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Abstract

In this paper (reinforcement) learning of decision makers that face
many different games is studied. As learning separately for all games can
be too costly (require too much reasoning resources) agents are assumed
to partition the set of all games into analogy classes. Partitions of higher
cardinality are more costly. A process of simultaneous learning of actions
and partitions is presented and equilibrium partitions and action choices
characterized. The model is able to explain deviations from subgame per-
fection that are sometimes observed in experiments even for vanishingly
small reasoning costs. Furthermore it is shown that learning across games
can stabilize mixed equilibria in 2×2 Coordination and Anti-Coordination
games and destabilize strict Nash equilibria under certain conditions.
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1 Introduction

Economic agents are involved in many games. Some of which can be quite dis-
tinct but many will share a basic structure (e.g. have the same set of actions) or
be similar along other dimensions. A priori games can be similar with respect
to the payoffs at stake, the frequency with which they occur, the context of the
game (work, leisure, time of day/year...), the people one interacts with (friends,
family, colleagues, strangers...), the nature of strategic interaction, or the social
norms and conventions involved.1 Distinguishing all games and learning sep-
arately for all of them requires a huge amount of alertness or reasoning costs.
Consequently it is natural to assume that agents will partition the set of all
games into analogy classes, i.e. sets of games they see as analogous.
In this paper we study (reinforcement) learning across games, i.e. decision

makers that face many different games and simultaneously learn which actions
to choose and how to partition the set of all games. Our approach does not
presume an exogeneous measure of similarity nor do we make any assumption
about what agents will perceive as analogous. Instead we focus on a much
more instrumental view of decision-making and ask the question which games
do agents learn to discriminate.
To fix ideas think about Rubinstein bargaining games that only differ in the

discount factor, i.e. in the rate at which the pie shrinks in each of the games.
If agents are involved in many such games it is natural to think that they will
transfer their experience from some of the games to learn optimal actions in
others. They might also learn though that experience in some games is a bad
indicator for behavior in others and that transferring this experience will lead
to bad decisions. In other words agents can learn to distinguish such games. In
particular we consider the example of two players who interact repeatedly to
play two bargaining games. One of the games has discount factor zero (ultima-
tum game) and the other one a strictly positive discount factor. We will show
that even for vanishingly small reasoning costs there is an equilibrium in which
players see the two games as analogous and where equilibrium actions always
give a positive share of the pie to the responder. Learning across games in this
example leads to predictions that fundamentally differ from those of learning in
a single game. It constitutes a possible explanation for deviations from subgame
perfection sometimes observed in experiments. This conclusion is our starting
point to study the implications of partition learning for equilibrium selection in
two-player games. Then, for vanishingly small reasoning costs, we establish the
following results.

• Learning across games leads to approximate Nash equilibrium play in all
games.2

• Nash equilibria in weakly dominated strategies that are unstable to learn-
ing in a single game can be stabilized by learning across games.

1Obviously social norms and conventions will typically arise endogenously.
2We say ”approximately” Nash equilibrium because we consider a process of perturbed

reinforcement learning.
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• Strict Nash equilibria that are always stable to learning in a single game
can be destabilized by learning across games.

• Mixed Nash equilibria in 2× 2 coordination and anti-coordination games
that are unstable to learning in a single game can be stabilized with learn-
ing across games.

Furthermore we try to characterize equilibrium partitions and find that if
and only if the supports of the sets of Nash equilibria of any two games are
disjoint, agents will distinguish these games in equilibrium. The cardinality of
the action set thus provides an upper bound on the cardinality of equilibrium
partitions.
The paper is organized as follows: In Section 2 the model is presented. In

Section 3 we use stochastic approximation techniques to approximate the rein-
forcement learning process through a system of deterministic differential equa-
tions. In Section 4 we characterize equilibrium actions and show how learning
across games leads to interesting new predictions. In Section 5 we characterize
equilibrium partitions. In Section 6 we discuss related literature. Section 7
concludes. The proofs are relegated to an appendix.

2 The Model

Games and Partitions
There are 2 players indexed i = 1, 2 playing repeatedly a game randomly

drawn from the set Γ = {γ1,....γJ} according to probability measure fj >
0,∀γj ∈ Γ.3,4 Denote by P(Γ) the power set (or set of subsets) of Γ and P+(Γ)
the set P(Γ)−∅. For both players i = 1, 2 all γ ∈ Γ share the same action set
Ai. Players partition the set of all games into subsets of games they learn not
to discriminate or in other words to see as analogous. Denote G a partition of
Γ with card(G) = Z. An element g of G is called an analogy class. For a given
set of games Γ with cardinality J the number of possible analogy classes is thus
2J − 1 = card(P+(Γ)). The set of all possible partitions of Γ is given by G with
card(G) = L.
Reasoning Costs
There is a cost Ξ(Z, ξ) of holding partitions reflecting the agents’ limited

reasoning resources. Ξ(Z, ξ) is an increasing function, as partitions of higher
cardinality are more costly. We make the following assumptions on the reasoning
cost function.
(i) Zl R Zh ⇔ Ξ(Zl, ξ) R Ξ(Zh, ξ) (strictly increasing costs).
(ii) ∀ Z, ξ > 0: 0 < Ξ(Z, ξ) < ξ.
(iii) ξ <

¯̄
minπi(at, γt)

¯̄
.

3The model is readily extended to n -player games at the cost of additional notational
complexity. Many of our results will also hold for the n -player case.

4In the following I will - with some abuse of notation - denote both the random variable
and its realization by γ.
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Reasoning costs are strictly increasing and unimportant relative to the small-
est possible payoff minπi(at, γt) from any of the games. The case of small costs
is the most interesting one. With high reasoning costs new predictions arise
trivially.5

Notation
Before we proceed to describe the learning process let us point out the fol-

lowing notation.
1) Games are denoted γj ∈ Γ = {γ1, ..., γJ}.
2a) Actions for player 1 are denoted a1m ∈ A1 = {a11, ..., a1M1}.
2b) Actions for player 2 are denoted a2m ∈ A2 =

©
a21, ..., a

2
M2

ª
.

3) Analogy classes are denoted gk ∈ P+(Γ) = {g1, ..., gK}.
4) Partitions are denoted Gl ∈ G = {G1, ..., GL}.
Throughout the paper the generic index h will be used whenever we want to

distinguish between any game, action, analogy class or partition and a particular
one.
Learning
Players learn simultaneously about partitions and actions. The model of

learning employed is one of reinforcement (or sometimes called stimulus re-
sponse) learning based on Roth and Erev (1995).6 In these kind of models
partitions and actions that have led to good outcomes in the past are more
likely to be used in the future. More precisely players are endowed with propen-
sities αil to use partitions Gl and with attractions βimk towards using each of
their possible actions aim ∈ Ai. Unlike in standard reinforcement learning where
attractions are defined for a given game, in learning across games attractions
depend on the analogy class gk ∈ P+(Γ). If there are M actions an agent thus
holds M(2J − 1) attractions. Not all of them will be in use at all times. The
number of attractions an agent uses is given byMZl where Zl is the cardinality
of the partition he holds. For L possible partitions an agent has L propensities.
Players will choose partitions with probabilities qi proportional to propensities
and actions with probabilities pi proportional to attractions according to the
choice rules specified below.
Payoffs πi(at, γt) for player i at any time t depend on the game that is

played γt and the actions chosen by both players at. Payoffs are normalized to
be strictly positive and finite.7 After playing a game players will update their
propensities and attractions taking into account the payoff obtained.
State
At any point in time a player is thus completely characterized by his at-

tractions and propensities: (αit, βit) where αit = (αitl )Gl∈G are the propensities
for partitions and βti = ((βimk)am∈A)gk∈P+(Γ) are the attractions for actions

am ∈ A. The state of player i at time t is then (αit, βit). The state of the
population at the end of time t is given by the collection of the player’s states
(α1t, β1t, α2t, β2t).

5At the end of Section 5 this assumption will be discussed somewhat more.
6See also Erev and Roth (1998).
7This is a technical assumption commonly used in reinforcement models. (See among

others Börgers and Sarin (1997)).
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The Dynamic Process
The dynamic process unfolds as follows:
(i) First players choose a partition Gl with probability

qtl =
αtlP

Gh∈G α
t
h

. (1)

Denote Git the partition actually chosen by player i at time t.
(ii) A game γtj is drawn from Γ according to {fj}j∈Γ and classified into gitk

according to Git

(iii) Players choose action am with probability

ptmk =
βtmkP

ah∈A βthk
. (2)

Let ait be the action actually chosen by player i at time t.
(iv) Players observe the record of play wit = {Git, git, ait, πi(at, γt)}.
(v) Players update attractions according to the following rule:

β
i(t+1)
mk =

½
βitmk + πi(at, γt) + ε0 if gik, a

i
m ∈ wit

βitmk + ε0 otherwise
. (3)

The attraction corresponding to the action and analogy class just used is
reinforced with the payoffs obtained πi(at, γt). In addition every attraction is
reinforced by a small amount ε0 > 0.

8 In the analogy class just used ε0 is best
interpreted as noise or experimentation. As ε0 has a bigger effect on smaller β

0

s, it increases the probability that ”suboptimal” actions are chosen. In analogy
classes not used, it can be seen as reflecting forgetting. The intuition is simple.
Think of an analogy class that is never used. Because of ε0 all actions will
eventually have the same attractions and will be used with the same probability
in such an analogy class. ε0 in this case leads to a reversal to the uniform
distribution for action choices. That is why we say it reflects forgetting.9

(vi) Players update propensities as follows:

α
i(t+1)
l =

½
αitl +

¡
πi(at, γt)− Ξ(Zl)

¢
+ ε1 if Gl ∈ wit

αitl + ε1 if G /∈ wit (4)

where again ε1 > 0 is noise. The payoffs relevant for partition updating are
payoffs net of costs of holding partitions.10

8There are many alternative ways to model noise. One could see ε0 as the exspected
value of a random variable or allow noise to depend on choice frequencies without changing
the results qualitatively. See Fudenberg and Levine (1998), Hopkins (2002) or Hofbauer and
Hopkins (2005).

9Of course one could want to have ε differ in the two cases gk ∈ wti and gk /∈ wti . As the
main interest of the paper is not to study perturbed learning we chose to stick to a simple
formulation.
10Note that the algorithm is always well defined as

¡
πi(at, γt)− Ξ(Kl)

¢
> 0 given our

assumptions on the cost function. To allow for higher costs one could replace πi(at, γt)−Ξ(Kl)
by max{

¡
πi(at, γt)− Ξ(Kl)

¢
, 0} in (4).
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Note that agents need only very little information in this model. In particular
they do not need to know the structure of the games that are played, nor do
they need to make any distinction at all between the games that are seen as
analogous, nor calculate best response or even know that games are played at
all.
Flat Learning Curves and Step Size
Another characteristic property of this version of reinforcement learning is

that learning curves get flatter over time. Note that the denominators of (1)
and (2) (

P
Gl∈G α

it
l =: α

it and
P

am∈Ai β
it
mk =: β

it
k ) are increasing with time.

A payoff thus has a larger effect on action and partition choice probabilities
in early periods. Unexperienced agents will learn faster than agents that have
accumulated a lot of experience. Note also that the impact of noise or experimen-
tation decreases over time. The step sizes of the process are given by 1/βitk and
1/αit. The property of flat learning curves or decreasing step sizes is sometimes
called ”power law of practice” in psychology. It greatly simplifies the study of
the asymptotic behavior of the process as we will see in the next section.

3 Asymptotic Behavior of the Process

Denote xit = (pit, qit) the choice probabilities for actions and partitions of player
i where pit = ((pitmk)am∈A)gk∈P+(Γ) and qit = (qitl )Gl∈G . Let x

t = (x1t, x2t) ∈ X
be the collection of these vectors. The main interest lies in the evolution of
xt. X is the space in which these choice probabilities evolve. It has dimension
(2J − 1)(M1 +M2 − 2) + 2(L− 1), where M1 = cardA1 and M2 = cardA2.

11

3.1 Mean Dynamics

Because of the high dimensionality of the system, the mean dynamics will be
quite complicated expressions. We will first derive the mean motion in the
general case and then illustrate the behavior of the algorithm in the special case
of two 2× 2 games.
Action Choice and Observed Play
First note that there is a difference between action choices actually made by

the players and observed play in each game.
-Action choice is described by the probabilities pitk = (p

it
1k, ..., p

it
Mk) as defined

in (2). These probabilities depend on the analogy class gk of player i and
are defined over the set of analogy classes P+(Γ). They characterize a player’s
choice.
- Observed play in any game γj is described by the ”phenotypic” proba-

bilities σitj = (σit1j , ..., σ
it
Mj) defined over the set of games Γ. The σitj do not

11There are J games with 2J − 1 non-empty subsets or possible analogy classes. Action
choice probabilities are defined for each of the M1 +M2 actions of the two players depending
on the analogy classes. There are L possible partitions of the set Γ for each of the players.
Furthermore both action choice probabilities within each analogy class and partition choice
probabilities have to sum to one.
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characterize an agents choice but how an agent actually behaves in a given
game.
In other words the observed play probability σitmj captures the overall prob-

ability (across partitions) with which action m is chosen when the game is
γj . It is generated from action and partition choice probabilities as follows:

σitmj :=
P

Gl∈G q
it
l

P
gk∈Gl

pitkmIjk where Ijk takes the value 1 if γj ∈ gk and zero
otherwise.
Mean Motion
It is intuitively clear that the mean motion of action choice frequency pitmk

will depend on how much action am is reinforced in analogy class gk compared
to other actions. Denote Πitmk(x

t) the expected payoff of action m conditional
on visiting analogy class gk.

12 And let Sitmk(x
t) be the difference between the

expected payoffs of action am and all actions on average at xt conditional on
visiting analogy class gk.

Sitmk(x
t) = Πitmk(x

t)−
X

ah∈Ai

pithkΠ
it
hk(x

t). (5)

The mean motion of action choice probabilities will of course also depend on
how often the process visits analogy class gk. Let r

it
k :=

P
Gl∈G,γj∈Γ q

it
l fjIklIjk

- where Ikl = 1 if gk ∈ Gl and zero otherwise - be the total frequency with
which analogy class gk is used.

P
Gl∈G q

it
l Ikl is the probability that a partition

containing gk is used and
P

γj∈Γ fjIjk the (independent) probability that a game

contained in gk is played. We can state the following Lemma.

Lemma 1 The mean change in action choice probabilities pitmk of player i is
given byD

p
i(t+1)
mk − pitmk

E
=

1

βitk
[pitmkr

it
k S

it
mk(x

t)+ε0(1−Mpitmk)]+O

µ
(
1

βitk
)2
¶
. (6)

Proof. Appendix A.
The mean change in action choice probabilities in analogy class gk is deter-

mined by the payoff in gk of the action in question (am) relative to the average
payoff of all actions (Sitmk(x

t)) scaled by current choice probabilities pitmkr
it
k . Sim-

ilar laws of motion are characteristic of many reinforcement models. The second
term in brackets is a noise term. Noise tends to drive action choice probabilities
towards the interior of the phase space. The step sizes 1

βitk
determine the speed

of learning.
Partition choice probabilities are similarly determined by the relative payoff

obtained when using the different partitions Sitl (x
t) = Πitl (x

t)−
P

Gh∈G q
it
hΠ

it
h (x

t)

where Πitl (x
t) is the expected payoff net of reasoning costs obtained when using

partition Gl. We can state Lemma 2:

12To write down Πit
mk(x

t) explicitly yields complicated expressions, which are stated in
Appendix A.
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Lemma 2 The mean change in partition choice probabilities qitl of player i is
given byD

q
i(t+1)
l − qitl

E
=

1

αit
[qitl S

it
l (x

t) + ε1(1− Lqitl )] +O

µ
(
1

αit
)2
¶
. (7)

Proof. Appendix A.
Let us illustrate the expressions for mean motion (6)-(7) for the case of two

2× 2 games.

Example 1 (Two 2× 2 Games)

Let Γ consist of two games γ1 and γ2 drawn from the class of symmetric 2×2
games. Denote A = {H,L} the action set and let the payoff matrices of
the two games are given by

γ1 =

µ
a1 a2
a3 a4

¶
, γ2 =

µ
b1 b2
b3 b4

¶
(8)

where the first line gives the row player’s payoffs associated with action H
and the second line those associated with action L. There are two partitions
GC = {γ1, γ2} and GF = {{γ1}, {γ2}} and three analogy classes g1 =
{γ1}, g2 = {γ2} and g3 = {γ1, γ2}. The expected payoff of actions H
and L conditional on visiting analogy class g1 is given by Π

it
H1(x

t) =

σ
(−i)t
H1 a1 + (1 − σ

(−i)t
H1 )a2 and Π

it
L1(x

t) = σ
(−i)t
L1 a3 + (1 − σ

(−i)t
L1 )a4. Note

that SitH1(x
t) = (1−pitH1)

£
ΠitH1(x

t)−ΠitL1(xt)
¤
. Substituting into (6) yields

the equations for mean motion:D
p
i(t+1)
H1 − pitH1

E
(9)

=
1

βit1

£
rit1 p

it
H1(1− pitH1)

£
ΠitH1(x

t)−ΠitL1(xt)
¤
+ ε0(1− 2pitH1)

¤
+O (·)

where rit1 = (1 − qi1)f1 is given by the product of the choice frequency
of the fine partition and the frequency of the first game occurring. For
analogy classes g2 and g3 this can be determined analogously. How does
the analogous expression for partitions look like ? The expected net payoff
from using the coarse partition GC is given by ΠitC(x

t) = pitH3Π
it
H3(x

t) +
(1−pitH3)ΠitL3(xt)−Ξ(1). The expected net payoff of using the fine partition
is given by ΠitF (x

t) =
P

k=1,2 p
it
HkΠ

it
Hk(x

t) + (1 − pitHk)Π
it
Lk(x

t) − Ξ(2).
Relative reinforcement for the coarse partition is given by SitC(x

t) = (1−
q1)[Π

it
C(x

t) − ΠitF (xt)] and the equation for mean motion can be obtained
by substituting into (7).

3.2 Stochastic Approximation

Stochastic Approximation is a way of analyzing stochastic processes by exploring
the behavior of associated deterministic systems. A stochastic algorithm like the
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one described in (1)-(4) can under certain conditions be approximated through
a system of deterministic differential equations.13 One of the conditions that
make such an approach particularly suitable is the property of decreasing step

sizes (
P∞

t=1

¡
1
αit

¢2
< ∞ and

P∞
t=1

³
1
βitk

´2
< ∞,∀i = 1, 2,∀gk ∈ P+(Γ)). As

this property is satisfied by reinforcement models obeying the ”power law of
practice”, stochastic approximation is a convenient and often employed way
of analyzing reinforcement models. There is one small complication though.
While the vectors xit = (pit, qit) are allowed to take values in Rd the step size
is typically taken to be a scalar in standard models. Note though that here
there are 2J+1 different step-sizes that are endogenously determined.14 One
possibility to deal with this problem is to introduce additional parameters that
take account of the relative speed of learning. To reduce notational complexity
though we focus on a simpler way of dealing with this problem that consists in
normalizing the process. 15

Normalization Assume that at each point in time t − 1, ∀i = 1, 2 after at-
tractions and propensities are updated according to (3) and (4), every
attraction and propensity is multiplied by a factor such that αi(t) = µ+ tθ
and βitk = µ+ tθ for some constant θ where µ = α0 = β0k (the sum of ini-
tial propensities and attractions) - but leaving xt = (pt, qt) unchanged.16

Then there is a unique step size of order t−1. Call the resulting process
the normalized process.

We can state the following Proposition.

Proposition 1 The normalized stochastic learning process can be characterized
by the following system of ODE’s:

·
p
i

mk = pimkr
i
kS

i
mk(x) + ε0(1−Mpimk) (10)

·
q
i

l = qilS
i
l (x) + ε1(1− Lqil). (11)

∀am ∈ Ai, gk ∈ P+(Γ), Gl ∈ G, i = 1, 2.
13See the textbooks of Kuschner and Lin (2003) or Benveniste, Metevier and Priouret (1990)

on stochastic approximation theory. The relevant conditions are listed in Appendix A.
14For each of the two players there are (2J − 1) step sizes corresponding to attractions

for actions in each of the analogy classes and 1 step size corresponding to propensities for
partitions.
15See Hopkins (2002), Laslier, Topol and Walliser (2001) or an earlier version of this paper

for approaches not based on normalization. Introducing additional parameters has the advan-
tage that the relative speed of learning can be kept track of explicitly, but also complicates
notation a lot. As none of our results hinges on the speeds of learning we decided for this sim-
pler formulation. See Ianni (2002), Börgers and Sarin (2000) or Posch (1997) for approaches
based on normalization.
16The factor needed is given by (µ + tθ)/(αi(t−1) + πi(t−1) + Lε1) for all αil and (µ +

tθ)/(β
i(t−1)
k + πi(t−1) +Mε0) for all β

i
mk. If one thinks of the process as an urn model, µ is

the initial number of balls in each urn.
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Proof. Appendix A.
The evolution of the choice probabilities xit = (pit, qit) is closely related

to the behavior of the deterministic system (10)-(11).17 More precisely let us
denote the vector field associated with the system (10)-(11) by F (x(t)) and the

solution trajectory of
·
x = F (x(t)) by x(t). Then with probability increasingly

close to 1 as t → ∞ the process {xt}t follows a solution trajectory x(t) of the
system F (x(t)).18 Furthermore if x∗ is an unstable restpoint or not a restpoint
of F (x(t)), then Pr{limt→∞ xt = x∗} = 0. If x∗ is an asymptotically stable
equilibrium point of F (x(t)), then Pr{limt→∞ xt = x∗} > 0.19 In the following
analysis we will thus focus on the asymptotically stable equilibria of (10)-(11).

4 Equilibrium Actions

Before starting the analysis we make the following assumption on noise:
(i) ε0 → 0 and (ii) 0 < ε0/ε1 <∞.
Noise is assumed to be vanishingly small and of the same order for both

action and partition choices. (ii) ensures that there are no partitions whose
choice probabilities converge faster to zero than noise ε0. If this were the case
in analogy classes that only occur with these partitions noise would dominate
and a very wide range of outcomes would be trivially sustainable.
The first result we would now like to present establishes a close relation be-

tween the asymptotically stable equilibria x∗ = (p∗, q∗) of F (x(t)) and the set
of Nash equilibria ENash(γ) in any game γ. Denote E(ε0) the set of asymptoti-
cally stable equilibria of the system and the limit set lim�0→0E(ε0) =: E

∗. The
following proposition can be stated.

Proposition 2 If ξ → 0 any asymptotically stable equilibrium x∗ ∈ E∗ must
induce phenotypical behavior that is approximately Nash in every game
γj ∈ Γ, i.e. limε0→0 (σ

1
j(ε0), σ

2
j(ε0)) ∈ ENash(γj),∀γj ∈ Γ.

Proof. Appendix B.
Whenever reasoning costs are small enough equilibrium action and partition

choices will be such that approximately a Nash equilibrium is played in all
games. Thus - unless reasoning costs are significant - learning across games
does not lead to deviations from this basic prediction of game theory.20

17Equations (10)-(11) constitute some particular form of perturbed replicator dynamics.
The relation between perturbed reinforcement learning and replicator dynamics has been
analyzed by Hopkins (2002). Börgers and Sarin (1997), Ianni (2000) or Laslier, Topol and
Walliser (2001) have examined the relation between unperturbed reinforcement learning and
replicator dynamics.
18Kuschner and Lin (2003), Benveniste, Métivier and Priouret (1987).
19See Benäım and Hirsch (1999), Benäım and Weibull (2003), Benveniste, Métivier and

Priouret (1987), Kushner and Lin (2003) or Pemantle (1990).
20Note though that if reasoning costs were high or partitions exogenous many deviations

from Nash equilibrium can be observed. Endogenizing partition choice thus restricts the set
of possible outcomes considerably.
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Naturally now the question arises how learning across games selects between
(possibly) many Nash equilibria ? We will see in the following subsections that
learning across games can have more ”bite” than one would expect and often
leads to a very strong and clear-cut selection. Furthermore this selection can
work in different directions than it does with learning in a single game. Learning
across games thus leads to new and interesting predictions. In particular we will
see that:

• Nash equilibria in weakly dominated strategies that are unstable to learn-
ing in a single game can be asymptotically stable to learning across games.
This is particularly interesting in extensive form games with non-generic
strategic form representations. Weakly dominated strategies in the strate-
gic form representation of these games typically correspond to non sub-
game perfect behavior in the extensive form.

• Learning across games can stabilize mixed strategy equilibria in Coordi-
nation and Anti-Coordination Games. These equilibria are unstable to
learning in a single game.

• Learning across games can sometimes destabilize strict Nash equilibria.
These equilibria are always stable to learning in a single game.

We will begin each of the following subsections with an intuitive example
that illustrates our main points and then proceed to state the general results.

4.1 Nash Equilibria in Weakly Dominated Strategies

The example we will use in this subsection are two bargaining games - one where
all the pie is gone after the first offer (i.e. an ultimatum game) and one with a
strictly positive discount factor. Afterwards we will generalize the insights from
this example and identify a class of situations in which learning across games
can stabilize equilibria in weakly dominated strategies.

4.1.1 Bargaining

The Rubinstein model describes a process of bargaining between two individuals,
1 and 2, who have to decide how to divide a pie of size 1. The bargaining process
is modeled as a sequence of alternating offers, responses and counteroffers at
discrete times. Assume without loss of generality that player 1 proposes first a
certain division of the pie (a, 1 − a) where a denotes the share of the pie she
wants to keep for herself. Player 2 can either accept or reject the offer and
make a counter-offer. Then it is player 1’s turn to accept or reject and make
a counter-offer. The process continues until an agreement is reached. The size
of the pie though shrinks over time at rate δ. It is thus preferable to reach an
agreement as early as possible. At each decision node of the game κ a strategy
of a player is characterized by two numbers (aκ, bκ) where aκ is the proposal
(the share of pie he wants to keep) and bκ the acceptance threshold. Let aiκ
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and biκ be from the finite grid A = {0, 1M , 2M , ..M−1M , 1}.21 In the following let
us focus on stationary strategies, i.e. strategies that do not depend on decision
node κ. The process is illustrated in Figure 1.22

1
2

(a,1-a)

Yes

No

(a,1-a)

2 (a,1-a)

1
Yes

No

........

(da,d(1-a))

Figure 1: Rubinstein Bargaining

Consider now two Rubinstein games that differ only in the discount factor
δ. At each point in time one of the games is randomly drawn and classified by
the agents into an analogy class according to their partition choice probabilities.
Then players choose an action according to their action choice probabilities and
receive the (discounted) payoffs. Finally attractions and partitions are updated.
In particular let us consider the extreme case where one game γ1 has discount

factor δ1 → 1, and the other game γ2 has discount factor δ2 = 0. In γ2 the
whole pie is gone if the first offer is not accepted. γ2 thus is essentially an
Ultimatum Game. Even then both games have many Nash equilibria. There is
a unique subgame perfect Nash equilibrium though in game γ1 which involves
ai = bi = 1/2, i.e. an equal split of the pie with an agreement reached in
the first round. In γ2, the ultimatum game, there are two SPNE involving
either player 1 taking the whole pie and player 2 accepting all offers or player
1 proposing M−1

M for himself and player 2 accepting all offers of at least 1
M .23

There are two possible partitions: A coarse partition in which players see the two
games as analogous and a fine partition in which the games are distinguished.
Denote the three analogy classes gk with k ∈ {R,U,C}, corresponding to the
Rubinstein game (with δ → 1), the Ultimatum game and the coarse partition.
Whenever there is no reasoning cost (Ξ(Z, ξ) = 0,∀Z ∈ N) all asymptotically
stable equilibria involve the fine partition and play of a subgame perfect Nash
equilibrium in each of the games. For strictly positive reasoning costs (even if
vanishingly small (ξ → 0)) things change. Remembering that f1 denotes the
frequency with which game γ1 occurs, we can state the following result.

21Assume that the grid A is fine enough s.th. it contains all equilibrium strategies described
below. This assumption is a pure technicality facilitating the description of equilibria.
22In the graph the discount rate δ is denoted by d.
23This additional SPNE in the ultimatum game arises because of the discreteness of the

action set. As M →∞, the two SPNE coincide.
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Claim 1 ∀ξ > 0 there exists an asymptotically stable equilibrium involving both
players holding the coarsest partition G = {γ1, γ2}, player 1 demanding
a1∗ = 1

1+f1
and player 2 accepting all offers of at least b2∗ = f1

1+f1
with

asymptotic probability 1.

Proof. Appendix B.
In this equilibrium players deviate from subgame perfection in both games.

The equilibrium played is close to the SPNE in the Rubinstein game whenever
this game is played with high probability and it is close to the SPNE of the
Ultimatum Game whenever the latter is played very often. As the payoffs at
stake are the same in both games agents will tend to play the more frequent
game correctly (in the sense that equilibrium actions are closer to subgame per-
fection). Note though that the equilibrium from claim 1 is not unique. There
is also an equilibrium in which the games are distinguished and the subgame
perfect Nash equilibrium played in each game. The intuition for the result is as
follows. Note that the equilibrium in which both games are seen as analogous
induces approximate Nash play in both games and thus asymptotically there are
no strict incentives to deviate from this equilibrium. A vanishingly small reason-
ing cost suffices to stabilize the equilibrium with the coarse partition provided
that it is more important than noise. Whereas for (perturbed reinforcement)
learning in a single game, asymptotic stability would select the SPNE in the
ultimatum game, when there is learning across games deviations from subgame
perfection can be observed. In fact there are many experiments that show that
subjects often do not behave in accordance with subgame perfection.24 If one
thinks that the inclinations of experimental subjects to choose certain actions
in the experiment have been shaped by a long process of reinforcement learning
outside the laboratory, learning across games can provide an explanation for
why deviations from subgame perfection are sometimes observed.

4.1.2 Equilibria in weakly dominated strategies

Note that the (non subgame perfect) equilibria from claim 1 correspond to Nash
equilibria in weakly dominated strategies in the strategic form representation of
the bargaining games. These equilibria are unstable to perturbed reinforcement
learning in a single game. In fact whenever cardΓ = 1, i.e. whenever there
is only one game, learning across games also predicts the instability of such
equilibria. Whenever there is more than one game though learning across games
can stabilize such equilibria. A case in which this is always true is whenever
there are two games and the equilibrium in question is strict in the second game.

Proposition 3 Let bσ1 = (bσ11, bσ21) be a pure strategy Nash equilibrium in weakly
dominated strategies in game γ1 ∈ Γ. Then ∀ξ > 0 :

(i) If cardΓ = 1 (learning in a single game), then bσ1 is not phenotypically
induced at any asymptotically stable equilibrium x∗ ∈ E∗.

24See Binmore et al. (2002) and the references contained therein.
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(ii) If cardΓ > 1 this need not be true. Specifically if cardΓ = 2 and bσ2 = bσ1
is a strict Nash equilibrium in game γ2 6= γ1, then there exists x∗ ∈ E∗

which induces bσ1 in game γ1.

Proof. Appendix B.
Interesting implications of Proposition 3 concern extensive form games. The

strategic form representations of these games are in general non generic and
there is a relation between the concepts of weak dominance in the strategic
form and subgame perfection in the extensive form. Generically in finite exten-
sive form games with perfect information any equilibrium in weakly dominated
strategies of the strategic form fails to be subgame perfect in the extensive
form.25 For example in the ultimatum game the (weakly dominated) equilibria
in which the proposer offers a higher amount then 1

M to the responder do not
satisfy the criterion of subgame perfection in the extensive form. As is shown in
part (i) of Proposition 3, these equilibria are not selected for learning in a single
game. We have already seen above though that such equilibria can be stable to
learning across games. In fact the bargaining application also shows that the
condition that bσ1 be a strict equilibrium in the second game is not necessary to
stabilize such an equilibrium.
Next let us look at another class of situations where learning across games

leads to new predictions.

4.2 Stabilization of Mixed Strategy Equilibria and Desta-
bilization of Strict Nash Equilibria in Coordination
Games

Interesting predictions of learning across games can also arise if Γ contains games
with mixed strategy equilibria. In the following let it be a convention that
whenever we say coordination games we refer to both Coordination games in
the narrow sense and Anti-Coordination games. Again we start this subsection
with an intuitive example before we move on to more general results.

4.2.1 2× 2 games with mixed strategy equilibria

Consider the following payoff matrices:

M =

µ
2 1
1 2

¶
,M

0
=

µ
1 2
2 1

¶
.

A set of games Γ1 can be created by choosing either matrixM orM
0
for any

player. Three strategic situations can arise: If both players have matrix M the
resulting game γ1 is one of pure Coordination.

26 If both players have matrix

25See chapter 6 in Osborne and Rubinstein (1994).
26A (pure) Coordination Game has two pure strategy Nash equilibria in which both agents

choose the same action and a mixed strategy equilibrium.
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M
0
the resulting game γ2 is an Anti-Coordination Game.

27 And if player 1
has matrix M and player 2 has matrix M

0
the resulting game γ3 is a game of

Conflict, in which there is a unique equilibrium in mixed strategies (where both
agents choose both actions with equal probability). These three games span the
class of 2 × 2 games with a mixed strategy equilibrium. There are 5 possible
partitions and 23 − 1 = 7 possible analogy classes.
For learning in a single game the prediction in a model of perturbed reinforce-

ment learning is that agents coordinate on one of the pure strategy equilibria in
games γ1 and γ2 and play the mixed strategy equilibrium in game γ3.

28 Simul-
taneous learning of actions and partitions leads to the same prediction whenever
there are no reasoning costs (Ξ(Z, ξ) = 0,∀Z ∈ N). For vanishingly small costs
(ξ → 0) things already change. Denote the probability with which agent i
chooses the first action in analogy class gk by pik and denote gc = {γ1, γ2, γ3}
the analogy class corresponding to the coarsest partition. The following result
can be stated:

Claim 2 Assume fj < 1/2,∀j = 1, 2. Then ∀ξ > 0 the unique asymptoti-
cally stable equilibrium for Γ1 involves both players holding the coarsest
partition GC = {γ1, γ2, γ3} with asymptotic probability 1 and choosing
pi∗c = 1/2,∀i = 1, 2.

Proof. Appendix B.
Note that both pure strategies in the Coordination Games are a best re-

sponse to the unique equilibrium in the Conflict Game. A small reasoning cost
suffices to induce a tendency for the players to see all three games as analogous.
The equilibrium with the coarse partition is stable whenever none of the Coor-
dination Games is too important relative to the other two games. The reason
is that if and only if fj < 1/2 for j = 1, 2 the incentives of an agent who sees
the three games as ”one” correspond to those of a conflict game. Consequently,
playing the mixed equilibrium with the coarse partition is asymptotically stable
under this condition.
The example teaches us two things: on the one hand the presence of the con-

flict game destabilizes the otherwise asymptotically stable pure strategy equilib-
ria in the Coordination Games (note that the equilibrium in claim 2 is unique).
On the other hand the mixed equilibria in the Coordination games that are
unstable to perturbed reinforcement learning in a single game, can be stabilized
by learning across games.

4.2.2 Destabilization of strict Nash equilibria in Coordination Games

It is a well known result that strict Nash equilibria are asymptotically stable to
many learning dynamics for a single game. Learning across games can sometimes
destabilize strict Nash equilibria in Coordination and Anti-Coordination games

27An Anti-Coordination Game has two pure strategy Nash equilibria in which the agents
choose different actions and a mixed strategy equilibrium.
28It is shown in Appendix B that the mixed strategy equilibrium in the conflict game is

indeed asymptotically stable under perturbed reinforcement learning.
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as we have seen in the previous example. This point is made more precise and
general in the following proposition.

Proposition 4 Let bσ1 = (bσ11, bσ21) be a strict Nash equilibrium in γ1 ∈ Γ . If
γ1 belongs to the class of 2× 2 coordination games, then ∀ξ > 0 :

(i) If cardΓ = 1 (learning in a single game), then there exists x∗ ∈ E∗ that
phenotypically induces bσ1.

(ii) If cardΓ > 1 this need not be true. Specifically let cardΓ = 2 and let γ2
have a mixed equilibrium stable to learning in a single game. Then there
exists bf > 0 s.th. if f1/f2 < bf the strict Nash equilibrium bσ1 is not
phenotypically induced at any asymptotically stable equilibrium x∗ ∈ E∗.

Proof. Appendix B.
The first part of this proposition shows that strict Nash equilibria are al-

ways stable to the perturbed reinforcement dynamics, if learning occurs in a
single game. In fact it is a standard result for learning in a single game that
strict Nash equilibria are always stable with respect to any deterministic payoff
monotone dynamics.29 If there are no reasoning costs (Ξ(Z, ξ) = 0,∀Z ∈ N) any
strict Nash equilibrium can be induced in an asymptotically stable equilibrium
even if there are many games. This is non surprising given that in this case the
finest partition has the same reasoning cost, namely zero, as any other partition.
These predictions change though once we have more than one game and allow
for positive (even though arbitrarily small) reasoning costs. Specifically if the
strict Nash equilibrium from some game is in the support of the unique stable
equilibrium in a different game and furthermore the latter is a mixed strategy
equilibrium, the strict equilibrium will be destabilized. The reason is that a)
the mixed equilibrium will be observed in the second game in any asymptoti-
cally stable equilibrium as we know from Proposition 2 and b) the strict Nash
equilibrium strategies are best responses to the mixed equilibrium. Even for a
vanishingly small reasoning cost (provided that it is more important then noise)
there will thus be tendency for agents to see the games as analogous and to save
reasoning costs. Whenever the second game is sufficiently important learning
across games stabilizes an equilibrium in which the strict Nash equilibrium is
not played in game γ1.

4.2.3 Stabilization of mixed Nash equilibria in Coordination Games

Similarly we have seen that mixed equilibria in 2 × 2 Coordination or Anti-
Coordination games - that are unstable to learning in a single game - can be
stabilized by learning across games.

29See for example proposition 5.11 in Weibull (1995).
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Proposition 5 Let bσ1 = (bσ11, bσ21) be a mixed strategy Nash equilibrium in γ1 ∈
Γ . If γ1 belongs to the class of 2× 2 coordination games, then ∀ξ > 0 :

(i) If cardΓ = 1 (learning in a single game), then bσ1 is not phenotypically
induced at any asymptotically stable equilibrium x∗ ∈ E∗.

(ii) If cardΓ > 1 this need not be true. Specifically let cardΓ = 2 and let γ2
has a mixed equilibrium bσ2 = bσ1 stable to learning in a single game.Then
whenever f1/f2 > bf, there exists x∗ ∈ E∗ which induces bσ1 in game γ1.

Proof. Appendix B.
There has been a lot of research effort to investigate the stability properties

of mixed equilibria. A very robust result from this literature is the instability
of mixed equilibria in 2× 2 pure Coordination and Anti-Coordination games in
multipopulation models for very broad classes of dynamics.30 Learning across
games though can stabilize mixed equilibria in these games. Given the inherent
instability of these equilibria for learning in a single game, it seems a reasonable
conjecture that learning across games can stabilize mixed equilibria also in a far
larger class of situations.
We have seen that learning across games often leads to interesting and new

predictions for action choices. In the next section we will try to characterize the
partition choices of agents.

5 Equilibrium Partitions

What partitions do agents choose in equilibrium ? The preceding sections sug-
gest that the answer to this question will depend on a) reasoning costs and b)
the degree of ”overlap” between the Nash equilibria of the different games con-
tained in Γ. Let us first continue with the assumption that reasoning costs are
small and investigate the second conjecture and then shortly discuss reasoning
costs.
Denote SNash(γj) the support of the set of Nash equilibria ENash(γj) of

a game γj . Formally SNash(γj) = {aim|∃σij ∈ ENash(γj) with σimj > 0}. The
following proposition shows that if and only if the supports of the sets of Nash
equilibria of the games in Γ are disjoint the finest partition will always emerge
(unless reasoning costs are high).

Proposition 6 If ξ → 0 the finest partition GF will be chosen with asymptotic
probability q∗F = 1 in all asymptotically stable equilibria if and only if
SNash(γj) ∩ SNash(γh) = ∅, ∀γj 6= γh ∈ Γ. Furthermore in this case the
conclusions of part (i) of Propositions 3, 4 and 5 hold true in each of the
games.

30For learning in a single game results on the stability of mixed equilibria in multipopulation
games are typically negative. Posch (1997) has analyzed stability properties of mixed equilibria
in 2×2 games for unperturbed reinforcement learning. See also the textbooks by Weibull 1995,
Vega-Redondo (2000) and Fudenberg and Levine (1998) or Hofbauer and Hopkins (2005) and
Ellison and Fudenberg (2000) for recent research on this topic.
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Proof. Appendix B.
The intuition is very simple: If the supports of the sets of Nash equilibria

of two games are disjoint then seeing them as analogous necessarily involves
choosing an action that is not a best response to the opponent’s play for one of
the players in one of the games. This player will gain from distinguishing these
games. The following proposition establishes an upper bound on the cardinality
of the partitions agents will use in equilibrium.

Proposition 7 ∀ξ > 0,∀i = 1, 2 any partition Gl ∈ supp qi∗ has to satisfy
cardGl ≤ cardAi.

Proof. Appendix B.
Equilibrium partitions have to be of smaller cardinality than a player’s action

set. The intuition behind the result is simple. If an equilibrium partition has
higher cardinality then the action set, it will inevitably be the case that there
exists an analogy class in which a best response is played to the opponent’s play
in all games of a different analogy class. Merging these analogy class will lead
to asymptotically no payoff loss but save reasoning costs.
Reasoning Costs
Until now we have only considered the case of no or very small reasoning

costs. Anything else would have been an arbitrary choice. We have seen that
players will play approximately Nash equilibrium in all games. Obviously when
reasoning costs are significant equilibrium outcomes can be quite different from
Nash equilibria in some games. This raises the question of whether it is always
optimal for an agent to have small reasoning costs (and thus to be able to
hold partitions of high cardinality). If this were the case one could argue on
evolutionary grounds that reasoning costs will most likely tend to be quite small.
The following simple example shows that having smaller reasoning costs need
not always lead to better outcomes for a player. Consider two games γ1 and γ2
with the following payoff matrices.

γ1 =

⎛⎝1, 1 4, 3 3, 1
1, 3 5, 1 1, 2
2, 4 2, 1 1, 1

⎞⎠ , γ2 =

⎛⎝2, 1 3, 2 3, 3
1, 1 2, 4 2, 2
2, 1 1, 2 1, 3

⎞⎠
Assume both games occur with equal probability (f1 = f2 = 1/2). If rea-

soning costs are small both agents will use the fine partition in the unique
asymptotically stable equilibrium and play the unique strict Nash equilibrium
in each of the games. This leads to an outcome of (2, 4) in game γ1 and (3, 3)
in game γ2.What would happen if player 1 had very high reasoning costs ? For
high enough reasoning costs he would see both games as analogous.31 It can be
checked that the unique equilibrium in this case leads to an outcome of (4, 3) in
game γ1 and (3, 3) in γ2. Player 1 is thus better off (both in terms of absolute
and relative payoffs) if he has high reasoning costs. This example shows that

31Of course we have defined the process only for vanishingly small reasoning costs. Extend-
ing to general costs is no problem though. See footnote 9.
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it is a priori not obvious in which direction evolutionary pressures will work on
reasoning costs. To study this issue should be the object of further research.

6 Related Literature

The idea that similarities or analogies play an important role for economic de-
cision making has long been present in the literature.32 Most approaches have
been axiomatic. Rubinstein (1988) gives an explanation of the Allais-paradox
based on agents using similarity criteria in their decisions. Also Gilboa and
Schmeidler (1995) argue that agents reason by drawing analogies to similar sit-
uations in the past. They derive representation theorems for an axiomatization
of such a decision rule.33 Jehiel (2005) proposes a concept of analogy-based rea-
soning. Seeing two games as analogous in his approach means having the same
expectations about the opponent’s behavior. Still agents act as expected util-
ity maximizers in each game and can thus choose differently in games that are
seen as analogous. All these approaches are static and partitions or similarity
measures are exogenous.
LiCalzi (1995) studies a fictitious play like learning process in which agents

decide on the basis of past experience in similar games. He is able to demonstrate
almost sure convergence of such an algorithm in 2× 2 games. Again similarity
is exogenous in his model. Steiner and Stewart (2006) study similarity learning
in global games using the similarity concept from Case-based decision theory.
Samuelson (2001) proposes an approach based on automaton theory in which

agents group together games to reduce the number of (costly) states of au-
tomata. He finds that if agents - unlike in our paper - play in both player roles
ultimatum games can be grouped together with bargaining games into a single
state in order to save on complexity costs of automata with more states. The
logic behind his result is quite different though from the logic behind claim 1
in this paper. While in his paper the existence of a tournament ensures high
marginal costs for using additional states on the bargaining games, here the
result holds also for vanishingly small marginal reasoning costs provided they
are more important then noise.34

There is obviously also a relation to the literature on reinforcement learning.
Conceptually related are especially Roth and Erev (1995) and Erev and Roth
(1998) from which the basic reinforcement model is taken. Hopkins (2002)
analyzes their basic model using stochastic approximation techniques. Also
related are Ianni (2000), Börgers and Sarin (1997 and 2000) and Laslier, Topol
and Walliser (2001) who rely on stochastic approximation techniques to analyze
reinforcement models.35

32See Luce (1955) for early research on similarity in economics and Quine (1969) for a
philosophical view on similarity.
33In Gilboa and Schmeidler (1996) they show that there is some conceptual relation between

case-based optimization and the idea of satisficing on which reinforcement models are based.
34Other papers in the automaton tradition investigating equilibria in the presence of com-

plexity costs are Abreu and Rubinstein (1988), Eliaz (2003) or Spiegler (2004).
35See also Karandikar et al. (1996), Posch (1997) or Hopkins (2005) for related learning
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7 Conclusions

In this paper we have presented and analyzed a learning model in which deci-
sionmakers learn simultaneously about actions and partitions of a set of games.
We find that in equilibrium agents will partition the set of games according
to strategic compatibility of the games. If the sets of Nash equilibria of any
two games are disjoint agents will always distinguish these games in equilib-
rium. Whenever this is not the case though, interesting situations arise. In
particular learning across games can destabilize strict Nash equilibria, stabilize
mixed equilibria in 2 × 2 coordination and anti-coordination games and Nash
equilibria in weakly dominated strategies. Furthermore learning across games
can explain deviations from subgame perfection that are sometimes observed
in experiments. Another recurrent observation in experiments is the existence
of framing effects. A possible explanation for this phenomenon could be that
different frames trigger different analogies. We strongly believe that analogy
thinking and other instances of bounded rationality can constitute an explana-
tion for many more experimental results. This line of research seems thus very
worthwhile pursuing.
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A Appendix: Proofs from Section 3

Proof of Lemma 1:
Proof. In the proof of Lemma 1 and 2 we will index player 2’s actions by n
instead of m to avoid confusion. Focus without loss of generality on player 1. It
follows from (2) and (3) that the change in action choice frequency for action
am in analogy class gk is given by

p
1(t+1)
mk − p1tmk

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β1tmk+π

1(at,γt)+ε0P
ah∈A1

β1thk+π
1(at,γt)+Mε0

− β1tmkP
ah∈A1

β1thk
if gk, am ∈ wit

β1tmk+ε0P
ah∈A1

β1thk+π
1(at,γt)+Mε0

− β1tmkP
ah∈A1

β1thk

if gk ∈ wit

am /∈ wit

β1tmk+ε0P
ah∈A1

β1thk+Mε0
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ah∈A1
β1thk

if gk /∈ wit

(12)

or equivalently

p
1(t+1)
mk − p1tmk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1−p1tmk)π

1(at,γt)+ε0(1−Mp1tmk)P
ah∈A1

β1thk+π
1(at,γt)+Mε0
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am /∈ wit
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The first event has the following probabilityP
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where Ijk(Ikl)

= 1 if γj ∈ gk (gk ∈ Gl) and zero otherwise.

Note that
³P

Gl∈G q
2t
l

P
gk∈Gl

p2tnkIjk

´
= σ2tnj . The second event has proba-

bilityP
γj∈Γ fj Ijk

X
Gl∈G

q1tl Ikl
P

ah∈A p1thk(1 − δhm)
P

an∈A2
σ2tnj where δhm is the

Kronecker delta.36

The third event has probability
P

γj∈Γ fj(1− Ijk) + fjIjk
X
Gl∈G

q1tl (1− Ikl).

Summing over all possible events (weighted with the probabilities) gives the
mean change:D

p
1(t+1)
mk − p1tmk

E
=
X
γj∈gk

fj
X
Gl∈G

q1tl Ikl"
p1tmk

X
an∈A2

(1− p1tmk)π
1(a1m, a

2
n, γj)σ

2t
nj + ε0(1−Mp1tmk)P

ah∈A1
β1thk + π1(a1m, a

2
n, γj) +Mε0

+
X

aη 6=am∈A1

p1tηk
X

an∈A2

−p1tmkπ
1(a1η, a

2
n, γj)σ

2t
nj + ε0(1−Mp1tmk)P

ah∈A1
β1thk + π1(a1h, a

2
n, γj) +Mε0

⎤⎦
+

⎛⎝1− X
γj∈gk

fj
X
Gl∈G

q1tl Ikl

⎞⎠ ε0(1−Mp1tmk)P
ah∈A1

β1thk +Mε0
(14)

Denoting β1tk =
P

ah∈A1
β1thk and remembering that

P
γj∈Γ fj Ijk

X
Gl∈G

q1tl Ikl =

r1tk this can be rewritten concisely as follows:D
p
1(t+1)
mk − p1tmk

E
=

1

β1tk
[p1tmkr

1t
k S

1t
mk(·) + ε0(1−Mp1tmk)] +O

µ
(
1

β1tk
)2
¶

(15)

To see that the difference between the first term in (15) and expression (14) is

36δhm = 1 if h = m and δhm = 0 otherwise.
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indeed of order ( 1
β1tk
)2 note that this difference can be written

p1tmkr
1t
k S

1t
mk(·) + ε0(1−Mp1tmk)

β1tk
−
D
p
1(t+1)
mk − p1tmk

E
=

p1tmkr
1t
k S

1t
mk + ε0(1−Mp1tmk)− p1tmkr

1t
k S

1t
mk(1 +

π1(·)+Mε0
β1tk

)−1

β1tk

−
ε0(1−Mp1tmk)(1 +

Mε0
β1tk
)−1

β1tk

= p1tmkr
1t
k S

1t
mk

(π1(·) +Mε0)

β1tk (β
1t
k + π1(·) +Mε0)

+ ε0(1−Mp1tmk)
Mε0

β1tk (β
1t
k +Mε0)

.

Proof of Lemma 2:
Proof. The changes in partition choice probabilities are given by

q
1(t+1)
l − q1tl =

⎧⎪⎨⎪⎩
(1−q1tl )(π1(at,γt)−Ξ(Zl))+ε1(1−Lq1tl )P

Gh∈G
αth+π

1(at,γt)+Lε1
if Gl ∈ wt

1

−q1tl (π1(at,γt)−Ξ(Zh))+ε1(1−Lq1tl )P
Gh∈G

αth+π
1(at,γt)+Lε1

if Gl /∈ wt
1

(16)

where L = cardG. The first event occurs with probabilityP
γj∈Γ fj

P
A1×A2

qtl

³P
gk∈Gl

p1tmkIjk

´P
an∈A2

σ2tnj . The second event oc-

curs with probabilityP
γj∈Γ fj

P
A×A

P
Gh 6=Gl

qth

³P
gk∈Gh

p1tmkIjk

´P
an∈A2

σ2tnj. Multiplying de-

liversD
q
1(t+1)
l − q1tl

E
=
P

γj∈Γ fj⎡⎢⎣ q1tl
P

an∈A2

(1−q1tl )
³P

gk∈Gl
p1tmkIjk

´
(π1(a1m,a2n,γj)−Ξ(Zl))σ2tnj+ε1(1−Lq1tl )P

Gh∈G
αth+π

1(a1m,a2n,γj)+Lε1

+
P

Gh 6=Gl
q1th
−q1tl

³P
gk∈Gh

p1tmkIjk
´
(π1(a1m,a2n,γj)−Ξ(Zh))σ2tnj+ε1(1−Lq1tl )P

Gh∈G
αth+π

1(a1m,a2n,γj)+Lε1

⎤⎥⎦
Denoting

P
Gl∈G α

1t
l =: α1t the previous expression can be rewritten con-

cisely as:D
q
1(t+1)
l − q1tl

E
=

1

α1t
[qitl S

it
l (x) + ε1(1− Lqitl )] +O

µ
(
1

αt
)2
¶
. (17)

Proof of Proposition 1:
Proof. Write the stochastic process {xt}t in the form

p
i(t+1)
mk = pitmk +

1

βitk

eY it
mk (18)

q
i(t+1)
l = qitl +

1

αit
Y it
l
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∀i = 1, 2,∀am ∈ Ai,∀gk ∈ P+(Γ),∀Gl ∈ G. The Y it and eY it can be decomposed
as follows:

eY it
mk = eyimk(x

t) + eωit(ct, dt) + eυit
Y it
l = yil(x

t) + ωit(ct, dt) + υit

where the sequences {υit}t and {eυit}t are asymptotically negligible. The se-
quences {ωit}t and {eωit}t are noise keeping track of the players randomizations
at each period as well as of random sampling from Γ. In fact ct is the indicator
function for outcomes of players randomizations between actions and partitions
and dt the indicator function for outcomes of random sampling of games. And fi-
nally eyimk(x

t) = p1tmkr
1t
k S

1t
mk(·)+ε0(1−Mp1tmk) and y

i
l(x

t) = qitl S
it
l (·)+ε1(1−Lqitl )

are the mean motions derived before. Taking into account the normalization
the stochastic process (18) can be rewritten as :

p
i(t+1)
mk = pitmk +

1

µ+ tθ
eY it (19)

q
i(t+1)
l = qitl +

1

µ+ tθ
Y it

where 1/ (µ+ tθ) is the unique step size that is of order t−1. It can be verified
that the following conditions hold for the process (19): (C1) : E[ωit|ωin, n <

t] = 0 and E[eωit|eωin, n < t] = 0. (C2): suptE
¯̄
Y it
¯̄2
<∞, suptE

¯̄̄ eY it
¯̄̄2
<∞,

(C3) Eeyi(pt, qt) and Eyi(pt, qt) are C2 (implying locally Lipschitz), (C4)P
t

1
µ+tθ

¯̄
υit
¯̄
<∞ with probability 1 and (C5)

P∞
t=0

1
µ+tθ =∞, 1

µ+tθ ≥ 0,∀t ≥

0, and
P∞

t=0

³
1

µ+tθ

´2
< ∞ (decreasing gains). Under these conditions the

process (19) can be approximated by the deterministic system

·
p
i

mk = eyimk(x)

·
q
i

l = y1l (x)

∀i = 1, 2,∀am ∈ Ai,∀gk ∈ P+(Γ),∀Gl ∈ G as standard results in stochastic
approximation theory show.37

B Appendix: Proofs from Sections 4 and 5

Proof of Proposition 2:
Proof. By contradiction: Assume x∗ is a restpoint that induces (σ1j , σ

2
j )
∗ /∈

ENash(γj). Let player i have a strictly better response in γj , denote bam. If γj
is an element of a singleton analogy class gk the claim is straightforward, as the
expected payoff of bam at x∗ conditional on visiting gk is strictly higher than that
of all actions on average, i.e. Smk(x

∗) > 0. It follows then directly from (10)

37See the textbooks of Kuschner and Lin (2003) or Benveniste, Metevier and Priouret (1990).
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that the growth rate function
·
pmk/pmk of bam is strictly positive for all x in an

open neighborhood of x∗ (note that x∗ is interior because of the perturbation).
Consider next the case where γj is an element of a non-singleton analogy

class. Denote φ := πi(bam, σ−ij , γj)− πi(σij , σ
−i
j , γj) > 0 the payoff loss incurred

by choosing σij instead of the better response bam in game γj . Consider a partition
Gh = {gh}Zhh=1 in the support of qi∗. Assume that γj ∈ eg ∈ Gh. Partition
Gl = {{gh− eg}, eg− γj , γj} coincides with partition Gh except for the fact that
instead of analogy class eg it contains two new analogy classes given by eg − γj
and the singleton analogy class γj . Consequently cardGl = (cardGh) + 1. We
have seen above that in the singleton analogy class player i will play a best
response to the the opponent’s play. But then ∃bξ < φ such that ∀ξ < bξ :
Πil(x

∗)−Πih(x∗) = φ− (Ξ(Zl)− Ξ(Zh)) > 0 and thus the growth rate function
·
ql/ql is strictly positive for all x in an open neighborhood of x

∗. Consequently
x∗ cannot be a stable restpoint.
Proof of Claim 1:

Proof. Consider the following strategic form game.

(a, 0) (0, 1M ) ( 1M , 1M ) ..( 12 ,
1
2).. (M−1M , 1) (1, 1)

(0, b) 0, 1 0, 1 0, 1 ..0, 1.. 0, 1 0, 1

( 1M , 0) 1
M , M−1M

1
M , M−1M

1
M , M−1M . 1M , M−1M . δ

M , δM−1M 0, 0

( 1M , 1M )
1
M , M−1M

1
M , M−1M

1
M , M−1M . 1M , M−1M . δ

M , δM−1M 0, 0
: : : : .... : ... : :

(12 ,
1
2)

1
2 ,

1
2

1
2 ,

1
2

1
2 ,

1
2 .. 12 ,

1
2 .. 0, 0 0, 0

: : : : .... : .... : :

(1, M−2M ) 1, 0 δ, 0 δM−1M , δ
M ..0, 0.. 0, 0 0, 0

(1, M−1M ) 1, 0 δ, 0 δM−1M , δ
M ..0, 0.. 0, 0 0, 0

(1, 1) 1, 0 δ, 0 0, 0 ..0, 0.. 0, 0 0, 0
(20)

Game γ1 is obtained by letting δ → 1 in matrix (20). Substituting δ = 0 into
(20) leads to the payoff matrix for the Ultimatum Game (γ2).

38 Next consider
the game with strategic form (20) and discount factor f1. This is the expected
discount factor when both games are seen as analogous (and game γ1 occurs with
frequency f1). Note that player 1 proposing

1
1+f1

and player 2 accepting all offers

above f1
1+f1

is the unique Nash equilibrium in weakly undominated strategies
in this game. It can be shown that this equilibrium is asymptotically stable to
perturbed reinforcement learning in a single game with discount factor f1. Now
we will show that the equilibrium x∗ where both players hold the coarse partition
and choose a1 = 1

1+f1
, b2 = f1

1+f1
when visiting analogy class gC = {γ1, γ2} is

asymptotically stable. When visiting the ”off equilibrium” analogy classes gU

38Note that in the Ultimatum game all strategies of player 2 are weakly dominated except
the strategies (a, 0) and (a, 1

M
). It is shown below (proof of proposition 3) that this implies

that if the ultimatum game is played alone the unique equilibrium will have player 1 proposing
a1 = M−1

M
and player 2 randomizing between acceptance tresholds b2 = 0 and b2 = 1

M
. Note

also that as there is no strict Nash equilibrium in game γ1 (the bargaining game with δ → 1),
part (ii) of Proposition 3 is not directly applicable.
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and gR, player 1 will play (
1

1+f1
, b), i.e. a best response to observed play of player

2. Player 2 will play ( 1
1+f1

, f1
1+f1

) when visiting gR but will randomize between

strategies (a, b) with b ≤ f1
1+f1

in gU . Consider deviations in partition choice
frequencies. Such deviations will increase the probability with which either
player visits the fine partition. Given ”off-equilibrium” play in analogy classes
gU and gR increasing the probability of visiting the fine partition leads to a strict
payoff loss for player 1. For player 2 there can be gains of O(ε0) for all strategies
(a, b) with b < f1

1+f1
as x∗ ∈ intX and as ( 1

1+f1
, f1
1+f1

) is weakly dominated for
this player in the ultimatum game. Let Nx∗ be an open neighborhood of x

∗ and
denote Ξ(x∗) the total reasoning cost at x∗, i.e. Ξ(x∗) =

P
Gl∈G q

∗
l Ξ(Gl). Then

∀ξ > 0 :X
Γ

¡
πi(x∗, x−i, γj)− πi(x, γj)

¢
− (Ξ(x∗)− Ξ(x)) > 0,∀x ∈ Nx∗∩X,i = 1, 2.

Consider the (relative entropy) function associated with x∗, given byDi(x∗, x) =P
A1×A2×G x

∗ ln
x∗h
xh
. Define the sum over the entropy functions for both players

by Q(x∗, x) = D1(x∗, x) + D2(x∗, x). It follows from the above equation that
·
Q(x∗, x) < 0. ThusQ(x∗, x) is a strict Lyapunov function and x∗ asymptotically
stable.
Proof of Proposition 3:

Proof. (i) As cardΓ = 1 there is trivially only one partition and one analogy
class. Consequently action choice corresponds to observed play in the only game
γ1. Denote bσi1 the weakly dominated strategy and a∗i the strategy that weakly
dominates bσi1 in game γ1. It is clear that π

i(a∗i, x−i, γ1) − πi(bσi1, x−i, γ1) >
0,∀x−i ∈ intX−i. Consider a restpoint bx that induces bσi1. As bx is interior there
exists a neighborhood Nbx of bx such that

πi(a∗i, x−i, γ1)− πi(x, γ1) +O(ε0) > 0,∀x ∈ Nbx∩ intX.

But then there exists ϑ > 0 such that
·
p
i

a∗i > ϑ pia∗i and integrating yields
pita∗i ≥ pi0a∗i exp

ϑt,∀x ∈ Nbx∩ intX,x 6= bx. As pia∗i increases exponentially at rate
ϑ in the neighborhood of bx the latter cannot be a stable restpoint.39
(ii) We will show that the restpoint bx where the coarse partition GC =

{γ1, γ2} is held with asymptotic probability bqC = 1 by all players that play
a weakly dominated strategy in game γ1 is asymptotically stable. Denote the
three analogy classes by g1 = {γ1}, g2 = {γ2} and gC = {γ1, γ2}. Denote bσi
the strategy that is weakly dominated for i in game γ1 and a strict best re-
sponse to x−i in game γ2.

40 For all x in an open neighborhood of bx we have
that πi(σi, x−i, γ2)− πi(x, γ2) < φ2(ε0),∀σi 6= bσi because bσi is a best response
to x−i. Furthermore πi(σi, x−i, γ1) − πi(x, γ1) < φ10(ε0) and πi(eai, x−i, γ1)−
πi(x, γ1) > φ11(ε0) for some eai ∈ Ai where the second inequality holds becausebσi is weakly dominated in γ1. Note that φ

0

2(ε0) < 0 and φ
0

11(ε0) > 0∀ε0 ∈ R+.
39Part (i) of this proposition also follows from Proposition 5.8 in Weibull (1995).
40Of course bσi1 will be a pure strategy.
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Furthermore φ2(0) > 0 and φ11(0) = 0 and thus limε0→0(φ2(ε0) − φ11(ε0)) =:
φ > 0. Furthermore note that in all ”off-equilibrium” analogy classes best re-
sponses will be played and consequently deviations in partition choice frequen-
cies will lead to at most gains of order ε0. But then there exists a neighborhood
N 0bx of bx such that ∀ξ > 0,X

Γ

¡
πi(bx, x−i, γj)− πi(x, γj)

¢
− (Ξ(bx)− Ξ(x)) > 0,∀x ∈ N 0bx∩X,i = 1, 2.

A strict Lyapunov function can be found as in the proof of claim 1.
Proof of Claim 2:

Proof. Let G1 = {{γ1}, {γ2}, {γ3}}, G2 = {γ1, {γ2, γ3}}, G3 = {γ2, {γ1, γ3}},
G4 = {{γ1, γ2}, γ3} and G5 = {γ1, γ2, γ3} be the five possible partitions of Γ.
We will first argue that any restpoint where qil > 0 for some l = 1, 2, 3, 4 and
i = 1, 2 is unstable. Then we will show that the restpoint with qi5 = 1 and
piC = 1/2, ∀i = 1, 2 is asymptotically stable.
(i) Note first that no stable restpoint bx can involve qil > 0 for l = 1, 4. The

reason is that in analogy class g3 = {γ3} ∈ Gl,∀l = 1, 4 the unique Nash equilib-
rium strategy p3 = 1/2 will always be played. But then also in analogy classes
gk 6= g3 best responses to the opponent’s observed play in g3 are chosen. On the
other hand there always exists a coarser partition where a best response to the
opponent’s play in the remaining analogy classes g ∈ Gl, l = 1, 4 is played. This
destabilizes any such equilibrium. Consider for example the Jacobian matrixM
associated with the linearization of the dynamics at restpoints bx that involve
qi1 > 0, for some i = 1, 2 . Then if f1 > f3 a best response to the opponent’s
play in both games γ1 and γ3 will always be played in analogy class {γ1, γ3}.
Consequently the diagonal element of M corresponding to q3 will be strictly

positive. More precisely

µ
∂
·
q
i

3/∂q
i
3

¶
= Ξ(bx) − Ξ(2) − 5ε1 > 0, as the coarse

partition must have probability zero at bx (and thus Ξ(bx) > Ξ(2)). If f2 > f3 it

can be seen analogously that

µ
∂
·
q
i

2/∂q
i
2

¶
> 0 and if f3 > max{f1, f2} we have

that either

µ
∂
·
q
i

3/∂q
i
3

¶
> 0 or

µ
∂
·
q
i

2/∂q
i
2

¶
> 0 depending on the particular

restpoint. What happens at restpoints that involve qi4 > 0, for some i = 1, 2 ? If

f3 > max{f1, f2} we have that
µ
∂
·
q
i

5/∂q
i
5

¶
> 0 and if f3 > max{f1, f2} eitherµ

∂
·
q
i

5/∂q
i
5

¶
> 0 or a strictly better response will be played on average in either

G2 or G3 (depending on the particular restpoint) that have the same reasoning
costs. Thus G1 or G4 cannot be in the support of a stable restpoint.
Neither can a stable restpoint involve qi∗l > 0 for l = 2, 3. Distinguish two

cases: If f3 > min{f1, f2}, player 1 will play a fully mixed strategy p∗4 = 1/2
in g4 = {γ2, γ3} and player 2 will play the mixed strategy p∗5 = 1/2 in anal-
ogy class g5 = {γ1,γ3}. It then follows immediately by arguments analogous to
those above that G2 /∈ supp q1∗ and G3 /∈ supp q2∗. Furthermore note that any
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restpoint at which player 2 holds partition G2 and player 1 partition G3 cannot
induce Nash play in all games and thus (by Proposition 2) cannot be asymptoti-
cally stable. If f3 < min{f1, f2}, either the same action probabilities are chosen
in both analogy classes contained in G3 (G2) at any restpoint that induces Nash

equilibrium play. But again this has as a consequence that
³
∂
·
q5/∂q5

´
> 0. Or

there exist partitions where a strictly better response is played on average and
thus Gl cannot be in the support of q

i∗for l = 2, 3 at any stable restpoint.
(ii) The payoff matrix across all three games isµ

2(f1 + f3) + f2 2f2 + f1 + f3
2f2 + f1 + f3 2(f1 + f3) + f2

¶
for player 1 (21)

and µ
2f1 + f2 + f3 2(f2 + f3) + f1
2(f2 + f3) + f1 2f1 + f2 + f3

¶
for player 2. (22)

Given the assumption that fj < 1/2 for j = 1, 2 - (21) and (22) represent
a conflict game with a unique Nash equilibrium in mixed strategies given by
(1/2, 1/2). Now we will show that (holding fixed q∗5 = 1) this equilibrium is
asymptotically stable in the game (21) and (22).41 Denote pi the probability
with which player i chooses the first action. The Jacobian matrix associated with
the linearization of the perturbed dynamics at the equilibrium

¡
p1, p2

¢
= (12 ,

1
2)

is given by

M( 12 ,
1
2 )
=

µ
−2ε0 1

2(f1 + f3 − f2)
1
2(f1 − f2 − f3) −2ε0

¶
.

It can be verified easily that the spectrum ofM( 12 ,
1
2 )
is given by

{λ1, λ2} =
½
1

2
(−4ε0 ±

q
(f1 + f3 − f2)(f1 − f2 − f3) + 16ε20)

¾
.

Given our assumptions on fi the term under the square root is negative and thus
Re{λi(ε0)} < 0,∀i = 1, 2. Note also that as (1/2, 1/2) is a Nash equilibrium in all
games there is no analogy class in which a player i has a strictly better response
to the opponent choosing p−i = 1/2. But then as q5 = 1 minimizes reasoning

costs and sign [O(ε0)] T 0 ⇔ pimk S 1
2 we know that x

∗ is asymptotically stable.

Proof of Proposition 4:
Proof. We will prove Proposition 4 for the case of a Coordination game. The
case of Anti-coordination games is analogous. Unless otherwise indicated we
will use the notation from Example 1.
(i) As cardΓ = 1 there is trivially only one partition and one analogy class

g = γ1. Consider again the symmetric game from example 1 in (8) with matrix

γ1 :

µ
a1 a2
a3 a4

¶
. (23)

41Note that because of the perturbation equilibria are generically hyperbolic. This makes
the proof in the perturbed case considerably easier then the proof of the unperturbed case.
Posch (1997) has shown that unperturbed reinforcement learning leads to cycling in this class
of games.
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If a1 > a3 and a4 > a2 this is a Coordination game with two strict Nash
equilibria where both players choose the same action. Consider the system of

differential equations (
·
p
1

H(p
1
H , p

2
H),

·
p
2

H(p
1
H , p

2
H)) defined through (9) and (10).

The Jacobian matrix associated with the linearization of the perturbed dynamics
at the equilibrium

¡
p1H , p

2
H

¢
= (1, 1) is given by

Mγ1
(1,1) =

µ
−(a1 − a3)− 2ε0 0

0 −(a1 − a3)− 2ε0

¶
.

Clearly this matrix is negative definite and the strict equilibrium
¡
p1H , p

2
H

¢
=

(1, 1) asymptotically stable. Stability of
¡
p1H , p

2
H

¢
= (0, 0) is shown in exactly

the same way.
(ii) Let the 2× 2 game γ2 have the payoff matrix

γ2 :

µ
b1, c1 b2, c3
b3, c2 b4, c4

¶
. (24)

To have a mixed equilibrium that is stable to learning in a single game the game
must be one of conflict. Assume wlg b1 > b3, b4 > b2, c1 < c3 and c4 < c2. The
payoff matrix across games is given byµ

f1a1 + f2b1, f1a1 + f2c1 f1a2 + f2b2, f1a3 + f2c3
f1a3 + f2b3, f1a2 + f2c2 f1a4 + f2b4, f1a4 + f2c4

¶
. (25)

Whenever f1/f2 < (c3−c1)/(a1−a3) =: bf this matrix represents a game of con-
flict. Think of restpoints that induce the strict Nash equilibrium

¡
σ1H1, σ

2
H1

¢
=

(1, 1) in game γ1. If at such a restpoint the coarse partition GC is used with
asymptotic probability q∗C > 0, then we need to have piH3 = piH1 = 1.

42 In order
to induce Nash equilibrium also in game γ2 one needs p

i
H2 = 0 and qi∗C = σi∗H2.

But then piHC = 1 is not a best response to the observed play of player −i for
at least one of the two players i. Consequently there cannot be such a restpoint.
What about restpoints in which the fine partition is used with asymptotic prob-
ability 1 ? Then for at least one player action choice in the ”off equilibrium”
analogy class gC = {γ1, γ2} will be a best response to observed play in both
games γ1 and γ2. As the coarse partition has smaller reasoning cost, the diag-

onal element
³
∂
·
qC/∂qC

´
= Ξ(2) − Ξ(1) − 2ε1 of the Jacobian matrix at this

equilibrium is strictly positive and the equilibrium thus unstable.
Proof of Proposition 5:

Proof. (i) Again as cardΓ = 1 there is trivially only one partition and one
analogy class g = γ1, where γ1 is given by (23). The Jacobian matrixM at the
mixed equilibrium bσ1H1 = a4−a3

a1+a4−(a2+a3) = bσ2H1 is given by
M =

µ
−2ε0 bσ1H1(1− bσ1H1)(a1 + a4 − (a2 + a3))bσ2H1(1− bσ2H1)(a1 + a4 − (a2 + a3)) −2ε0

¶
.

42Remember from example 1 that g3 = {γ1, γ2} and g1 = {γ1}.
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The characteristic polynomial is given by

(−2ε0 − λ)(−2ε0 − λ)−
£
σiH1(1− σiH1)(a1 + a4 − (a2 + a3))

¤2
= 0.

Consequently the two eigenvalues are λ1/2 = −2ε0 ± σiH1(1 − σiH1)(a1 + a4 −
(a2 + a3)). ThusM has an eigenvalue with limε0→0 Re{λi(ε0)} > 0 and bσ1 is
unstable.
(ii) Let the 2× 2 game γ2 be again the game described in (24). We also as-

sume that bσiH1 = a4−a3
a1+a4−(a2+a3) =

b4−b3
b1+b4−(b2+b3) =

c4−c3
c1+c4−(c2+c3) , i.e. that both

games have the same mixed strategy equilibrium. The mixed strategy equilib-

rium of the strategic form (25) is given by f1(a4−a3)+f2(b4−b3)
f1(a1+a4−(a2+a3))+f2(b1+b4−(b2+b3)) =

a4−a3
a1+a4−(a2+a3) . Consider the restpoint where both players hold the coarse par-

tition and choose piHC =
a4−a3

a1+a4−(a2+a3) . This restpoint is asymptotically stable

whenever f1/f2 < bf as can be shown in analogy to the proof of claim 2.
Proof of Proposition 6:

Proof. Consider any partition Gl 6= GF . As Gl is not the finest partition there
are two games, denote γ1 and γ2 that are seen as analogous and for which the
same action choice is made. As SNash(γ1) ∩ SNash(γ2) = ∅ by assumption
no Nash equilibrium is played in at least one of the two games. It follows
from Proposition 2 that q∗l = 0. Consequently if SNash(γj) ∩ SNash(γ

0

j) = ∅,
∀γj , γ0j ∈ Γ only restpoints that place probability one on the finest partition
can be asymptotically stable. It is clear that if ∃γ1, γ2 ∈ Γ s.t. SNash(γ1) ∩
SNash(γ2) 6= ∅ the finest partition need not necessarily arise. Examples where
this is the case have been analyzed above.
Proof of Proposition 7:

Proof. Consider a restpoint with partition Gh = {{gh}Zh−2h=1 , g
0

k, gk} where
pimk ∈ BRi(σ−ij ), ∀γj ∈

¡
gik
¢0
, i.e. where the action choice in analogy class gk

is a best response to the opponent’s observed play in all games contained in g0k.

Consider the alternative partition Gl = {{gh}Zh−2h=1 , gk∪g
0

k}, that differs from Gh

only in the fact that the two analogy classes gk and g
0

k are merged, i.e. cardGl =
(cardGh) − 1. But then ∀ξ > 0 : Πl(x

∗) − Πh(x∗) > 0 and consequently Gh

cannot be in the support of q∗ at any stable restpoint x∗ = (p∗, q∗). Proposition
7 now follows from the observation that whenever cardGh > cardAi, there
necessarily exist analogy classes gik 6= gik0 ∈ Gh with p

i
mk ∈ BRi(σ−ij ),∀γj ∈ gik0 .
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