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Introduction On platforms for online auctions usually single units of one type of good are
auctioned off in several auctions at the same time. Interdependencies between these auctions
should be considered and they should not be analyzed separately as in most of the existing
literature on Internet auctions. We analyze a model with several auctions (English proxy
auctions with soft close) that are offered by independent sellers and are run at the same time
and find a Perfect Bayesian (epsilon-) equilibrium considering bidders’ strategies. We assume
that every bidder wants to buy exactly one unit of the good and allow for different valuations of
a bidder for the goods in the different auctions. The reason might be differences in color, design,
quality, brand etc. Thus, preferences are described as in the assignment game of Shapley and
Shubik (1972).

In our model bidders submit bids sequentially and bids are price bids (in contrast to announc-
ing demand to a given price). As a result the auctions considered may be run independently and
over a longer time horizon. Auctions are English proxy auctions in the style of eBay or Amazon
auctions. Bidders may bid several times in every auction. The second highest submitted bid
determines the standing bid and, when no new bids arrive, the price. The highest submitted
bid determines the high bidder and at the end winner and is hidden for the other bidders. All
auctions end when no bidder wants to submit a new bid. Coordination on efficient assignments
in the equilibrium is a result of the submitted price bids and does not have to be organized by
a central seller. To achieve this coordination bidders may have to submit multiple bids, even in
one auction. This kind of behavior is often observed in Internet auctions. The model is most
closely related to that of Peters and Severinov (2004) where homogeneous goods are sold. Our
model can be seen as a generalization of their model with respect to valuations.

Other models that analyze strategic bidding in this environment consider bids consisting
of one price bid or several stages where bidders announce their demand at current standing
bids. All the models with several bidding rounds have in common that a central auctioneer
determines current high bidders or determines if there exists excess demand (or overdemanded
sets of goods) and increases prices for some of the goods following certain rules (for example
Demange, Gale, and Sotomayor (1986), Leonard (1983), Crawford and Knoer (1981), Kelso and
Crawford (1982), Gul and Stacchetti (2000), Ausubel and Milgrom (2002)).1 In our model we
do not need such a central authority.

The Model We model the bidding game as a game Γb
ext in extensive form with imperfect and

incomplete knowledge. The finite set of players I = 0∪N ∪M consists of the nature player 0,

1Most of those models are more general with respect to bidders valuations.
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the set of n bidders N := {B1, . . . , Bn}, and the set of m sellers (or, equivalently, m auctions)
M := {A1, . . . , Am} who each offer one good for sale.

The vector of sellers’ valuations is vS ∈ {0, . . . , v̄S}m ⊂ Nm with v̄S ∈ N < ∞ denoting
some large number. We assume that every seller sets his reserve price rj equal to his valuation,
i.e. rj := vS

j for all j. Every bidder wants to buy exactly one unit of the offered goods, i.e. his
valuation for a second good is always equal to zero. For every bidder and every auctioned good
the matrix of buyers’ private and independent valuations V := (vij)n×m with vij ∈ {0, . . . , v̄} ⊂
N for all i ∈ N , j ∈M, and v̄S, v̄ ∈ N < ∞ are some large numbers, gives the valuation of the
respective buyer for each good in case he buys this good only.

uS
j (·), uB

i (·): X × Rm → R for j ∈ M and i ∈ N are sellers’ and bidders’ payoff functions.
The functions are defined over allocations (x,p) where x ∈ X ⊂ {0, 1}n×m is a n ×m matrix
with xij = 0 if bidder i does not win auction j and xij = 1 if bidder i wins auction j and
p = (pA1, . . . , pAm) ∈ Rm is a vector of prices. The functions uS

j (·) and uB
i (·) are given by

linear von Neumann-Morgenstern utility functions uS
j (x, p) = pj − vj if xij = 1 for some i and

uS
j (x, p) = vj otherwise and uB

i (x, p) = maxj∈M{vij · xij} −
∑m

j=1 pj · xij.

bs ∈ [0, b̄]m ⊂ Rm resp. bh ∈ (0, b̄]m ⊂ Rm with bh
j ≥ bs

j for all j are the vector of standing
bids resp. the vector of high bids. The possible bids are bounded above by some large number
b̄ ∈ R < ∞. The function Bh: M→ N ∪M assigns to every auction j ∈ M a bidder i ∈ N
as current high bidder (i.e. Bh(j) = i if i submitted the current high bid bh

j ) or, by convention
Bh(j) = j if no bidder has yet bid in auction j. The current standing bid bs

j in an auction

j is equal to b
(2)
j := max{bkj: bid submitted hitherto in auction j by any bidder k 6= Bh(j)}.

Note that b
(2)
j = bh

j if two bidders submitted bids equal to bh
j . In this case the bidder who first

submitted the bid is current high bidder. If no bidder has yet bid in auction j then bs
j = rj.

The nature player selects randomly a bidder to submit a bid. Every time a bidder is selected
to bid he can submit a bid in one auction of his choice or he can decide not to bid. A bidder i
is free to bid an amount bij ∈ (bs

j , b̄] in an auction j, where bs
j := rj at the beginning. When he

bids bij in j he becomes high bidder if his bid is above the current high bid. Otherwise his bid
lies below bh

j and his bid determines the new standing bid.
If a bidder decides not to bid and is not current high bidder in any auction then he will not

be selected again to bid. Thus, this decision is de facto an exit decision. If every remaining
bidder high bidder in at least one auction is selected once to bid and decides not to bid, i.e. all
bidders are asked once to bid in the current situation without any change, then all the auctions
end. The standing bids bs

j at the end of the auctions are also referred to as prices pj.
We assume perfect recall. A bidder i can always observe the vector of reserve prices r, the

vector of standing bids bs, the identities of the high bidders Bh, his own high bids bh
j for all j

with Bh(j) = i and his own valuations vij for all j. He cannot distinguish between high bids
bh
j ≥ bs

j for all j with Bh(j) 6= i. We consider only pure strategies σi(·) that assign an action of
the set of available actions C(H) to every information set H ∈ Hi of player i. Σi is the set of
pure strategies of player i.

A relevant part of our equilibrium strategy σ∗i of bidder i is the maximum possible payoff in
an auction that bidder i can currently achieve. It is determined by the difference between his
valuation for the good sold at an auction j and the lowest price at that he can win the auction:
The current maximum possible payoff ∆ij for bidder i in auction j is ∆ij := vij − bs

j . In this
definition we neglect increments. A bidder will have to overbid the current standing bid by at
least ε to become high bidder. Remember, that every bidder can observe the current standing
bid bs

j and all submitted bids except for the current high bid. For the definition of strategy
σ∗i we need the current maximum possible payoff ∆i(1) and the current second-highest possible
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payoff ∆i(2) for bidder i at a stage of the bidding game:

Definition 1 The current maximum possible payoff ∆i(1) for bidder i is defined as ∆i(1) :=
maxj∈M ∆ij and Di := {j : j ∈ arg maxj∈M ∆ij} is i’s demand set. A representative element
of Di is denoted by ji(1). Correspondingly, the current second-highest possible payoff ∆i(2) for
bidder i is defined as ∆i(2) := maxj∈M\Di

∆ij.

Definition 2 (Strategy σ∗i ) The strategy σ∗i : Hi → C(H)H∈Hi
of bidder i ∈ N specifies, that

whenever bidder i is selected to bid (i.e. one of his information sets Hi is reached) he chooses
the following action:

1. If Bh(j) = i for any j ∈M, then bidder i does not submit any bid.

2. If Bh(j) 6= i for all j ∈M bidder i bids as follows:

(a) If ∆i(1) < 0, then he does not bid.

(b) If ∆i(1) ≥ 0 and |Di| = 1, then he bids in auction ji(1) ∈ Di. He determines his bid
as biji(1)

= viji(1)
−max{∆i(2), 0}.

(c) If ∆i(1) ≥ 0 and |Di| > 1, then bidder i chooses randomly (with uniform probability)
one of the auctions ji(1) ∈ Di. The selected auction is denoted by j′i(1) and his bid

bj′
i(1)

is determined as2 bij′
i(1)

= bs
j′ + ε.

When a bidder i submits a bid he selects his bid biji(1)
in the auction with the maximum possible

payoff such that the minimum payoff he might achieve by this bid is equal to the maximum
payoff he might achieve in any other auction at the current stage. To specify a Perfect Bayesian
equilibrium (PBE) of the bidding game Γb

ext it is necessary to describe the associated beliefs.
The belief rules state that bidder i beliefs that the high bid is higher than or equal to the
current standing bid and that no bidder bids above his valuation. A bidder i considers these
belief rules to make Bayesian updating of the probability distributions over the nodes included
in an information set. We will not need these beliefs in the proofs neglecting ε-differences in
payoffs and without considering increments. With strategy σ∗ and these belief rules I can now
specify the PBE of the bidding game Γb

ext.

Theorem 1 The symmetric bidding strategies σ∗i and the belief rules of all bidders i ∈ N
constitute a Perfect Bayesian (epsilon-) equilibrium of the bidding game Γb

ext.
3

We also show that all assignments x∗ resulting from σ∗ are efficient and that the prices in
equilibrium are Vickrey prices. Following Shapley and Shubik (1972) and Roth and Sotomayor
(1990) we find that equilibrium allocations are in the core and that they are the bidder optimal
allocations in the core.

2To really have a chance to become high bidder bidder i has to increase the current standing bid by a
minimum amount ε. A companion paper considers a model with increments in detail.

3The equilibrium is an epsilon-equilibrium as defined by Radner (1980), because payoffs lie in some ε-range
around the payoffs considered here, where we neglect increments and payoff differences in the magnitude of ε.
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Conclusion We find an PBE in a multiple independent auctions environment. The equilib-
rium strategy prescribes multiple bidding which is often observed in Internet auctions. Our
model may explain why multiple bidding occurs. In our model it is an essential means that
helps bidders coordinate on the bidder optimal core outcome.

In contrast to other related models the equilibrium strategy prescribes in many situations
to increase the standing bid by more than the minimum amount (increment). This is a result
of the heterogeneous valuations of a bidder and might also be an explanation for observations
made in Internet auctions.
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