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Abstract

It is shown that, for almost every two-player game with imperfect
monitoring, the conclusions of the classical folk theorem are false. So,
even though these games admit a well-known approximate folk theorem,
an exact folk theorem may only be obtained for a zero measure set of
games.

A complete characterization of the e¢ cient equilibria of almost every
such game is also given, along with an ine¢ ciency result on the imperfect
monitoring prisoner�s dilemma.

1 Introduction

It is well known that repeated games with imperfect monitoring admit an ap-
proximate folk theorem (Fudenberg, Levine and Maskin 1994). For a large class
of such games, any feasible individually rational payo¤may be approximated by
perfect public equilibria (PPE), as players become in�nitely patient. However,
the question of whether such payo¤s can be achieved exactly in equilibrium is
still open.
In this paper it will be shown that the answer for this question is that,

generically, no. Formally, for almost every game with imperfect monitoring,
there are feasible, strictly individually rational payo¤s which are not PPEs.
That is, the conclusions of the classical folk theorem are false for almost every
game with imperfect monitoring. Therefore an exact folk theorem may only be
obtained for a zero measure class of such games.
In proving this result, a complete characterization of the e¢ cient equilibria

of generic two player games with imperfect monitoring will be given. This is also
of independent interest, as it may be useful to the study of particular games. It

�We would like to thank Aloisio Araujo, Vinicius Carrasco, Vijay Krishna, Andreu Mas-
Colell, Stephen Morris, and seminar participants at IMPA and Getulio Vargas Foundation
Graduate School of Economics for valuable comments and suggestions. Any remaining mis-
takes are our own.

yGetulio Vargas Foundation Graduate School of Economics.
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Figure 1: The feasible payo¤s in the prisoner�s dilemma.

will be shown that, although determining perfect public equilibria in general is
a very hard problem, for almost every two player game they may be found by
solving a static mechanism design problem.
The �rst description of an e¢ cient PPE for a repeated game with imperfect

monitoring was given by Athey and Bagwell (2001) in a repeated duopoly game.
Lemma 3 extends their techniques to get a complete description of the set of
e¢ cient PPE for almost every two player game.
Another related work is Fudenberg, Levine and Takahashi (2006). They

present an algorithm for determining the limit set of e¢ cient PPEs. Although
their techniques apply to the n-player case, they only characterize the limit set
as players become in�nitely patient. In contrast, our characterization, while
being limited to the 2-player case, gives the set of e¢ cient PPE for �xed values
of impatience factor less than one.
The characterization will also be used to obtain an ine¢ ciency result for the

repeated imperfect monitoring prisoner�s dilemma.
These points can be illustrated by the following classical example which will

be revisited along the exposition of the paper.

1.1 The prisoner�s dilemma

Consider a repeated prisoner�s dilemma with imperfect monitoring, usually de-
scribed as a partnership problem. Two players own a �rm and operate it. Each
period, they may either cooperate (c) or defect (d), i.e., their e¤ort levels are
si 2 fc; dg. Although the �rm�s pro�t y 2 Y is observed, it is randomly distrib-
uted according to �(�js). Players�payo¤s are ri = y=2 � si. Therefore, while
e¤ort is not directly observable, it a¤ects the distribution of y.
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The average payo¤ to player i is de�ned as

gi(s) = E(rijs) =
Z
ri(y; s)d�(yjs):

For the game to be interesting, they should be distributed as in a prisoners�
dilemma, as indicated on Figure 1. That is,

cd1 < dd1 < cc1 < dc1

dc2 < dd2 < cc2 < cd2

where we have abused notation by using pairs such as cd to denote both strategy
pro�les and average payo¤s as g(cd).
This stage game is repeated every period and players discount future utility

by some impatience factor 0 < � < 1.
It is well known that, in this example, the approximate folk theorem holds

generically if Y has at least three elements (Fudenberg, Levine and Maskin,
1994). That is, that any feasible individually rational payo¤ may be approx-
imated by PPEs, as � approaches to 1. Yet, we will show that generically
the prisoner�s dilemma has no e¢ cient equilibria,1 for any discount factor (see
Theorem 1).
Also, this means that the game has feasible strictly individually rational

payo¤s which are not equilibrium values. So, the conclusions of the classic folk
theorem fail. We will show that this phenomenon is very general. Except for
some trivial cases, an exact folk theorem is false for almost every game with
imperfect monitoring (see Theorem 2).
However, the example is somewhat misleading, as the anti-folk theorem is not

simply an ine¢ ciency result. Indeed, there are open sets of games which have
e¢ cient equilibria. Thus, the general case will be somewhat more complicated.
About the prisoner�s dilemma ine¢ ciency, Radner, Myerson and Maskin

(1986) showed that in some cases where the approximate folk theorem fails, the
equilibria are bounded away from the e¢ cient frontier. However, we are not
aware of ine¢ ciency results in cases where the approximate folk theorem holds
in the literature.2

We now lay down the model, give the characterization of the e¢ cient equi-
libria and prove the results.

2 The Framework

2.1 The stage game

Two players play a stage game at t = 0; 1; 2; � � � . Player i takes actions si in a
�nite set Si. Actions are not directly observable, but they induce probabilities

1Throughout the paper, we will use equilibria interchanging with PPEs.
2 In the recent book on this topic, Mailath and Samuelson (2006) have not mentioned any

result in this line.
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�(�js) on a �nite set of public outcomes Y . The actual payo¤ ri(si; y) to a player
depends on his own action and on the public outcome. But not directly on the
other player�s action (although it does a¤ect the distribution of y). We also allow
for mixed actions �i in�Si, the space of probabilities on Si. Probabilities �(�j�)
and payo¤s ri(�i; y) are de�ned as usual, for any mixed strategy pro�le �.3

We may collect these elements into the following:

De�nition 1 A stage game � is a list (S1; S2; Y; � : S �! �Y; r1 : (S1; Y ) �!
R; r2 : (S2; Y ) �! R); where S1, S2 and Y are �nite sets.

Let gi(�) = E(ri(�i; y)j�) be the average gain of player i from playing a
pro�le �.

2.2 The supergame

The public history at time t is de�ned as ht = (y1; y2; � � � yt�1). Players also
observe their own actions, and player i�s private history is hit = (a

1
i ; a

2
i ; � � � at�1i ).

A strategy for player i is a sequence of maps f�ti : ht � hti �! �Sig1t=0.
In the repeated game players maximize

vi = (1� �)
X

�tEgti

for 0 � � < 1. The factor (1� �) normalizes supergame payo¤s as average stage
game payo¤s.
Our solution concept is the perfect public equilibrium, henceforth PPE. That

is, a subgame perfect equilibria in which players condition their actions only on
the public history. Abreu Pearce and Stachetti (1990) show that, as long as
other players play public strategies, there is no gain in conditioning on private
history.4 Let PPE(�) denote the set of perfect public equilibrium values for a
given discount factor �.
A typical stage game has a strategic form such as

l r
u
m
d

0@A B
C D
E F

1A
Throughout this paper we will use letters A;B;C; � � � to denote both action

pro�les, such as ll; and their payo¤ vectors, g(ll).
We admit correlated equilibria, as in Aumann (1987): every period players

can condition their action on a public randomization device. This makes the
set of feasible payo¤s a convex polygon - the convex hull of the pure strategy
payo¤s. Figure 2 shows the set of feasible payo¤s of a typical game.

3 In the prisoner�s dilemma game, Si = fcooperate;defectg, y is the �rm�s pro�t and ri =
y=2� si.

4Yet, Kandori and Obara (2006) show that e¢ ciency may be improved if all players use
private strategies.
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Figure 2: The set of feasible payo¤s for a generic game.

For simplicity, we also make the following assumption, which holds for almost
every game.

A1. The set of feasible payo¤s of the supergame, V; is a polygon such that each
side contains only two pure action pro�les.5

2.3 The recursive method

We rely heavily on recursive methods, so we now state some de�nitions and
known results which will be useful. Abreu, Pearce and Stachetti (1990), Fuden-
berg and Tirole (1991), Mailath and Samuelson (2006) and Fudenberg, Levine
and Maskin (1994) are good references.
The key idea of the recursive approach is to factor equilibria into an action

pro�le to be played on the current period and continuation values to be played
conditional on the public outcome y. The continuation values for each players
are expressed by reward functions u : Y �! R2.

De�nition 2 A reward function u �-enforces � if for i = 1; 2 and every s in
Si:

vi = (1� �)gi(�) + �E(ui(y)j�) (1)

� (1� �)gi(si; ��i) + �E(ui(y)jsi; ��i)

that is,

E(ui(y)j�)� E(ui(y)jsi; ��i) �
1� �
�
(gi(si; ��i)� gi(�)):

A key element of the recursive approach is the Bellman map T . The Bellman
map of a set W � R2 is the set of values that may be achieved using promises
on W .

5More precisely, only payo¤ vectors of two pure action pro�les.
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De�nition 3 The Bellman map T is de�ned for compact subsets of R2 by

T (W ) = cofg(�) + E(uj�(�j�)) : u takes values in W and �-enforces �g;

where co is the convex hull. A set W in R2 is self-generating if W � T (W ).

The key facts we will use are summarized in the next:

Proposition 1 (Known results) The set PPE(�) is compact and convex,
and is the largest �xed point of T . All self-generating sets are contained in
PPE(�). T takes compact sets on compact sets.

3 The e¢ cient PPEs

3.1 Mixing property

We will now give, for almost every game, a complete description of the e¢ cient
equilibria. Since the set of feasible payo¤s is a polygon, we just need a method
to determine which are the equilibria on each side of the polygon. Then, by
applying this method to each side of the polygon, we may �nd all e¢ cient
equilibria on a �nite number of steps.
Consider, from now on, a side AB of the set of feasible values. For simplic-

ity, assume AB to be negatively inclined with slope m, as in Figure 2. Also,
suppose AB contains no static equilibria. Our strategy will be to somehow
restrict the di¢ cult problem of determining the game�s e¢ cient PPEs to the
one-dimensional segment AB.
In general this cannot be done, because for the equilibrium payo¤s in AB

one may use equilibrium values outside AB as punishments. So, we need a
generic condition which we call mixing. A strategy pro�le is locally mixing if
deviations from it cannot be detected with certainty. The stage game is said to
be mixing if every pro�le is locally mixing.

De�nition 4 The strategy pro�le s is locally mixing if �(�jesi; s�i) � �(�js)6
for i = 1; 2 and every esi in Si. The stage game � is mixing if all �(�js) are
equivalent, for every s in S. Or equivalently, if every pro�le s in S is locally
mixing.

Mixing is the key property that allows us to work out the equilibria on any
given side AB of feasible values polygon without having to know all the equilibria
of the game. Because mixing implies that any public history may happen with
positive probability, any punishments prescribed in equilibrium may actually be
carried out with positive probability. Thus, equilibria with values on AB may
only use continuation values and strategy pro�les on AB.
Let I(�) = AB\PPE(�). In terms of the Bellman map these facts translate

into the following:
6That is, �(�jesi; s�i) is absolutely continuous with respect to �(�js).

6



Lemma 1 If A and B are locally mixing, the closed interval I(�) is the largest
self-generating closed interval in AB.

Proof. I(�) is a closed interval, once it is the intersection of AB with PPE(�),
which is know to be closed and convex. By Proposition 1 every self generating
interval in AB is contained in I(�). Because of mixing, T (W ) \ AB � T (W \
AB). But since T (PPE(�)) = PPE(�), we have

I(�) = PPE(�) \AB = T (PPE(�)) \AB
� T (PPE(�) \AB);

that is, I(�) is self-generating.

3.2 The characterization

In this subsection we will work out what the set of equilibria in AB is. This
result is recorded as Lemma 3.
Lemma 1 shows that to have the characterization, all that we have to do is

to �nd the largest self-generating interval on AB. This will be done now. Take
some interval [a; b] in AB. We check what are the conditions for [a; b] to be
self-generating. Let [a0; b0] be T ([a; b]) \AB. By the de�nition of T ,

a0 = (1� �)A+ �E(u) = (1� �)A+ �E(u� a); (2)

where the expectation is conditional on A and u is the promise function enforcing
A with minimal Eu1. Let "� be the horizontal distance between E(u) and a.
By rearranging equation (2), we see that a0 � a if and only if

�

1� � "� � a1 �A1; (3)

that is, [a; b] is self-generating if and only if (3) holds.
We now calculate "�. By its de�nition, we know that

"� = min
u
Eu1 � a1 (4)

s.t. u �-enforces A
u(y) 2 [a; b], for all y 2 Y

and that u is the promise function that solves program (4). Since �-enforcing
is invariant by translation, we will show that, at least for � large enough, it is
possible to �nd "� by a much simpler program.
Consider the program

e"� = min
u
max
y
�u1 (5)

s.t. u �-enforces A
Eu = 0
u2 = mu1
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in which u is normalized to have 0 average and m is the slope of segment AB.
This program is in fact very simple, because if u satis�es its constraints for some
�, then �

1��
1��0
�0 u satis�es the constraints for �

0. Therefore, e"� = 1��
� e"1=2.

The next lemma shows formally that the programs are equivalent for � large
enough.

Lemma 2 If � is large enough, then programs (4) and (5) are equivalent.

Proof. First let us prove that e"� � "�. If u satis�es the constraints in (4),
then u�Eu satis�es the constraints in (5). Now, take eu1=2 solving program (5)
for � = 1=2 and let u� = �

1��u1=2 be the solutions for other values of �. Then,
u = eu� + a+ "�(1;m) satis�es all restrictions of program (4), except for having
all u1(y) � b1. But if we take � high enough, this restriction is also satis�ed, so
"� � e"�.7
By (3), [a; b] is self-generating if and only if

e"1=2 � a1 �A1: (6)

Condition (6) allows us to describe the conditions for a segment to be self-
generating in very simple terms. Since the set of equilibria on AB is the largest
self-generating interval, this also allows us to describe this set. We now sum up
the previous discussion in a lemma that describes all the e¢ cient equilibria on
AB.
De�ne P i� be de�ned as

min
u
max
y
�ui (7)

s.t. u 1=2-enforces �
Eu = 0 (balanced expected payment)
u2 = mu1 (budget balance).

which is the amount of punishment that has to be in�icted on player i for him
to play his unfavorable action �. Therefore, P 1A is exactly what we called e"1=2.
From (6) we have the following:

Lemma 3 Suppose that A and B are locally mixing. Let a and b be points in
AB with a1 = A1 + P

1
A and b2 = B2 + P

2
B (see Figure 3). Then, for � large

enough the set of equilibria in AB is

� [a; b] if a1 < b1;

� empty, otherwise.

Hence, the only restrictions on the equilibria are that players have to get at
least what they would get playing their least favored action plus the amount of
punishment necessary to enforce it.

7This proof and some computer simulations show that, in practice, � does not have to be
very high. For interesting cases we �nd � around 2=3 enough.
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Figure 3: The set of equilibria on AB.

Note that, to enforce pro�le A (resp. B), player 1 (resp. 2) must receive
punishment strictly greater than his gain from deviating to his best response to
A (resp. B). We have the following useful:

Lemma 4 Suppose that the stage game is mixing. At any equilibrium payo¤
in AB, player 1 (resp. 2) receives strictly more than on his best response to A
(resp. B).

Proof. Let bA be the pro�le where player 2 plays A2 and player 1 plays his
best response to A2. For program (7) applied to A; since u enforces A and
E(ujA) = 0, we must have

E(�u1j bA) � bA1 �A1:
Therefore, max

y
� ui > bA1 �A1 and A1 + P 1A > bA1.

4 The anti-folk theorem

The anti-folk theorem and the ine¢ ciency result for the prisoner�s dilemma
follow easily from the previous lemmata. We start with the ine¢ ciency in the
prisoner�s dilemma:

Theorem 1 Let � be a mixing stage game and AB be a segment negatively
inclined contained in the Pareto frontier (as in Figure 3). If any player plays
the same action on pro�les A and B; then there is no PPE payo¤ in AB.

Proof. For simplicity suppose again that AB is negatively inclined and that A
is player 1�s least favored action. Suppose also it is player 2 that plays the same
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action on pro�les A and B. Therefore, player 1�s best response to A2 dominates
B1. By Lemma 4 there is no e¢ cient equilibrium in AB.
For the prisoner�s dilemma example of section 1.1, since the Pareto frontier is

made up of segments cd; cc and cc; dc, this theorem applies immediately. Hence,
for almost every prisoner�s dilemma there are no e¢ cient equilibria.
We now turn to the anti-folk theorem. The additional assumptions used are

necessary because there are pathological examples in which the folk theorem is
true for the stage game, so these cases have to be excluded.

Theorem 2 (Anti-folk) The folk theorem is false generically for games with
feasible payo¤s strictly dominating the minimax point and without e¢ cient static
equilibria. That is, almost every such game has feasible individually rational
payo¤s which are not equilibrium payo¤s.

Proof. Consider a game with mixing and only two pure strategy pro�les on
each edge of the feasible set (this is the generic situation). Take a segment
AB with a point strictly dominating the minimax value. Suppose that it is
negatively inclined, and vertices labeled as in the Lemma 3.
In any equilibrium payo¤s in AB player 1 gets strictly more than by playing

his best response to A. But the best response to A yields at least as much utility
as his minimax value. The positively inclined case is similar. This completes
the proof.

5 Conclusions

Our main contribution is to show that, even though games with imperfect moni-
toring admit an approximate folk theorem (e.g., Fudenberg, Levine and Maskin,
1994), an exact folk theorem is valid only for a zero measure set of such games.
This �nding also shows that the classical folk theorem is extremely unstable

with respect to imperfect monitoring. Given a game with perfect monitoring,
if its informational structure su¤ers a random perturbation, the classical folk
theorem will be false with probability one.
We must point out that our anti-folk theorem is not simply an ine¢ ciency

result, since there are open sets of games with e¢ cient PPEs. Yet, the mes-
sage that the prisoner�s dilemma and other similar examples gives is that exact
e¢ ciency is di¢ cult to achieve for repeated games.
Finally, we believe that the characterization and the method presented here

may be also useful to studying particular games as well.

References

[1] Abreu, D., Pearce D. and Stacchetti, E. (1986), �Optimal Cartel Equilibria
with Imperfect Monitoring�, Journal of Economic Theory, 39, pp. 251-269.

10



[2] Abreu, D., Pearce D. and Stacchetti, E. (1990), �Toward a theory of dis-
counted repeated games with imperfect monitoring�, Econometrica 58, pp.
1041-1063.

[3] Athey, S. and Bagwell, K. (2001), �Optimal Collusion with Private Infor-
mation�, RAND Journal of Economics, 32 (3), pp. 428-465

[4] Aumann, R. (1987), �Correlated Equilibrium as an Expression of Bayesian
Rationality�, Econometrica, 55 (1), pp. 1-18.

[5] Fudenberg, D., Levine, D., and Maskin, E. (1994), �The Folk Theorem with
Imperfect Public Information�, Econometrica, 62 (5), pp. 997-1039.

[6] Fudenberg, D., Levine, D. and Takahashi, S. (2006), �Perfect public equi-
librium when players are patient�, mimeo.

[7] Kandori, M., and Obara, I. (2006), �E¢ ciency in Repeated Games Revisited:
The Role of Private Strategies�, Econometrica, 74 (2), pp. 499-519.

[8] Mailath, G., and Samuelson, L. (2006). Repeated Games and Reputations:
Long-Run Relationships. Oxford University Press.

[9] Radner, R., Myerson, R. and Maskin, E., (1986), �An Example of a Re-
peated Partnership Game with Discounting and with Uniformly Ine¢ cient
Equilibria�, Review of Economic Studies, 53 (1), pp. 59-69.

11


