
Knowledge and Structure in Social Algorithms
(Extended Abstract)

Rohit Parikh

City University of New York

365 Fifth Avenue

New York, NY 10016

rparikh@gc.cuny.edu

April 2, 2007

Abstract: The first third of the XXth century saw two important develop-

ments. One of these was Ramsey’s tracing of personal probabilities to an agent’s

choices. This was a precursor to the work of de Finetti, von Neumann and

Morgenstern, and Savage. The other one was Turing’s invention of the Turing

machine and the formulation of the Church-Turing thesis according to which all

computable functions on natural numbers were recursive or Turing computable.

Game theory has depended heavily on the first of these developments, since of

course von Neumann and Morgenstern can be regarded as the fathers of Game

theory. But the other development has received less attention. This development

led to the development and design of computers and also to fields like logic of

programs, complexity theory and analysis of algorithms. It also resulted in much

deeper understanding of algorithms, but only computer algorithms. Social al-

gorithms remain largely unanalyzed except in special subfields like social choice

theory or fair division [2]. These fields do not tend to analyze complex social

algorithms as is done in computer science.

A later development, going back to the work of Hintikka, Lewis and a little

later Aumann [5, 6, 1], brought in the issue of knowledge. The notion of common

knowledge is of course very important for Aumann as common knowledge of

rationality can be seen as a justification for backward induction arguments.

But knowledge too has received less attention than it might. We all know that

the Plame affair had something to do with someone knowing something which

they should not have, and someone revealing something which they should not

have. But why should they not? Clearly because of certain possible consequences.

Knowledge and knowledge transfer are ubiquitous in how social algorithms work.

We will try in this paper to bring attention to the importance of the two issues

of knowledge and logical structure of algorithms, and show the way to a broader

arena in which game theorists might want to play. Hopefully, in fact almost

certainly, there is a rich general theory to be developed.

1



1 Introduction

The notion of algorithm is implicit in so many things which happen in everyday life. We

humans are tool-making creatures (as are chimps to a somewhat smaller extent) and both

individual and social life is over-run with routines, from cooking recipes (Savage’s celebrated

eggs to omelette example) to elections – a subject of much discussion going back to Con-

dorcet.

Over the last ten years or so, a field called Social Software [11] has come into existence

which carries out a systematic study of such questions, and the purpose of this paper is to

give an introduction to the issues. We will proceed by means of examples.

2 Structure

Normally, a piece of social software or social algorithm has a logical structure. As was argued

in [11], this structure must address three important aspects, namely incentives, knowledge,

and logical structure. For normally, an algorithm has logical structure, “A happens before

B, which is succeeded by action C if condition X holds and by action D if X does not hold.”

But quite often, the logical structure of the algorithm is parasitic on logical (or algorithmic)

properties of existing physical or social structures. Clearly a prison needs a certain physical

structure in order to be able to confine people, and a classroom needs a blackboard or a

lectern in order for it to be usable as the venue of a lecture. A cultural structure with

certain logical properties is a queue.

The queue is a very popular institution which occurs both in daily life and in computer

programs. In a computer program, a queue is a FIFO structure, where FIFO means, “First

in, first out.” There are two operations, one by which an element is deleted from the front

of the queue, and a second one where an element is added to the back of the queue. In real

life, the queue could consist of people waiting at a bank to be served. The person deleted is

the one who was at the front of the queue but is no longer in the queue, and who receives

service from a teller. The element which is added is a new customer who has just arrived

and who goes to the back of the queue.

Clearly the queue implements our notions of fairness, (which can be proved rigorously as a

theorem) that someone who came earlier gets service earlier, and in a bank this typically

does happen. If someone in a bank tries to rush to the head of the line, people will stop him.

We also have queues at bus stops and quite often the queue breaks down, there is a rush for

seats at the last moment. I suspect the difference arises because things happen much faster

2



in a bus queue than they do in a bank. At a bus stop, when the bus arrives, everything

happens very fast and people are more interested in getting on the bus than in enforcing

the rules.

Consider now, by comparison, the problem of parking, which is a similar problem. A scarce

resource needs to be allocated on the basis of some sort of priority, which, however, is difficult

to determine. When people are looking for parking in a busy area, they tend to cruise around

until they find a space. There is no queue as such, but in general we do want that someone

who arrives first should find a parking space and someone who arrives later may not. This

is much more likely in a university or company parking lot, which is compact, rather than

on the street, where parking is distributed, and priority does play some role but it is a

probabilistic role. This phenomenon has unfortunate consequences as Shoup [17] points out.

When my students and I studied cruising for parking in a 15-block business

district in Los Angeles, we found the average cruising time was 3.3 minutes, and

the average cruising distance half a mile (about 2.5 times around the block). This

may not sound like much, but with 470 parking meters in the district, and a

turnover rate for curb parking of 17 cars per space per day, 8,000 cars park at

the curb each weekday. Even a small amount of cruising time for each car adds

up to a lot of traffic.

Over the course of a year, the search for curb parking in this 15-block district

created about 950,000 excess vehicle miles of travel – equivalent to 38 trips around

the earth, or four trips to the moon. And here’s another inconvenient truth about

underpriced curb parking: cruising those 950,000 miles wastes 47,000 gallons of

gas and produces 730 tons of the greenhouse gas carbon dioxide. If all this happens

in one small business district, imagine the cumulative effect of all cruising in the

United States.

Shoup regards this problem as one of incentive and suggests that parking fees be raised so

that occupancy of street parking spaces is only 85%. But clearly this will penalize the less

affluent drivers. The new fees will likely be still less than garage parking, affluent drivers

will abandon garage parking for street parking, and the less affluent drivers will be priced

out. “Well,” one might say, “they should be priced out, why don’t they take the bus?” But

note that we do not need to charge people for standing in a queue. Surely queues would also

be shorter if people had to pay to stand in them, but this has not occurred to anyone as a

solution to the ‘standing in line problem.’

Ultimately, the difference between queues and searching for parking is structural. In one

3



case there is an easy algorithmic solution which respects priority (more or less) and in the

other case such solutions are harder to find – except when we are dealing with parking lots.

An algorithmic solution would in fact be possible using something like a GPS system. If

information about empty parking spaces was available to a central computer which could

also accept requests from cars for parking spaces, and allocate spaces to arriving cars, then

a solution could in fact be implemented. The information transfer and the allocation sys-

tem would in effect convert the physically distributed parking spaces into the algorithmic

equivalent of a compact parking lot.

Here is another example. When you rent an apartment, you receive a key from the landlord.

The key serves two purposes. Its possession is proof of a right, the right to enter the

apartment. But its possession is also a physical enabler. The two are not the same of course,

since if you lose your key, you still have the right but are not enabled. If some stranger finds

the key, then he is enabled, but does not have the right. Thus the two properties of a key

do not coincide perfectly. But normally the two do coincide.

There are other analogs of a key which perform similar functions to a key. A password to a

computer account is like a key, but does not need to be carried in your pocket. An ID card

establishes your right to enter, but typically you need a guard to be present and to see your

card and let you into the building. If the building is locked and the guard is not present,

you are out of luck.

In any case, these various generalized keys differ in some crucial ways. Stealing someone’s

identity was at one time very difficult. You had to look like that person, know some personal

facts, and you had to stay away from that person’s dog who knew perfectly well that you

had a different smell. You needed a different ‘ID’ for the dog than you needed for people.

But now identity theft is extremely easy. Lots of Social Security numbers, and mothers’

maiden names are out there for the taking, and people who do not look like you at all can

make use of them. Personal appearance or brass keys which originally provided proof of

“right to entry,” have been replaced by electronic items which are very easy to steal.

Let x be an individual, and let R(x) mean that x has a right to use the key and E(x) mean

that x is enabled by the key. Then we have two important conditions.

• Safety: E(x) → R(x). Whoever is enabled has the right

• Liveness: (R(x) → E(x). Whoever has the right is enabled.

Clearly, safety is more important than liveness. If you lose your key and someone finds it,

4



you are in trouble. But liveness also matters. A good notion of key must provide for both

properties.

In any case the structural problem (of safety) can be addressed at the incentive level, for

instance by instituting heavy penalties for stealing identities. But we could also look for a

structural solution without seeking to penalize anyone.

Toddlers are apt to run away and into trouble, but we do not solve the problem by punishing

them – we solve it by creating barriers to such escape, e.g., safety gates.

Another interesting example is a fence. A farmer may have a fence to keep his sheep in, and

the fence prevents certain kinds of movement – namely sheep running away. But sometimes

on a university campus we will see a very low fence around a grassy area. Almost anyone

can walk over the fence, so the fence is no longer a physical obstacle. Rather the value of

the fence is now informational, it says, Thou shalt not cross! With the yellow tape which

the police sometimes put up, perhaps around a crime scene, or perhaps simply to block off

some intersection, the Thou shalt not cross acquires quite a bit of punch.

3 Knowledge

Distributed Algorithms are much studied by computer scientists. A lot of commercial activity

which goes on on the web has the property of being a distributed algorithm with many

players. And of course the market is itself a very old distributed algorithm.

In such algorithms, it is crucial to make sure that when agents have to act, they have the

requisite knowledge. And models for calculating such knowledge have existed for some time;

we ourselves have participated in constructing such models [16, 15]. See also [3].

The notion of common knowledge as the route to consensus was introduced by Aumann in

[1]. There is subsequent work by various people, including Geanakoplos and Polemarchakis

[4] and ourselves [13]. Aumann simply assumed common knowledge, and showed that two

agents would agree on the value of a random variable if they had common knowledge of their

beliefs about it. [4] showed that even if the agents did not have common knowledge to start

with, if they exchanged values, they would arrive at consensus, and common knowledge of

that fact. [13] carried this one step further and considered many agents exchanging values in

pairwise interactions. No common knowledge could now arise, as most agents would remain

unaware of individual transactions they were not a party to. Nonetheless there would be

consensus. Thus this exchange of values could be seen as a distributed algorithm which

achieved a result.

5



Issues about how knowledge enters into social algorithms are discussed in [7, 9, 16].

[16] actually ddiscusses how a framework for defining knowledge can be developed. A finite

number of agents have some private information to start with, and they exchange messages.

Each exchange of messages reveals something about the situation, or, in technical terms, it

reduces the size of the relevant Kripke structure or Aumann structure. An agent who has

seen some events but not others can make guesses as to what other events could have taken

place and it knows some fact φ iff φ would be true regardless of how the unseen events went.

This framework is used in both [9, 7].

[7] discusses agents who are connected along some graph, and knowledge can move only along

the edges of a graph. Thus if agent i is not connected to agent j, then i cannot directly obtain

information from j, but might get such information via a third agent k, as in fact Novak got

some information from Judith Miller. Such edges may be approved or disapproved, and if

information transfer took place along a disapproved edge, then that could be cause for legal

sanctions, not because harm had occurred, but because harm could occur and the algorithm

was no longer secure.

It is shown in [7] that the graph completely determines the logical properties of possible

states of knowledge, and vice versa. An early version of this paper already discussed the

Plame case before it hit the headlines.

In [9] we consider how obligations arise from knowledge. We consider the following examples:

Example 1: Uma is a physician whose neighbour is ill. Uma does not know and has not

been informed. Uma has no obligation (as yet) to treat the neighbour.

Example 2: Uma is a physician whose neighbour Sam is ill. The neighbour’s daughter

Ann comes to Uma’s house and tells her. Now Uma does have an obligation to treat Sam,

or perhaps call in an ambulance or a specialist.

Example 3: Mary is a patient in St. Gibson’s hospital. Mary is having a heart attack.

The caveat which applied in case a) does not apply here. The hospital has an obligation to

be aware of Mary’s condition at all times and to provide emergency treatment as appropriate.

In such cases, when an agent cannot herself take a requisite action, it is incumbent upon her

to provide such information to the agent who can take such action. Or, as in the case of

the hospital, the agent has an obligation not only to act, but also to gather knowledge so as

to be able to act when the occasion arises. A milder example of such situations consists of

requiring homeowners to install fire alarms.

Again the semantics from [16] is used. Various possible sequences of events are possible,

6



depending on the actions taken by the agents. Some of these sequences are better than others,

and some, indeed are disastrous, as when a patient is not treated for lack of information. It

is shown how having information creates obligations on the agents, and also how the need to

convey information arises, when one knows that an agent who could carry out some required

action lacks the requisite information.

4 Summary

We have given examples of situations where knowledge transfer and algorithmic structure

can affect or even determine the sorts of social algorithms which are possible. In the full

paper we will give some technical results.

References

[1] R. Aumann, “Agreeing to disagree”, Annals of Statistics, 4 (1976) 1236-1239.

[2] Steven Brams and Alan Taylor, The Win-Win Solution: guaranteeing fair shares to

everybody, Norton 1999.

[3] Fagin, R., J. Halpern, Y. Moses and M. Vardi, Reasoning about Knowledge, MIT Press

1995.

[4] J. Geanakoplos and H. Polemarchakis, “We can’t disagree forever,” J. Economic Theory.

[5] Jaakko Hintikka, Knowledge and Belief: an introduction to the logic of the two notions,

Cornell University press, 1962.

[6] D. Lewis, Convention, a Philosophical Study, Harvard U. Press, 1969.

[7] Eric Pacuit and Rohit Parikh, “Reasoning about Communication Graphs,” Presented

at Augustus de Morgan Workshop: Interactive Logic: Games and Social Software, 2006

(ADMW 2006). To appear in the proceedings of ADMW.

[8] Eric Pacuit and Rohit Parikh “Social Interaction, Knowledge, and Social Software,” In

Interactive Computation: The New Paradigm, Springer-Verlag 2006. Editors Dina Goldin,

Scott Smolka and Peter Wegner.

[9] Eric Pacuit, Rohit Parikh and Eva Cogan, “The Logic of Knowledge Based Obligation,”

Knowledge, Rationality and Action, a subjournal of Synthese, 149(2), 311 – 341, 2006.

7



[10] R. Parikh “The Logic of Games and its Applications,” Annals of Discrete Math., 24

(1985) 111-140.

[11] R. Parikh, “Social Software,” Synthese, 132, Sep 2002, 187-211.

[12] R. Parikh, “Levels of knowledge, games, and group action,” in Research in Economics,

57, (2003) 267-281.

[13] R. Parikh and P. Krasucki, “Communication, Consensus and Knowledge,” J. Economic

Theory 52 (1990) pp. 178-189.

[14] R. Parikh, Laxmi Parida and Vaughan Pratt “Sock Sorting,” appeared in a volume

dedicated to Johan van Benthem, University of Amsterdam, August 99, reprinted in Logic

J. of IGPL, vol 9 (2001).

[15] R. Parikh and R. Ramanujam “Distributed Processing and the Logic of Knowledge,” in

Logics of Programs Proceedings of a Conference at Brooklyn College, June 1985, Springer

Lecture Notes in Computer Science #193, pp. 256-268.

[16] Parikh, R. and Ramanujam, R., A knowledge based semantics of messages, in J. Logic,

Language, and Information, 12, pp. 453 - 467, 2003.

[17] Donald Shoup, “Gone Parkin’,” Op-Ed page, The New York Times, March 29, 2007.

8


