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Abstract

Like common pool resources, a central task in real life managerial problems concerns the sustain-
ability of the resource. Especially in areas where multilateral agreements are non-binding, compliance
becomes a crucial issue in order to avoid a destruction of a natural resource. Compliance can be
achieved if agents exercise self-constraint and refrain from using their powers to exploit one another.
Then a solution can be obtained that is acceptable for all participants - say a fair compromise. Such
a compromise will be considered a fair outcome that produces a common virtual world where com-
pliance is reality and obstruction be held to account. Rather than considering fairness as some cloudy
concept, in order to advance our understanding of compliance on non-binding agreements, we study a
fairness solution that is based on the cooperative game theory’s pre-kernel. Other solutions such as the
Shapley value are usually considered a more attractive concept for solving economical problems or for
experimental studies, which might however originate in its simplicity of computation. In this paper,
we review and improve an approach invented byMeseguer-Artola(1997) to compute the pre-kernel
of a cooperative game by the indirect function. The indirect function is known as the Fenchel-Moreau
conjugation of the characteristic function introduced byMartinez-Legaz(1996). Following and ex-
tending the approach proposed byMeseguer-Artola(1997) with the indirect function, we are able to
characterize the pre-kernel of the grand coalition simply by the solution sets of a family of quadratic
objective functions. Now, each function can be easily solved by means well known from analysis and
linear algebra.
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A Dual Pre-Kernel Representation

1 INTRODUCTION

Consider the situation thatn-agents want jointly manage a natural resource like a fishery. In order to realize
the gains which are available through mutual cooperation, the agents must act beyond their individual
interest to overcome the problem of acting against their common interest. This is usually classified as a
social dilemma. Concerning the sustainability of the natural resource the agents can make binding as well
as non-binding agreements when they have the opportunity to communicate with each other. Especially,
in the latter case, that is, in the absence of any institution that guarantees fulfillment of the agreement,
compliance becomes the crucial issue. People will obstruct their promise, if they have the feeling of
being treated unfair. Establishing fairness rules, which are accepted by all partners, so that powerful
agents behave respectful and do not use their power to bully weak partners, is used as a mean to achieve
compliance. As a consequence, obstruction becomes more unlikely and the destruction of the resource
can be avoided. But what kind of rule can be considered a fair compromise that is acceptable for all
participants? Various fairness rules have been already introduced and discussed in the literature (for an
overview seeMoulin (2003)). Each fairness concept has its merits as well as its flaws. In this paper,
we want to focus on a fairness rule from cooperative game theory that did not find so much attention in
the literature as a possible outcome to solve a social dilemma situation. The solution concept we want
to study is known as the pre-kernel of a transferable utility game. This solution was not considered an
attractive outcome for real life problems simply due its difficulty in computation. Here, for applied oriented
researchers the Shapley value offers much more charm than the pre-kernel. Surprisingly, probably for
many, one of our findings is that the pre-kernel can be calculated almost as simple as the Shapley value;
and can be therefore considered a fair division rule for real life managerial problems. But before we
discuss the details, we want to review certain aspects of the pre-kernel in order to allow the reader a better
assessment of our arguments. By doing so, we focus first our attention to the kernel, and later to our actual
subject of interest, the pre-kernel.

The kernel solution, which is related to the pre-kernel, was introduced byDavis and Maschler(1965) to
study the bargaining set of a transferable utility game. The precise definition of the kernel is given in terms
of a system of inequalities. But this definition lacks crucial information about the structure of the kernel.
Moreover, it is almost impracticable to compute the kernel simply in applying its definition, even for games
with a small number of players. This is due to the large number of inequalities and pre-imputations one
has to consider in performing such a computation. Thus, there was a strong need to find out an alternative
description of the kernel that offers more insight into its structure, and therefore a more tractable way to
compute an element. A step forward in this direction was made byMaschler and Peleg(1966), as they
found out that the kernel can be characterized by a representation formula based on a separation rule of
players which have been induced by sets of coalitions. Although the content of such a characterization
seems not to be clear at the moment, it provides, nevertheless, a clear geometrical description of the kernel.
Namely that this characterization describes the kernel as a finite union of closed convex polyhedra. Relying
on such a representation,Maschler and Pelegwere able to give a complete algebraic proof that the kernel
is a non-empty subset of the bargaining set. Furthermore,Maschler and Peleg(1967) were able to derive a
set of rules that determine elements of the kernel by studying the properties of the representation formula.
In this respect the solution concept of the pre-kernel was developed in the work ofMaschler et al.(1972)
in order to assist the study of the kernel for a certain class of games. The definition of the pre-kernel is
now stated in terms of a system of equalities rather than a system of inequalities.

AlthoughMaschler and Peleg(1967) established certain rules to determine kernel elements, the com-
putation process was still difficult and required non-systematic short cuts. Therefore, it was not surprising
to see that some early convergence algorithms could be developed, for instance byAumann et al.(1965,
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1966); Kopelowitz (1967); Stearns(1968) to specify systematically the kernel of a transferable utility
game. More recent convergence algorithms have been introduced byMeseguer-Artola(1997); Faigle et al.
(1998). Generically, a convergence process has several drawbacks. First, the convergence process could
be very slow. Second, one has to assure that in any event where the process terminates, an element of the
kernel was really found. Finally, any relationship to the structure of the game is lost.

Following an LP approach that was evolved byKohlberg(1972) to compute the nucleolus,Wolsey
(1976) illustrated that such an approach can also be successfully applied to the kernel computation for
simple games. One of the latest LP method for computing the kernel stemmed fromMeinhardt(2006),
which emerged from an idea to use its geometrical properties, as it has been exhibited by the work con-
ducted inMaschler et al.(1979). This LP approach relies on the fact that the kernel occupies a central
position in the strongε-core. Drawbacks related to an LP approach, are for instance, that an enormous
number of constraints must be treated somehow, whenever the number of players is large. To this end, it
was shown inMeinhardt(2006) that the kernel might not be completely represented by the solution sets
of LPs.

The kernel characterization discussed so-far made use of concepts and methods from discrete math-
ematics. Despite the fact that the representation formula of the kernel can be expressed as the union of
closed convex polyhedra, the intuitive meaning of this formula is difficult to understand. In consequence,
a direct computation by hand for large and asymmetric games is complicated and requires a lot of expe-
rience. Fortunately, convex analysis provides us with the methods to solve this problem at least for the
pre-kernel for every transferable utility game. This statement can be transmitted to the kernel solution for
the class of zero-monotonic games. Since for this large class of cooperative games, the kernel coincides
with the pre-kernel. The mathematical objects we derived to obtain an alternative characterization of the
pre-kernel offer a clear and intuitive meaning in terms of solution sets. The first step towards this new
pre-kernel characterization relies on a dual representation of a cooperative game invented byMartinez-
Legaz(1996). In this paper, it was established that every cooperative game has a representation based on
the Fenchel-Moreau conjugation, what he called the indirect function. It was shown that the concepts of
cooperative game theory can also be formulated in terms of the indirect function. Some concepts can be
substantially simplified, like monotonicity, but many, like convexity, can not. Although we get for most
of the concepts more complicated expressions than in terms of the characteristic function, it was the merit
of Meseguer-Artola(1997) to show that the indirect function approach is very useful to obtain a simplified
pre-kernel representation. He recognized that the pre-kernel can be described as an overdetermined sys-
tem of non-linear equations. From this overdetermined system an equivalent minimization problem can be
constructed whose set of global minimums coalesce with the pre-kernel set. However, the structural form
of the objective function remained unclear. Thus he was forced to develop a convergence algorithm that
was based on a modifiedSteepest Descent Methodfor determining zeros of continuous functions in order
to solve the resultant minimization problem. However,Meseguer-Artoladid not recognize that imposing
some additional conditions is enough to induce a simplified form of the objective function, which makes
it possible to describe a practical method in the computation of the pre-kernel.

In particular, if we fix an arbitrary element of the pre-imputation set, the induced objective function is
convex and quadratic. In addition, we can prove that whenever we have solved the reduced problem, we
have also solved the original problem with its more complex objective function. This implies that we are
able to calculate an element of the pre-kernel simply in applying methods well known from analysis and
linear algebra. The solution set of a quadratic function is convex and it constitutes only a subset of the
pre-kernel, if an additional condition is imposed, otherwise, we compute a minimum but not a pre-kernel
element. Remind from the discussion above that the pre-kernel can be described by the union of convex
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polyhedra, hence the pre-kernel might be not a convex set. Thus, a unique convex solution set might not be
enough to describe the pre-kernel. This statement can only be confirmed, for instance, for three person and
convex games, but not in general. Now our main result should not be anymore so surprising that a union of
arbitrary solution sets derived from a collection of quadratic objective functions completely characterize
the pre-kernel of a transferable utility game. However, we can not guarantee in general that the condition
on the solution set is satisfied to compute a point in the pre-kernel directly. Hence, we need to construct
a sequence of optimization problems that converges in the limit to an optimization problem from which
we can determine a pre-kernel point. We are able to show that such a sequence exists. Thus, we provide a
practical method to derive the pre-kernel.

The present paper is organized as follows. Section2 introduces the basic notations and definitions
that enable us to study the pre-kernel solution. In section3, we devote first our attention to concepts and
methods well known from convex analysis and in the next step towards some preliminary results obtained
by Martinez-Legaz(1996) andMeseguer-Artola(1997). The results obtained by these authors are the
building tools to derive a new characterization of the pre-kernel that is based on solution sets which are
derived from a family of convex and quadratic functions. A practical method in the pre-kernel computation
is discussed in section5 by providing an algorithm from which we can compute in the end an element of
the pre-kernel. An numerical example from the literature is revised, to demonstrate the strength of the new
algorithm. Using this new approach, a pre-kernel point can now be computed without any computer help
and in a systematical way. We conclude this paper with some final remarks.

2 BASIC NOTATIONS AND DEFINITIONS

An n-person cooperative game with side payments is defined by an ordered pair〈N, v〉. The setN :=
{1, 2, . . . , n} represents the player set andv is the characteristic function withv : 2N → IR and the
convention thatv(∅) := 0. The real numberv(S) ∈ IR is called the value or worth of a coalitionS ∈ 2N .

Formally, we identify a cooperative game by the vectorv := (v(S))S⊆N ∈ IR2|N|
, if no confusion can

arise, whereas in case of ambiguity, we identify a game by〈N, v〉. A possible payoff allocation of the value
v(S) for all S ⊆ N is described by the projection of a vector~x ∈ IRn on its |S|-coordinates such that
x(S) ≤ v(S) for all S ⊆ N , where we identify the|S|-coordinates of the vector~x with the corresponding
measure onS, such thatx(S) =

∑
k∈S xk. The set of vectors~x ∈ IRn which satisfies the efficiency

principlev(N) = x(N) is called thepre-imputation set and it is defined by

I ′(v) := {~x ∈ IRn |x(N) = v(N)} , (2.1)

where an element~x ∈ I ′(v) is called a pre-imputation.

Given a vector~x ∈ I ′(v), we define theexcessof coalitionS with respect to the imputation~x in the
game〈N, v〉 by

ev(S, ~x) := v(S)− x(S). (2.2)

An non-negative (non-positive) excess ofS at~x in the game〈N, v〉 represents a gain (loss) to the members
of the coalitionS, if the members ofS do not accept the payoff distribution~x by forming their own
coalition which guaranteesv(S) instead ofx(S).

Take a gamev. For any pair of playersi, j ∈ N, i 6= j, the maximum surplus of player i over
playerj with respect to the pre-imputation~x ∈ I ′(v), is given by the maximum excess at~x over the set of
coalitions containing playeri but not playerj, thus

sij(~x, v) := max
S∈Gij

ev(S, ~x) whereGij := {S | i ∈ S andj /∈ S}. (2.3)
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The expressionsij(~x, v) describes the maximal amount at the pre-imputation~x that playeri can gain
without the cooperation of playerj. The set of all pre-imputations~x ∈ I ′(v) that balance the maximum
surpluses for each distinct pair of playersi, j ∈ N, i 6= j is called thepre-kernel of the gamev, and is
defined by

PrK(v) := {~x ∈ I ′(v) | sij(~x, v) = sji(~x, v) for all i, j ∈ N, i 6= j}. (2.4)

3 SOME PRELIMINARY RESULTS

Before, we introduce some preliminary results from convex analysis and cooperative game theory, we
discuss first some additional notations, definitions and some concepts from matrix theory. We express the
Euclidean scalar product of two vectorsx andx∗ as〈 x,x∗ 〉 = x1 · x∗1 + · · · + xn · x∗n. The symbolsx
andx∗ are regarded as column vectors, whereas the symbolQ is used to indicate a(m × n)-matrix. The
identity matrix is identified byI and the transpose of a vector or a matrix is denoted by the symbolsxT

andQT respectively. Coefficient vectors are usually identified bya and the null vector by0.

A vectorx that satisfiesQx = a is called a solution of the linear systemQx = a. We call a linear
system consistent if it has a unique or more solutions. If a linear system has no solution, its is called
inconsistent. The matrixQ of a consistent linear system is either invertible or non invertible. In the latter
case the matrixQ is rectangular or singular for a square matrix, with the consequence that the solution of
the linear system is not anymore unique. In order to give a characterization of the solution for a consistent
linear system where the matrix is not invertible, it is useful to introduce the concept of a generalized inverse
of a matrix. In matrix theory a generalized inverseQG for a(m×n)-matrixQ is an(n×m)-matrix with the
propertyQQG Q = Q. WhenQ is not invertible there exist in general infinite many different generalized
inversesQG, but at least one. Although it is for our purpose enough to consider an arbitrary generalized
inverse, we impose some additional conditions in order to have a unique generalized inverse. This is done
with regard to get a unique characterization of a pre-kernel solution expressed in terms of a matrix and
coefficient vector. Whenever we impose to the general conditionQQG Q = Q, three further algebraic
constraints like a reflexive condition:QG QQG = QG, a normalized condition:(QQG)T = QG Q, and a
reversed normalized condition:(QG Q)T = QQG, then the generalized inverseQG of Q is unique. This
generalized inverse is known under the nameMoore-Penrosematrix orpseudo-inverse, which we denote
by QMP .

Observe, in addition, thatQQG andQG Q respectively, are always idempotent, sinceQQG QQG =
(QQG)(QQG) = (QQG Q) QG = QQG andQG QQG Q = (QG Q) (QG Q) = QG (QQG Q) =
QG Q respectively. Thus,QQG is a(m×m)-projection matrix, whereasQG Q is an(n× n)-projection
matrix. Furthermore, a linear systemQx = a can now be classified as consistent if and only ifQQG a =
a or equivalently if and only if(I−QQG)a = 0 (cf. Harville (1997)).

In order to introduce the concept of a convex function, recall first that givenx andz in IRn, the defined
vectory := θ · z + (1 − θ) · x with 0 ≤ θ ≤ 1, is called a convex combination ofx andz. Let f be a
real-valued function defined on a convex subsetC in IRn. The functionf is called to beconvexif for all
x, z ∈ C and0 ≤ θ ≤ 1,

θ · f(z) + (1− θ) · f(x) ≥ f(θ · z + (1− θ) · x).

Theconvex conjugateor Fenchel transformf∗ : IRn → IR (whereIR := IR ∪ {+
− ∞}) of a convex

functionf (cf. Rockafellar(1970, Section 12)) is defined by

f∗(x∗) = sup
x∈IRn

{〈 x∗,x 〉 − f(x)} ∀x∗ ∈ IRn (3.1)
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Observe that the Fenchel transformf∗ is the pointwise supremum of affine functionsp(x∗) = 〈 x,x∗ 〉−µ
such that(x, µ) ∈ C ⊆ (IRn × IR). Thus, the Fenchel transformf∗ is again a convex function.

We can generalize the definition of a Fenchel transform (cf.Martinez-Legaz(1996)) by introducing a
fixed nonempty subsetK of IRn, then the conjugate of a functionf : K → IR is f c : IRn → IR, given by

f c(x∗) = sup
x∈K

{〈 x∗,x 〉 − f(x)} ∀x∗ ∈ IRn, (3.2)

which also known as theFenchel-Moreau conjugation. On the other hand, the restriction of the conjugate
g∗ to the subsetK of the functiong : IRn → IR is denoted bygγ : K → IR, which is defined by

gγ(x∗) = sup
x∗∈IRn

{〈 x∗,x 〉 − g(x∗)} ∀x ∈ K.

A vectorx∗ is said to be a subgradient of a convex functionf at a pointx, if

f(z) ≥ f(x) + 〈 x∗, z− x 〉 ∀z ∈ IRn.

This condition states that the graph of the affine functionp(z) := f(x) + 〈 x∗, z − x 〉 is a non-vertical
supporting hyperplane to the convex setepif at the point(x, f(x)), whereas the convex setepif is defined
by

epif :=
{
(x, µ) ∈

(
IRn × IR

)
| f(x) ≤ µ

}
Note that a differentiable functionf can be described in terms of gradient vectors, which correspond
to tangent hyperplanes to the graphf . In addition, the set of all subgradients off at x is called the
subdifferentiable off atx and it is defined by

∂f(x) :=
{
x∗ ∈ IRn | f(z) ≥ f(x) + 〈 x∗, z− x 〉 (∀z ∈ IRn)

}
.

The set of all subgradients∂f(x) is a closed convex set, which could be empty or may consists of just one
point. The multivalued mapping∂f : x 7→ ∂f(x) is called the subdifferential off . Moreover, a vectorx∗

is said to be anε-subgradient of a convex functionf a pointx ∈ IRn (whereε > 0) if

f(z) ≥ (f(x)− ε) + 〈 x∗, z− x 〉 ∀z ∈ IRn.

Similar to the definition of the subdifferential off we define theε-subdifferential of the functionf at a
vectorx to be the set

∂fε(x) :=
{
x∗ ∈ IRn | f(z) ≥ (f(x)− ε) + 〈 x∗, z− x 〉 (∀z ∈ IRn)

}
.

For a thorough discussion of this topic, we refer the reader toRockafellar(1970, Section 23)).

Theorem 3.1 (Martinez-Legaz (1996)). LetK be a nonempty subset ofIRn such that ext coK = K and
assume thatK is bounded. Then the mappingf 7→ f c is a bijection from the set of bounded from below
continuous functionsf : K → IR onto the set of convex functionsg : IRn → IR satisfying

∂εg(x∗0) ∩K 6= ∅ ∀x∗0 ∈ IRn ε > 0 (3.3)
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and
K ⊂

⋃
x∗∈IRn

∂1g(x∗), (3.4)

with inverseg → gγ . If, moreover,K is finite then (3.4) can be replaced by the stronger condition

K ⊂
⋃

x∗∈IRn

∂g(x∗). (3.5)

Theorem 3.2 (Martinez-Legaz (1996)). The indirect functionπ : IRn → IR of anyn-person TU-game is
a non-increasing polyhedral convex function such that

(i) ∂π(~x) ∩ {0,−1}n 6= ∅ ∀~x ∈ IRn,

(ii) {0,−1}n ⊂
⋃

~x∈IRn ∂π(~x), and

(iii) min~x∈IRn π(~x) = 0.

Conversely, ifπ : IRn → IR satisfies(i)-(iii) then there exists a uniquen-person TU-game〈N, v〉 having
π as its indirect function, its characteristic function is given by

v(S) = min
~x∈IRn

{
π(~x) +

∑
k∈S

xk

}
∀ S ⊂ N. (3.6)

According to the result above, we can express theindirect function π by:

π(~x) = max
S⊆N

{
v(S)−

∑
k∈S

xk

}
∀~x ∈ IRn. (3.7)

It was worked out byMartinez-Legaz(1996) that the indirect functionπ is a dual representation of the
characteristic functionv. Furthermore, it was emphasized byMartinez-Legazthat the indirect functionπ
is the generalized conjugate or Fenchel transform of the characteristic functionv. To see this compare the
expression (3.8) with the definition of a generalized conjugation off as it was given in (3.2), and observe
that we assigned to eachS ∈ 2N its characteristic vector−1S . Recall that the characteristic vector for
~x ∈ IRn is given byxk = 1 if k ∈ S andxk = 0 wheneverk 6∈ S. Then the indirect function takes the
form

π(~x) = max
S⊆N

{
v(−1S) + 〈 −1S , ~x 〉

}
∀~x ∈ IRn. (3.8)

An economic interpretation in terms of a production problem was given inMartinez-Legaz(1996, p.
293). Here, we want to give an alternative interpretation related to an investment fund. A fund manager has
the opportunity to invest inn-assets. The expressionxk is considered the amount, which can be invested
in assetsk. If he decides not to invest in all assets available in the market, he buys assets to form the
sub-portfolioS. This can be interpreted, for instance, as an investment in a market-index portfolio. The
term

∑
k∈S xk can be seen as the expenditure to buy the portfolioS that gives a total yield ofv(S). The

expression in the bracket is the net profit made by the fund manager to invest in portfolioS. The fund
manager will select now the market portfolio that gives him the highest net profit at~x. If we allow negative
values forxk, we have a more natural interpretation in terms of negative investment (selling short) instead
of negative salaries as inMartinez-Legaz(1996).

The pre-imputation~x i,j,δ ∈ I ′(v), with δ ≥ 0, is given by

~x i,j,δ
N\{i,j} = ~xN\{ i,j}, xi,j,δ

i = xi − δ and x j,i,δ
j = xj + δ
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Lemma 3.1 (Meseguer-Artola(1997)). Let 〈N, v〉 be ann-person cooperative game with side payments.
Let π andsij be the associated indirect function and the maximum surplus of playeri against playerj,
respectively. If~x ∈ I ′(v) then the equality:

sij(~x, v) = π(~x i,j,δ)− δ

holds for everyi, j ∈ N, i 6= j, and for everyδ ≥ δ1(~x, v), where:

δ1(~x, v) := max
k∈N,S⊂N\{k}

|v(S ∪ {k})− v(S)− xk|.

Besides the fact that we restrict our attention in the analysis of the pre-kernel to the trivial coalition
structureB = {N}, leaving aside any problems involving non-trivial coalition structures, we cite the
next crucial result, which was worked out byMeseguer-Artola(1997), in its most general form. The
importance of this result cannot be overemphasized, especially, to provide an alternative representation of
the pre-kernel and also with regard to a possible generalization of our forthcoming results to more complex
coalition structures.

Proposition 3.1 (Meseguer-Artola (1997)). For a TU-Game〈N, v〉 with indirect functionπ, a pre-
imputation~x ∈ I ′(v) is in the pre-kernel of〈N, v〉 for the coalition structureB = {B1, B2, . . . , Bl}, ~x ∈
PrK(v), if and only if, for everyk ∈ {1, 2, . . . , l}, everyi, j ∈ Bk, i > j, and someδ ≥ δ1(v, ~x), one has

π(~x i,j,δ) = π(~x j,i,δ).

In order to restate a first characterization of the pre-kernel in terms of a solution set of aminimiza-
tion problem, as it was derived byMeseguer-Artola(1997, cf. p.13), we make use of the result given
by Proposition3.1. Then, we can derive a system of nonlinear equations from which we can construct a
minimization problem in order to characterize the pre-kernel of a TU-game〈N, v〉. As already mentioned,
we are only interested in the trivial coalition structureB = {N}, thus the system associated with the
characterization of the pre-kernel is given byfij(~x) = 0 ∀i, j ∈ N, i > j

f0(~x) = 0
(3.9)

where, for someδ ≥ δ1(~x, v),
fij(~x) := π(~x i,j,δ)− π(~x j,i,δ), (3.10)

and
f0(~x) :=

∑
k∈N

xk − v(N).

In Meseguer-Artola(1997, p. 13), it was recognized that the system of equations introduced above, can be
expressed as a minimization problem. Since, this system hasn · (n − 1)/2 nonlinear equations. Further-
more, the system is overdetermined, since we haven · (n− 1)/2 + 1 ≥ n. To any overdetermined system
there is associated an equivalent minimization problem such that the set of global minima coincides with
the solution set of the system. The solution set of such a minimization problem is the set of values for~x
which minimizes the following function

h(~x) :=
∑

i,j∈N
i>j

(fij(~x))2 + (f0(~x))2 ≥ 0 ~x ∈ I ′(v). (3.11)
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REMARK 3.1.
From Theorem3.2 we know that the indirect functionπ is a non-increasing polyhedral convex function
on the convex polyhedral setI ′(v). In addition, the indirect functionπ is non-negative convex, since by
condition(iii) we havemin~x∈IRn π(~x) = 0. According to its definition the functionfij is the difference
of two non-negative convex functions(π(~x i,j,δ) − π(~x j,i,δ)) onI ′(v). If we take the square onfij , then
(fij(~x))2 is still the difference of two convex functions, since we can write(fij(~x))2 = (π(~x i,j,δ) −
π(~x j,i,δ))2 on I ′(v) as the difference of two convex functions given by(fij(~x))2 = 2 · ((π(~x i,j,δ))2 +
(π(~x j,i,δ)))2 − (π(~x i,j,δ) + π(~x j,i,δ))2 for all ~x ∈ I ′(v) (see also the discussion inMeseguer-Artola
(1997, Footnote 13)). In fact, instead of taking the sum of two convex functions, we take the difference,
which implies that the structural form of the objective functionh is at the moment ambiguous and not clear
for us. We need more information to deduce that the functionh is convex or not. 3

4 CHARACTERIZATION OF THE PRE-KERNEL BY SOLUTION SETS OF

M INIMIZATION PROBLEMS

To obtain an alternative representation of the pre-kernel, it is useful to introduce the concept of the
parametrized nest of level sets, which is defined as:

levβ f :=
{
x ∈ IRn

 f(x) ≤ β
}
, β ∈ IR. (4.1)

Similar, forβ := infx f the minimum or solution set of the functionf is defined as:

Mf :=
{
x ∈ IRn

 f(x) ≤ β
}
. (4.2)

Observe first that for the objective function (3.11) the level set levβ h is empty, ifβ < β = inf~x h. It
follows from Proposition3.1 that the functionh attains a minimum at0, thus it holds0 = min~x h and
the non-empty minimum set denoted byMh can be specified by{~x ∈ I ′(v) | h(~x) = 0}. As mentioned
in Remark3.1 the objective functionh may be non-convex, therefore the minimum setMh needs not
necessarily to be a convex set.

REMARK 4.1.
According to the fact that0 = min~x h, the pre-kernel can be fully characterized byMh. To see this, take
a pre-kernel element, i.e.~x ′ ∈ PrK(v), then the efficiency property is satisfied withf0(~x ′) = 0 and the
maximal surplusessij(~x ′, v) must be balanced for each distinct pair of playersi, j, hence, we conclude
thatfij(~x ′) = 0 for all i, j ∈ N, i > j and thereforeh(~x ′) = 0. Thus, we get~x ′ ∈ Mh. To prove the
converse, suppose that~x ′ ∈ Mh, thenh(~x ′) = 0. But this implies thatfij(~x ′) = 0. That means that the
differencefij(~x ′) = (π(~x ′ i,j,δ)−π(~x ′ j,i,δ)) is equalized for each distinct pair of indicesi, j ∈ N, i > j.
Thus,~x ′ ∈ PrK(v). It turns out that the minimum set coincides with the pre-kernel, i.e., we have:

Mh = {~x ∈ I ′(v) | h(~x) = 0} = PrK(v), (4.3)

which can be also stated as:arg min h(~x) = PrK(v), as it was done inMeseguer-Artola(1997). 3

We summarize this discussion in the following corollary

Corollary 4.1. For a TU-Game〈N, v〉 with indirect functionπ, it holds that

h(~x ′) =
∑

i,j∈N
i>j

(fij(~x ′))2 + (f0(~x ′))2 = min
~x∈I(v)

h(~x) = 0, (4.4)
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if and only if~x ′ ∈ PrK(v).

The characterization of the pre-kernel by the minimum setMh is convincing in its elementariness.
Although, this new characterization is very striking through its simplification, it offers us no keen insight
on the pre-kernel. From the discussion of Remark (3.1) it is known to us that the shape of the objective
function h (3.11) is still unclear, therefore, we get no new idea about the geometrical shape of the pre-
kernel by looking on the minimum setMh. According to the work byMaschler and Peleg(1966, 1967),
it is well known that the pre-kernel may be composed by more than one convex polyhedron. Thus, we
would gain more if we would be able to decompose the minimum set in geometrical objects which are
quite similar to the existing characterization of the pre-kernel by convex polyhedra. To this end, we want
to replace the minimization problem with its rather complicated objective functionh of the type (3.11)
by an optimization problem with an objective function that is much more easier to treat and that solves
besides the new optimization problem also the original one.

Proposition 4.1. If we fix an arbitrary vector~γ in the the pre-imputation setI ′(v), then for a TU-Game
〈N, v〉 with indirect functionπ the objective functionh of type(3.11) induces a quadratic function:

hγ(~x) = (1/2) · 〈 ~x,Q~x 〉+ 〈 ~x,~a 〉+ α ~x ∈ I ′(v) (4.5)

where~a is a column vector of coefficients,α is a scalar andQ is a symmetric (n× n)-matrix with integer
coefficients taken from the interval[−n · (n − 1), n · (n − 1)]. Furthermore, if the minimum set ofhγ on
I ′(v) is Mhγ = {~x | hγ(~x) = 0} and~x ′ ∈ Mhγ , then~x ′ ∈ PrK(v).

Proof. If ~γ ∈ I ′(v), then(f0(~γ))2 = 0 and the functionh(~γ) given by (3.11) simplifies to

h(~γ) :=
∑

i,j∈N
i>j

(fij(~γ))2 =
∑

i,j∈N
i>j

(π(~γ i,j,δ)− π(~γ j,i,δ))2,

which is by Lemma3.1

h(~γ) =
∑

i,j∈N
i>j

(sij(~γ, v) + δ − sji(~γ, v)− δ)2 =
∑

i,j∈N
i>j

(sij(~γ, v)− sji(~γ, v))2.

Next define the set

Cij(~γ) :=
{

S ∈ Gij

 sij(~γ, v) = ev(S,~γ) ∀S ∈ 2N\{∅, N}
}

.

Take a setSij ∈ Cij(~γ) for all i, j ∈ N, i 6= j, then we obtain

hγ(~x) =
∑

i,j∈N
i>j

(
ev(Sij , ~x)− ev(Sji, ~x)

)2

=
∑

i,j∈N
i>j

(
v(Sij)−

∑
k∈Sij

xk − v(Sji) +
∑

k∈Sji

xk

)2

. (4.6)

It should be apparent from equation (4.6) that a minimum is attained onI ′(v), if hγ(~x ′) = 0. This
happens whenever the maximal surplus is balanced for each distinct pair of playersi, j. This condition
is satisfied for pre-kernel elements, and we conclude that if the minimum set ofhγ on I ′(v) is given by
Mhγ = {~x | hγ(~x) = 0} and it holds that~x ′ ∈ Mhγ , then it must hold in addition that~x ′ ∈ PrK(v).
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Now let us define the characteristic vector denoted1Sij for all Sij with i, j ∈ N, i 6= j by

1Sij :=

{
1 k ∈ Sij

0 k 6∈ Sij

Then formula (4.6) can now be written as

hγ(~x) =
∑

i,j∈N
i>j

(
v(Sij)− v(Sji)− 〈 ~x,1Sij 〉+ 〈 ~x,1Sji 〉

)2

.

Moreover, definingαij := (v(Sij)− v(Sji)) ∈ IR, we can simplify the above expression even further. We
get

hγ(~x) =
∑

i,j∈N
i>j

(
αij + 〈 ~x, (1Sji − 1Sij ) 〉

)2

.

Expanding the above term

hγ(~x) =
∑

i,j∈N
i>j

{
α2

ij + 2 · αij · 〈 ~x, (1Sji − 1Sij ) 〉+ 〈 ~x, (1Sji − 1Sij ) 〉2
}

.

and then collecting terms, it gives

hγ(~x) =
∑

i,j∈N
i>j

α2
ij + 〈 ~x,

∑
i,j∈N
i>j

2 · αij · (1Sji − 1Sij ) 〉+
∑

i,j∈N
i>j

〈 ~x, (1Sji − 1Sij ) 〉2.

Let nowα :=
∑

i,j∈N
i>j

α2
ij , ~a := 2 ·

∑
i,j∈N
i>j

αij · (1Sji − 1Sij ), and observe that〈 ~x, (1Sji − 1Sij ) 〉2 =∑
k∈N

∑
l∈N qk,l

ij xk xl = 〈 ~x,Qij ~x 〉 with qk,l
ij ∈ {−1, 0, 1} if k 6= l, and fork = l, qk,k

ij ∈ {0, 1}, then

hγ(~x) =
∑

i,j∈N
i>j

〈 ~x,Qij ~x 〉+ 〈 ~x,~a 〉+ α = 〈 ~x,

( ∑
i,j∈N
i>j

Qij

)
~x 〉+ 〈 ~x,~a 〉+ α,

whereQij is a symmetric(n × n)-matrix, with off-diagonal elements of−1, 0 or 1, and on-diagonal
elements of0 and1.

Write Q :=
∑

i,j∈N
i>j

Qij . It should be apparent that the matrixQ is also a symmetric(n× n)-matrix.

Moreover, we have in total(n · (n − 1))/2 matrices of typeQij , which are made of by coefficients of
values of−1, 0 and1, thus each coefficient of the matrixQ will adopt integer values from the interval of
[−(n · (n − 1))/2, (n · (n − 1))/2]. Therefore, on-diagonal elements can adopt integer values of at most
(n · (n− 1))/2. Multiplying each coefficient of the matrixQ by 2, we obtainQ = (1/2) ·Q, therefore we
receive the desired result

hγ(~x) = (1/2) · 〈 ~x,Q~x 〉+ 〈 ~x,~a 〉+ α, (4.5)

with coefficients taken from the intverval[−n·(n−1), n·(n−1)]. This argument concludes the proof.
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REMARK 4.2.
Obviously, we cannot guarantee in general that a quadratic functionhγ of the form (4.5) on I ′(v) has a
minimum set ofMhγ = {~x | hγ(~x) = 0} for every possible parameter constellation(Q,~a, α). Generically,
the minimum set onI ′(v) is given byMhγ = {~x | hγ(~x) = β}, whereβ ≥ 0. The reader may be aware
that in the sequel, we have the former definition of the minimum set in mind, when we speak from a set
Mhγ . We will state it explicitly, if we make use of its general definition. Notice, that the emphasis on
minimum sets is not only crucial to obtain a dual representation of the pre-kernel by the indirect function
approach, it is also of great importance to construct a tractable algorithm to compute a pre-kernel point,
as it will become more clear in the next section. Following this approach, we can construct a sequence of
pre-imputation points induced from a sequence of quadratic minimization problems which are related to
different parameters(Q,~a, α) and therefore to different minimum sets, which, in the end, converges to an
element of a setMhγ , that is to say to a point in the pre-kernel. 3

Proposition 4.2. If the minimum set of a convex objective functionhγ of type(4.5) on I ′(v) is Mhγ =
{~x | hγ(~x) = 0}, then a vector~x ′ ∈ Mhγ solves the minimization problemmin~x∈I′(v) hγ(~x), and
the original minimization problemmin~x∈I′(v) h(~x) as well. That is, we get the following inclusion of
minimum sets:Mhγ ⊆ Mh. As a consequence, the solution of the minimization problemmin~x∈I′(v) hγ(~x)
determines the pre-kernel element by

~x ′ = −Q−1 ~a,

if Q is non-singular andhγ(~x ′) = 0.

However, if the symmetric(n × n)-matrix Q is singular andhγ(~x ′) = 0 is given, then a particular
solution given by

~x ′ = −QMP ~a,

determines a pre-kernel element.

Proof. If the minimum setMhγ on I ′(v) is equal to{~x | hγ(~x) = 0} and~x ′ ∈ Mhγ , then the maximal
surplus is balanced for all for alli, j ∈ N, i > j due to equation (4.6). We can now conclude from
hγ(~x ′) = 0 that (fij(~x ′))2 = 0 is fulfilled for all i, j ∈ N, i > j, which impliesh(~x ′) = 0. In other
words, we get the desired result~x ′ ∈ Mh.

In order to determine a pre-kernel solution, take the directional derivative of the functionhγ at ~x
relative to~z, which is

h′γ(~x, ~z) := lim
λ→0

hγ(~x + λ · ~z)− hγ(~x)
λ

,

and then, we obtain for the first order condition for minimizingh

h′γ(~x, ~z) = ~a + Q~x = 0 ⇐⇒ ~x = −Q−1 ~a,

if Q is non-singular andhγ(~x) = hγ(−Q−1 ~a) = 0, then we have found an element of the pre-kernel.

Finally, let us consider the case that the matrixQ is singular. To this end, letQMP be the corresponding
Moore-Penrose matrix of the singular and symmetric matrixQ. The objective function has minimum set
Mhγ = {~x | hγ(~x) = 0}, therefore the linear systemQ~x = −~a has a solution, say~x ′. This tell us that the
linear system is consistent which is equivalent toQQMP (−~a) = −~a. Then

QQMP (−~a) = Q (QMP (−~a)) = QQMP (Q~x ′) = (QQMP Q) ~x ′ = Q~x ′ = −~a.

Thus, it holdsQ~x ′ = Q (QMP (−~a)), it gives that~x ′ = −QMP ~a is a particular solution of the linear
systemQ~x = −~a.
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Lemma 4.1. Let Q be a non-singular symmetric(n × n)-matrix and let~x ′ = −Q−1 ~a be a pre-kernel
point, then for a TU-Game〈N, v〉with indirect functionπ the minimum value functionHγ at~x ′ ∈ PrK(v)
has the following general form

Hγ(Q,~a, α) := min
~x∈I′(v)

hγ(~x) = (−1/2) · 〈 ~a, Q−1 ~a 〉+ α ≡ 0. (4.7)

Similar, wheneverQ is a singular and symmetric(n × n)-matrix and a pre-kernel point is specified by
~x ′ = −QMP ~a, then the minimum value functionHγ at ~x ′ is specified by

Hγ(Q,~a, α) := min
~x∈I′(v)

hγ(~x) = (−1/2) · 〈 ~a, QMP ~a 〉+ α ≡ 0. (4.8)

Proof. Take the vector~x ′ = −Q−1 ~a ∈ PrK(v) that solves the problemmin~x∈I′(v) hγ(~x) = 0 and
substituting this result inhγ , then

hγ(~x ′) = hγ(−Q−1 ~a) = (−1/2) · 〈 Q−1 ~a,−Q Q−1 ~a 〉 − 〈 Q−1 ~a,~a 〉+ α ≡ 0,

which is
(−1/2) · 〈 ~a, Q−1 ~a 〉+ α ≡ 0.

For the subcase that the symmetric matrixQ is singular, its associated Moore-Penrose matrixQMP is
symmetric as well. A pre-kernel element can be characterized by~x ′ = −QMP ~a, which implies that we
get

(−1/2) · 〈 ~a, QMP ~a 〉+ α ≡ 0.

In order to conclude that the functionhγ has besides a local minimum at~x ′ also a global minimum at
that point, we must show in a next step that the quadratic functionhγ is a convex function.

Proposition 4.3. For a TU-Game〈N, v〉with indirect functionπ, the objective functionhγ of the form(4.5)
onI ′(v) with minimum setMhγ = {~x ∈ I ′(v) | hγ(~x) = 0} is convex, i.e. the symmetric(n× n)-matrix
Q is positive semi-definite, thus the matrixQ satisfies

〈 ~z,Q~z 〉 ≥ 0 ∀~z ∈ I ′(v). (4.9)

Proof. In order to prove that the functionhγ is convex, we have to establish that for all~x, ~z ∈ I ′(v) and
0 ≤ θ ≤ 1 it holds that

θ · hγ(~z) + (1− θ) · hγ(~x) ≥ hγ(~y) = hγ(θ · ~z + (1− θ) · ~x),

wherey := θ · ~z + (1− θ) · ~x.

Assume next without loss of generality that~x ′ ∈ Mhγ , and that~x ′ = −Q−1 ~a, whenever the matrix
is Q is non-singular or that~x ′ = −QMP ~a for the case that the symmetric matrixQ is singular. Thus, we
havehγ(~x ′) = 0. Moreover, observe thathγ(~z) ≥ 0 for all ~z ∈ I ′(v). To show convexity, we have to
prove that the following inequality is satisfied:

θ · hγ(~z) + (1− θ) · hγ(~x ′) = θ · hγ(~z) ≥ hγ(~y) = (1/2) · 〈 ~y, Q~y 〉+ 〈 ~y,~a 〉+ α,
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which is

θ · hγ(~z) ≥
(1/2) · 〈 (θ · ~z + (1− θ) · ~x ′), Q (θ · ~z + (1− θ) · ~x ′) 〉+ 〈 (θ · ~z + (1− θ) · ~x ′),~a 〉+ α.

We obtain after some calculation steps the inequality:

θ · hγ(~z) ≥
(1/2) · θ · (θ − 1)〈 ~z,Q~z 〉+ θ · hγ(~z)− (1/2) · θ · (1− θ) 〈 ~x ′, Q~x,′ 〉+ θ · (1− θ) 〈 ~z,Q~x ′ 〉.

This expression is equivalent to

0 ≥ (−1/2) · 〈 ~z,Q~z 〉 − (1/2) · 〈 ~x ′, Q~x ′ 〉+ 〈 ~z,Q ~x ′〉.

Substituting in the above inequality−Q−1 ~a for ~x ′ in the case thatQ is non-singular, and−QMP ~a if Q
is singular. We can simplify the above expression to

0 ≤ (1/2) · 〈 ~z,Q~z 〉+ (1/2) · 〈 ~a, Q−1 ~a 〉+ 〈 ~z,~a 〉.

Using the result from Lemma4.1〈 ~a, Q−1 ~a 〉 = 2 · α or 〈 ~a, QMP ~a 〉 = 2 · α respectively, we get

0 ≤ (1/2) · 〈 ~z,Q~z 〉+ 〈 ~z,~a 〉+ α = hγ(~z).

This argument establish convexity of the objective functionh, since it holdshγ(~z) ≥ 0 for all ~z ∈ I ′(v).

Proposition 4.4. LetQ be a non-singular symmetric(n×n)-matrix. Ifhγ is the quadratic function of the
form (4.5) onI ′(v) with minimum setMhγ = {~x ∈ I ′(v) | hγ(~x) = 0}, then the Fenchel transform or the
conjugation of the functionhγ is given by

h∗γ(~x ∗) = (1/2) · 〈 ~x ∗, Q−1 ~x ∗ 〉 − 〈 ~x ∗, Q−1 ~a 〉 ∀~x ∗ ∈ IRn. (4.10)

In case that the symmetric(n× n)-matrixQ is singular, the Fenchel transform has the form

h∗γ(~x ∗) = (1/2) · 〈 ~x ∗, QMP ~x ∗ 〉 − 〈 ~x ∗, QMP ~a 〉 ∀~x ∗ ∈ IRn. (4.11)

Proof. The Fenchel transform of the functionhγ as specified in (4.5) has the general form

h∗γ(~x ∗) = sup
~x∈I′(v)

{
〈 ~x, ~x ∗ 〉 − hγ(~x)

}
∀~x ∗ ∈ IRn.

Plug in the above formula the structural form ofhγ that was given by equation (4.5), this yields

h∗γ(~x ∗) = sup
~x∈I′(v)

{
〈 ~x, (~x ∗ − ~a) 〉 − (1/2) · 〈 ~x,Q ~x 〉 − α

}
∀~x ∗ ∈ IRn.

Define~y ∗ := ~x ∗ − ~a, then

h∗γ(~y ∗) = sup
~x∈I′(v)

{
〈 ~x, ~y ∗) 〉 − (1/2) · 〈 ~x,Q ~x 〉 − α

}
∀~y ∗ ∈ IRn. (4.12)
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Next, we define the function

k(~x) := 〈 ~x, ~y ∗ 〉 − (1/2) · 〈 ~x,Q ~x 〉 − α.

Take the directional derivative of the functionk at~x relative to~z, which is

k′(~x, ~z) := lim
λ→0

k(~x + λ · ~z)− k(~x)
λ

,

and then, we obtain by first order condition

k′(~x, ~z) = ~y ∗ −Q~x = 0 ⇐⇒ ~x = Q−1 ~y ∗,

if Q is non-singular. Substituting this result in the Fenchel transform (4.12) of functionhγ , and we get

h∗γ(~y ∗) = 〈 Q−1 ~y ∗, ~y ∗) 〉 − (1/2) · 〈 Q−1 ~y ∗, Q Q−1~y ∗ 〉 − α ∀~y ∗ ∈ IRn.

Since,Q is a symmetric matrix, we can simplify to

h∗γ(~y ∗) = (1/2) · 〈 ~y ∗, Q−1~y ∗ 〉 − α.

Using~x ∗ − ~a for ~y ∗ and the result from Lemma4.1〈 ~a, Q−1 ~a 〉 = 2 · α, we finally obtain the following
expression after some collection and rearrangement of terms

h∗γ(~x ∗) = (1/2) · 〈 ~x ∗, Q−1 ~x ∗ 〉 − 〈 ~x ∗, Q−1 ~a 〉 ∀~x ∗ ∈ IRn. (4.10)

Remind that if the matrixQ is singular, symmetric and positive semi-definite, its associated Moore-
Penrose matrixQMP is symmetric and positive semi-definite. Using the second part from Lemma4.1
〈 ~a, QMP ~a 〉 = 2 · α, then we receive a similar expression related to (4.10), which is specified by

h∗γ(~x ∗) = (1/2) · 〈 ~x ∗, QMP ~x ∗ 〉 − 〈 ~x ∗, QMP ~a 〉 ∀~x ∗ ∈ IRn. (4.11)

REMARK 4.3.
A standard result of convex analysis states that a given vector~x belongs to the solution set or minimum set
of a convex functionf if and only if the null vector0 is a subgradient of a convex functionf , that is0 ∈
∂f(x) (Rockafellar, 1970, p. 264). As it becomes more clear through the proof of Theorem4.1below, the
minimum set of a convex functionf is equal to the subdifferential of the conjugationf∗ at0, that is∂f∗(0).
Proposition4.3 states that the functionhγ is convex, this implies that the conjugationh∗γ is a convex
function, too. We can conclude that the subdifferential∂h∗γ(0) that coincides with the minimum/solution
set is a closed convex set, which may consists of just one point. It could not be empty, since there always
exists a pre-kernel point for a TU-game. In fact, the minimum set∂h∗γ(0) of an objective functionhγ is
a closed and bounded convex set that can only completely characterize the pre-kernel of a game〈v,N〉,
whenever the pre-kernel is itself convex or consists of just a single point. Remind our discussion after
Corollary4.1 that the pre-kernel may contain more than one convex polyhedron (cf.Maschler and Peleg
(1966, 1967) andMaschler(1992)). This implies that the structure of the pre-kernel may be disconnected
or may even be a non-convex set. How can we now characterize the pre-kernel? It turns out by Theorem4.1
that the pre-kernel can be composed by an arbitrary union of subdifferential∂h∗γ(0) (closed and bounded
convex sets) which had been induced by a collection of quadratic functionshγk

of the form (4.5).
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Theorem 4.1. Let {hγk
| k ∈ J } be a collection of quadratic functionshγk

of type (4.5) on I ′(v)
with minimum setMhγk

= {~x ∈ I ′(v) | hγk
(~x) = 0} for eachk ∈ J . Then for a TU-Game〈N, v〉

with indirect functionπ the pre-kernel is composed by an arbitrary union of closed and bounded convex
minimum sets, that is

PrK(v) =
⋃

k∈J
∂h∗γk

(0) =
⋃

k∈J
{~x ∈ I ′(v) | hγk

(~x) = 0}, (4.13)

whereJ is an arbitrary index set.

Proof. In the first step, we establish that the minimum setMhγ of the convex functionhγ coincides with
the subdifferential of the Fenchel transformh∗γ at the null vector0, that is we want to show that∂h∗γ(0) =
Mhγ . For this purpose, applying the definition of a subdifferential to the conjugateh∗γ , then we get by
definition:

∂h∗γ(~x ∗) =
{
~x ∈ I ′(v)

 h∗γ(~z ∗) ≥ h∗γ(~x ∗) + 〈 ~x, ~z ∗ − ~x ∗ 〉 (∀~z ∗ ∈ IRn)
}

∂h∗γ(~x ∗) =
{
~x ∈ I ′(v)

 〈 ~x, ~x ∗ 〉 − h∗γ(~x ∗) ≥ 〈 ~x, ~z ∗ 〉 − h∗γ(~z ∗) (∀~z ∗ ∈ IRn)
}

∂h∗γ(~x ∗) =
{
~x ∈ I ′(v)

 〈 ~x, ~x ∗ 〉 − h∗γ(~x ∗) ≥ sup
~z ∗∈IRn

{〈 ~x, ~z ∗ 〉 − h∗γ(~z ∗)}
}

∂h∗γ(~x ∗) =
{
~x ∈ I ′(v)

 〈 ~x, ~x ∗ 〉 − h∗γ(~x ∗) ≥ hγ(~x)
}
.

For the second step, remind from convex analysis that a convex functionf is called to be closed whenever
the convex setepif is closed. Observe now that a quadratic objective functionhγ of the form (4.5) is
closed, since it is continuous, that is, theepi hγ is closed. This implies that the assumption of Theorem
23.5 (ii) in Rockafellar(1970, p. 218) is satisfied, then〈 ~x, ~x ∗ 〉 − h∗γ(~x ∗) ≥ hγ(~x) is equivalent to
〈 ~x, ~x ∗ 〉 − h∗γ(~x ∗) = hγ(~x). Thus, we can simplify the subdifferential∂h∗γ(~x ∗) to

∂h∗γ(~x ∗) =
{
~x ∈ I ′(v)

 〈 ~x, ~x ∗ 〉 − h∗γ(~x ∗) = hγ(~x)
}
.

In addition, let~x ∗ = 0 and note that due to the result expressed in Proposition4.4 we haveh∗γ(0) = 0,
then we get

∂h∗γ(0) =
{
~x ∈ I ′(v)

 〈 ~x,0 〉 − h∗γ(0) = hγ(~x)
}

=
{
~x ∈ I ′(v)

 hγ(~x) = 0
}

= Mhγ .

Notice, that the conjugationh∗γ is a finite convex function for any~x ∗ due to formula (4.10) and (4.11), then
at each point~x ∗ the subdifferentiable∂h∗γ is a non-empty closed, bounded and convex set (cf.Rockafellar
(1970, p. 218)), thus we conclude that the subdifferentiable∂h∗γ(0) is a non-empty closed bounded convex
set.

Take now a collection{hγk
| k ∈ J } with minimum setMhγk

= {~x ∈ I ′(v) | hγk
(~x) = 0} for each

k ∈ J , then the union of the subdifferentials∂h∗γk
must be equal to the union of the minimum setsMhγk

,
i.e., ⋃

k∈J
∂h∗γk

(0) =
⋃

k∈J
{~x ∈ I ′(v) | hγk

(~x) = 0}.

It remains to prove thatPrK(v) = ∪k∈J ∂h∗γk
(0) = ∪k∈J Mhγk

.

First assume that~x ′ ∈ ∪k∈J ∂h∗γk
(0), then there exists at least onek such thathγk

(~x ′) = 0.
The vector~x ′ solves the problemmin~x∈I′(v) hγk

and it solves by Proposition4.2 the original prob-
lem min~x∈I′(v) h, too. Hence, the differences in the indirect function values are balancedπ(~x ′ i,j,δ) =
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π(~x ′ j,i,δ) for all distinct pairsi, j ∈ N, i > j, i.e., fij(~x ′) = 0 for all i, j ∈ N, i > j. Hence
~x ′ ∈ PrK(v).

Now let us prove the converse. If~x ′ ∈ PrK(v), then the maximal surplus is balancedsij(~x ′, v) =
sji(~x ′, v) for all i, j ∈ N, i > j, thusfij(~x ′) = 0 for all i, j ∈ N, i > j. But then, we have for at least one
k that the equation (4.6) is equal to zero, hence we gethγk

(~x ′) = 0. In other words,~x ′ ∈ Mhγk
, which

implies~x ′ ∈ ∪k∈J ∂h∗γk
(0).

5 ALGORITHM FOR COMPUTING THE PRE-KERNEL

In the foregoing discussion we introduced an approach to characterize the pre-kernel by an arbitrary union
of minimum sets or subdifferentials of conjugations at the null vector. This representation by convex
sets was obtained by solving minimization problems of quadratic functions of type (4.5). But so-far our
discussion was not constructive in providing a method to compute a pre-kernel element. The idea we
present to find a point of the pre-kernel is based on an iterative procedure. We choose an arbitrary pre-
imputation~γ 0 ∈ I ′(v) as a starting point to construct a quadratic objective function. Any selection of
a starting point~γ 0 that satisfies the efficiency criterion will induce due to formula (3.10) a quadratic
objective function of the form (4.5) corrected by a matrixQ0 consisting only of integer values2 in order
to take efficiency into account. Let us denote this function byhγ0 . If for all i, j ∈ N, i > j, it holds
f0

ij(~γ
0) = 0 andf0(~γ 0) = 0, thenhγ0(~γ 0) = 0 and we have found a pre-kernel element. For the case

that for some distinct pairsi, j we havef0
ij(~γ

0) 6= 0 andf0(~γ 0) = 0, this inducesβ0 := h0
γ 0(~γ 0) > 0,

and we have to solve the associated minimization problem. The vector~γ 1 = (−Q0)−1 ~a 0 that solves
β1 := min~x∈I(v) hγ0(~x) provides us with a unique solution, whenever the symmetric(n × n)-matrix Q0

is non-singular. The solution must be an element of the pre-imputation setI ′(v), since iff0(~γ 1) 6= 0, then
we gethγ0(~γ 1) > β1 and~γ 1 can not be a solution formin~x∈I(v) hγ0(~x). In contrast, if the determinant
of the matrixQ is zero, i.e. det |Q| = 0, then the matrixQ is singular and it holds in our case that
rank(Q) = m < n. The number of variables is greater than the number of equations and the solution is
not anymore unique, thenQ~x = ~a has an infinite number of solutions. In such a case, we select a particular
solution~γ 1 = −QMP 0 ~a 0 from the minimum set to induce a new objective function. The point~γ 1 induces
again for some distinct pairsi, j an inequalityf1

ij(~γ
1) 6= 0, otherwise we had already found by~γ 1 an

element of the pre-kernel. Solving the minimization problemβ2 := min~x∈I(v) hγ1(~x) we find the unique
point ~γ 2 = (−Q1)−1 ~a 1 for a non-singular matrixQ1. If hγ1(~γ 2) = 0 the algorithm stops, otherwise
we continue in our search for a pre-kernel solution. By computing pre-imputation points in accordance
with the described rule, we construct a non-increasing sequence{βk}k≥0 of real-valued minima attained
by optimization problems which is non-increasing in the integersk for all k ∈ IN0 = {0, 1, 2, . . .}.
Whenever such a non-increasing sequence{βk}k≥0 of real numbers is bounded from below by zero, the
sequence will converge in the limit to zero and therefore to an objective function from which an element
of the pre-kernel can be computed.

In the next step we introduce an algorithm that is based on the iterative procedure discussed above in
order to generate a sequence of pre-imputation points that converges in the limit to a pre-kernel element.
We can establish in Theorem5.1that such a sequence can be generated by Algorithm5.1.

Algorithm 5.1. Given a TU-Game〈N, v〉 with indirect functionπ and objective functionh of type(3.11)
on the pre-imputation setI ′(v), proceed as follows to generate a sequence of pre-imputation points.

0. Setk = 0 and select an arbitrary starting point~γ 0 from the pre-imputation setI ′(v), otherwise go
to Step 9.
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1. Construct an objective functionhγ0 , otherwise go to Step 9.

2. If k = 0 go to Step 3, otherwise go to Step 4.

3. If the induced objective functionhγ0 at ~γ 0 is

– equal to zero, then go to Step 9.

– greater than zero, then continue with Step 5.

4. Construct an objective functionhγk and continue with the next step, otherwise go to Step 9.

5. Solve the associated minimization problemmin~x∈I ′(v) hγk(~x), otherwise go to Step 9.

6. Increase the indexk by 1 and label the solution of the minimization problem by~γ k+1.

7. If the induced objective functionhγk at the solution~γ k+1 is:

– equal to zero, then go to Step 9.

– greater than zero, then go to next step.

8. Replace the point~γ k by the new solution~γ k+1, and return to Step 2.

9. Stop the algorithm.

For a TU-Game〈N, v〉 with indirect functionπ and objective functionh of type (3.11) on the pre-
imputation setI ′(v), the Theorem5.1establishes monotonicity and stopping properties for Algorithm5.1.
The first part of Theorem5.1states that the algorithm generates in any iteration step a pre-imputation point.
The algorithm never stops without specifying a pre-imputation point. The second part of the theorem
shows that the sequence{βk}k∈IN0 of minima attained from minimization problems generated by the
algorithm is non-increasing ink for all k ∈ IN0 = {0, 1, 2, . . .}, and that this sequence converges in the
limit to zero. This result formulates, in addition, the stopping rule of the Algorithm5.1 to terminate the
algorithm when the minimum attained for an optimization problem generated at an iteration step is equal to
zero. The third part of Theorem5.1states that the sequence{~γ k}k∈IN0 of pre-imputation points generated
by the Algorithm5.1 by solving in any iteration step the associated minimization problem converges in
the limit to a pre-kernel element. In accordance with the stopping rule formulated in the second part of
the theorem, this result indicates that the algorithm guarantees to terminate when a pre-kernel element is
found.

Theorem 5.1.Consider a TU-Game〈N, v〉with indirect functionπ and objective functionh of type(3.11)
on the pre-imputation setI ′(v).

1. Algorithm5.1never stops in Step 0, Step 1, Step 4 and Step 5.

2. Algorithm5.1 generates a sequence{βk}k∈IN0 that is non-increasing ink ∈ IN0 = {0, 1, 2, . . .},
whereasβk+1 := min~x∈I(v) hγk(~x) andβ0 := h(~γ 0). Thus, there exists a limit pointβk∗ at zero,
s. t. limk→∞ βk = βk∗ = 0.

3. Algorithm 5.1 generates a sequence{~γ k}k∈IN0 of pre-imputation vectors that converges to a pre-
kernel element. Hence, there exists a pre-imputation point~γ k∗ s. t. limk→∞ ~γ k = ~γ k∗ ∈ PrK(v).
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Proof. Algorithm 5.1 does not stop at Step 0, because the pre-imputation set is never empty. Moreover,
Algorithm 5.1 does not stop at Step 1 or Step 4, since by Proposition4.1 any pre-imputation vector~γ
induces via the objective functionh of type (3.11) a quadratic objective functionhγ of form (4.5). Finally,
the Algorithm5.1does not stop at Step 5, since the conjugationh∗γ is subdifferentiable at0, we can deduce
that the convex functionhγ attains a minimum (c.f. Theorem 27.1 (b)Rockafellar(1970, p. 264)).

We conduct this proof by induction. To this end setk = 0 and pick an arbitrary starting point~γ 0 from
the pre-imputation set. SinceI(v) 6= ∅ by the first part of the theorem such an element can be selected.
This implies that the value of the objective functionh evaluated at~γ 0 is h(~γ 0). Set nowβ0 = h(~γ 0).
The vector~γ 0 induces by Proposition4.1a quadratic objective functionhγ 0 with the property thatβ0 =
hγ 0(~γ 0) holds, this is due tosij(~γ 0, v) = ev(Sij , ~γ

0) for all pairs ofi, j in N such thati > j, by taking an
elementSij ∈ Cij(~γ 0). Let us suppose without loss of generality thatβ0 > 0 holds true. Write nowβ1 =
min~x∈I(v) hγ0(~x) and assume thatβ1 > 0. By the first part of the theorem the Algorithm5.1does not stop
at Step 5, because this problem has a solution and it attains a minimum at a solution~γ 1. By Proposition4.2
we can conclude that an optimal solution obtained by minimizing a quadratic convex function can be
specified by an inverse matrix or a pseudo inverse matrix in connection with a coefficient vector. Thus,
we getβ0 ≥ β1. Now assume by induction hypothesis that for integersk′ ≥ 1, it is satisfied thatβk−1 ≥
βk > 0 for all k = 1, . . . , k′. It suffices to show thatβk ′ ≥ βk′+1 > 0 to conclude by induction.
Notice that a vector~γ k′ is a solution for the minimization problemβk′ := min~x∈I(v) hγk′−1(~x), if it
solves the problem. This solution induces via the objective functionh a quadratic objective functionhγ k′

with the property thatβk′ = h(~γ k ′
) = hγ k′−1(~γ k′) = hγ k′ (~γ k′). The associated minimization problem

βk′+1 = min~x∈I(v) hγk′ (~x) has now a solution denoted by~γ k′+1. From this result we can establish that

hγ k′ (~γ k′) = βk ′ ≥ βk′+1 = h(~γk ′+1) = hγ k′ (~γ k′+1) > 0 is given. Thus, the sequence{βk}k∈IN0 is
non-increasing ink as desired. From Lemma4.1, we can conclude that this descent sequence is bounded
from below by zero. The proof of part (2) is completed by mentioning that a descent sequence that is
bounded from below by zero converges to zero, hence we getlimk→∞ βk = 0. This argument indicates
that it can be guaranteed that the Algorithm5.1terminates.

By part (2) we get a sequence{βk+1 := min~x∈I(v) hγk(~x)}k≥0 of minima attained from optimization
problems that converges toβk∗ = min~x∈I(v) hγk∗−1(~x) = 0. Denote the solution of this minimization
problem by~γ k∗ which is in the solution set ofMh

γk∗ = {~x | hγk∗−1(~x) = 0}. By Proposition4.1, we
obtain a pre-kernel element from this optimization problem. Moreover, by part (2) of the theorem, we get a
sequence{~γ k}k∈IN0 of pre-imputation points with~γ k ∈ Mh

γk
for all k ∈ IN0. According to~γ k ∈ Mh

γk

for all k ∈ IN0, we can conclude that the sequence{~γ k ∈ Mh
γk
}k∈IN0 converges to~γ k∗ . Hence, the

sequence converges to a pre-kernel element, that is,limk→∞ ~γ k = ~γ k∗ ∈ PrK(v).

The Theorem5.1 established alternatively that the Algorithm5.1 determines a descent sequence of
function values of minimum value functionsHk

γ on the parameter space(Q,~a, α) converging against zero.
This is due from Lemma4.1 from which we can conclude that the descent sequence is bounded from
below by zero. The induced sequence of the associated solution vectors converges to a pre-kernel element.
Hence, the limit point of the sequence of the corresponding solution vectors is a pre-kernel element. That
implies that the Algorithm5.1guarantees to terminate definitely.

One advantage of the proposed algorithm compared to a convergent transfer scheme as proposed for in-
stance byStearns(1968) lies in its capability to change simultaneously all components of a pre-imputation
rather than changing just itsi-j-components in order to generate the next pre-imputation to approximate a
pre-kernel solution. It should be obvious that in such a case the convergence can be very slow.
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6 NUMERICAL EXAMPLE

In this section, we want to demonstrate by an numerical example the strength of the proposed algo-
rithm in computing the pre-kernel. For this purpose, we rely on an example discussed inKopelowitz
(1967) and Stearns(1968). It is a six person weighted majority game based on the following param-
eters [16; 2, 4, 4, 5, 6, 7]. This game has a disconnected pre-kernel, which consists of the two points
{(0, 0, 0, 0, 1/2, 1/2), (0, 1/5, 1/5, 1/5, 1/5, 1/5)}, whereas the last point is also the pre-nucleolus of the
game. This game is zero-monotonic. For this class of TU-games the pre-kernel coincides with the kernel.

According to the fact that the game has a disconnected pre-kernel with just two elements, we need to
apply the proposed iterative procedure for computing the pre-kernel at least twice. By doing so, we choose
the following pre-imputations as starting points:(1, 0, 0, 0, 0, 0) and(0, 0, 0, 0, 0, 1).

Setk = 0 and let us start with the first pre-imputation~x 1 = ~γ 0 = (1, 0, 0, 0, 0, 0), then we will see
that this induces the following quadratic objective function:

h1
γ0(~x) = (1/2) · 〈 ~x,Q0 ~x 〉+ 〈 ~x,~a 0 〉+ α0

= (1/2) · ~xT ·



12 2 8 −2 8 −6
2 18 −12 2 4 0
8 −12 28 0 8 −8

−2 2 0 18 −12 4
8 4 8 −12 28 −12

−6 0 −8 4 −12 18

 ~x + ~xT ·



−2
−2
−2
−2
−2
−2

 + 1.

The reader may be aware that the matrixQ0 must be corrected by a matrixQ0 to take into account
the efficiency property related to a pre-imputation. Thus the matrixQ0 is obtained by the summing up∑

i,j∈N
i>j

Qij andQ0. It must be mentioned at this point that each element of the matrixQ0 equals2, as the

reader may check. Then we have all information incorporated which are necessary to compute a solution
from the minimization problem:min~x∈I(v) h1

γ0(~x). The vector~γ 1 that solves the minimization problem

related to the objective functionh1
γ0 is:

~γ 1 = (
281
2360

,
343
2950

,
69
590

,
2003
11800

,
1081
5900

,
3389
11800

).

Furthermore, the value of the objective functionh1
γ0 at ~γ1 is 5, and its minimum is attained ath1

γ0
(~γ 1) =

89/11800. Fork = 1, the solution vector~γ1 of the minimization problemmin~x∈I(v) h1
γ0(~x) induces now

the objective function:

h1
γ1(~x) = (1/2) · 〈 ~x,Q1 ~x 〉+ 〈 ~x,~a 1 〉+ α1

= (1/2) · ~xT ·



24 6 14 −16 20 −16
6 16 −8 −2 6 −2

14 −8 26 −8 14 −12
−16 −2 −8 26 −16 14

20 6 14 −16 28 −20
−16 −2 −12 14 −20 26

 ~x + ~xT ·



−2
−2
−2
−2
−2
−2

 + 1.

As solution for the associated optimization problem we get :

~γ 2 = (
382
4087

,
10
67

,
9
61

,
647
4087

,
738
4087

,
1094
4087

),
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andh1
γ1(~γ 2) = 13/4087. Set nowk = 2. The pre-imputation~γ 2 induces the final objective function:

h1
γ2(~x) = (1/2) · 〈 ~x,Q2 ~x 〉+ 〈 ~x,~a 2 〉+ α2

= (1/2) · ~xT ·



30 16 6 −12 24 −24
16 26 −8 −10 12 −10
6 −8 16 −2 6 −2

−12 −10 −2 20 −14 16
24 12 6 −14 28 −22

−24 −10 −2 16 −22 28

 ~x + ~xT ·



−2
−2
−2
−2
−2
−2

 + 1,

which gives us the solution:
~γ 3 = (0, 1, 1, 1, 1, 1)/5,

and for the objective function, we receive the result thath1
γ2(~γ 3) = 0, hence we have found the first

pre-kernel point. Moreover, we generated the descent real-valued sequence{5, 89/11800, 13/4087, 0},
since5 > 89/11800 > 13/4087 > 0. We see that we are able to find the nucleolus/pre-kernel point
(0, 1, 1, 1, 1, 1)/5 after three iterative steps.

Finally, let us consider how many iterative steps we need to compute the second and last pre-kernel
point. For this purpose setk = 0 and let us take the second pre-imputation~x 2 = ~γ 0 = (0, 0, 0, 0, 0, 1),
this induces the following quadratic objective function:

h2
γ0(~x) = (1/2) · 〈 ~x,Q0 ~x 〉+ 〈 ~x,~a 0 〉+ α0

= (1/2) · ~xT ·



26 2 6 −6 14 −8
2 18 0 −2 8 0
6 0 22 −6 12 −4

−6 −2 −6 26 −2 8
14 8 12 −2 18 −6
−8 0 −4 8 −6 12

 ~x + ~xT ·



−6
−6
−6
−6
−10
−2

 + 5.

Solving the associated minimization problem yields:

~γ 1 = (
323
4801

,
463
4801

,
335
4801

,
931
4801

,
2711
4801

,
1862
4801

).

Furthermore, the value of the objective functionh2
γ0 at ~γ0 is 5, and its minimum is attained ath2

γ0
(~γ 1) =

2432/4801.

Let nowk = 1. The pre-imputation~γ 1 induces the final objective function:

h2
γ1(~x) = (1/2) · 〈 ~x,Q1 ~x 〉+ 〈 ~x,~a 1 〉+ α1

= (1/2) · ~xT ·



24 6 14 −16 20 −16
6 16 −8 −2 6 −2

14 −8 26 −8 14 −12
−16 −2 −8 26 −16 14

20 6 14 −16 28 −20
−16 −2 −12 14 −20 26

 ~x + ~xT ·



−2
−2
−2
−2
−2
−2

 + 1,

which gives us the solution:
~γ 2 = (0, 0, 0, 0, 1, 1)/2,
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and for the objective function, we receive the result thath2
γ2(~γ 2) = 0, hence we have found the second

pre-kernel point. Similar to the first calculation, we generated the following finite descent real-valued
sequence{5, 2432/4801, 0}, since5 > 2432/4801 > 0. In this case, we have just needed two iterative
steps to find the second pre-kernel point(0, 0, 0, 0, 1, 1)/2. Thus, the proposed procedure enables us to
compute a pre-kernel point by a reasonable amount of steps and time, which could be done without any
computer help.

7 CONCLUDING REMARKS

We presented for the coalition structure related to the grand coalition a dual representation of the pre-
kernel based on the indirect function of a cooperative game. We established that the pre-kernel can be
alternatively described by an arbitrary union of closed and convex minimum sets derived by a collection of
quadratic functions. Moreover, we provided an algorithm that led the partners –for instance of a common
pool resource– to consider the pre-kernel as a reasonable division rule according to its simple computation
process. We demonstrated that only some simple calculus from analysis and linear algebra is needed to
find out a pre-kernel solution that can be accepted by unequal partners as a fair outcome. Finally, we are
quite sure that the results we have discussed here can be generalized easily to more complex coalition
structures. But this topic will be discussed elsewhere.
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