechanism is

defined on belief states:

Mechanism 2 (Dynamic-VCG (belief states)) At every time step t (in state st:

1. Each accessible agent can report a claim fi(s
t
i) about its current state.

2. The center updates its belief state bs t, and selects joint action at = π∗(bst), where π∗

is the optimal policy given reported agent models.

3. The center pays each agent i that makes a report a payment, T t
i (bs

t) = Q∗
−i(bs

t
−i, π

∗(bs t))−

V ∗
−i(bs

t
−i).

Example 3. But, this is not enough. Consider the example in Figure 1m as modified in

Example 2. If agent 2 is accessible in period 1 and in state E it will claim to be inaccessible.

Why? If truthful, agent 1 is allocated and agent 2’s payoff is zero. By lying, the policy

will delay making an allocation until period 2 because 8 < (0.2)4 + (0.8)((0.1)4 + (0.5)20 +

(0.4)2) = 9.76 (ignoring ǫ). Both agents’ payments in period 1 will be zero (agent 2’s because

it is inaccessible). Agent 2 can now report state G in period 2 and receive the item, for a

payment of −2 and a net payoff of 4 − 2 = 2. Note the efficiency loss: the planner should

have allocated to agent 1 in period 1.

The dynamic-VCG mechanism satisfies the corresponding notion of property (i) in Lemma 1

in this environment, but fails to satisfy property (ii). For this, define a true belief state, bs t,

as the belief state the center would be in, given some policy π, if every agent was truthful and

reports its state whenever it is accessible. Dynamic mechanism (π, T ) is interim incentive

compatible in this environment, if for any agent i, with agents j 6= i truthful, and in any true

belief state bs t, agent i maximizes its payoff by following the truthful strategy.

Lemma 2 A dynamic mechanism (π, T ) is interim incentive compatible with persistent,

periodically-inaccessible agents, if (i) policy π is optimal given reported models, and

ii) Agent i’s expected payoff (w.r.t. the true model), in any true belief state bs t, given

strategy fi, and given that the other agents are truthful, is V π(bs t|fi) − Ci(bs
t), where

Ci(bs
t) is a constant, and independent of strategy fi.

Proof : Fix agent i and agents j 6= i to be truthful. Assume IC fails. Then there must be

some fi and some true belief state bst, for which V π(bs t|fi) − Ci(bs
t) > V ∗(bs t) − Ci(bs

t).

10To avoid conditioning beliefs on the availability of actions, we assume that the feasible joint actions

A(bs) depend only on the (reported) accessible states.
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But, we can then construct an equivalent policy π′(bsk)−π(bsk|fi), where π(bsk|fi) is policy

π applied to the belief state the center would have if agent i had followed fi rather than

being truthful. But now V π′

(bs t) > V ∗(bs t), and a contradiction. �

To isolate the problem, suppose for a moment that payments are always possible and

modify the dynamic-VCG mechanism so that step (3.) always makes payments:

Lemma 3 When payments can be made in every period, the modified dynamic-VCG on

belief-states is interim IC and efficient with persistent and periodically-inaccessible agents.

Proof : Property (i) in Lemma 2 holds by construction. Fix some agent i, strategy fi, some
(true) belief state bs t, and assume agents 6= i are truthful. Fix policy π = π∗, where π∗ is
optimal w.r.t. to the reported model of agent i and true model of the other agents. The

payoff to agent i forward from this state is:

E
bs

≥t

[

K
∑

k=t

γk−tri(bs
k
i , π

∗(fi(bs
k
i ), bs

k
−i))+

K
∑

k=t

γk−t(Q∗
−i(bs

k
−i, π

∗(fi(bs
k
i ), bs

k
−i))−V ∗

−i(bs
k
−i))|fi

]

(9)

Here, we overload notation s.t. strategy fi : Si → Si induces fi : BS i → BS i, with

fi(bs i) = fi(si) for the corresponding state si if bs i places a point mass on this state and

H(si) and fi(bs i) = φ otherwise. Given this, Eq. (9) is the expression for the payoff to i in

bs t, given that it follows strategy fi, and with the expectation taken w.r.t. the distribution

on future belief states given policy π. Having set this up, the rest of the proof goes through

unchanged from Theorem 1. �

Note that the payoff to agent i in equilibrium is V ∗(bst) = V ∗
−i(bs

t
−i), and agent i’s

extracts as surplus the marginal product it contributes in to the POMDP. Motivated by this

we consider a slight modification to the dynamic-VCG on belief states:

Mechanism 3 (dynamic-VCG#) Same as dynamic-VCG on belief states, except that in

period t in which agent i reports a message, make payment

T̂ t
i (bs

t) =
t

∑

k=t−δ

T k
i (bsk)

γt−k
, (10)

where δ ≥ 0 is the number of successive periods prior to t that agent i has been inaccessible.

We now introduce a new assumption.

Assumption A2 Each agent must eventually make the payments it owes.

Informally, an agent can run but cannot hide for ever; “you must pay the piper.” This seems

to be a reasonable assumption for a fixed population of long-living agents.

11



Lemma 4 The expected payoff to agent i in dynamic-VCG#, forward from any state bst,

for any strategy fi is equal to that in the modified dynamic-VCG mechanism on belief states

in which payments are possible in every period.

Proof : The policy is the same and the rewards received by agent i for actions in states are

unchanged. Left to show is that the expected discounted stream of payments is the same.

We need

E
bs

≥t

[

K
∑

k=t

γk−tT k
i (fi(bs

k
i ), bs

k
−i)|fi

]

= E
bs

≥t

[

K
∑

k=t

H

γk−tT̂ k
i (fi(bs

k
i ), bs

k
−i)

]

, (11)

where the second summation restricts to states in which agent i reports its accessibility. To

show this, consider any realization of belief states bs
t . . . bs

K . We have:

K
∑

k=t

γk−tT k
i (fi(bs

k
i ), bs

k
−i) =

∑

k=t

H∧NF

γk−tT k
i (fi(bs

k
i ), bs

k
−i) +

∑

k′=t

H∧F

γk′−t

k
∑

k=k′−δ(k)

T k
i (fi(bs

k
i ), bs

k
−i)

γk′−k
,

in which the first summation restricts to states in which agent i reports its accessibility and

this is not the first time (NF) after being inaccessible (we also put the bs
t state here, if

accessible), and the second summation is those accessible states but where this is the first

report after a being inaccessible for δ(k) > 0 periods. Simple algebra completes the proof,

together with assumption 2, which ensures that the final state is not inaccessible. �

Given this, we have as an immediate corollary:

Theorem 3 Dynamic-VCG# is interim incentive compatible and efficient, with persistent

agents that are periodically inaccessible, and where each agent must eventually make pay-

ments owed to the center.

By introducing the constraint that payments must always be made we avoid a manipulation

in which an agent does not “re-enter” because it faces a large payment. Return again to

Example 3. On one hand, the earlier manipulation goes away. Agent 2 in state E can no

longer benefit from pretending to be inaccessible when it is in fact accessible, and in state

E, because it will face a payment of −6 − 2 if it makes itself accessible in period 2. On the

other hand, if agent 2 is accessible and in state F , and it could avoid payments altogether,

then it will claim to be inaccessible and hope to and in state H , but otherwise claim to be

inaccessible if it lands in state G or I.

3.2 Dynamic Agent Population with Arrival Process

We now depart from the standard MAS model, and consider a dynamically changing pop-

ulation of agents, with each agent initially inaccessible, then accessible, and then becoming

12



inaccessible again for ever. We conceptualize the first period in which agent i becomes acces-

sible as its arrival and the last period as its departure. Becoming accessible corresponds to

an agent learning its model, or learning of the existence of the mechanism. We shall assume

that an agent has no reward, and undergoes no state transitions, while inaccessible.

Heading for a dynamic-VCG mechanism, let us again consider the central planner’s prob-

lem and formulate this as an MDP. We allow for the set of agents N = {1, . . . ,∞} to be

unbounded. The joint MDP defines joint states s = (s0, {si}
i∈H(s0)) ∈ S where s0 keeps

sufficient history, in this case to determine both feasible actions A(s) and also the dynam-

ics for agent arrivals, and H(s0) ⊆ N is the set of accessible agents given s0. We write

FT (s0) ⊆ H(s0) to denote the agents accessible for the first time. Upon arrival, an agent

is associated with a local MDP model and an initial state. This is its type. Transitions

τ : S × A → S are induced by an arrival model, τ0 : S × A → S0, known to the center and

defining the process by which agents become accessible, and the dynamics τi : Si × A → Si

for each accessible agent. The local model of an agent is augmented to include an absorbing,

inaccessible state, so that once an agent has arrived its own model determines when it will

become inaccessible. The joint reward, r(s, a) =
∑

i∈H(s) ri(si, a).

The main question is as above: can we define an efficient mechanism in which an agent

will report its state information in all periods in which it is accessible? Consider a slight

variation on the dynamic-VCG mechanism to handle agent inaccessibility:

Mechanism 4 (Dynamic-VCG##)

At every time step t (in state st):

1. Each accessible agent i can report to the center a claim, fi(s
t
i), about its current state

(including its model if this is its first report).

2. The center updates the joint state and selects action at = π∗(f(st)), where π∗ is the

optimal policy given its arrival model and reported agent models.

3. The center pays each agent that sends a message a payment T t
i (f(st)) =

Q∗
−i(f−i(s

t
−i), π

∗(f(st))) − V ∗
−i(f−i(s

t
−i)).where the expected values (V ∗

−i, Q
∗
−i) are taken

w.r.t. the reported agent models.

The appropriate definition of incentive compatibility in this environment requires that

agent i maximizes its payoff by truthful reporting in every accessible state. Easier than in

Section 3.1, it is the “become-accessible-once” property that makes this sufficient. So, does

Dynamic-VCG## work?

Example 4. Consider an adaptation of Example 3. Suppose that agent 1 now represents an

arrival type, and that there are also three other arrival types: type 2 is identical to agent 2

from Example 3, but only starting from state E forward (E is a type 2 agent’s initial state),

types 3 and 4 are also identical to a part of agent 2, type 3’s initial state is G and type 4’s
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initial state is H . Define an arrival process so that a single agent of type 1 always arrives

in period 0 while at most one agent among types 2, 3, or 4 can arrive, and it is very likely

that a type 4 agent will arrive in step 2. If an agent of type 2 arrives in period 1, then it will

hide and claim to be inaccessible. The optimal policy will wait, because it likely that a type

4 agent will arrive. In period 2, the agent can truthfully report state G (posing as a type 3

agent that just arrived), and will be allocated the item for a payment of 2. This causes an

efficiency loss because the item should have been allocated to agent 1 in period 1.
Lemma 1 holds unchanged in this environment. One considers a failure of IC, i.e.

some state st for which i ∈ H(st), and shows a contradiction with the definition of pol-
icy optimality. The problem with the mechanism lies in the issue we raised at the start
of section 2, namely π∗

−i(s
t) 6= π∗

−i(s
t
−i) and this breaks the proof of Theorem 1. Let us

see what happens. To structure a proof that follows the earlier one as closely as possi-
ble, we recognize that we could define an equivalent mechanism to dynamic-VCG## in

which the transfers are made in every period. This is equivalent, and feasible, because
T t

i (f(st)) = 0 for all states in which i /∈ H(f(st)). For some state f(st) before agent i’s arrival,
T t

i (f(st)) = Q∗
−i(f−i(s

t
−i), π

∗(f(st))) − V ∗
−i(f−i(s

t
−i)) = 0 because π∗

−i(f(st)) = π∗(f(st)),
since agent i is not present in the state anyway. For some state f(st) after departure,
π∗
−i(f(st)) = π∗(f(st)) because agent i will never have any more value, and therefore is irrel-

evant in defining π∗(f(st)). Given this, then we can immediately express the payoff to agent
i forward from an accessible state st as

Es≥t

[

K
∑

k=t

γk−tri(s
k
i , π

∗(fi(s
k
i ), s

k
−i))+

K
∑

k=t

γk−t(Q∗
−i(s

k
−i, π

∗(fi(s
k
i ), s

k
−i))−V ∗

−i(s
k
−i))|fi

]

, (12)

since the payments that we include for periods in which it is inaccessible are zero anyway.

The rest of the proof goes through unchanged, and we show that the payoff to agent i in any

accessible state is:

V π(st|fi) − V
π−i

−i (st) (13)

But now we see the problem. V
π−i

−i (st) 6= V
π−i

−i (st
−i) and is not independent of strategy

fi, in particular the probability of future agent arrivals can depend on the arrival of agent

i. The model reported by agent i upon its arrival, i.e. its type, or its failure to arrive, can

influence the center’s beliefs about subsequent arrivals. We see this problem in the example.

Without an additional assumption we have unwittingly allowed for a new interdependence

between agents. A necessary and sufficient condition for this problem to go away is that

V
π−i

−i (st) = V
π−i

−i (st
−i) for all accessible states. The following is a stronger, but appealing,

condition:

Assumption A3 (CIA) The center’s arrival model, which specifies the distribution on new

agent arrival types in period t + 1 is independent of earlier arrivals.
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Note that CIA still allows for a non-stationary dynamics, e.g. with the dynamics depend-

ing on some exogenous event such as the time of day, or events in the news. This immediately

recovers the following theorem:

Theorem 4 The dynamic-VCG## mechanism is interim IC and efficient in this dynamic

population, become-accessible-once environment given the CIA assumption.

The CIA assumption was implicitly made in the earlier work of Parkes and Singh (2003)

(PS) in their model of “online MD.” In closing we unify that earlier framework with the

current framework. The Online-VCG mechanism of PS is payoff-equivalent to the dynamic-

VCG## mechanism, when coupled with an additional assumption:

Assumption A4 Each agent’s local MDP model is deterministic.

Indeed, in the work of PS the only stochastic aspect is that of agent arrivals. Upon

arrival an agent learns its type and this type defines its reward for all possible sequences

of decisions. Equivalently, in the current formalism we insist on deterministic local MDP

models. The effect is the same: the only stochasticity in the world is due to uncertainty about

the agent arrival process. We provide an interpretation of Online-VCG in an environment

with discounting:

Mechanism 5 (Online-VCG-γ)

At every time step t (in state st):

1. Each accessible agent i that has yet to send a message can report to the center a claim,

fi(s
t
i) about its local state and local (deterministic) model.

2. The center updates the joint state and selects action at = π∗(f(st)), where π∗ is the

optimal policy given its arrival model and reported models.

3. The center pays each agent that remains accessible according to its reported model a

payment:

T̆ t
i (f(st)) =

{

−ri(fi(s
t
i), π

∗(f(st))) + V ∗(f(st)) − V ∗
−i(f−i(s

t
−i)) , if FT

−ri(fi(s
t
i), π

∗(f(st))) , otherwise,
(14)

where the expected values V ∗, V ∗
−i are taken w.r.t. the stochastic model of the center

and given agent reports and FT indicates that this is the period in which the agent

makes its report.

The cumulative effect of the payments is that agent i pays to the center the total (re-

ported) reward it receives for the sequence of decisions, and receives a payment of V ∗(f(st))−

V ∗
−i(f−i(s

t
−i)) in the first period in which it announces its type. This payment is equal to the
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expected marginal product contributed by the agent give the stochastic model of the center

and the reported types of agents.

Because agent types are deterministic MDPs and can be reported with a single message an

efficient (direct-revelation) mechanism in this environment can, without loss, have a smaller

strategy space that allows each agent to make only a single report. This simplifies the

requirements for interim IC. Incentive compatibility requires that an agent’s expected payoff

is maximizes by reporting its true type immediately, and for this it is sufficient to check this

condition in its true arrival period. This leads, in turn, to a variation on Lemma 1. (Proof

omitted because it follows the same pattern as earlier.)

Lemma 5 A dynamic mechanism (π, T ) is interim incentive compatible with dynamic, become-

accessible once agents with deterministic local MDPs and CIA if (i) policy π is optimal given

reported models, and

ii) Agent i’s expected payoff (w.r.t. the true model), in the state st in which it first becomes

accessible is V π(st|fi) −Ci(s
t), where C(st) is a constant, and independent of strategy

fi.

We already know that dynamic-VCG## satisfies these properties in this environment

and provides payoff V π(st|fi) − V ∗
−i(s

t
−i) in an agent’s arrival state. We now establish this

property for Online-VCG-γ.

Theorem 5 Online-VCG-γ is interim IC and efficient in this dynamic population, become-

accessible-once environment given the CIA assumption and for agents with deterministic

local MDPs.

Proof : Property (i) in Lemma 5 holds by construction. Fix some agent i, strategy fi, state
st in which agent i arrives, and assume agents 6= i are truthful. Fix policy π = π∗, where π∗

is optimal. The payoff to agent i forward from this state is:

Es≥t

[

K
∑

k=t

γk−tri(s
k
i , π

∗(fi(s
k
i ), s

k
−i)) +

K
∑

k=t

H∧FT

γk−t
(

V ∗(fi(s
k
i ), s

k
−i) −V ∗

−i(s
k
−i)

)

−

K
∑

k=t

H∧¬FT

γk−tri(fi(s
k
i ), π

∗(fi(s
k
i ), s

k
−i))|fi

]

,

where H indicates the agent reports that it is accessible, and FT indicates the period a state
fi(s

k
i ) in which agent i reports its type. Label the four terms {A,B,C,D} and introduce

the following two terms:

Es≥t

[

K
∑

k=t

BA

γk−tr−i(s
k
−i) −

K
∑

k=t

BA

γk−tr−i(s
k
−i)

]

, (15)
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labeled E and F respectively, and with BA (“before arrival”) indicating that these terms

are defined on states sk for which agent i has not reported its accessibility. We complete the

proof, by concluding that the payoff to agent i equals

V π(st|fi) − V ∗
−i(s

t
−i), (16)

as required with the first term coming from A + E + B − D and the second term coming

from F + C. �

One reason to adopt Online-VCG-γ rather than dynamic-VCG## in this special envi-

ronment is that the payments require solving V ∗
−i(fi(s

t
−i)) only once for each agent arrival,

whereas in dynamic-VCG## it is required to solve this problem in every period in which

the agent remains accessible according to its report.

4 Applications

The dynamic-VCG mechanism is applied by Bergemann and Valimaki (2006) to a multi-

agent variant on the multi-armed bandit problem (see also Cavallo et al. (2006)). In that

environment it can provide optimal, coordinated planning when each agent’s local model

is a Markov chain, and address, for example optimal, coordinated Bayesian learning. The

dynamic-VCG# variation also applies when agents receive “interrupts” and are periodically

inaccessible. The dynamic-VCG## variation extends to multi-agent systems with dynamic

populations, for instance when agents have stochastic local state and compete for shared

resources, and encompasses the online MD environment of Parkes and Singh (2003).
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