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Abstract

Our aim is to characterize perfect equilibria in matching markets. Ordinal

preferences require the use of an ordinal perfect equilibrium concept. We show

that, in the game induced by a random stable mechanism, an ordinal perfect

equilibrium strategy lists all the acceptable partners. Moreover, when either the

�rm-optimal or the worker-optimal mechanisms are considered, truth telling is a

very prudent form of behavior and is the unique ordinal perfect equilibrium that

may emerge. Finally, in the game induced by these mechanisms, truth telling is

an ordinal perfect equilibrium if and only if it is a Nash equilibrium in dominant

strategies.
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1 Introduction

There is a vast literature on two-sided matching markets. Theoretical investigations in

matching exhaust issues on the existence of stable matchings, the structure of the set

of such outcomes, and computational algorithms designed to reach them. The strategic

decisions that confront individuals under matching mechanisms have also been broadly

inspected, focusing particularly on incentives in stable matching mechanisms. That

every individually rational matching can be reached as the outcome of an equilibrium

play in the game induced by a stable mechanism is a well-known fact (Alcalde, 1996).

Nevertheless, agents are, in general, poorly informed and this casts some doubts on the

signi�cance of the statement. Indeed, a great deal of information about the preferences

of the other agents may be needed to compute an equilibrium; furthermore, the multi-

plicity of equilibria entails a lot of coordination among agents. Attention is then devoted

to a more reasonable class of equilibria, narrowing the set of probable outcomes. In the

mechanism that yields the optimal stable matching for one side of the market, Roth

(1984) showed that, although agents may have an incentive to misrepresent their pref-

erences, every equilibrium in undominated strategies produces a matching that is stable

with respect to the true preferences.

The purpose of this paper is to take this analysis further aiming at a characterization

of perfect equilibria in markets organized to produce stable outcomes. Ordinal prefer-

ences entail the use of a perfect equilibrium concept with an ordinal �avor. In fact, in an

ordinal perfect equilibrium agents play best replies to particular pro�les of completely

mixed strategies. A best reply, in this context, �rst-order stochastically dominates every

alternative strategy against the mixed strategy pro�le being considered. Surprisingly,

in the mechanism that induces the optimal stable matching for one side of the market,

truth telling emerges as the unique ordinal perfect equilibrium. Hence, if acting straight-

forwardly is, in fact, an ordinal perfect equilibrium, we may postulate that the unique

stable matching for the true preferences is the outcome of the game.

Nevertheless, only seldom is truth a Nash equilibrium in the game induced by the



optimal stable mechanism for one side of the market. We can thus anticipate that the

existence of ordinal perfect equilibria is exceptional. In reality, a necessary requirement

for honesty to be an ordinal perfect equilibrium is being dominant for every agent. Hence,

the set of ordinal perfect equilibria and Nash equilibria in dominant strategies coincide

in these markets.

Still, the described results may be seen from a brighter perspective. Provided agents

are poorly informed, truth telling may be prescribed as a very prudent form of behavior.

In the complete information framework, Gale and Sotomayor (1985) have proved that,

when any stable mechanism is in use, at least one agent can pro�tably misrepresent its

preferences, except when there is a unique stable outcome. Yet, in order for participants

to identify some strategies that perform better than truth telling, a lot of information

about others�revealed preferences is needed. In the game induced by the mechanism that

yields the �rm-optimal stable matching, when each agent has certain beliefs about others�

strategies, it is still a dominant strategy for each �rm to act straightforwardly (Roth,

1989). On the other hand, Roth and Rothblum (1999) have shown that if workers do not

have detailed information about the preferences revealed by other agents in the course

of play, the scope of potentially pro�table strategic behavior is signi�cantly reduced,

if we compare it with the complete information case. If such information exhibits a

certain kind of symmetry, reversing the true order of two acceptable �rms is to be

considered imprudent behavior, but submitting a truncation of the true preferences may

be bene�cial. Informally, a truncation is a preference ordering that is order-consistent

with the true preferences, but under which the worker restricts the number of �rms

he applies to. Ehlers (2004) takes a further step in the search of advice for workers

in a matching market, providing a weaker condition on a worker�s beliefs to obtain the

conclusions of Roth and Rothblum (1999). Loosely speaking, a worker should not reverse

the true ranking of two acceptable �rms whenever he is not able to anticipate which new

proposals he is going to receive after having rejected others. Moreover, Ehlers (2004)

gives advice to workers who can distinguish between three sets of �rms: the �rms that

will certainly propose to him, the �rms that may propose, and those from which he does
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not expect a proposal.

Hence, there seems to be a clear consensus about how harmful altering the true order

of �rms may be in a low information environment. The results in this paper suggest

that, when a worker contemplates obtaining a proposal from any acceptable �rm, he

should reveal his whole true preference ordering if he wants to minimize the probability

of being unmatched. In fact, truncations may lead to more favorable outcomes, but at

the expense of increasing the chances of being alone. Regardless of the incentives to act

strategically, honesty thus remains a fundamental form of behavior.

These conclusions already stem from Barberà and Dutta (1995). Barberà and Dutta

(1995) show that acting straightforwardly is the unique protective strategy for every

agent. Loosely speaking, this means that when an agent compares truth telling with

any misrepresentation of its preferences, there exists a potential partner with whom,

by manipulating, it ends up matched for a larger set of actions of the other players,

while less preferred potential partners are obtained, by either acting straightforwardly

or strategically, against the same pro�les for the rest of society. The concept of protective

behavior is based on a re�nement of a maxmin criterion and is particularly appropriate

for games where agents are poorly informed and su¢ ciently risk averse.

We proceed as follows. In Section 2, we formally present the marriage model and

introduce notation. We de�ne the concept of ordinal perfect equilibrium in Section 3.

In Section 4 we develop the main results. We conclude in Section 5 on further research.

2 The Marriage Model

Consider two �nite and disjoint sets F = ff1; :::; fng and W = fw1; :::; wpg, where F is

the set of �rms and W is the set of workers. We let V = W [ F and sometimes refer

to a generic agent by v, while w and f represent a generic worker and �rm, respectively.

Each agent has a strict, complete, and transitive preference relation over the agents on

the other side of the market and the perspective of being unmatched. The preferences
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of a �rm f , for example, can be represented by Pf = w3; w1; f; w2; :::; w4, indicating that

f�s �rst choice is to be matched to w3, its second choice is w1 and it prefers remaining

unmatched to being assigned to any other worker. Equivalently, we may say that w3

is the lowest ranked worker in Pf , with rank 1 (rPf (w3) = 1), w1 is ranked second

(rPf (w1) = 2), being unmatched is ranked third (rPf (f) = 3), and every other worker has

a higher ranking in Pw. A worker is acceptable if the �rm ranks him lower than having its

position un�lled; in the above example, the set of acceptable workers isA(Pf ) = fw1; w3g.

Similarly, given Pw we may de�ne an acceptable �rm and A(Pw). It is su¢ cient to

describe only the ordering of acceptable partners, so that the in the above example

preferences can be abbreviated as Pf = w3; w1. Let P = (Pf1 ; :::; Pfn ; Pw1 ; :::; Pwp)

denote the pro�le of all agents�preferences; we sometimes write it as P = (Pv; P�v)

where P�v is the set of preferences of all agents other than v. Further, we may use PU ,

where U � V , to denote the pro�le of preferences (Pv)v2U . We write v0Pvv00 when v0 is

preferred to v00 under preferences Pv and we say that v prefers v0 to v00. We write v0Rvv00,

when v likes v0 at least as well as v00 (it may be the case that v0 and v00 are the same

agent).

Formally, amarriage market is a triple (F;W; P ). An outcome for a marriage market,

a matching, is a function � : V �! V satisfying the following: (i) for each f in F and for

each w in W , �(f) = w if and only if �(w) = f ; (ii) if �(f) 6= f then �(f) 2 W ; (iii) if

�(w) 6= w then �(w) 2 F . If �(v) = v, then v is unmatched under �, while if �(w) = f ,

we say that f and w are matched to one another. A description of a matching is given by

� = f(f1; w2); (f2; w3)g, indicating that f1 is matched to w2, f2 is matched to w3 and the

remaining agents in the market are unmatched. A matching � is individually rational if

each agent is acceptable to its partner, i.e., �(v)Rvv, for all v 2 V . We denote the set of

all individually rational matchings by IR(P ). Two agents f and w form a blocking pair

for � if they prefer each other to the agents they are actually assigned to under �, i.e.,

fPw�(w) and wPf�(f). A matching � is stable if it is individually rational and it is not

blocked by any pair of agents. We denote the set of all stable matchings by S(P ). A

�rm f and a worker w are achievable for each other if f and w are matched under some
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stable matching.

The proof of existence of stable matchings in Gale and Shapley (1962) is constructed

by means of the deferred-acceptance algorithm. At each step of the algorithm, proposals

are issued by one side of the market according to its preferences, while the other side

merely reacts to such o¤ers by rejecting all but the best. Hence, in the case that �rms

make job o¤ers, the algorithm starts with each �rm proposing to the �rst worker on its

list and each worker rejecting all proposals but the best. This yields the �rst tentative

matching. Next, every rejected �rm makes an o¤er to its second favorite worker and

again workers only hold the one they prefer among those just received and the one held

from the previous step. The algorithm proceeds by creating, at each step, a tentative

matching and terminates when each �rm is either held by a worker or has been rejected

by every worker on its list of preferences. This algorithm arrives at the �rm-optimal

stable matching, with the property that all �rms are in agreement that it is the best

stable matching. The deferred-acceptance algorithm with workers proposing produces

the worker-optimal stable matching with corresponding properties. Further, the optimal

stable matching for one side of the market is the worst stable matching for every agent on

the other side of the market, a result presented in Knuth (1976) but attributed to John

Conway. Still, there is a set of agents who are indi¤erent between any stable matching.

The �rst statement of this result appears in McVitie and Wilson (1970); later, it was

proved in Roth (1984) and Gale and Sotomayor (1985). We state it formally in the next

Proposition for further reference.

Proposition 1 In a matching market (F;W; P ), the set of unmatched agents is the same

for all stable matchings.

Finally, a matching mechanism ~' maps preference pro�les into lotteries over match-

ings. In what follows, in a matching market (F;W; P ), we consider the revelation game

induced by ~' in which agents are each faced with the decision of what strategies to act

on. The strategy space of a player in the game is the set of all possible preference lists:

given the true preference ordering Pv, each player v may eventually reveal a di¤erent
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order Qv over the players on the other side of the market. A matching mechanism ~' and

a preference pro�le Q induce a random matching ~'[Q]. Throughout the paper, we only

consider stable matching mechanisms. Hence, ~'[Q] denotes the probability distribution

induced over the set of stable matchings S(Q) and ~'[Q](v) is the probability distribution

induced over agent v�s achievable matches. We use, for example, Prf~'[Q](v)Rvv̂g to de-

note the probability that v obtains a partner at least as good as v̂ according to v�s true

preferences Rv when the pro�le Q is used in the mechanism ~'. In the particular case that

the mechanism is deterministic, we let ~'[Q] denote the unique outcome matching. The

mechanism that yields the �rm-optimal stable matching with certainty is an example

of a deterministic stable matching mechanism and will be denoted by 'F . We let 'W

represent the mechanism that leads to the worker-optimal stable matching.

3 Ordinal Perfect Equilibria

In this section we de�ne ordinal perfect equilibria. We present all de�nitions for stable

mechanisms in general, even though many results refer to the particular case of deter-

ministic mechanisms, namely the mechanisms that yield the optimal stable matching for

one side of the market.

Consider w 2 W (what follows also holds for a representative �rm, with obvious mod-

i�cations) with true preferences Pw and let Q�w be a strategy pro�le for all the agents

other than w. Given a stable mechanism ~' and given Q�w, we say that the strategy

Qw stochastically Pw-dominates Q0w if, for all v 2 F [ fwg, Prf~'[Qw; Q�w](w)Rwvg �

Prf~'[Q0w; Q�w(w)Rwvg. Thus, for all v 2 F [ fwg, the probability of w being as-

signed to v or to a strictly preferred agent is higher under ~'[Qw; Q�w](w) than under

~'[Q0w; Q�w](w). Hence, if we consider the problem that player w faces given the strategy

choices Q�w of the other players, a particular strategy choice Qw may be preferred if it

stochastically dominates every other alternative strategy. In this case we say that Qw is

a best reply to Q�w.
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De�nition 1 Given the pro�le of preferences P , the pro�le of strategies Q is an ordinal

Nash equilibrium (ON equilibrium) in the game induced by ~' if, for each agent v in V ,

Qv is a best reply to Q�v.

The concept of ordinal Nash equilibrium deserves a couple of remarks. First, it was

introduced in d�Aspremont and Peleg (1988) and its use is required given the very na-

ture of random matching.1 In fact, agents�preferences are ordinal in nature. Since no

natural utility representation of these preferences exists (and no expected utilities can

be computed), this ordinal criterion provides a means for comparing probability distri-

butions over potential partners. Second, it is quite a strong equilibrium concept. Under

an ordinal Nash equilibrium, each agent plays its best response to the others�strategies

for every utility representation of the preferences. However, in the particular case that

~' is a deterministic mechanism, the concept boils down to plain Nash equilibrium.

For our purposes, some of the above de�nitions have to be extended to mixed strate-

gies. We let � denote a mixed strategy and we let �(Q) =
Q
v2V
�v(Qv) be the probability

of pro�le Q under the mixed strategy �. Given a stable mechanism ~' and a mixed strat-

egy pro�le �, we let ~'[�] denote the probability distribution induced over the whole set

of matchings that satis�es the following: Prf~'[�] = �g =
P

Q2supp�
�(Q) � Prf~'[Q] = �g.

As before, given a mixed strategy pro�le ��w, the pure strategy Qw stochastically Pw-

dominates Q0w if, for all v 2 F [fwg, Prf~'[Qw; ��w](w)Rwvg � Prf~'[Q0w; ��w](w)Rwvg.

The strategy Qw is a best reply to ��w if it stochastically Pw-dominates every alternative

pure strategy. We are now in condition to de�ne ordinal perfect equilibria.

De�nition 2 Given the pro�le of preferences P , the pro�le of strategies Q is an ordinal

perfect equilibrium in pure strategies (OP equilibrium) in the game induced by ~' if there

exists a sequence of completely mixed strategies �k, f�kg���!
k!1Q, with the property that,

for every k � 1, Qv is a best reply to �k�v, for every agent v in V .

Hence, we require that the pro�le Q be a limit of a sequence of totally mixed pro�les
1This concept was also used in the context of voting theory in Majumdar and Sen (2004) and in

matching markets in Ehlers and Massó (2003), Majumdar (2003), Pais (2004a), and Pais (2004b).
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�k and that Qv stochastically Pv-dominates every alternative pure strategy when the

opponents use the perturbed strategies �k�v.

4 Ordinal Perfect Equilibria

The �rst couple of results apply to any stable matching mechanism. In Theorem 1, we

take a prescriptive point of view and establish that no unacceptable partners should

be included in one�s list if not matching unacceptable partners is the major concern.

Moreover, if an agent wishes to minimize the probability of being unmatched, it should

submit a comprehensive preference ordering. In fact, the existence of even the slightest

chance of being matched to an acceptable partner should not be neglected.

Theorem 1 Let ~' be a stable mechanism. If Qv is agent v�s best reply to a completely

mixed strategy pro�le ��v, then Qv lists all the partners that are acceptable according to

v�s true preferences Pv (i.e., A(Qv) = A(Pv)).

Proof. Let v be an arbitrary worker. Since the model is symmetric between �rms

and workers, what follows also holds for an arbitrary �rm.

First, we will show that ranking an unacceptable �rm f 0 as acceptable in Qv is not a

best reply to a completely mixed strategy pro�le for agents other than v, ��v.

(i) Take anyQ�v and note that under any matching � 2 S(Pv; Q�v), v is either always

unmatched or always matched to an acceptable �rm. Hence, Prf~'[Pv; Q�v](v)Rvvg = 1,

for all Q�v. It follows that Prf~'[Pv; ��v](v)Rvvg =
P

Q�v2supp��v
�(Q�v) �Prf~'[Pv; Q�v](v)

Rvvg = 1.

(ii) Now consider Q̂�v such that Q̂f 0 = v and no other �rm ranks v as acceptable.

Then, v will be matched to f 0 in every matching that is stable for (Qv; Q̂�v). Conse-

quently, Prf~'[Qv; Q̂�v](v)Rvvg = 0.

(iii) Given that Q̂�v has positive probability under ��v, (ii) implies Prf~'[Qv; ��v](v)

Rvvg =
P

Q�v2supp��v
�(Q�v) � Prf~'[Qv; Q�v](v)Rvvg < 1. Hence, Prf~'[Pv; ��v](v)Rvvg >
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Prf~'[Qv; ��v](v)Rvvg and Qv is not a best reply to ��v.

So, let Qv only rank acceptable �rms. We will now prove that deleting an acceptable

�rm from Pv cannot be a best reply to the completely mixed strategy pro�le ��v. So let

f 2 A(Pv), but f =2 A(Qv). Let Q0v be such that the restriction of Qv and of Q0v to A(Qv)

coincide, but f 2 A(Q0v) and f 0Q0vf , for all f 0 2 A(Qv). Note that A(Q0v) � A(Pv). We

will show that Qv does not stochastically Pv-dominate Q0v when the other players choose

��v.

(i) If, for every Q�v, v is unmatched under � 2 S(Qv; Q�v), we have Prf~'[Qv; Q�v](v)

Pvvg = 0, for all Q�v. Since A(Q0v) � A(Pv), we also have Prf~'[Q0v; Q�v](v)Pvvg � 0.

Hence, Prf~'[Q0v; Q�v](v)Pvvg � Prf~'[Qv; Q�v](v)Pvvg; for every Q�v.

(ii) Otherwise, take any Q�v such that �(v) 2 F , with � 2 S(Qv; Q�v). Let Q0 =

(Q0v; Q�v). We will prove that � 2 S(Q0). Clearly, � 2 IR(Q0), by de�nition of Q0. Now

assume, by contradiction, that (f 0; w) block �, i.e., f 0Q0w�(w) and wQ
0
f 0�(f

0). Since

Q0f 0 = Qf 0, for every f
0 2 F , we have wQf 0�(f 0). Also, given that Q0w = Qw, for every

w 6= v, the stability of � for Q implies that w = v. Hence, f 0Q0v�(v) and vQf 0�(f
0).

It follows from the de�nition of Q0v and the stability of � for Q that f 0 = f and that

�(v) = v. This contradicts the initial assumption �(v) 2 F .

We proved that, if �(v) 2 F , for some � 2 S(Qv; Q�v), we have � 2 S(Q0). Since

the set of unmatched agents is the same for all stable matchings (the �rst statement of

this result appears in McVitie and Wilson, 1970; it also appears in Gale and Sotomayor,

1985, and Roth, 1984), v is matched under every matching that is stable for Q0. It

follows that, for all Q�v, Prf~'[Q0v; Q�v](v)Pvvg � Prf~'[Qv; Q�v](v)Pvvg:

(iii) To see that there exists some Q̂�v for which v ends up alone when stating Qv,

but matched when using Q0v, suppose Q̂f = v and no other �rm ranks v as acceptable.

Then, v is matched to f with certainty at (Q0v; Q̂�v), whereas he stays alone if using

Qv. As a consequence, there exists a Q̂�v such that 1 = Prf~'[Q0v; Q̂�v](v)Pvvg >

Prf~'[Qv; Q̂�v](v)Pvvg = 0.
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(iv) Since all pro�les of preferences Q�v have positive probability in the completely

mixed strategy pro�le ��v, v will be unmatched with higher probability when using Qv

than when using Q0v, we have Prf~'[Q0v; ��v](v)Pvvg > Prf~'[Qv; ��v](v)Pvvg and Qv is

not a best reply to ��v.

Since ordinal perfect equilibrium strategies are best replies to completely mixed strat-

egy pro�les it immediately follows from the above result that ordinal perfect equilibrium

strategies have to be exhaustive, listing all the acceptable partners, but leaving out those

considered unacceptable. We state this formally in the following corollary.

Corollary 1 Let ~' be a stable mechanism. If Q is an ordinal perfect equilibrium in

the game induced by ~', every agent v ranks in Qv all the partners that are acceptable

according to its true preferences Pv (i.e., A(Qv) = A(Pv), for all v 2 V ).

Two further implications of the above theorem are worth noticing. The �rst and

most immediate goes against the celebrated properties of strict truncations. Formally,

a strict truncation of an agent v�s true preferences Pv containing p acceptable partners

is a strategy that lists the �rst p0, p0 < p, elements of Pv as acceptable, preserving their

order in Pv. Revealing a strict truncation of the true preferences may not be wise when

one highly esteems being matched; furthermore, strict truncation strategies cannot be

part of an ordinal perfect equilibrium in the game induced by a stable mechanism.

Second, it allows us to restrict the set of potential outcomes. As it will be readily

understood, not every individually rational matching is sustainable as the outcome of

an equilibrium play where agents fully reveal whom they are willing to match. In what

follows, we describe those matchings that are beyond reach and state the result.

De�nition 3 Let U(P ) be the set of all individually rational matchings � such that at

least one of its blocking pairs either includes one agent that is unmatched under � or

consists of a pair of unmatched agents under �.

Proposition 2 Let ~' be a stable mechanism. Let � be a matching in U(P ). In the game

induced by ~', � is not sustainable in an ordinal perfect equilibrium.
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Proof. By Theorem 1, listing all the acceptable partners is a necessary requirement

for an ordinal perfect equilibrium strategy. So, let Q be an ordinal Nash equilibrium

such that A(Qv) = A(Pv) for all v. We will show that Q cannot support � 2 U(P ):

By contradiction, assume that it does. In the game induced by a stable mechanism,

every Nash equilibrium yields a single matching with probability one (Pais, 2004). Hence,

Q leads to � with probability one. By de�nition of �, there exists at least one blocking

pair for � consisting of a �rm f and a worker w such that either f or w or both are

unmatched under �. If both are unmatched under �, since f 2 A(Qw) and w 2 A(Qf ),

we have fQw�(w) and wQf�(f). Hence, � is not stable for Q and it cannot be reached

as the outcome of a random stable mechanism where agents use Q.

So, let � be blocked by (f; w) such that one of its members is unmatched, while the

other one is matched under �. Since the model is symmetric between �rms and workers,

it is su¢ cient to prove the proposition for, say, f unmatched and w matched under �.

Now let Q0w be identical to Qw, but such that f is listed �rst in Q
0
w even if it occupies a

worse position in Qw. De�ne Q0 = (Q0w; Q�w). We will show that Q
0
w is di¤erent from

Qw (i.e., Qw does not list f �rst); in addition, Q0w is a pro�table deviation to Qw, since

f and w are matched with certainty under any matching in S(Q0).

To prove that f is matched to w under the �rm-optimal stable matching at Q0, we will

use the deferred-acceptance algorithm with �rms proposing. Since Q0v = Qv, for every

agent v 6= w, all proposals, acceptances, and rejections take place exactly the same way

as when Q was being used, up to the point where w holds f�s proposal. This moment

comes since w 2 A(Qf ) and f is the �rst �rm in Q0w. Also, w will not reject f until the

�nal matching is reached, so that f and w are together under the �rm-optimal stable

matching.

It follows from the de�nition of worker-optimal stable matching that w holds f or a

�rm ranked higher than f at Q0w under any stable matching for Q
0. Since f is the �rst

�rm in Q0w, w is matched to f under all stable matchings. This implies that Q
0
w 6= Qw;

otherwise, (f; w) could not block �.
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To conclude, we have 1 = Prf~'[Q0w; Q�w](w) = fg. Since Q leads to � with certainty,

Prf~'[Q](w) = fg = 0. Hence, Prf~'[Q0w; Q�w](w)Rwfg > Prf~'[Qw; Q�w](w)Rwfg and

Qw is not a best reply to Q�w, contradicting that Q is a Nash equilibrium. Since no

Nash equilibrium where agents list all the acceptable partners can sustain a matching in

U(P ), no ordinal perfect equilibrium will.

In the other direction, it may be shown that every matching in IR(P )nU(P ) may

be sustained as the unique outcome of an equilibrium play of the game where all agents

reveal the full set of acceptable partners.

Proposition 3 Let ~' be a stable mechanism. Let � be a matching in IR(P )nU(P ).

Then, there exists an ordinal Nash equilibrium Q in the game induced by ~' with the

following properties:

1. every agent v ranks as acceptable in Qv all of its acceptable partners under Pv

2. Q sustains � with probability one.

Proof. Let � be a matching in IR(P )nU(P ) and consider agent v. Let Qv be such

that (i) A(Qv) = A(Pv) and (ii) if v is matched under �, �(v)Qvv0, for all v0 2 A(Pv),

i.e.:

Qv =

8>>>>>><>>>>>>:

All elements of A(Pv) in any orderz }| {
�(v); :::::::::::::::::::::::::::::::; v if �(v) 6= v

:::::::::::::::::::::::::::::::::::::::| {z }
All elements of A(Pv) in any order

; v if �(v) = v

:

We will show that Q has all the described properties.

First, we will show, by contradiction, that � 2 S(Q). By de�nition of Q, it is

clear that � 2 IR(Q). So assume (f; w) blocks � when the pro�le Q is considered.

By (ii), this implies that f and w are unmatched under �. We thus have wQff and

fQww. Since A(Qv) = A(Pv) for every agent v, it follows that wPff and fPww. Hence,

(f; w) are unmatched under � and block � for preferences P . This contradicts that

� 2 IR(P )nU(P ).
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Now we will prove that � is the unique matching in S(Q). Assume not and take any

matching �̂; �̂ 6= �, in S(Q). Let v be such that �(v) = v. Then, �̂(v) = v since, by

Proposition 1, the same set of agents is unmatched under every matching that belongs

to S(Q). On the other hand, for v̂ such that �(v̂) 6= v̂, we must have �̂(v̂) = �(v̂) by

(ii). Otherwise, (v̂; �(v̂)) blocks �̂. Hence, �̂ = � and � is the only matching in S(Q).

As a consequence, every random stable mechanism leads to � with probability one.

To complete the proof, we must show that Q is an ordinal Nash equilibrium. By

contradiction, suppose �rm f can pro�tably deviate by matching worker w (the same

argument holds for an arbitrary worker). This implies that there exists a worker w

willing to accept f , i.e., such that fQw�(w). By (ii), we must have �(w) = w and, by

(i), fPw�(w). Since � 2 IR(P )nU(P ), it follows that �(f)Pfw and we contradict the

initial assumption: matching w is not a pro�table deviation for f .

We now state an important result for deterministic stable mechanisms that follows

from Barberà and Dutta (1995). In this paper, revealing the true preferences is most

convenient for agents who are extremely risk averse. In fact, when an agent compares

straightforward behavior with any misrepresentation of its preferences, there exists a

potential partner with whom, by manipulating, it ends up matched for a larger set of

actions of the other players; further, less preferred potential partners are obtained, by

either acting straightforwardly or strategically, against the same pro�les for the rest of

society. It thus follows that when an agent�s beliefs are such that all preference pro�les for

the other agents may be revealed with positive probability, behaving strategically is never

a best reply. We state this formally in the next Theorem. Even though the result applies

to the mechanism producing the �rm-optimal stable matching, it is straightforward to

extend it to a market using the worker-optimal stable mechanism.

Theorem 2 [Barberà and Dutta (1995)] In the game induced by 'F , if Qv is a best reply

to a completely mixed strategy pro�le ��v, then Qv are agent v�s true preferences (i.e.,

Qv = Pv).
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It clearly follows that only truth telling may be an ordinal perfect equilibrium in the

game induced by the mechanism that yields an optimal stable matching. We state this

as a corollary to Theorem 2.

Corollary 2 In an ordinal perfect equilibrium of the game induced by 'F every agent

states its true preferences.

This result anticipates that ordinal perfect equilibria only seldom exist in matching

markets. The following example supports this observation.

Example 1 A market where there are no ordinal perfect equilibria in pure strategies.

Let (F;W; P ) be a marriage market with P such that

Pw1 = f2; f1 Pf1 = w1; w2

Pw2 = f1; f2 Pf2 = w2; w1:

Consider the game induced by the mechanism that produces the �rm-optimal stable

matching. Corollary 2 establishes that, under an ordinal perfect equilibrium in this

game, every agent chooses the honest announcement of preferences. In this case, the

mechanism would yield the matching � = f(f1; w1); (f2; w2)g. Nevertheless, truth telling

fails to meet the basic requirement of being a Nash equilibrium of the game, since both

workers can pro�tably deviate. For example, submitting Qw1 = f2 is a deviation for

worker w1, conveying the position in f2. �

We can extend the above result to random stable mechanisms that only assign positive

probability to the �rm-optimal and to the worker-optimal stable matchings.

Proposition 4 Let ~' be a stable mechanism that yields the �rm-optimal stable matching

with probability � and the worker-optimal stable matching with probability 1 � �, 0 <

� < 1. In an ordinal perfect equilibrium in the game induced by ~' every agent states its

true preferences.

13



Proof. Let w be an arbitrary worker. We will show that Pw is the only strategy that

can be part of an OP equilibrium in the game induced by the random stable mechanism

~' as de�ned above. We omit the proof for an arbitrary �rm f , since the same arguments,

with obvious modi�cations, can be applied.

Let Qw be a strategy for w such that Qw 6= Pw. Assume that Qw is a best reply to a

completely mixed strategy pro�le ��w. This has two implications. First, by Corollary 1,

A(Qw) = A(Pw). Second, Prf~'[Qw; ��w](w)Rwvg � Prf~'[Pw; ��w](w)Rwvg, for every

v, a potential partner of w. By de�nition of ~', we have �Prf'F [Qw; ��w](w)Rwfg+ (1�

�) Prf'W [Qw; ��w](w)Rwfg � �Prf'F [Pw; ��w](w)Rwfg+ (1��) Prf'W [Pw; ��w](w)Rwfg,

for every v. Nevertheless, since truth telling is a dominant strategy for workers in the

game induced by the worker-optimal stable mechanism, it is a best reply to any mixed

strategy pro�le and Prf'W [Pw; ��w](w)Rwfg � Prf'W [Qw; ��w](w)Rwfg. Moreover,

Theorem 2 states that honestly revealing the true preferences is a best reply in the

game induced by the �rm-optimal stable mechanism, so that Prf'F [Pw; ��w](w)Rwfg �

Prf'F [Qw; ��w](w)Rwfg. It follows that 'W [Pw; ��w](w) = 'W [Qw; ��w](w) and 'F [Pw; ��w](w) =

'F [Qw; ��w](w). Since ��w is a completely mixed strategy pro�le, these distributions

have full support, i.e., every �rm in A(Pw) is obtained as a partner with positive prob-

ability. This implies that Qw = Pw, contradicting the initial assumption.

As a consequence, only Pw can be a best reply to a mixed strategy; thus only Pw can

be part of an OP equilibrium.

Finally, con�rming our conjecture on the existence of ordinal perfect equilibria, in

the next result we show that truth telling can only be an ordinal perfect equilibrium if it

is a dominant strategy for every agent. Hence, the concept of ordinal perfect equilibrium

and the apparently stronger concept of Nash equilibria in dominant strategies coincide.

Theorem 3 In the game induced by 'F , the sets of ordinal perfect equilibria and of

Nash equilibria in dominant strategies coincide.

Proof. It is clear that every Nash equilibrium in dominant strategies is an OP

equilibrium. In fact, a dominant strategy is a best reply to all pro�les of preferences
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stated by the other players; hence, it is also a best reply to any completely mixed

strategy pro�le. The converse statement will be shown in what follows.

Theorem 2 imposes as a necessary requirement for an OP equilibrium that every

agent states its true preferences. Hence, let P be an OP equilibrium in 'F , but assume

that stating the true preferences is not a dominant strategy for some worker w. Then,

there exists at least one instance, i.e., a strategy pro�le for the other players, under

which playing strategically pays for worker w. Denote by Q�w such a strategy pro�le

and let Qw be the best reply to Q�w. Formally,

'F [Qw; Q�w](w)Pw'
F [Pw; Q�w](w) and (1)

'F [Qw; Q�w](w)Rw'
F [ �Qw; Q�w](w), for every �Qw. (2)

Let, without loss of generality, Pw = f1; f2; :::; fm and fj = 'F [Qw; Q�w](w), with 1 �

j � m.

Now de�ne Q0w = fj; fj�1; :::; f1. Observe that '
F [Qw; Q�w] 2 S(Q0w; Q�w), since it

remains individually rational once w uses Q0w and there are potentially fewer blocking

pairs for 'F [Qw; Q�w]. Hence, Proposition 1 implies that w is matched under every

matching in S(Q0w; Q�w); in addition, the de�nition of Q
0
w implies that he is matched to

a �rm at least as good as fj according to Pw. By (2), 'F [Qw; Q�w](w)Rw'F [Q0w; Q�w](w),

so that we must have 'F [Q0w; Q�w](w) = fj. Then, if Qw gives w matched to fj against

Q�w, Q0w also matches w to fj. Hence, for the pro�le Q�w, condition (1) yields fj =

'F [Q0w; Q�w](w)Pw'
F [Pw; Q�w](w).

Now let us prove that there is no instance Q̂�w under which Pw matches w to

a �rm at least as good as fj, while Q0w leaves w unmatched. By contradiction, as-

sume that, by playing truthfully, w is matched to fi, i � j, but unmatched when

using Q0w against Q̂�w in the game induced by '
F . If this is so, by Proposition 1,

w is unmatched under every matching that is stable for (Q0w,Q̂�w) and, in partic-

ular, we have 'W [Q0w; Q̂�w](w) = w. On the other hand, by de�nition of worker-

optimal stable matching, 'W [Pw; Q̂�w](w)Rw'F [Pw; Q̂�w](w) = fi. Since fiRwfj, we

have 'W [Pw; Q̂�w](w) 2 A(Q0w). Now imagine Q0w are w�s true preferences. By acting
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strategically and using Pw, w is better o¤ than by straightforwardly revealing Q0w. This

contradicts the fact that truth is a dominant strategy for workers in the game induced

by 'W . Hence, w is matched to a �rm at least as good as fj with Pw, by manipulating

and using Q0w, w will also be matched to a �rm at least as good as fj. We thus have, for

every �Q�w that yields 'F [Pw; �Q�w](w)Rwfj, that 'F [Q0w; �Q�w](w)Rwfj.

Consider a completely mixed strategy pro�le ��w. In the game induced by 'F , when

playing against ��w, Q0w yields a higher probability of being matched to a �rm at least

as good as fj than Pw. Clearly, Pw cannot be part of an OP equilibrium, contradicting

the initial assumption.

The whole picture changes when we depart from the ordinal framework. As shown

in the following example, if agents are able to go beyond an ordering of the possible

matches and provide a measure of their preferences, strategic behavior may be held in a

perfect equilibrium.

Example 2 (Example 1 (revisited)) Acting strategically may be a perfect equilib-

rium when agents can give a cardinal meaning to their preferences.

Consider the game induced by the mechanism that yields the �rm-optimal stable

matching in the matching market described above. Consider the pro�le of strategies

Q = (PF ; QW ), such that each worker only �nds his �rst choice acceptable in Q (i.e.,

Qw1 = f2 and Qw2 = f1). We will show that, depending on the utility representation of

the workers�preferences, Q may be a perfect equilibrium of the game.

Each agent has �ve di¤erent strategies at its disposal (two of them stating two accept-

able matches, other two naming only one, and the strategy where all potential partners

are unacceptable). Let �k be a sequence of completely mixed strategy pro�les such that,

for k � 1 and for every agent v, �k(Q̂v) = 1
k+4
, for all Q̂v 6= Qv, and �k(Qv) = 1� 4

k+4
.

Note that f�kg���!
k!1Q. Revealing the true preferences is a dominant strategy for each

�rm f in this game (Dubins and Freedman, 1981, and Roth, 1982), outperforming every

alternative strategy for every pro�le chosen by the other agents, namely �k�f , for every
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k � 1. So, consider worker w1 (by symmetry, what follows also holds for w2); we will

prove that Qw1 is a best reply to �
k
�w1.

(i) Consider Q0w1 = w1; note that w1 is always unmatched when using this strategy

against any pro�le of strategies of the other players. Hence, w1 is unmatched with

certainty when playing Q0w1 against �
k
�w1. It follows that Q

0
w1
is stochastically Pw1-

dominated by every other strategy that w1 may use, in particular by Pw1when playing

against �k�w1.

(ii) The strategy Q00w1 = f1 is also stochastically Pw1-dominated by Pw1 = f2; f1

against �k�w1. In fact, if w1 is unmatched when using Pw1against Q�w1, he will certainly

be unmatched with Q00w1. So, when playing against �
k
�w1, w1 is matched with higher

probability if he uses Pw1. Moreover, there exist pro�les of strategies for the other

players such that w1 is matched to f2 under the outcome of the deferred-acceptance

algorithm when revealing Q000w1, but not with Q
00
w1
, where f2 is considered unacceptable.

The conclusion follows.

(iii) Now consider Q000w1 = f1; f2. Note that w1 is unmatched when using this strategy

if and only if he is unmatched with Pw1 = f2; f1. Furthermore, for every pro�le of the

other players such that w1 is assigned to f2 with Q000w1, he is also assigned to f2 when using

Pw1; and there are pro�les of strategies for the other players such that w1 is matched to f2

when revealing Pw1, but not with Q
000
w1
. It follows that Pw1 stochastically Pw1-dominates

Q000w1 against any completely mixed strategy pro�le �
k
�w1 .

(iv) Since Pw1 outperforms Q
0
w1
, Q00w1, and Q

000
w1
, it is su¢ cient to �nd under which

conditions Qw1 may be preferred to Pw1. There is an instance under which submitting

Qw1 provides w1 with a better partner. In fact, f2 is w1�s partner under the �rm-optimal

stable matching with (Qw1 ; Q̂w2 ; Pf1 ; Pf2), where Q̂w2 = f1; f2; by using Pw1 against the

same pro�le for the others, w1 ends up matched to f1. Nevertheless, w1 is unmatched

when revealing Qw1 against a larger set of pro�les of the other players, than when using

Pw1. It turns out that Qw1 is a best reply to �
k
�w1, if the following condition holds:

17



k2[u(f2)�u(f1)] � (4(k+4)2�17k�51)[u(f1)�u(w1)].2 In particular, when u(f2)�u(f1)

is much larger than u(f1)� u(w1), w1 bene�ts from listing only his �rst choice. �

5 Weak Ordinal Perfect Equilibria

De�nition 4 Given the pro�le of preferences P , the pro�le of strategies Q is a weak

ordinal perfect equilibrium in pure strategies (OP equilibrium) in the game induced by ~'

if there exists a sequence of completely mixed strategies �k, f�kg���!
k!1Q, with the property

that, for every k � 1, Qv is not (strictly) stochastically Pv-dominated by any alternative

pure strategy when played against �k�v, for every agent v in V .

Proposition 5 Let ~' be a stable mechanism that yields the �rm-optimal stable matching

with probability � and the worker-optimal stable matching with probability 1 � �, 0 �

� � 1. In a weak ordinal perfect equilibrium in the game induced by ~' every agent ranks

its best partner �rst.

Proof. Let Qw be a strategy for worker w that doesn�t list w�s best partner, f1, �rst.

We will show that Qw is (strictly) stochastically Pw-dominated when played against any

perfectly mixed strategy pro�le in the game induced by ~'. By symmetry, the same

arguments apply to a �rm�s strategy that doesn�t list its preferred worker �rst.

Let Q0w be a strategy identical to Qw, except for the fact that f1 is listed �rst in Q
0
w

(formally, vQ0wv
0 () vQwv

0, for every v, v0 6= f1 and f1Q0wf , for every �rm f). In what

follows, we let f be a �rm di¤erent from f1. Also, Q�w is any pro�le of strategies for

agents other than w and we let Q = (Qw; Q�w), Q0 = (Q0w; Q�w).

Claim 1 : Q0w dominates Qw in the game induced by '
W .

Proof : We start by showing that 'W [Q](w) = f implies that 'W [Q0](w) 2 ff1; fg.

By contradiction, let 'W [Q](w) = f and assume that 'W [Q0](w) =2 ff1; fg. If Q0w were
2This expression results from considering the outcomes of the deferred-acceptance algorithm when

w1 uses Pw1 and Qw1 for all possible combinations of the other agents� preferences. This calls for

performing a total of 53 tedious comparisons that we leave out for obvious reasons.
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w�s true preferences, w could not obtain a better partner than 'W [Q0](w) by manipu-

lating and using Qw, since truth is a dominant strategy in the game induced by 'W .

Hence, 'W [Q0](w)Q0wf . By de�nition of worker-optimal stable matching, f is the best

achievable partner for w when Qw is used against Q�w, implying that 'W [Q0] =2 S(Q).

Since Q0v = Qv for any v 6= w and 'W [Q0](w) 2 A(Qw) by de�nition of Q0w, we have

'W [Q0](w) 2 IR(Q). It thus follows that a pair of agents (f̂ ; ŵ) blocks 'W [Q0] in

Q. It must be the case that ŵ = w, otherwise (f̂ ; ŵ) would block 'W [Q0] in Q0. As

(f̂ ; w) block 'W [Q0], f̂Qw'W [Q0](w) and wQf̂'
W [Q0](f̂). By de�nition of Q0w and since

'W [Q0](w) 6= f1, f̂Q0w'W [Q0](w); since Q0f̂ = Qf̂ , wQ
0
f̂
'W [Q0](f̂). Therefore, we obtain

a contradiction: (f̂ ; w) block 'W [Q0] in Q0.

Now it is left to prove that there exists at least one instance under which w gets f 1

when using Q0w but not by means of Qw. Let f
0 be such that f 0Qwf1 (such a �rm exists

since by assumption Qw doesn�t list f1 �rst); let Q0�w be such that Q
0
f1
= Q0f 0 = w;w

0,

Q0w0 = f1; f
0, and no other �rm lists w. It is clear to see that 'W [Qw; Q0�w](w) = f 0,

while 'W [Q0w; Q
0
�w](w) = f1.

Claim 2 : Q0w dominates Qw in the game induced by '
F .

Proof : We show that 'F [Q](w) = f implies that 'F [Q0](w) 2 ff1; fg by means

of the deferred-acceptance algorithm with �rms proposing. Since Q0v = Qv, for every

agent v 6= w, all proposals, acceptances, and rejections take place exactly the same way

as when Q was being used, unless w obtains f1�s proposal, in which case he accepts it.

Hence, either 'F [Q0](w) = 'F [Q](w) = f or, if f1 indeed proposes to w, 'F [Q0](w) = f1.

Furthermore, there exists a pro�le of strategies for players other than w under which

w is matched to f1 when usingQ0w but not when usingQw. Let f
0 be such that f 0Qwf1.Let

Q0�w be such that Q
0
f1
= Q0f 0 = w;w

0, Q0w0 = f1; f
0, and such that no other �rm considers

w acceptable. Then, 'F [Qw; Q0�w](w) = f
0, but 'F [Q0w; Q

0
�w](w) = f1.

Claim 3 : Q0w stochastically Pw-dominates Qw against any completely mixed strategy

pro�le in the game induced by ~'.
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Proof : It follows fromClaim 1, Claim 2, and by de�nition of ~' that Prf~'[Q0w; Q�w](w)Rwvg �

Prf~'[Qw; Q�w](w)Rwvg; for any agent v. Hence, Prf~'[Q0w; ��w](w)Rwvg =
P
Q�w

��w(Q�w)�

Prf~'[Q0w; Q�w](w)Rwvg �
P
Q�w

��w(Q�w)�Prf~'[Qw; ��w](w)Rwvg = Prf~'[Qw; ��w](w)Rwvg

and Q0w stochastically Pw-dominates Qw against a completely mixed strategy pro�le ��w

in the game induced by ~'.

6 Further Research

As mentioned in the Introduction, the aim of this paper is to narrow the set of potential

equilibrium outcomes by imposing stronger rationality constraints than those underlying

the concept of Nash equilibrium. Nevertheless, the analysis performed here should be

considered very preliminary. We have shown that only truth telling may be a best reply

to a completely mixed strategy pro�le and, thus, part of an ordinal perfect equilibrium.

Such negative result on the existence of ordinal perfect equilibria calls for a weaker

concept. One possible course of action lies in considering that agents never submit

strategies that are stochastically dominated against a completely mixed strategy pro�le,

while those that are not stochastically dominated should be regarded as potential choices.

Such concept is closer in spirit to the notion of perfect equilibrium in expected utilities.

In fact, each of the latter strategies should be a best reply to a completely mixed strategy

pro�le for some utility representation of the true preferences. We can then show that

strategies that do not list the best partner �rst are stochastically dominated and conclude

that a strict subset of the individually rational matchings can be sustained in weak

ordinal perfect equilibria.
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