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Abstract
I develop supermodular implementation in incomplete information. Super-

modular implementable social choice functions (scf) are scf that are Bayesian im-
plementable with mechanisms that induce a supermodular game. If a mechanism
induces a supermodular game, agents may learn to play some equilibrium in a dy-
namic setting. The paper has two parts. The first part is concerned with sufficient
conditions for (truthful) supermodular implementability in quasilinear environ-
ments. There, I describe a constructive way of modifying a mechanism so that it
supermodularly implements a scf. I prove that, any Bayesian implementable de-
cision rule that satisfies a joint condition with the valuation functions, requiring
their composition to produce bounded substitutes, is (truthfully) supermodular
implementable. This joint condition is always satisfied on finite type spaces; it
is also satisfied by C2 decision rules and valuation functions on a compact type
space. Then I show that allocation-efficient decision rules are (truthfully) su-
permodular implementable with balanced transfers. Third, I establish that C2

Bayesian implementable decision rules satisfying some dimensionality condition
are (truthfully) supermodular implementable with an induced game whose inter-
val prediction is the smallest possible. The second part provides a Supermodular
Revelation Principle.

Keywords: Implementation, mechanisms, learning dynamics, stability, strategic
complementarities, supermodular games.
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1 Introduction

The question of how an equilibrium outcome arises in a mechanism is largely open
in implementation theory and mechanism design. Theoretical and experimental works
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have revealed that learning and stability are serious issues in many existing mecha-
nisms.1 This is particularly troublesome, because the idea behind implementation and
mechanism design is usually normative and practical in nature: Incentive design ex-
plicitly aims to construct mechanisms that achieve some socially desirable outcome in
equilibrium.

This paper develops supermodular Bayesian implementation. This theory con-
tributes to the literature on incentives by its explicit purpose and methodology. Super-
modular Bayesian implementation explicitly aims to improve learning and stability in
mechanism design. Supermodular implementable scf are scf that are Bayesian (weakly)
implementable with a mechanism that induces a supermodular game. If we think of
messages as real numbers, a supermodular game is a game in which the marginal utility
that an agent receives from playing a bigger message increases as other players also play
bigger messages. In such games, best-responding behaviors are always monotone which
helps boundedly rational agents find their way to equilibrium. Therefore, this theory
contributes to fill the important gap in the literature emphasized in Jackson [27]: “Is-
sues such as how well various mechanisms perform when players are not at equilibrium
but learning or adjusting are quite important [. . . ] and yet have not even been touched
by implementation theory. [This topic] has not been looked at from the perspective of
designing mechanisms to have nice learning or dynamic properties.”

Contrary to the traditional methodology of mechanism design and implementation,
the mechanisms in this paper derive their learning and stability properties from the
game that they induce and not from the solution concept. One striking feature of
the traditional approach is that it postulates that the solution concept, used by the
mechanism to implement some social choice functions (scf), captures the properties of
the mechanism. But most solution concepts are subject to criticisms on the basis of
learning and stability. Implementation in dominant strategies and implementation in
undominated strategies are examples.2 Yet recent economic research still concentrates
on this methodology. But why focus on the solution concept? My paper proposes an
alternative approach by using a weak solution concept - Bayesian Nash equilibrium -
and by instead focusing on supermodular games as the class of games induced by the
mechanism.

Supermodular games are theoretically appealing in mechanism design and imple-
mentation. Milgrom and Roberts [37] and Vives [52] have shown that, under adap-
tive learning dynamics, play in supermodular games ends up in between the least and
the greatest Nash equilibrium. For example, Cournot dynamics, fictitious play and
Bayesian learning are adaptive dynamics. This convergence result extends to the kind
of sophisticated learning dynamics considered in Milgrom and Roberts [38]. Adaptive
and sophisticated learning dynamics encompass such a wide range of backward and
forward-looking behaviors that they confer robustness on supermodular games. In par-
ticular, if the equilibrium is unique, then convergence to the equilibrium is ensured.

1Muench and Walker [40] , Cabrales [7] and Cabrales and Ponti [8] show that learning and stability
may be serious issues in (resp.) the Groves-Ledyard [22], Abreu-Matsushima [4] and Sjöström [45]
mechanisms. On the experimental side, Healy [23] and Chen and Tang [12] provide evidence that
convergence may fail to occur in various mechanisms, such as Proportional Tax or the paired-difference
mechanism.

2Implementation in dominant strategies is restrictive and only gives unambiguous learning results
when dominance is strict (Saijo et al. [44], Cason [10]). And implementation in undominated strategies
relies on eliminating weakly dominated strategies, so it has the perverse consequence of excluding limit
points of some learning dynamics (Cabrales [7] and Cabrales and Ponti [8])
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But supermodular games are also attractive in an implementation framework because
their mixed strategy equilibria are locally unstable under monotone adaptive dynamics
like Cournot dynamics and fictitious play (Echenique and Edlin [19]). While ruling out
mixed strategy equilibria is often unsatisfactory in implementation theory, it is sensible
in supermodular implementation. To the contrary, many pure-strategy equilibria are
stable; in a parameterized supermodular game, all those equilibria that have monotone
comparative statics are stable, such as the extremal equilibria (Echenique [17]).

Supermodular games and mechanisms that induce such games are supported by
strong experimental evidence. Chen and Gazzale [14] presents experiments on a pa-
rameterized game whose parameter determines the degree of complementarities. They
obtain unambiguous results that in this game, convergence is significantly better when
the parameter lies in the range where the game is supermodular. In mechanism design,
experiments on the Groves-Ledyard mechanism have shown that convergence is far bet-
ter when the punishment parameter is high than when it is low (Chen and Plott [11]
and Chen and Tang [12]). It turns out that the Groves-Ledyard mechanism induces a
supermodular game when the punishment parameter is high. Finally, Healy [23] tests
five public goods mechanisms in a repeated game setting and observes convergence only
in those mechanisms that induce a supermodular game.

The centerpiece of my analysis is Theorem 1. It establishes that in quasilinear
environments with real type spaces, any Bayesian implementable scf that satisfies a joint
condition with the valuation functions, requiring their composition to produce bounded
substitutes, is truthfully supermodular implementable. That is, if the joint condition
holds, any Bayesian incentive-compatible scf can be implemented by a direct mechanism
that induces a supermodular game. This joint condition is always satisfied on finite type
spaces; it is also satisfied by twice-continuously differentiable scf and valuation functions
on a compact type space. So, the result is fairly general. Beyond the claim itself, this
theorem describes a constructive way of modifying an existing mechanism so that it
supermodularly implements a scf. The main insight is that it is always possible to add
complementarities into the transfers without affecting the incentives. The technique is
simple, yet powerful. I explain it formally in the next section in the context of a public
goods example. The intuition is that incentives lie at the expected-value level while
complementarities reside in the complete information payoffs. Therefore, adding any
function with null expected value to the transfers does not alter incentives, but may
change the shape of the best-responses. There are functions whose complementarities
are strong but expectation is null.

In quasilinear environments, the mechanism designer is often interested in that there
be no transfers into or out of the system. This is known as the budget balance con-
dition. It is quite important, because allocation-efficiency and budget balancing imply
full efficiency. Achieving full efficiency is difficult under dominant strategy implemen-
tation (Green and Laffont [21]) but possible under Bayesian implementation (Arrow [5]
and d’Aspremont and Gérard-Varet). Theorem 2 shows that budget balancing is also
possible under supermodular Bayesian implementation. Any allocation-efficient deci-
sion rule is supermodular implementable with balanced transfers, if the joint condition
of bounded substitutes is satisfied.

Given supermodular implementation relies on weak implementation, it is as useful
as the bounds represented by the greatest and the least equilibrium are tight. The
truthful equilibrium indeed delivers the desired outcome, but the space between the
extremal equilibria may contain undesired equilibrium outcomes that are limit points
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of learning dynamics. If those bounds define a small interval and the scf is continuous,
then at least learning dynamics do not lead to a social outcome that is far from the
desired outcome. I deal with the multiple equilibrium problem by developing optimal
and unique supermodular implementation. Optimal supermodular implementation in-
volves designing a mechanism whose induced supermodular game generates the weakest
complementarities in the class of mechanisms that supermodularly implement the scf.
I prove that this produces the tightest bounds among those mechanisms (Proposition
2). Therefore, an optimally supermodular implementable scf cannot admit a direct
mechanism that induces a supermodular game with narrower bounds. The main result
(Theorem 3) is that all twice-continuously differentiable and Bayesian implementable
scf satisfying some dimensionality condition are optimally supermodular implementable
on smooth domains. Unique supermodular implementation defines that situation where
the truthful equilibrium is the unique equilibrium of the supermodular game induced by
a mechanism. All adaptive dynamics converge (Milgrom and Roberts [37]). Theorem
4 provides sufficient conditions for unique supermodular implementation.

The paper presents traditional models where supermodular Bayesian implementa-
tion applies and examples where it gives sharp predictions. Supermodular implementa-
tion can be applied to public goods models. In a public goods example with quadratic
preferences (Section 2), a designer uses the expected externality mechanism to imple-
ment an allocation-efficient scf. In the game induced by the mechanism, many learning
dynamics cycle and fail to converge to the truthful equilibrium. Nevertheless, the mech-
anism can be modified to induce a supermodular game where all adaptive dynamics pin
down the truthful equilibrium. Supermodular implementation can also be applied to
the traditional principal-agent problem with hidden information. In a team-production
example,3 a principal contracts with a set of agents and monitors their contribution to
maximize net profits. The scf is optimally supermodular implementable and truthtelling
is the unique equilibrium of the supermodular game induced by the mechanism. But
there are applications that are challenging for the present theory. I give examples of
binary-choice models such as auctions and public goods that violate the condition of
bounded substitutes. A possible way around this problem is approximate implementa-
tion. For those scf, I show that there exist arbitrarily close scf that are supermodular
implementable.

Although quasilinear environments are common in mechanism design and imple-
mentation, it is important to consider general preferences. One of the first questions
that come to mind is that of the restrictiveness of direct mechanisms. Under weak im-
plementation, the traditional Revelation Principle says that direct mechanisms cause
no loss of generality in dominant strategies or Bayesian equilibrium. Answering the
same question for supermodular implementation is particularly relevant, because the
space of mechanisms to consider is very large. The Supermodular Revelation Principle
(Theorems 5 and 6) says that if there exists a mechanism that supermodularly imple-
ments a scf such that the range of the equilibrium strategies in the desired equilibrium
is a complete lattice, then there is a direct mechanism that supermodularly implements
that scf truthfully. I give an example of a supermodular implementable scf where this
range is not a lattice and that cannot be supermodularly implemented by any direct
mechanism. Thus, the example suggests that the condition of the theorem is somewhat
minimally sufficient. Although this revelation principle is not as general as the tradi-

3This is a simplified version of the team production model of McAfee and McMillan [34].
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tional one, it measures the restriction imposed by direct mechanisms in supermodular
implementation and gives conditions that may warrant their use.

A number of other papers are related to learning and stability in the context of
implementation or mechanism design. Chen [13] deserves mention because it is one
of the first papers explicitly aimed at learning and stability in mechanism design. In
a complete information environment with quasilinear utilities, she constructs a mech-
anism that Nash implements Lindahl allocations and induces a supermodular game.
My paper builds the framework of supermodular Bayesian implementation and gen-
eralizes her result in incomplete information. Abreu and Matsushima [3] establishes
that for any scf f and ε > 0, there is an ε-close scf fε for which a mechanism ex-
ists where iterative deletion of strictly dominated strategies leads to a unique profile
whose outcome is fε.

4 In their terminology, any scf is virtually implementable in iter-
atively undominated strategies. The result is very general and the solution concept is
strong enough to predict convergence of many learning dynamics to the unique equi-
librium outcome.5 However, there are arguments questioning this result on the basis
of learning and stability. Cabrales [7] argues that the concept of virtual implementa-
tion is not as innocuous as it first appears. When the mechanism implements fε, it
actually implements it in iteratively strictly ε-undominated strategies. In other words,
elimination of weakly dominated strategies is the solution concept that underlies the
exact-implementation problem for f (See Abreu and Matsushima [4]); virtual imple-
mentation is a way of turning it into elimination of strictly dominated strategies for fε.
Another weakness of their result is that it does not seem to extend to infinite sets of
types; this issue is related to important theoretical questions (Duggan [16]) and it is
not merely technical. The Abreu-Matsushima mechanism also employs a message space
whose dimension increases to infinity as ε vanishes. In contrast to Abreu-Matsushima
[3], this paper studies exact implementation with direct mechanisms on finite or infinite
type sets. Cabrales [7] demonstrates that there are learning dynamics that converge to
equilibria of the canonical mechanism for Nash implementation. But those dynamics
require players to strictly randomize over all possible improvements on past play.6 This
rules out many natural dynamics considered here. In addition to these papers, there
are general impossibility results on the stability of equilibrium outcomes in the Nash
implementation of Walrasian and Lindahl allocations (Jordan [28] and Kim [30]).

2 Motivation and Intuition

This section provides an economic example of a designer who uses the expected ex-
ternality mechanism (Arrow [5] and d’Aspremont and Gérard-Varet [15]) to implement
a scf. The environment is simple: Two agents with smooth utilities and compact real
type spaces. Yet the mechanism induces a game where learning and stability fail under
many dynamics.

Then I describe a new approach which consists in modifying the existing mechanism
in order to induce a supermodular game. In the example, the benefit is immediate: All
adaptive and sophisticated dynamics converge to the truthful equilibrium, and the

4Abreu and Matsushima use the Euclidean metric.
5See e.g Milgrom and Roberts [38]. But note that there are games where some adaptive dynamics

à la Milgrom and Roberts [37] do not converge to a uniquely rationalizable profile.
6This feature allows play to exit the integer game when players fallen into it.
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equilibrium is stable.

2.1 A Public Goods Example

Consider a principal who needs to decide the level of a public good, such as the size
of a bridge. Let X = [0, 2] denote the possible values of the public good. There are
two agents, 1 and 2, whose type spaces Θ1 and Θ2 are [0, 1]. Types are independently
uniformly distributed. The agents’ preferences are quasilinear, ui(x, θi) = Vi(x, θi) + ti,
where x ∈ X, θi ∈ Θi, and ti ∈ R is the transfer from the principal to agent i, i = 1, 2.
The valuation functions are V1(x, θ1) = θ1x− x2 and V2(x, θ2) = θ2x + x2/2.

The principal wants to make an allocation-efficient decision, that is, she aims to
maximize the sum of the valuation functions by choosing x∗(θ) = θ1 + θ2. Since x∗(.)
is not directly enforceable, the principal will use a mechanism with monetary transfers
to entice the agents to reveal their true type. The principal opts for the expected ex-
ternality mechanism,7 as it allows direct implementation of allocation-efficient decision
rules. Therefore, she sets the transfers as follows:

t1(θ̂1, θ̂2) = Eθ2

[
θ2(θ̂1 + θ2) +

(θ̂1 + θ2)
2

2

]
− Eθ1 [θ1(θ1 + θ̂2)− (θ1 + θ̂2)

2]

and

t2(θ̂1, θ̂2) = Eθ1 [θ1(θ1 + θ̂2)− (θ1 + θ̂2)
2]− Eθ2

[
θ2(θ̂1 + θ2) +

(θ̂1 + θ2)
2

2

]
.

I will study learning and stability in this example. Time proceeds in discrete periods
t ∈ {0, 1, . . .} and agents are assumed to learn or evolve as time passes, according to
some learning rule. At each time t, the two agents meet with the principal to play
the Bayesian game induced by the expected externality mechanism. The principal
initiates the process. The agents observe the history of play from 0 to t − 1 and then
publicly play a strategy. From the strategies played in the past, each agent updates
her beliefs about her opponent’s future strategy using some specified rule; then, given
those updated beliefs, she plays the strategy which maximizes her expected payoffs in
the mechanism. Since the focus here will be on convergence and stability rather on the
speed of convergence, no stopping time is specified.

In this context, a strategy is a deception. A deception for player i at period t is a
function θ̂t

i : Θi → Θi, that is, a player announces some type for each true type.8

The questions are: Will the profile played at t converge to the truthful equilibrium as
t →∞? If players were in the truthful equilibrium, will they return to this equilibrium
after an exogenous perturbation? The first question asks whether the agents ever learn
to play truthfully and reach an agreement. The second one asks whether truthtelling
is a stable equilibrium.

The players’ best-replies determine the answer. For i = 1, 2, define the set of
deceptions Σi as the set of measurable functions in ΘΘi

i and let P(Σi) be the set of
(Borel) probability measures over Σi. Let µt

i ∈ P (Σj) be player i’s beliefs about player

7See e.g Section 23.D in Mas-Colell et al. [35].
8Announcing a deception in the Bayesian game might seem more realistic when type sets are finite

(the example would have similar conclusions in the finite case), but it will come down to choosing an
intercept between -1 and 1.
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j’s deceptions at time t. Those beliefs will depend on the history of play and so µt
i

defines the different learning models. Let brt
i : Θi → Θi denote player i’s best-reply at

time t as a function of her true type.
For any beliefs µt

i, player i’s expected utility in the mechanism are strictly concave
in her own announcement. Therefore, computing the first-order condition gives

brt
1(θ1) = min{max{θ1 + 1− 2E[ Eθ2 [θ̂

t
2(θ2)] |µt

1], 0}, 1} (1)

brt
2(θ2) = min{max{θ2 − 1

2
+ E[ Eθ1 [θ̂

t
1(θ1)] |µt

2], 0}, 1}. (2)

where E[.|µt
i] is an expectation with respect to i’s beliefs µt

i over Σj.
In the dynamical system given by (1) and (2), if player 1 believes player 2’s strategy

has increased on average, then 1 decreases her strategy twice as much and vice-versa;
whereas 2 tries to match any average-variation in 1’s strategy. This game has a flavor
of “matching-pennies,” and this will be the source of instability and learning deficiency.

Learning often fails to occur in this example. There are many learning dynamics
for which, not only do the agents not converge to truth-revealing, but they are unable
to reach a decision as the play cycles forever. Consider first fictitious play in finite
versions of the example. For simplicity, let Θi be the finite type set {0, .5, 1}, so Σi is
finite. Suppose everything else is unchanged. Consider the model of weighted fictitious
play (See e.g Ho [24]). Deceptions are initially given arbitrary weights and beliefs are
updated by depreciating all weights by 1 − φ and adding one to the weight of the
opponent’s deception played at t− 1. Here, if players use an identical rule, the profile
converges to the truthful equilibrium unless φ is high enough (φ > .8), in which case
cycling occurs. But there is no reason a priori for both players to use the same learning
rule. For asymmetric rules, learning becomes more uncertain. The player with the
highest φ often outweighs the other one in a non-linear fashion and prevents learning.9

Consider now the original model with continuous types. Cournot dynamics suffers
from cycling and this conclusion holds wherever the principal sets the starting profile
(except truthtelling). Besides, if the agents were to play the truthful equilibrium, the
slightest belief perturbation would destabilize it.

Of course, Cournot dynamics is prone to cycling, since the past only matters through
the last period. But cycling prevails for many families of dynamics with a larger memory
size.10

Learning also fails to occur for other forms of learning dynamics. Adaptive dy-
namics do not encompass all rational behaviors, such as forward-looking behaviors.
Unfortunately, many sophisticated learning processes à la Milgrom-Roberts [38] are
also plagued with cycles in the example.

While supermodularity is not necessary for convergence, those learning failures can
be interpreted as a lack of complementarities. It is clear from (1) and (2) that the game

9If 1 learned according to a fictitious play rule with φ1 while 2 used φ2, then the sequence would
enter a cycle for many values of φ1 ≥ .9, φ2 ≥ .55

10Consider dynamics where players only remember the last T periods. They assign a probability φ
to the deception played at t − 1 and (1 − φ)δk/C to that played at t − k where C is normalized so
that the probabilities add up to one. Simulations reveal that learning fails under many values of the
parameters. Let (θ̂0

1(.), θ̂
0
2(.)) be the pair of zero-functions. For T ∈ {2, 3}, δ = .9 and φ ≥ .5, the

process enters a cycle even though the last few periods are weighted almost equally. This suggests that
increasing the memory size may improve learning. For T = 4, δ = .8 and φ ≤ .65, the profile converges
to the truthful equilibrium, but it cycles for φ ≥ .7. A larger memory does not necessarily improve
learning, as cycling reappears when T = {5, 6}, δ = .8 for values of φ below .65.
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induced by the expected externality mechanism is not supermodular, for the best-replies
cannot be both increasing.

2.2 Intuition in Differentiable Environments

The theory in this paper suggests to transform an existing mechanism into one
which induces a supermodular game. The general transformation technique is simple
and efficient. After transforming the mechanism in the previous example, all adaptive
dynamics now converge to the truthful equilibrium, and the equilibrium is stable.

Consider a twice-differentiable environment where f = (x, t) is truthfully Bayesian
implementable.11 I search for transfer functions {tSM

i } that solve the following system
of equations:

Eθ−i
[tSM

i (., θ−i)] = Eθ−i
[ti(., θ−i)], i = 1, . . . , n. (3)

∂2Vi(x
∗
i (θ̂i, θ̂−i), θi)

∂θ̂i∂θ̂j

+
∂2tSM

i (θ̂i, θ̂−i)

∂θ̂i∂θ̂j

≥ 0, for all θ̂, θi, i = 1, . . . , n, j 6= i. (4)

Condition (3) says that tSM
i and ti have the same expected value when j plays truthfully.

If i’s best-reply under ti was to tell the truth when j played truthfully, then it is still
the case under tSM

i . So (x∗, tSM) is truthfully Bayesian implementable. Condition (4)
demands that the cross-partials of tSM

i compensate those of Vi ◦ x∗i , so the induced
Bayesian game is supermodular.12

The main insight of the paper is that it is always possible to add complementarities
into the transfers without affecting the incentives that appear in the expected value
(3). The general transformation technique appears later in the paper, but the following
transfers are an example:

tSM
i (θ̂) =

∑

j 6=i

ρiθ̂iθ̂j + Eθ−i
[ti(θ̂i, θ−i)]−

∑

j 6=i

ρiθ̂iEθj
[θj], i = 1, . . . , n. (5)

Clearly, (5) satisfies (3) for any ρi, i = 1, . . . , n, and ∂2tSM
i (θ̂)/∂θ̂i∂θ̂j = ρi. If

∂2Vi(x
∗
i (θ̂i, θ̂j), θi)/∂θ̂i∂θ̂j is bounded below, a property that I call bounded substitutes,

then (4) simply requires finding a real number ρi that exceeds the absolute value of
that lower bound.

In addition to its simplicity, this technique is powerful. The public goods model of
Section 2.1 is an example. There, (x∗, t) is truthfully Bayesian implementable by virtue
of the expected externality mechanism. Since the assumption of bounded substitutes
holds, there exist ρi, i = 1, 2, such that (x∗, tSM) is supermodular implementable. In
this example, Theorem 4 of Section 5.3 implies that there are values ρ1 and ρ2 for which
truthtelling is the unique equilibrium of the supermodular mechanism. In contrast to
the expected externality mechanism, all adaptive dynamics now converge to the truthful
equilibrium, and the equilibrium is stable.

11A scf is truthfully Bayesian implementable if θ∗i (θi) = θi for all θi and i = 1, . . . , n is a Bayesian
equilibrium of the direct mechanism Γ = (Θ, f).

12If the complete information payoffs define a supermodular game for each θ ∈ Θ, then the Bayesian
game is supermodular.
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3 Lattice-theoretic Definitions and Supermodular

Games

The basic definitions of lattice theory in this section are discussed in Milgrom-
Roberts [37] and Topkis [48].

A set M with a transitive, reflexive, antisymmetric binary relation º is a lattice if
for any x, y ∈ M , x∨ y = supM{x, y} and x∧ y = infM{x, y} exist. It is complete if for
every non-empty subset A of M , infM A and supM A exist. A nonempty subset A of M
is a sublattice if for all x, y ∈ A, x∨y, x∧y ∈ A. A closed interval [x, y] in M is the set of
m ∈ M such that y º m º x. The order-interval topology on a lattice is the topology
whose subbasis for the closed sets is the set of closed intervals. In Euclidean spaces the
order-interval topology coincides with the usual topology. Lattices are endowed with
their order-interval topology.

For two nonempty subsets A,B of M , A is smaller than B in the strong set order,
denoted A v B, if a ∈ A and b ∈ B imply that a∧ b ∈ A and a∨ b ∈ B. Let (Θ,≥) be
a lattice. A correspondence φ : Θ →→ M is increasing if for any θ, θ′ ∈ Θ with θ′ ≥ θ,
we have φ(θ) v φ(θ′).

Let T be a partially ordered set; g : M → R is supermodular if, for all m,m′ ∈ M ,
g(m) + g(m′) ≤ g(m ∧ m′) + g(m ∨ m′); g : M × T → R has increasing (decreasing)
differences in (m, t) if, whenever m º m′ and t º t′, g(m, t)− g(m′, t) ≥ (≤)g(m, t′)−
g(m′, t′); g : M × T → R satisfies the single-crossing property in (m, t) if, whenever
m º m′ and t º t′, g(m′′, t′) ≥ g(m′, t′) implies g(m′′, t′′) ≥ g(m′, t′′) and g(m′′, t′) >
g(m′, t′) implies g(m′′, t′′) > g(m′, t′′). If g has decreasing differences in (m, t), then
variables m and t are said to be substitutes. If g has increasing differences or satisfies
the single-crossing property in (m, t), then m and t are said to be complements.

A game is described by (N, {(Mi,ºi)}, u), where N is a finite set of players, and
each player i ∈ N has a strategy space Mi with an order ºi and a payoff function
ui :

∏
i∈N Mi → R such that u = (ui).

Definition 1 A game G = (N, {(Mi,ºi)}, u) is supermodular if for all i ∈ N ,

1. (Mi,ºi) is a complete lattice;

2. ui is bounded, supermodular in mi for each m−i and has increasing differences in
(mi, m−i);

3. ui is upper-semicontinuous in mi for each m−i, and continuous in m−i for each mi.

4 The Framework of Supermodular Bayesian Im-

plementation

Let N = {1, . . . n} denote a collection of agents, indexed by i and j. A collective
planner faces a set Y of alternatives, with generic element y ∈ Y from which the planner
must choose. Let Y be equipped with σ-algebra Y . For each agent i ∈ N , let Θi be
the set of i’s possible types equipped with σ-algebra Fi. Let Θ =

∏
i∈N Θi be equipped

with σ-algebra F = ×i∈NFi. Agents have a common prior φ on (Θ,F) known to the
planner.

The planner’s desired outcomes are represented by a social choice function f : Θ →
Y that is F -measurable.
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A mechanism is a tuple Γ = ({(Mi,ºi)}, g) where agent i’s message space Mi is
endowed with an order ºi and an underlying σ-algebra Mi; letting M = ×i∈NMi,
g : M → Y is an outcome function that is M-measurable. A strategy for agent i is a
measurable function mi : Θi → Mi. Denote by Σi(Mi) the set of equivalence classes
of measurable functions from (Θi,Fi) to Mi. This set is endowed with the pointwise
order, also denoted ºi. A direct mechanism is one for which each Mi = Θi, Mi = Fi

and g = f . In this case, Σi(Θi) is called the set of i’s deceptions and its elements are
denoted θ̂i(.). Direct mechanisms vary by the order on type spaces.

Each agent i’s preferences over alternatives are given by a utility function ui :
Y ×Θi → R that is Y×Fi-measurable. These utility functions are uniformly bounded by
some u. For any h : Θ → R, denote Eθ[h(θ)] =

∫
Θ

h(θ)dφ(θ). For m−i(.) ∈
∏

j 6=i Σj(Θj),
agent i’s preferences over strategy profiles in Σi(Θi) are given by i’s ex-ante payoffs,
defined as

ug
i (mi(.),m−i(.)) = Eθ[ui(g(mi(θi),m−i(θ−i)), θi)].

When types are independently distributed, let φ = ×φi where φi is defined on
(Θi,Fi). For any h : Θ−i → R, denote Eθ−i

[h(θ−i)] =
∫
Θ−i

h(θ−i)dφ−i(θ−i). For mi ∈ Mi

and m−i(.) ∈
∏

j 6=i Σj(Θj), agent i’s interim payoffs at type θi are Eθ−i
[ui(g(mi,m−i(θ−i))

, θi)]. Player i’s ex-ante payoffs can be written

ug
i (mi(.), m−i(.)) =

∫

Θi

Eθ−i
[ui(g(mi,m−i(θ−i)), θi)] dφi(θi).

The Bayesian game induced by mechanism Γ is G = (N, {(Σi(Mi),ºi)}, ug) where
ug = (ug

i ) is the vector of ex-ante payoffs. If a scf is Bayesian implementable with a
mechanism that induces a supermodular game, then it is supermodular implementable
in the sense defined next.

Definition 2 The mechanism Γ supermodularly implements the scf f(.) if there exists
a Bayesian equilibrium m∗(.) such that g(m∗(θ)) = f(θ) for all θ ∈ Θ, and if the induced
game G is supermodular. The scf f is said to be supermodular Bayesian implementable.

Definition 3 A scf is truthfully supermodular Bayesian implementable (TSBI) if there
exists a direct mechanism that supermodularly implements the scf f(.) such that θ̂(θ) = θ
for all θ ∈ Θ is a Bayesian equilibrium.

The Bayesian game G is formulated in its ex-ante version as opposed to interim.
Beyond the traditional arguments contrasting those two versions, there are important
technical differences between ex-ante and interim supermodular Bayesian games (Van
Zandt [50]). In particular, the results in Milgrom-Roberts [37] can only be directly
applied to the ex-ante version G.

5 Supermodular Implementation on Quasilinear Do-

mains

This section deals with supermodular implementation when agents have quasilinear
utility functions. The objective is to give general conditions under which a scf is TSBI
and the mechanism satisfies some further requirements. There are four main results.
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The first provides general conditions for supermodular implementability. The second
answers the question of supermodular implementation and budget balancing. The third
gives sufficient conditions for a scf to be TSBI in a game form whose interval between
extremal equilibria is the smallest possible. The fourth offers sufficient conditions for
unique supermodular implementation.

5.1 Environment and Definitions

An alternative y is a vector (x, t1, . . . , tn) where x is an element of a compact set
X ⊂ Rm and ti ∈ R for all i. Each agent i has a type space Θi ⊂ R (finite or infinite).
Endow Θi with the usual order. Notice that Σi(Θi) is a complete lattice with the
pointwise order.13

The set Xi is a compact subset of Rmi such that
∏

i∈N Xi = X. For all i ∈ N ,
preferences are quasilinear with Bernoulli utility function ui(x, θi) = Vi(xi, θi)+ti where
xi ∈ Xi and ti ∈ R. The function Vi : Xi × Θi → R is called i’s valuation function.
Denote V = (Vi)i∈N .

In this environment, a scf f = (x, t) is composed of a decision rule x : Θ 7→ (xi(θ))
where xi : Θ → Xi, and transfer functions ti : Θ → R. Typically, x(.) represents the
desired outcomes while transfers are chosen by the planner.

Say that V and x(.) are C2, if there exist open sets Oi ⊃ Θi and Ui ⊃ Xi, i =
1, . . . , n, such that V : Ui ×Oi → R and x :

∏
i∈N Oi → Ui are C2.

Define the continuous family of decision rules and valuation functions as

Fcont = {(V , x(.)) : V :(x, θ) 7→ (Vi(xi, θi)), Vi is bounded, Vi(xi(θ̂), θi) is continuous in

θ̂−i for fixed θ̂i, θi and Vi(xi(θ̂), θi) is usc in θ̂i for fixed θ̂−i, θi, for all i ∈ N}.
Agents’ types are assumed to be independently distributed. For all i ∈ N , the

distribution of i’s types admits a bounded density with full support.
Here a scf f is TSBI if, in the direct mechanism with the usual order ≥i on R,

truthtelling is a Bayesian equilibrium.
The following definitions concern the composition of the valuation functions and the

scf. For any θ′i, θ
′′
i ∈ Θi, let

∆Vi((θ
′′
i , θ

′
i), θ̂−i, θi) = Vi(xi(θ

′′
i , θ̂−i), θi)− Vi(xi(θ

′
i, θ̂−i), θi).

Say that (V, x) has bounded substitutes or that Vi◦xi has substitutes bounded by Ti, if for
all i ∈ N , there is Ti ∈ R such that, for all θ′′i ≥ θ′i and θ′′−i ≥ θ′−i, ∆Vi((θ

′′
i , θ

′
i), θ

′′
−i, θi)−

∆Vi((θ
′′
i , θ

′
i), θ

′
−i, θi) ≥ Ti(θ

′′
i − θ′i)

∑
j 6=i(θ

′′
j − θ′j) for all θi ∈ Θi. Consider the case where

N = {1, 2} as an illustration. The condition means that there exists a real number
such that, as (say) agent 2 increases her announcement, the marginal valuation that
agent 1 receives from increasing her announcement can decrease by no more than the
product between that real number and the increase in each agent’s announcement.14

In twice-continuously differentiable environments, the condition simply means that the
cross-partial derivatives, ∂2Vi(xi(θ̂), θi)/∂θ̂i∂θ̂j, are uniformly bounded below. Hence it
requires that if agents’ announcements are strategic substitutes in the game with no
transfers,15 then at least they are boundedly so. Notice that this assumption is always

13See Lemma 1 in Van Zandt [50].
14Recall Section 2.2.
15See Section 3
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satisfied when type sets are finite. Moreover, it is also satisfied whenever the decision
rule xi(.) and the valuation functions Vi are C2-functions for all i on compact type sets.

The pair (V, x) has bounded complements if (−V, x) has bounded substitutes. Like-
wise, say that ui ◦ f has bounded complements if the previous definition is satisfied
when transfers are included.

The pair (Vi, xi) is ω-Lipschitz in θ̂i if there exists ω > 0 such that for all θ̂−i and θi,
∆Vi((θ

′′
i , θ

′
i), θ̂−i, θi) ≤ ω(θ′′i −θ′i), for all θ′′i ≥ θ′i. The same definition applies to transfer

functions. In differentiable environments, it simply means that the corresponding first-
derivatives are bounded above.

The valuation functions V and decision rule x(.) have δ-increasing differences if for
each i ∈ N , there is δi > 0 such that for all θ̂′′i ≥ θ̂′i and θ′′i ≥ θ′i, Eθ−i

[∆Vi((θ̂
′′
i , θ̂

′
i), θ−i, θ

′′
i )]

− Eθ−i
[∆Vi((θ̂

′′
i , θ̂

′
i), θ−i, θ

′
i)] ≥ δi(θ̂

′′
i − θ̂′i)(θ

′′
i − θ′i).

5.2 General Result and Implementation with Budget Balance

This subsection contains two main results. The characterization theorem deals
with supermodular Bayesian implementability on quasilinear families. Basically, if the
decision rule and the utility functions are relatively well-behaved, in the sense of Fcont

and bounded substitutes, then a decision rule is Bayesian implementable with transfers
if and only if it is supermodular Bayesian implementable with transfers. The second
theorem provides sufficient conditions to satisfy budget balancing.

Theorem 1 Let (V, x) ∈ Fcont. If (V, x) has bounded substitutes, then there exist
transfers t such that the scf f = (x, t) is TBI and Eθ−i

[ti(., θ−i)] is usc, if and only if,
there are transfers tSM such that (x, tSM) is TSBI and Eθ−i

[tSM
i (., θ−i)] is usc. Moreover,

the transfers have the same expected value: Eθ−i
[ti(., θ−i)] = Eθ−i

[tSM
i (., θ−i)].

Proof: Sufficiency is immediate. Suppose that f = (x, t) is TBI and transfers t are
truthfully-usc. Then,

Eθ−i
[Vi(xi(θi, θ−i), θi)] + Eθ−i

[ti(θi, θ−i)] ≥ Eθ−i
[Vi(xi(θ̂i, θ−i), θi)] + Eθ−i

[ti(θ̂i, θ−i)] (6)

for all θ̂i. For ρi ∈ R, let
δi(θ̂i, θ̂−i) =

∑

j 6=i

ρiθ̂iθ̂j, (7)

and define

tSM
i (θ̂i, θ̂−i) = δi(θ̂i, θ̂−i) + Eθ−i

[ti(θ̂i, θ−i)]− Eθ−i
[δi(θ̂i, θ−i)]. (8)

Note that Eθ−i
[tSM

i (θ̂i, θ−i)] = Eθ−i
[ti(θ̂i, θ−i)] for all θ̂i. Thus (x, tSM) is TBI by (6).

Moreover, δi : Θ → R is continuous and bounded. So, it follows from the Bounded Con-
vergence Theorem that Eθ[δi(θ̂i(θi), θ̂−i(θ−i))−Eθ−i

[δi(θ̂i(θi), θ−i)]] is continuous in θ̂(.).

Since transfers t are truthfully-usc, Fatou’s Lemma implies that Eθ[t
SM
i (θ̂i(θi), θ̂−i(θ−i))]

is usc in θ̂i(.) for each θ̂−i(.). Therefore, payoffs ug
i satisfy the continuity requirements for

supermodular games. Next I show that it is possible to choose ρi so that ug
i has increas-

ing differences in (θ̂i(.), θ̂−i(.)). By bounded substitutes, there exists Ti such that, for all
θ′′i ≥ θ′i and θ′′−i ≥ θ′−i, ∆Vi((θ

′′
i , θ

′
i), θ

′′
−i, θi)−∆Vi((θ

′′
i , θ

′
i), θ

′
−i, θi) ≥ Ti(θ

′′
i −θ′i)

∑
(θ′′j −θ′j)

for all θi ∈ Θi. Set ρi > −Ti. Choose any θ′′i ≥i θ′i and θ′′−i ≥−i θ′−i. The func-

tion ui(xi(θ̂i, θ̂−i), θi) has increasing differences in (θ̂i, θ̂−i) for each θi, if the following
expression is positive for all θi,
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Vi(xi(θ
′′
i , θ

′′
−i), θi) + Vi(xi(θ

′
i, θ

′
−i),θi)− Vi(xi(θ

′′
i , θ

′
−i),θi)− Vi(xi(θ

′
i, θ

′′
−i),θi)

+
∑

j 6=i

ρi

(
θ′′i θ

′′
j + θ′iθ

′
j − θ′′i θ

′
j − θ′iθ

′′
j

)
. (9)

Given ρi > −Ti, (9) is greater than

Vi(xi(θ
′′
i , θ

′′
−i), θi) + Vi(xi(θ

′
i, θ

′
−i), θi)− Vi(xi(θ

′′
i , θ

′
−i), θi)− Vi(xi(θ

′
i, θ

′′
−i), θi)

− Ti(θ
′′
i − θ′i)

∑

j 6=i

(θ′′j − θ′j). (10)

Bounded substitutes immediately imply that (10) is positive for all θi, hence so is (9).
By Lemma 1, the utility function ug

i has increasing differences in (θ̂i(.), θ̂−i(.)). Finally,

since Θi is a chain, Lemma 1 implies ug
i is supermodular in θ̂i(.). Q.E.D

Theorem 1 shows that the class of Bayesian implementable scf that can be supermod-
ularly implemented in Bayesian equilibrium is large, as there are only mild boundedness
and continuity conditions on the utility functions and the scf. The heart of the result is
(8): It is always possible to add complementarities into the transfers without affecting
the incentives that appear in the expected value.

Remark. Since players receive the same expected utility in equilibrium from (x, t) and
(x, tSM), if (x, t) satisfies some interim participation constraints, then so does (x, tSM).

Recall that, if type spaces are finite, then the assumptions of bounded substitutes
and continuity are trivially satisfied for all valuation functions and scf. Furthermore,
if V and x(.) are twice-continuously differentiable on a compact type set, then the
assumptions of bounded substitutes and continuity are satisfied. This leads to the
following important corollaries which cover cases of interest.

Corollary 1 Let type spaces Θi be finite subsets of R. For any valuation functions V ,
if the scf f = (x, t) is TBI, then there exist transfers tSM such that (x, tSM) is TSBI.

Corollary 2 Let V be C2 and the scf f = (x, t) be such that x(.) is C2. If f is TBI
and Eθ−i

[ti(., θ−i)] is usc, then there exist transfers tSM such that (x, tSM) is TSBI.

The previous results state conditions that apply to TBI scf. In some instances it
may not be obvious whether the decision rule admits truthfully-usc transfers leading to
implementation. Therefore, I provide a proposition which identifies sufficient conditions
for a decision rule to generate such transfers.

Standard implementation results in differentiable quasilinear environments16 demon-
strate that transfers which are part of a TBI scf have an explicit expected value when
the other agents play truthfully. From (8), this will lead to explicit transfers that allow
supermodular implementation. Letting Θi = [θi, θi] for i ∈ N , a necessary condition
for Bayesian implementation is

Eθ−i
[ti(θ̂i, θ−i)] = −Eθ−i

[Vi(xi(θ̂i, θ−i), θ̂i)]+

∫ θ̂i

θi

∂Eθ−i
[Vi(xi(s, θ−i), s)]

∂θi

ds+ εi(θi) (11)

16See e.g Mas Colell et al. [35] for linear utility functions.
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where εi(θi) is some constant. Combining Theorem 1 and Proposition 6 of Section
9.1 yields explicit sufficient conditions for supermodular Bayesian implementability as
shown in Proposition 1.

Proposition 1 If (V, x) ∈ Fcont has bounded substitutes such that Eθ−i
[Vi(xi(θ̂i, θ−i), θi)]

is continuous in (θ̂i, θi) and ∂Eθ−i
[Vi(xi(θ̂i, θ−i), θi)]/∂θi is increasing in θ̂i, then there

are transfers tSM such that (x, tSM) is TSBI.

To identify the decision rules that are TSBI with transfers, Proposition 1 suggests to
choose those decision rules x(.) that lead each agent i’s expected marginal valuation to
be nondecreasing. Then, any such decision rule is TSBI with transfers tSM combining
(8) and (11).

The rest of this section investigates supermodular implementation under the budget
balance condition. In some design problems, the planner should not realize a net gain
from the mechanism. While the planner cannot sustain deficits, full efficiency requires
there be no waste of numéraire. A scf is fully efficient if it maximizes the sum of the
utility functions (not only the valuation functions) subject to the feasibility constraint∑

ti ≤ 0. The transfers then add up to zero for each vector of true types.
The next theorem provides sufficient conditions for a scf to be TSBI using balanced

transfers. Say that a decision rule x is allocation-efficient, if x(θ) ∈ argmaxx∈X

∑
i∈N Vi(

xi, θi) for all θ ∈ Θ. Basically, there exist transfers such that any allocation-efficient de-
cision rule is supermodular implementable and fully efficient if substitutes are bounded.

Theorem 2 Let n ≥ 3. Consider an allocation-efficient decision rule x(.). If (V, x) ∈
Fcont and has bounded substitutes, then there exist balanced transfers tBB such that the
scf f = (x, tBB) is TSBI.

The proof appears in Section 9.1 and it is constructive. Transfers tBB correspond
to a transformation of the transfers in the expected externality mechanism, and they
rely on two observations. First, any player’s transfer in the expected externality mecha-
nism displays no complementarities or substitutes between that player’s announcement
and her opponents’. Second, there is a transformation of the transfers similar to that
in Theorem 1 that enables to add complementarities while preserving incentives and
budget balancing.

Theorem 2 can be extended to situations where, for every realization of types,
enough transfers (taxes) are raised to pay the cost of x. The budget constraint takes
the form

∑
i∈N ti(θ) ≥ C(x(θ)) for all θ ∈ Θ where C is the cost function mapping

X into R+. An additional sufficient condition to apply the theorem is that (C, x) has
bounded substitutes.17

5.3 Optimal and Unique Supermodular Implementation

This subsection deals with the multiple equilibrium problem in supermodular im-
plementation. Even if a mechanism has an equilibrium outcome with some desirable
property, it may have other equilibrium outcomes that are undesirable. The concept
of supermodular implementation relies on weak implementation, while the results in

17See e.g Lemma 2 in Ledyard and Palfrey [33] for transfers satisfying this budget balance condition.
Note that these transfers are separable in types except (possibly) for C(x(θ)), so they have are no
complementarities or substitutes beyond those contained in C(x(θ)).
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Milgrom and Roberts [37] promise that adaptive dynamics lead to play between the
greatest and the least equilibrium. This interval between the extremal equilibria is
called the interval prediction. So, players may learn to play an untruthful equilibrium
associated with a bad outcome. Therefore, it is important to minimize the size of the in-
terval prediction and to take the number of equilibria into consideration. Supermodular
implementation is particularly powerful when truth-revealing is the unique equilibrium.

Before presenting the results, I discuss the new concepts of this subsection. Think of
the degree of complementarities as being increasing with the cross-partial derivatives,
and vice-versa. Optimal supermodular implementation involves designing a mechanism
whose induced supermodular game has the weakest complementarities in a wide class
of mechanisms that supermodularly implement the scf. This mechanism turns out
to produce the smallest interval prediction in this class of supermodular mechanisms.
Furthermore, the interval prediction is a singleton if and only if there is a unique
Bayesian equilibrium. Unique supermodular implementation describes that situation
where truthtelling is the unique equilibrium of the supermodular induced game.

I begin with the definition of an order used in the definition of optimal supermod-
ular implementation. As mentioned above, the cross-partial derivatives offer a way of
measuring complementarities in twice-differentiable environments. It is natural to say
that transfer functions t̃ generate larger complementarities than t, denoted t̃ ºID t, if
∂2t̃i(θ̂)/∂θ̂i∂θ̂j ≥ ∂2ti(θ̂)/∂θ̂i∂θ̂j for all θ̂, j and i. For example, transfers defined by (7)
and (8) generate more complementarities as ρi increases. The next definition formalizes
the idea of the degree of complementarities and extends it to non-differentiable transfer
functions.

Definition 4 Define the ordering relation ºID on the space of transfer functions such
that t̃ ºID t if, for all i ∈ N and for all θ′′i > θ′i and θ′′−i >−i θ′−i, t̃i(θ

′′
i , θ

′′
−i)− t̃i(θ

′′
i , θ

′
−i)−

t̃i(θ
′
i, θ

′′
−i) + t̃i(θ

′
i, θ

′
−i) ≥ ti(θ

′′
i , θ

′′
−i)− ti(θ

′′
i , θ

′
−i)− ti(θ

′
i, θ

′′
−i) + ti(θ

′
i, θ

′
−i).

Transfers t̃ are larger than t with respect to ºID if the double-differences are increas-
ing from each ti to t̃i. One can verify that, for twice-differentiable transfers, it means
that the cross-partial derivatives of each t̃i are larger than those of ti.

While ºID is transitive and reflexive on the space of transfer functions, it is not
antisymmetric. Consider the set of ºID-equivalence classes of transfers, denoted T .18

The next proposition shows that if a transfer function generates more complemen-
tarities than another transfer function, then the former induces a game whose interval
prediction is larger than that of the game induced by the latter. This result is also of
interest for the theory of supermodular games, as it relates the degree of complemen-
tarities to the size of the interval prediction.

For any t ∈ T and TSBI (x, t), let θ
t
(.) and θt(.) be (resp.) the greatest and the

smallest equilibrium in the game induced by (x, t).

Proposition 2 Let (V, x) be such that Eθ−i
[Vi(xi(θ̂i, θ−i), θi)] is continuous in (θ̂i, θi).

For any TSBI scf (x, t′′) and (x, t′) such that t′′, t′ ∈ T , if t′′ ºID t′, then [θt′(.), θt′(.)] ⊂
[θt′′(.), θt′′(.)].

Proof: Let (x, t′′) and (x, t′) be any TSBI scf such that t′′, t′ ∈ T . By Proposition 6
of Section 9.1, all transfers ti such that (x, t) is TSBI must have the same expected
value Eθ−i

[ti(θ̂i, θ−i)] up to a constant. Therefore, those transfers can all be written as

18Any quasi-order is transformed into a partially ordered set using equivalence classes.
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ti(θ̂i, θ̂−i) = δi(θ̂i, θ̂−i) − Eθ−i
[δi(θ̂i, θ−i)] + Eθ−i

[ti(θ̂i, θ−i)] for some function δi : Θ →
R. For any TSBI scf, the induced game has a smallest and a greatest equilibrium
along with a truthful equilibrium in between. Let θT

i (.) denote player i’s truthful
strategy, that is, θT

i (θi) = θi for all θi. Let G` and Gu be the game G where the
strategy spaces are restricted (resp.) from Σi(Θi) to [inf Σi(Θi), θ

T
i (.)], and from Σi(Θi)

to [θT
i (.), sup Σi(Θi)]. Since closed intervals are sublattices and G is supermodular,

those modified games G` and Gu are supermodular games. Moreover, G` must have the
same least equilibrium as game G and the truthful equilibrium is its largest equilibrium.
Likewise, Gu has the same greatest equilibrium as game G and the truthful equilibrium
is its smallest equilibrium. Let uf

i (θ̂(.), t) = Eθ[Vi(xi(θ̂(θ)), θi)] + Eθ[ti(θ̂(θ))]. I show

that (i) In G`, uf
i (θ̂i(.), θ̂−i(.), t) has decreasing differences in (θ̂i(.), t) for each θ̂−i(.)

and (ii) In Gu, uf
i (θ̂i(.), θ̂−i(.), t) has increasing differences in (θ̂i(.), t) for each θ̂−i(.). In

those modified games, this answers how the untruthful extremal equilibrium varies in
response to changes in transfers with respect to ºID. First consider G`. Let δ′′ and δ′

be the δ-functions corresponding to t′′ and t′. For any deception θ̂−i(.), note θ̂j(θj) ≤ θj

for all θj and j 6= i. Choose any θ′′i (.) > θ′i(.) and note t′′ ºID t′ implies δ′′ ºID δ′. Hence
for all i ∈ N ,

Eθ[δ
′′
i (θ

′′
i (θi), θ−i)− δ′′i (θ′′i (θi), θ̂−i(θ−i))]− Eθ[δ

′′
i (θ′i(θi), θ−i)− δ′′i (θ′i(θi), θ̂−i(θ−i))]−

−Eθ[δ
′
i(θ

′′
i (θi), θ−i)− δ′i(θ

′′
i (θi), θ̂−i(θ−i))] + Eθ[δ

′
i(θ

′
i(θi), θ−i)− δ′i(θ

′
i(θi), θ̂−i(θ−i))] ≥ 0

(12)

Note (12) is equivalent to

uf
i (θ

′′
i (.), θ̂−i(.), t

′′)+uf
i (θ

′
i(.), θ̂−i(.), t

′)−uf
i (θ

′′
i (.), θ̂−i(.), t

′)−uf
i (θ

′
i(.), θ̂−i(.), t

′′) ≤ 0 (13)

for each θ̂−i(.). So, (13) implies that uf
i (θ̂i(.), θ̂−i(.), t) has decreasing differences in

(θ̂i(.), t) for each θ̂−i(.). It follows from Theorem 6 in Milgrom-Roberts [37] that the
smallest equilibrium in G` is decreasing in t. The same argument applies to Gu. There,
all deceptions θ̂−i(.) are such that θ̂j(θj) ≥ θj for all θj and j 6= i. As a result, the sign

in (12) is reversed, which implies uf
i (θ̂i(.), θ̂−i(.), t) has increasing differences in (θ̂i(.), t)

for each θ̂−i(.). The greatest equilibrium in Gu is thus increasing in t. Q.E.D

Before defining optimal supermodular implementation, consider the following family
of transfers,

T = {t ∈ T : ti(θ
′′
i , θ

′′
−i)−ti(θ

′′
i , θ

′
−i)− ti(θ

′
i, θ

′′
−i)+ti(θ

′
i, θ

′
−i) ≥ ∆Vi((θ

′′
i , θ

′
i), θ

′
−i, θi)

−∆Vi((θ
′′
i , θ

′
i), θ

′′
−i, θi) for all θ′′i > θ′i, θ

′′
−i >−i θ′−i, θi, i ∈ N}.

Transfers in T make the complete information payoffs supermodular for each type θ ∈ Θ.
If a scf is TSBI and its transfers offer the weakest complementarities in T, then it is
optimally supermodular implementable in the sense defined next.19

Definition 5 A scf f = (x, t∗) is optimally TSBI if it is TSBI and t ºID t∗ for all
transfers t ∈ T such that (x, t) is TBI.

19The ex-ante Bayesian game must be supermodular whereas transfer functions are defined at the
complete information level. So it is not necessary that transfers t be in T in order for a scf to be TSBI.
For example, if the prior is mostly concentrated on some subset Θ∗ of Θ, it may not be necessary to
make the complete information payoffs supermodular for types in Θ\Θ∗. Of course, the possibility of
neglecting Θ\Θ∗ depends on how unlikely that set is compared to how negative the cross-partials may
be for types in that set. Therefore, I work with the condition to be in T.
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The rationale behind optimal supermodular implementation is twofold. Games with
strategic complementarities have a coordination-game “flavor” that leads to multiple
equilibria (Takahashi [46]), and this relationship can be traced to how strong comple-
mentarities are. Adding complementarities improves learning and stability, but too
much complementarity may yield untruthful equilibria. Optimal supermodular imple-
mentation is the best compromise. In addition, if we want to supermodularly implement
the decision rule with transfers in T, then Proposition 2 implies that optimal transfers
generate the tightest interval prediction.

Say that a scf x : Θ 7→ (xi(θ)) is dimensionally reducible if, for each i ∈ N , there
are C2 functions hi : R2 → Xi and ri :

∏
j 6=i Θj → R such that ri(.) is increasing and

xi(θ) = hi(θi, ri(θ−i)) for all θ ∈ Θ. The condition is trivially true when there are
two individuals. If there are more, the announcements of each player’s opponents must
enter every dimension of that player’s scf through a real-valued aggregate.

The next theorem says that, in twice-continuously differentiable environments, a
scf is optimally supermodular implementable if it is is TBI and if its decision rule is
dimensionally reducible.

Theorem 3 Let V be C2 and f = (x, t) be a scf such that x : Θ 7→ (xi(θ)) is reducible.
If f is TBI and transfers t are such that Eθ−i

[ti(., θ−i)] is usc, then there are transfers
t∗ such that (x, t∗) is optimally TSBI and Eθ−i

[t∗i (., θ−i)] = Eθ−i
[ti(., θ−i)].

Proof: Suppose f = (x, t) is TBI. Letting

δi(θ̂i, θ̂−i) = −
∫ θ̂i

θi

∫ ri(θ̂−i)

ri(θ−i)

min
θi∈Θi

∂2Vi(hi(si, ri), θi)

∂ri∂si

dri dsi (14)

for all θ̂ ∈ Θ, I show that

t∗i (θ̂i, θ̂−i) = δi(θ̂i, θ̂−i)− Eθ−i
[δi(θ̂i, θ−i)] + Eθ−i

[ti(θ̂i, θ−i)] (15)

is well-defined and that (x, t∗) is optimally TSBI. Since Vi and hi are C2 on an open
set containing compact set Θi, minθi∈Θi

∂2Vi(hi(si, ri), θi)/∂ri∂si exists, is continuous in
(ri, si) by the Maximum Theorem and it is bounded. Hence δi : Θ → R is continuous,20

which implies that δi is Borel-measurable. Since δi is also bounded, Eθ−i
[δi(., θ−i)] is

well-defined and so is t∗i : Θ → R. Next I prove that (x, t∗) is optimally TSBI. Note
Eθ−i

[t∗i (θ̂i, θ−i)] = Eθ−i
[ti(θ̂i, θ−i)] and thus (x, t∗) is TBI. As a continuous function

on a compact set, δi is uniformly continuous in θ̂. So, Eθ[t
∗(θ̂(θ))] is continuous in

θ̂−i(.), and upper-semicontinuity of Eθ−i
[ti(θ̂i, θ−i)] implies Eθ[t

∗
i (θ̂(θ))] is usc in θ̂i(.).

By construction, t∗i is twice-differentiable21 and

∂2t∗i (θ̂i, θ̂−i)

∂θ̂i∂θ̂j

=
∂2δi(θ̂i, θ̂−i)

∂θ̂i∂θ̂j

=
∂

∂θ̂j

∫ ri(θ̂−i)

ri(θ−i)

− min
θi∈Θi

∂2Vi(hi(θ̂i, ri), θi)

∂ri∂si

dri

= −
(

min
θi∈Θi

∂2Vi(hi(θ̂i, ri(θ̂−i)), θi)

∂ri∂si

)
∂ri(θ̂−i)

∂θ̂j

. (16)

20See e.g Theorem 6.20 in Rudin [43].
21See previous footnote.

17



Because

− min
θi∈Θi

∂2Vi(xi(θ̂i, θ̂−i), θi)

∂θ̂i∂θ̂j

= − min
θi∈Θi

(
∂2Vi(hi(θ̂i, ri(θ̂−i)), θi)

∂ri∂si

∂ri(θ̂−i)

∂θ̂j

)
(17)

and ri(.) is an increasing function, (16) and (17) are equal. Thus ∂2[Vi(xi(θ̂), θi) +
t∗i (θ̂)]/∂θ̂i∂θ̂j ≥ 0 for all θ̂, θi and j, i, and so (x, t∗) is TSBI. Moreover, for all transfers
t ∈ T such that (x, t) is TBI, it must be that

∂2ti(θ̂)

∂θ̂i∂θ̂j

≥ − min
θi∈Θi

∂2Vi(xi(θ̂i, θ̂−i)), θi)

∂θ̂i∂θ̂j

=
∂2t∗i (θ̂)

∂θ̂i∂θ̂j

for all θ̂ and j, i. This implies that (x, t∗) is optimally TSBI. Q.E.D

When the truthful equilibrium is unique, supermodular implementation is one of
the most powerful forms of implementation in terms of learning and stability (Milgrom
and Roberts [37]). After studying optimal supermodular implementation, it is natural
to look for conditions for the interval prediction to be a singleton.

Definition 6 A scf f = (x, t) is uniquely TSBI if it is TSBI and the truthful equilibrium
is the unique Bayesian equilibrium.

The next theorem gives sufficient conditions for a scf to be uniquely supermod-
ular implementable. Recall the definitions of Section 5.1. In particular, note that
δ-increasing differences strengthen the condition of Proposition 1 that the marginal
expected value is increasing in a player’s announcement. Here, the marginal expected
value is “sufficiently” increasing. For example, it is satisfied in environments where the
valuation functions have “sufficiently” increasing differences in type and outcome and
the scf is increasing enough in a player’s announcement.

The main result on unique supermodular implementation is Theorem 4. If truthtel-
ling is an equilibrium and if the mechanism induces utility functions whose complemen-
tarities between announcements are smaller than the complementarities between own
announcement and type, then the truthful equilibrium is unique.22

Theorem 4 Let V and scf f = (x, t) be such that (V, x) has δ-increasing differences.
Let Vi be C1, xi be differentiable in θ̂i, and Vi ◦ xi be ωi-Lipschitz in θ̂i. Suppose ui ◦ f
has complements bounded by κi and transfers ti are βi-Lipschitz in θ̂i. If f is TSBI and
κi < δi/(n− 1), then it is uniquely TSBI.

The proof appears in Section 9.1, but the intuition is as follows. On the one hand,
for high values of δi, the complementarities between own announcement and type are
so strong that players tend to announce high types regardless of their opponents’ de-
ceptions. This favors uniqueness. On the other hand, for high values of κi, the com-
plementarities between players’ announcements become so strong that it is source of
multiplicity (See the above argument). The theorem provides a cutoff between those
forces so that, for any profile greater/smaller than the truthful equilibrium, some player
has a contractive best-reply between that profile and the truthful one.

22My results are inspired by recent theories of uniqueness in Bayesian games (Mason and Valentinyi
[36]).
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Optimal transfers provide the lowest bound on complements (κ), so a natural ques-
tion is to ask when they actually lead to unique supermodular implementation. This is
the next proposition. I defer the proof to Section 9.1.

Proposition 3 Let V and scf f = (x, t) be such that (V, x) has δ-increasing differences.
Let Vi and xi be C2, and Vi ◦ xi be ωi-Lipschitz in θ̂i. Letting

κi = max
j 6=i

max
(θ̂,θi)∈Θ×Θi

(
∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

− min
θi∈Θi

∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

)
,

if κi < δi/(n− 1), then (x, t∗) is uniquely TSBI.

There are examples where it is straightforward to use Theorem 4 and Proposition
3. Consider the public goods example of Section 2. Recall that N = {1, 2}, X = [0, 2],
Θi = [0, 1] for i = 1, 2. Agents’ valuation functions are V1(x, θ1) = θ1x − x2 and
V2(x, θ2) = θ2x + x2/2. The decision rule is x(θ) = θ1 + θ2. Since ∂xi(θ)/∂θi =
1 and ∂2Vi(x, θi)/∂x∂θi = 1 for i = 1, 2, it implies δi = 1, i = 1, 2. Moreover,
∂2Vi(x(θ̂), θi)/∂θ̂1θ̂2 = −2 if i = 1 and 1 otherwise. So, κi = 0 for i = 1, 2. By
Proposition 3, (x, t∗) is uniquely supermodular implementable.

Remark: Neither unique nor optimal supermodular implementation implies the other.
The truthful equilibrium may be unique, although the transfers do not generate the
weakest complementarities. And the supermodular transfers could be optimal but the
truthful equilibrium not unique.

The rest of this subsection deals with the multiple equilibrium problem under the
budget balance condition. The next proposition shows that there are scf that are
uniquely supermodular implementable with balanced transfers. It gives sufficient con-
ditions in order that the transfers identified in Theorem 2 yield truthtelling as a unique
equilibrium.

Proposition 4 Let n ≥ 3. Let V and decision rule x(.) be C1 such that (V, x) has
δ-increasing differences and x(.) is allocation-efficient. Suppose Vi ◦xi has complements
bounded by τi and substitutes bounded by Ti. If τi − Ti < δi/(n − 1), then (x, tBB) is
uniquely TSBI.

The proof is in Section 9.1. The public goods example of Section 2 again provides
a nice illustration. Consider the same setting with an additional player, player 3, such
that Θ3 = [0, 1], V3(x, θ3) = θ3x and x(θ) = θ1 + θ2 + θ3. Then δi = 1 for i = 1, 2, 3.
Since τi = Ti for i = 1, 2, 3 and T1 = −2, T2 = 1, T3 = 0, Proposition 4 says that
for any {ρi} such that 2 < ρ1 < 21

2
, −1 < ρ2 < −1

2
, 0 < ρ3 < 1

2
, (x, tBB) is uniquely

supermodular implementable with budget balancing.

5.4 Discussion

Optimal supermodular implementation can be viewed as an intermediary form of
implementation between strictly-dominant strategy and Bayesian implementation. If
the composition of any player’s valuation function with the decision rule has strictly
increasing differences in type and own announcement, Mookherjee and Reichelstein [41]
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implies that there exist transfers resulting in strictly-dominant strategy implementa-
tion.23 The existence of strictly-dominant strategies in a game implies that each player’s
best-response has zero slope. But under the assumption on the composition, the slope
of the best-response is given by the ratio between the cross-partials and the second-
derivative in own announcement. So the game induced by these transfers will have
null complementarities, that is, the cross-partials of any player’s utility in equilibrium
will be zero. As optimal supermodular implementation induces the supermodular game
with the weakest complementarities, optimal transfers will belong to the same ºID-
equivalence class as the transfers that yield strictly-dominant strategy implementation.
If such transfers do not exist, then it will assign the “best Bayesian transfers.”

The public goods example of Section 2 illustrates this point. The composition of 1
or 2’s valuation function with the decision rule has strictly increasing differences in type
and announcement. Therefore, it is not surprising that the scf be uniquely supermodular
implementable. What is more surprising is that the optimal transfers transform the
expected externality mechanism into dominant-strategy transfers. Note also that it is
easy to find examples of scf falling into Theorem 4 or Proposition 3 that are not even
dominant strategy implementable. Even if Mookherjee and Reichelstein [41] applies, my
results may provide a whole range of transfers compatible with unique supermodular
implementation, whereas the choice is narrow for dominant strategy implementation.24

Optimal implementation is based on the idea of imposing the minimal amount of
complementarities (w.r.t ºID) necessary for supermodular implementation. But weak
complementarities might imply a low speed of convergence of learning dynamics to-
wards truthtelling. This is not necessarily true. Convergence is indeed fastest under
strictly-dominant strategy implementation, a form of implementation with null com-
plementarities.

Finally, there may be a conflict in supermodular implementation between budget
balancing and the multiple equilibrium problem. If transfers t are balanced, then∑

k∈N ∂2tk(θ̂)/∂θ̂i∂θ̂j = 0 for all θ̂ and any distinct i and j. But there is no reason
a priori for optimal transfers to satisfy this condition. Optimal transfers indeed require
some functional flexibility to minimize complementarities over all announcements, and
the budget balance condition sometimes prevents it by imposing the above restriction.
Beyond jargon, it seems to suggest a trade-off between learning and full efficiency. One
may argue that a second-best approach could be appropriate: Choosing what is best
among what players can learn.

6 Applications

6.1 Principal-Agent Problem

Consider the traditional principal-agent problem with hidden information.25 A prin-
cipal contracts with n agents. Agent i’s type space is [θi, θi]. Types are independently
distributed according to a common prior φ = ×φi which admits a bounded density
with full support. Let Xi ⊂ R be compact. Each agent i exerts some observable effort

23See Proposition 2 in Mookherjee and Reichelstein [41] and the discussion that follows.
24In the public goods example, Theorem 4 implies that there are infinitely many ρ1 and ρ2 resulting

in unique supermodular implementation; but it must be that ρ1 = 2 and ρ2 = −1 to achieve strictly-
dominant strategy implementation.

25See e.g Section 23.F in Mas-Colell et al. [35].
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xi ∈ Xi, and she bears a cost or disutility ci(xi, θi) of producing effort xi when she is of
type θi. From the vector of efforts x = (x1, . . . , xn), the principal receives utility w(x).
The principal faces the problem of designing an optimal contract subject to incentive
constraints and reservation utility constraints for the agents. A contract is a function
that maps each possible agents’ type into effort and transfer levels. The principal’s
problem can be stated as

(x∗(θ), t(θ)) ∈ argmax
f=(x,t)

Eθ[w(x∗(θ))−
n∑

i=1

ti(θ)] (18)

subject to

Eθ−i
[ti(θi, θ−i)− ci(x

∗
i (θi, θ−i), θi)] ≥ Eθ−i

[ti(θ
′
i, θ−i)− ci(x

∗
i (θ

′
i, θ−i), θi)], ∀ θ′i, θi(19)

Eθ−i
[ti(θi, θ−i)− ci(x

∗
i (θi, θ−i), θi)] ≥ ui, ∀ θi (20)

Condition (19) requires the scf (x∗, t) to be truthfully Bayesian implementable. Condi-
tion (20) is an interim participation constraint, as agents may opt out of the mechanism
if it does not meet their reservation utility.

Assume that the underlying functions w, ci and φ are such that x∗ is dimensionally
reducible26 and t is continuous. If ci is twice-continuously differentiable on Xi × Θi,
Theorem 3 applies. There are transfers t∗ such that (x∗, t∗) is optimally supermodular
implementable and solves (18) subject to (19) and (20).

At this level of generality, it is difficult to appreciate the strength of optimal su-
permodular implementation, so I present a simple application in the spirit of the team
production model of McAfee and McMillan [34].

There are two agents, 1 and 2, whose types are independently uniformly distributed
over [0, 3]. Players exert some effort to produce an observable contribution xi. The
amount of effort ei necessary to give xi is e1(x, θ1) = (3−θ1)(x1−x2)+x1 and e2(x, θ2) =
(3 − θ2)(x2 + x1). Larger contributions require larger effort and higher ability levels
decrease marginal effort. But agent 2 generates positive externalities on her counterpart,
whereas 1 has negative externalities. Given x = (x1, . . . , xn), the principal only knows
the density f(y|x) of output y given x. The principal has utility function u(y, x, θ) and
she perceives costs as cp(x, θ). The problem is

x∗(θ) ∈ argmax
(x1,...,xn)

Ey|x[u(y, x, θ)]− cp(x, θ). (21)

Each agent’s valuation function is Vi(x, θi) = −c(ei(x, θi)) where c(ei) = ei. Assume
u, cp and f are such that the decision rule obtained from (21) is (x∗1(θ), x

∗
2(θ)) =

(θ2θ1 − θ1E(θ2), θ2 − θ1).
27 Decision rule x∗(.) satisfies the conditions of Proposition

6 of Section 9.1, and so there exists transfers t such that (x∗, t) is TBI. Constructing
optimal transfers from (14) and (15) gives t∗1(θ̂) = −θ̂2

1/2 − 3θ̂1 + 4θ̂2θ̂1 and t∗2(θ̂) =
−5θ̂2

2/4 + 3θ̂2 + 3θ̂2θ̂1. It turns out that truthtelling is the unique Bayesian equilibrium
in the supermodular game G induced by the mechanism with optimal transfers.

26Recall that x∗ is dimensionally-reducible if it is twice-continuously differentiable and satisfies some
mild dimension condition.

27The one-dimensional condensation property of Mookherjee and Reichelstein [41] is violated. There
exists no h1 : X → R such that c(e1(x, θ1)) = D1(h1(x), θ1) for some D1 : R × Θ1 → R. Moreover,
note that V1(x∗(θ̂), θ1) does not have increasing differences in (θ̂1, θ1), so x∗(.) is not dominant-strategy
implementable by Definition 5 in Mookherjee and Reichelstein [41].
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6.2 Public Goods Problem and Approximate Supermodular
Implementation

In this subsection, I apply the theory of supermodular implementation to public
goods, and then I describe two binary-choice models that violate bounded substitutes
(and continuity) for continuous type spaces. I circumvent this difficulty by using ap-
proximate or virtual implementation (Abreu and Matsushima [3], Duggan [16]).

Consider an economy with n consumers and two commodities, one public x ∈ [0, x]
and one private. The consumers each have preferences for the public good and transfer ti
of the private good that can be represented by the function ui(x, ti, θi) where θi ∈ [θi, θi]
is i’s type. Preferences are assumed to be quasilinear in the private good: ui(x, ti, θi) =
Vi(x, θi) + ti. An allocation is a (n + 1)-tuple of the form (x, t1, . . . , tn). In the public
goods environment, the appropriate social choice function for a utilitarian planner is
the mapping (x∗(θ), t(θ)) ∈ argmaxf=(x,t)

∑
i∈N Vi(x, θi) + ti subject to

∑
i∈N ti(θ) ≤ 0

for all θ. If (V, x) ∈ Fcont and the substitutes are bounded, then Theorem 2 implies that
(x∗, tBB) is supermodular implementable such that tBB balances budget. In the public
goods example of Section 2, (x∗, tBB) is actually uniquely supermodular implementable
with budget balance.

Next I describe two binary-choice models that violate bounded substitutes (and
continuity) for continuous type spaces. The first is an auction model where a seller is
awarding one unit of an indivisible good to the highest bidder. The second is a public
goods model where agents have to choose whether to undertake a public project. These
models represent a challenge for the present theory, unless type spaces are finite, in
which case Theorem 1 always applies. I use approximate or virtual implementation to
solve this difficulty (Abreu and Matsushima [3], Duggan [16]). A scf is approximately
implementable if, in any ε-neighborhood of that scf, there exists an implementable
scf. This requires a notion of distance that will be defined later. The main idea is
that the set of twice-continuously differentiable functions is dense in the Lp-space and
twice-continuously differentiable satisfy the bounded substitutes assumption on smooth
domains.

There is a seller of an object who derives no value from it, and n potential buyers.
Let buyer i’s type space be Θi ≡ [θi, θi]. Buyer i’s utility function takes the linear form
ui(xi, θi) = θixi + ti. Consider the allocation-efficient decision rule which attributes the
good to the agent with the highest type. For i ∈ N and all θ,

x∗i (θ) =

{
1 if θi ≥ max{θj : j ∈ N}
0 otherwise

and
∑
j∈N

x∗j(θ) = 1 (22)

For N = {1, 2}, I explain why substitutes are unbounded. Note that for any θ′′2 > θ′′1 >
θ′2 > θ′1, x1(θ

′′
1 , θ

′′
2)− x1(θ

′
1, θ

′′
2)− x1(θ

′′
1 , θ

′
2) + x1(θ

′
1, θ

′
2) = −1. Hence, for substitutes to

be bounded, there must exist T such that −θ1 ≥ T (θ′′1 − θ′1)(θ
′′
2 − θ′2) for all θ1 ∈ Θ1.

But this is clearly impossible as we can maintain the order θ′′2 > θ′′1 > θ′2 > θ′1 while
θ′1 ↑ θ′2 and θ′′1 ↓ θ′2. So, Proposition 1 does not apply.

Consider now a situation in which n agents must decide whether to undertake a
public project whose cost is c. The decision rule x(.) takes values in {0, 1}. Let agent
i’s type space be Θi ≡ [θi, θi]. Agents’ utility function takes the same linear form.
Consider the allocation-efficient decision rule defined as follows. For a particular i ∈ N
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and all θ,

x∗(θ) =

{
1 if

∑
i∈N θi ≥ c

0 otherwise
(23)

Once again, for N = {1, 2}, substitutes are unbounded. Take any θ′′2 > θ′2 and let
θ′1 = −θ′2 + c − 1/n and θ′′1 = −θ′2 + c + 1/n. Then for n large enough, x1(θ

′′
1 , θ

′′
2) −

x1(θ
′
1, θ

′′
2)−x1(θ

′′
1 , θ

′
2)+x1(θ

′
1, θ

′
2) = −1. There cannot exist T such that−θ1 ≥ 2T

n
(θ′′2−θ′2)

for all n. Proposition 1 does not apply.
Clearly, the problem is caused by the lack of smoothness in those decision rules.

However, if one is willing to accept an ε-inefficiency in the process, then supermodular
implementation applies.

Definition 7 A decision rule x(.) is approximately TSBI with transfers, if there exists
a sequence of optimally TSBI scf {(xε, tε)} such that, for 1 ≤ p < ∞, limε→0(

∫
Θ
|xε,i −

xi|p)
1
p = 0 for all i.

The next result says that, for 1 ≤ p < ∞, Lp-decision rules are approximately
supermodular implementable on C2-domains.

Proposition 5 Let the valuation functions V be C2 such that ∂Vi(xi, θi)/∂θi is in-
creasing in xi. If xi,k(.) ∈ Lp(Θ,R) is increasing in θ̂i for each k = 1, . . . , mi, and

Eθ−i
[Vi(xi(θ̂i, θ−i), θi)] is continuous in (θ̂i, θi), then x(.) is approximately TSBI.

Proof: Recall that V and x(.) are C2, if there exist open sets Oi ⊃ Θi and Ui ⊃ Xi,
i = 1, . . . , n, such that V : Ui × Oi → R and x :

∏
i∈N Oi → Ui are C2. For any

θ ∈ O, let ι1(θ) = {j ∈ N : θj ∈ [θj, θj]}, ι2(θ) = {j ∈ N : θj < θj} and

ι3(θ) = {j ∈ N : θj > θj}. Define the extension of x(.) from Θ to O, denoted
xe, such that for all θ ∈ O, xe

(i,k)(θ) = x(i,k)(((θj)ι1(θ), (θj)ι2(θ), (θj)ι3(θ))) for all k and

i ∈ N . So, xe
(i,k) is an increasing function in θi and xe

(i,k) ∈ Lp(O,R). Since the

space of C2-functions on O is norm dense in Lp(O,R), there exists a sequence {xε(.)}
of C2-functions from O into R such that limε→0(

∫
O
|xε,(i,k) − xe

(i,k)|p)1/p = 0 for all

k and i. This implies limε→0(
∫

Θ
|xε,(i,k) − x(i,k)|p)1/p = 0 for all k and all i. More-

over, we can take {xε(.)} such that xε,(i,k)(.) is increasing in θi on Oi for all k and
i. Therefore, since Vi and xε,i are both C2 and each Θi is compact, (V, xε) ∈ Fcont,

∂Eθ−i
[Vi(xε,(i,k)(θ̂), θi)]/∂θi = Eθ−i

[∂Vi(xε,(i,k)(θ̂), θi)/∂θi] is increasing in θ̂i on Θi, and
substitutes are bounded. Thus, Proposition 1 and Theorem 3 imply that, for all ε > 0,
there exist tSM

ε such that f = (xε, t
SM
ε ) is TSBI. Q.E.D

It follows as a corollary of Proposition 5 that, in the above auction and public goods
settings, the efficient decision rules are approximately supermodular implementable.

In the environment of Proposition 5, it is not clear whether we should use approxi-
mate supermodular implementation. On the one hand, the conditions of the proposition
imply dominant strategy implementability by Mookherjee and Reichelstein [41]. But
in the induced game, dominant strategy implementation does not prevent adaptive
dynamics from converging to an “unwanted” dominant strategy equilibrium, a “non-
dominant” strategy equilibrium, a non-equilibrium profile, or simply from cycling. On
the other hand, approximate supermodular implementation relies on optimal super-
modular implementation. But even if optimal implementation performs well along the
sequence, it remains approximate and not exact implementation; this dilemma seems to
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support Cabrales [7]’s argument that there is a trade-off between close implementability
and stability or learning.

7 A Revelation Principle for Supermodular Bayesian

Implementation

Supermodular Bayesian implementation is permissive in quasilinear environments
with real type spaces. Although these assumptions are common in mechanism design
and allow for a wide range of applications, it is important to consider general utility
functions and type sets. One of the first questions that come to mind is that of the
restrictiveness of direct mechanisms. The traditional Revelation Principle says that
direct mechanisms cause no loss of generality in Bayesian (weak) implementation. How
restrictive are direct mechanisms in supermodular Bayesian implementation?

Answering this question is particularly relevant, because the challenge in any super-
modular design problem is to specify an ordered message space and an outcome func-
tion so that agents adopt monotone best-responding behaviors. The set of all possible
message spaces and orders on those spaces is so large that it might seem intractably-
complex. A Supermodular Revelation Principle gives conditions so that, if a scf is
supermodular implementable, then there exists a direct-revelation mechanism that su-
permodularly implements this scf truthfully. So it is a technical insight that reduces
the space of mechanisms to consider to the space of direct-revelation mechanisms. The
question is complex because it is combinatorial in essence; it pertains to the existence
of orders on type spaces that make the (induced) direct-revelation game supermodular.

The following example shows that, unfortunately, there exist supermodular im-
plementable scf that are not truthfully supermodular implementable. Nevertheless a
supermodular revelation principle exists. Although it is not as general as the tradi-
tional revelation principle, it measures the restriction imposed by direct mechanisms in
supermodular implementation and gives conditions that may warrant their use.

Consider two agents, 1 and 2, with type spaces Θ1 = {θ1
1, θ

2
1} and Θ2 = {θ1

2, θ
2
2, θ

3
2}.

Prior beliefs assign equal probabilities to all θ ∈ Θ. Let X = {x1, . . . , x12} be the
outcome space. Agent 1’s preferences are given by utility function u1(xn, θ1) such that:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

u1(xn, θ
1
1) −10 0 16 −13 −2 33 −21 −2 18 −19 0 36

u1(xn, θ
2
1) −10 0 16 −21 −2 18 −13 −2 33 −19 0 36

For simplicity, let u2 be a constant function. Suppose that the agents wish to super-
modularly implement the scf f defined as follows

f(., .) θ1
2 θ2

2 θ3
2

θ1
1 x4 x5 x6

θ2
1 x7 x8 x9

Consider the following indirect mechanism Γ = ((M1,º1), (M2,º2), g). Agent 1’s
message space is M1 = {m1,m

1
1, m2

1, m1}; º1 is such that m1
1 and m2

1 are unordered,
m1 is the greatest element and m1 is the smallest element. Agent 2’s message space
is M2 = {m2, m

1
2, m2}; º2 is such that m2 º m1

2 º2 m2. The outcome function g is
defined as follows
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g(., .) m2 m1
2 m2

m1 x1 x2 x3

m1
1 f(θ1

1, θ
1
2) f(θ1

1, θ
2
2) f(θ1

1, θ
3
2)

m2
1 f(θ2

1, θ
1
2) f(θ2

1, θ
2
2) f(θ2

1, θ
3
2)

m1 x10 x11 x12

I show that mechanism Γ supermodularly implements f in Bayesian equilibrium.
Given u2 is constant, any strategy m2 : Θ2 → M2 is a best-response to any strat-
egy of 1. So, consider strategy m∗

2(.) such that m∗
2(θ

1
2) = m2, m∗

2(θ
2
2) = m1

2 and
m∗

2(θ
3
2) = m2. Since for all m1 we have

∑
m2

u1(g(m1
1,m2), θ

1
1) >

∑
m2

u1(g(m1,m2), θ
1
1)

and
∑

m2
u1(g(m2

1, m2), θ
2
1) >

∑
m2

u1(g(m1,m2), θ
2
1), 1’s best-response m∗

1(.) to m∗
2(.)

must be such that m∗
1(θ

1
1) = m1

1 and m∗
1(θ

2
1) = m2

1. So, (m∗
1(.),m

∗
2(.)) is a Bayesian

equilibrium such that g ◦ m∗ = f . Moreover, for each θ1, u1(g(m1,m2), θ1) is super-
modular in m1 and has increasing differences in (m1,m2). Since Σ1(Θ1) is endowed
with the pointwise order, ug

1(m1(.),m2(.)) is supermodular in m1(.) and has increasing
differences in (m1(.),m2(.)). Therefore, Γ supermodularly implements f in Bayesian
equilibrium, because 2’s utility is constant.

Does this imply that there exists a mechanism ({(Θi,≥i)}, f) which truthfully im-
plements f in supermodular game form? By means of contradiction, suppose there is
such a mechanism. Then (Θ1,≥1) must be totally ordered, for otherwise Σ1(Θ1) can-
not be a lattice. So, assume θ2

1 >1 θ1
1. Let θk

i (.) be the strategy where agent i always
announces type θk

i regardless of her true type. Let θT
1 (.) be the truthful strategy for 1

and let θL
1 (.) be constant lying. Note θT

1 (.), θL
1 (.) >1 θ1

1(.). Moreover, since Σ2(Θ2) is a
lattice, θ1

2 and θ2
2 (and thus θ1

2(.) and θ2
2(.)) must be ordered.

Since the direct mechanism must induce a supermodular game, uf
1(θ̂1(.), θ̂2(.)) must

satisfy the single-crossing property in (θ̂1(.), θ̂2(.)).
28 Given

−2 = uf
1(θ

T
1 (.), θ2

2(.)) ≥ uf
1(θ

1
1(.), θ

2
2(.)) = −2

−13 = uf
1(θ

T
1 (.), θ1

2(.)) > uf
1(θ

1
1(.), θ

1
2(.)) = −17

uf
1 satisfies the single-crossing property in (θ̂1(.), θ̂2(.)) only if θ1

2 >2 θ2
2. But

−2 = uf
1(θ

L
1 (.), θ2

2(.)) ≥ uf
1(θ

1
1(.), θ

2
2(.)) = −2

does not imply −21 = uf
1(θ

L
1 (.), θ1

2(.)) ≥ uf
1(θ

1
1(.), θ

1
2(.)) = −17. The single-crossing

property is violated. Now assume θ1
1 >1 θ2

1. Note θ1
1(.) >1 θT

1 (.), θL
1 (.). Given

−2 = uf
1(θ

1
1(.), θ

2
2(.)) ≥ uf

1(θ
L
1 (.), θ2

2(.)) = −2

−17 = uf
1(θ

1
1(.), θ

1
2(.)) > uf

1(θ
L
1 (.), θ1

2(.)) = −21

uf
1 satisfies the single-crossing property in (θ̂1(.), θ̂2(.)) only if θ1

2 >2 θ2
2. But

−2 = uf
1(θ

1
1(.), θ

2
2(.)) ≥ uf

1(θ
T
1 (.), θ2

2(.)) = −2

does not imply −17 = uf
1(θ

1
1(.), θ

1
2(.)) ≥ uf

1(θ
T
1 (.), θ1

2(.)) = −13. The single-crossing
property is violated. The scf f is not truthfully supermodular implementable, although
it is supermodular implementable.

Even though the revelation principle fails to hold in general for supermodular imple-
mentation, a supermodular revelation principle exists, as captured by the next theorem.
The proof appears in Section 9.2. This result shows that the problem which arises in
the example is that the range of the equilibrium strategies is not a lattice.

28The single-crossing property, defined in Section 3, is implied by increasing differences.
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Theorem 5 (The Supermodular Revelation Principle for Finite Types) Let
type space Θi be a finite set for i ∈ N . If there exists a mechanism ({(Mi,ºi)}, g) that
supermodularly implements the scf f such that there is a Bayesian equilibrium m∗(.)
for which g ◦m∗ = f and m∗

i (Θi) is a lattice, then f is TSBI.

Corollary 3 Let type space Θi be a finite set for i ∈ N . If there exists a mechanism
({(Mi,ºi)}, g) that supermodularly implements the scf f such that there is a Bayesian
equilibrium m∗(.) for which g ◦ m∗ = f and (Mi,ºi) is totally ordered for all i ∈ N ,
then f is TSBI.

According to the supermodular revelation principle, limiting attention to direct
mechanisms is equivalent to restricting one’s scope to mechanisms where the equilibrium
strategies are lattice-ranged. It is a rather strong result that supermodularity can be
transmitted to the game induced by a direct mechanism. The range of the equilibrium
strategies is the transmission channel. If this range is a lattice, then it is possible to
construct an order such that each player’s type space is order-isomorphic to the range
of her equilibrium strategy. The properties of the utility functions ensue. Besides, the
theorem states conditions that are verifiable a posteriori. It may be useful to know
when a complex mechanism can be replaced with a simpler direct mechanism.

Corollary 3 says that if the designer is only interested in mechanisms where the
message spaces are totally ordered, then she can look at direct mechanisms only without
loss of generality.

The above example suggests that the conditions of Theorem 5 are somewhat min-
imally sufficient. Agent 1’s equilibrium strategy is indeed not lattice-ranged and the
scf is not truthfully supermodular implementable. Whereas this example might indi-
cate that the pointwise-order structure causes revelation to fail, this is not the case.
Theorem 6 of Section 9.2 suggests that allowing more general order structures does not
weaken the conditions for a revelation principle. Those theorems only give sufficient
conditions for revelation principles; but in those cases where a supermodular direct
mechanism exists while the conditions are violated, the existence of an order has little
or nothing to do with a revelation principle.29

Theorem 5 is concerned with finite type spaces. Under this assumption, if a player’s
type space is a (complete) lattice, then so is her set of deceptions with the pointwise
order. This is no longer true for continuous types. Continuity and measurability become
issues (Van Zandt [50]). In Section 9.2, I generalize the definition of supermodular
implementability to incorporate orders that are not pointwise orders. This allows to
prove a supermodular revelation principle for continuous types.30

8 Conclusion

This paper introduces a theory of implementation where the mechanisms that imple-
ment a scf must induce a supermodular game. Supermodular Bayesian implementation
differs from previous literature in terms of its methodology and explicit purpose. Unlike
the traditional approach, the present mechanisms derive their properties from the game

29In the spirit of Echenique [18], there may be conditions on the scf and the utility functions such
that an order exists for which the game is supermodular. Since this existence would not follow from
implementability, it is not a revelation approach.

30See Theorem 6 of Section 9.2.
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that they induce and not from the solution concept. The paper shows that the analysis
in mechanism design and implementation theory can benefit from this methodology. It
may also prove useful in other contexts. The theory explicitly aims to improve learning
and stability in an incentive-design framework.

The paper raises issues that have not been discussed. For the most part, type spaces
are subsets of the real line. It is not straightforward to extend the theory to multidi-
mensional type spaces. When types are real, supermodularity in a player’s own type is
trivial. For multidimensional types, it is not immediate that the current technique of
modifying a mechanism applies. In this case, we possibly have to add complementari-
ties between the dimension of a player’s type without affecting the incentives. Similar
transformations will not preserve the incentives. The condition of bounded substitutes
will also have to be applied to the transfers of the original mechanism. Those trans-
fers were trivially supermodular with real types, but they may carry substitutes in
multidimensional types. For this reason and the following, indirect mechanisms seem
appropriate in a supermodular implementation framework; yet the paper only considers
direct mechanisms. Since the supermodular revelation principle fails in general, weak
implementation calls for indirect mechanisms. So, indirect mechanisms are important
to extend the frontiers of supermodular implementation in quasilinear and general en-
vironments. However weak implementation makes the issue of the interval prediction
essential, so indirect mechanisms should be considered in the context of optimal or
unique implementation.

The multiple equilibrium problem in supermodular implementation suggests an al-
ternative solution, namely strong implementation. Strong implementation requires all
the equilibria of the mechanisms to yield desired outcomes. Instead of relying on weak
implementation, supermodular implementation could be based on strong implementa-
tion, which would also call for indirect mechanisms. Nonetheless, even under strong
implementation, learning dynamics may cycle within the interval prediction or players
may learn to play a non-equilibrium profile. Therefore, strong supermodular implemen-
tation cannot substitute for unique supermodular implementation. Yet it is an avenue
to explore.

Like many Bayesian mechanisms, the present mechanisms are parametric in the
sense that they rely on agents’ prior beliefs. Thus the designer uses information other
than that received from the agents (Hurwicz [25]). It may be interesting to design
nonparametric supermodular mechanisms. This is yet another justification for indirect
mechanisms, as nonparametric direct Bayesian mechanisms impose dominant-strategy
incentive-compatibility (Ledyard [32]).

Finally, it is important to pursue testing supermodular games. Since supermodular
Bayesian implementation provides a general framework, it is a good candidate for ex-
perimental tests. From a practical viewpoint, discretizing type spaces may simplify the
players’ task of announcing deceptions at each round. But there are also simple environ-
ments with continuous types where announcing a deception is equivalent to choosing a
real number in a compact interval. For instance, in the public goods example of Section
2, announcing an optimal deception comes down to choosing an intercept in a compact
set;31 this is also the case in the team-production example of Section 6.1 where optimal
deceptions are characterized by their positive slope.

31See Equations 1 and 2.
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9 Proofs

9.1 Quasilinear Environments

The next lemma shows that if the complete information payoffs are supermodular and
have increasing differences, then the ex-ante payoffs are supermodular and have increas-
ing differences.

Lemma 1 Assume (Mi,≥i) is a lattice for i ∈ N . Suppose that, for each θi ∈ Θi,
ui(g(mi,m−i, θi)) is supermodular in mi for each m−i and has increasing differences
in (mi,m−i). Then ug

i is supermodular in mi(.) ∈ Σi(Mi) for each m−i(.) and has
increasing differences in (mi(.),m−i(.)) ∈ Σi(Mi)×

∏
j 6=i Σj(Mj).

The proof is omitted because it is simple.
The proof of the next Proposition is also omitted, because the result is standard

and its proof is similar to that of Proposition 23.D.2 in Mas-Colell et al. [35].

Proposition 6 Consider a quasilinear family of utilities and a decision rule x(.) such
that Eθ−i

[Vi(xi(θ̂i, θ−i), θi)] is continuous in (θ̂i, θi).

(i)If the scf f =(x, t) is truthfully Bayesian implementable, then for all θ̂i

Eθ−i
[ti(θ̂i, θ−i)] = −Eθ−i

[Vi(xi(θ̂i, θ−i), θ̂i)]+

∫ θ̂i

θi

∂Eθ−i
[Vi(xi(s, θ−i), s)]

∂θi

ds+ ε(θi) (24)

(ii) Let the decision rule x(.) be such that ∂Eθ−i
[Vi(xi(θ̂i, θ−i), θi)]/∂θi is increasing in

θ̂i for each θi and i ∈ N . If transfers t satisfy (24), then the scf f = (x, t) is TBI.

Proof of Theorem 4: By way of contradiction, suppose that the truthful equilibrium
is not the unique Bayesian equilibrium. Since the scf is TSBI, there exist a greatest
and a smallest equilibrium in the game induced by the mechanism. So, one of these
extremal equilibria must be strictly greater/smaller than the truthful one. Suppose
that the greatest equilibrium, denoted (θi(.))i∈N ∈ ∏

Σi(Θi), is strictly greater than
the truthful equilibrium. That is, for all i ∈ N , θi(θi) ≥ θi for a.e θi, and there exists
N∗ 6= ∅ such that, for all i ∈ N∗, θi(θi) > θi for all θi in some subset of types with
positive measure.

I evaluate the first-order condition of agent i’s maximization program at the greatest
equilibrium; then, I bound it from above by an expression which cannot be positive for
all players (hence the contradiction). Consider player i’s interim utility for type θi

against θ−i(.):

Eθ−i
[Vi(xi(θ̂i, θ−i(θ−i)), θi)] + Eθ−i

[ti(θ̂i, θ−i(θ−i))]. (25)

Since Vi ◦ xi and ti are (resp.) ωi- and βi-Lipschitz and both differentiable in θ̂i for all
θ̂−i, we can apply the Bounded Convergence Theorem to show that for any deception
θ̂−i(.) the first-derivative of (25) with respect to θ̂i is

Eθ−i

[
∂Vi(xi(θ̂i, θ−i(θ−i)), θi)

∂θ̂i

]
+ Eθ−i

[
∂ti(θ̂i, θ−i(θ−i))

∂θ̂i

]
. (26)
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Since ui ◦ f has complements bounded by κi, we have

Eθ−i

[
∂Vi(xi(θ̂i, θ−i(θ−i)), θi)

∂θ̂i

+
∂ti(θ̂i, θ−i(θ−i))

∂θ̂i

− ∂Vi(xi(θ̂i, θ−i), θi)

∂θ̂i

− ∂ti(θ̂i, θ−i)

∂θ̂i

]
(27)

≤
∫

Θ−i

κi

∑

j 6=i

(θj(θj)− θj)φ−i(θ−i)dθ−i = κi

∑

j 6=i

Eθj
[θj(θj)− θj] (28)

By (27) and (28),

(26) ≤ κi

∑

j 6=i

Eθj
[θj(θj)− θj] + Eθ−i

[
∂Vi(xi(θ̂i, θ−i), θi)

∂θ̂i

]
+ Eθ−i

[
∂ti(θ̂i, θ−i)

∂θ̂i

]
. (29)

By part (i) of Proposition 6,

Eθ−i

[
∂ti(θ̂i, θ−i)

∂θ̂i

]
= −Eθ−i


∂Vi(xi(θ

′
i, θ−i), θ̂i)

∂θ′i

∣∣∣∣∣
θ′i=θ̂i


 .

Therefore, (29) implies

(26) ≤ κi

∑

j 6=i

Eθj
[θj(θj)− θj] + Eθ−i

[
∂Vi(xi(θ̂i, θ−i), θi)

∂θ̂i

− ∂Vi(xi(θ̂i, θ−i), θ̂i)

∂θ′i

]
. (30)

If, as claimed, it is optimal for each player i to play θi(θi) for a.e type θi, then the RHS
of (30) evaluated at θ̂i = θi(θi) must be positive for a.e θi and all i ∈ N . To see why,
let Θ∗

i ⊂ Θi be the set of types θi for which the RHS of (30) is strictly negative when
evaluated at θ̂i = θi(θi). Note that Θ∗

i is measurable by definition, because the RHS of
(30) is a measurable function in θi when θ̂i = θi(θi). By way of contradiction, suppose
there is a player i ∈ N for whom Θ∗

i has strictly positive measure. Since the RHS of
(30) is greater than (26), if θ̂i = θi(θi) then (26) is strictly negative for all θi ∈ Θ∗

i .
But for types θi ∈ Θ∗

i , [θi, θi(θi)] is available to player i. Thus there exists ε > 0 for
which the deception θ∗i : Θi → Θi defined as θ∗i (θi) = θi(θi) − ε1Θ∗i for all θi gives i a

strictly greater utility than θi(.). Notice θ∗i (.) ∈ Σi(Θi) because θi(.) ∈ Σi(Θi), so θ∗i (.)
improves on θi(.) which is a contradiction. As a result, Θ∗

i has null measure.
Since it is optimal for each player i to play θi(θi) for a.e type θi, the RHS of (30)

at θ̂i = θi(θi) is positive for a.e θi and all i ∈ N . However, this leads to the following
contradiction. If the RHS of (30) is positive for a.e θi, then

0 ≤ κi

∑

j 6=i

Eθj
[θj(θj)− θj]+Eθi

[
∂Eθ−i

[Vi(xi(θi(θi), θ−i), θi)]

∂θ̂i

−

−∂Eθ−i
[Vi(xi(θi(θi), θ−i), θi(θi))]

∂θ̂i

]

≤ κi

∑

j 6=i

Eθj
[θj(θj)− θj] + δiEθi

[θi − θi(θi)] for all i ∈ N, (31)
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where the last inequality follows from δi-increasing differences. Since κi/δi < 1/(n− 1)
by hypothesis and φj has full support for all j, (31) implies

∑

j 6=i

1

n− 1
Eθj

[θj(θj)− θj] ≥ Eθi
[θi(θi)− θi] for all i ∈ N, and

∑

j 6=i

1

n− 1
Eθj

[θj(θj)− θj] > Eθi
[θi(θi)− θi] for all i ∈ {i : {j 6= i} ∩N∗ 6= ∅}.

Hence ∑
i∈N

∑

j 6=i

1

n− 1
Eθj

[θj(θj)− θj] >
∑
i∈N

Eθi
[θi(θi)− θi]

which is a contradiction because both sides are equal by definition. It is not optimal
for all i ∈ N to play θ̂i = θi(θi) for a.e θi. Thus, there is no equilibrium that is greater
than the truthful equilibrium. The same argument applies to show that there is no
equilibrium that is smaller than the truthful equilibrium. Truth-revealing is the unique
equilibrium. Q.E.D

Proof of Proposition 3: The family of valuation functions and the scf have δ-
increasing differences, which implies that ∂Eθ−i

[Vi(xi(θ̂i, θ−i), θi)]/∂θi is strictly increas-

ing in θ̂i. Given (14), let transfers be t∗i as in (15) where ti is taken to be (11). So,
given Eθ−i

[Vi(xi(θ̂i, θ−i), θi)] is continuous in (θ̂i, θi) by assumption, Proposition 6 and
Theorem 3 imply (x, t∗) is TSBI. Both Vi ◦ xi and t∗i are C2, hence it follows that ui ◦ f
has bounded complements. The bound κi on complements is computed as follows,

κi = max
j 6=i

max
(θ̂,θi)∈Θ×Θi

(
∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

− min
θi∈Θi

∂2Vi(xi(θ̂), θi)

∂θ̂i∂θ̂j

)
.

As C2-functions, transfers t∗i are βi-Lipschitz in θ̂i. Applying Theorem 4 completes the
proof. Q.E.D

Proof of Theorem 2: Let

hi(θ̂−i) = −
(

1

n− 1

) ∑

j 6=i

Eθ̃−j

[∑

k 6=j

Vk(x(θ̂j, θ̃−j), θ̃k)

]
,

and for ρi ∈ R, let

δi(θ̂i, θ̂−i) =
∑

j 6=i

ρiθ̂iθ̂j.

Define

tBB
i (θ̂i, θ̂−i) = δi(θ̂i, θ̂−i)− Eθ−i

[δi(θ̂i, θ−i)] + Eθ̃−i

[∑

j 6=i

Vj(x(θ̂i, θ̃−i), θ̃j)

]
+ hi(θ̂−i)−

− 1

n− 2

∑

j 6=i

∑

k 6=i,j

ρj θ̂j θ̂k +
1

n− 2

∑

j 6=i

∑

k 6=i,j

ρj θ̂jE(θk). (32)

First, (x, tBB) is TBI, because x(.) is allcation-efficient and

Eθ−i
[tBB

i (θ̂i, θ−i)] = Eθ̃−i

[∑

j 6=i

Vj(x(θ̂i, θ̃−i), θ̃j)

]
+ Eθ−i

[hi(θ−i)],
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which is the expectation of the transfers in the expected externality mechanism (Arrow
[5] and d’Aspremont and Gérard-Varet [15]). Second, note that for all θ,

∑
i∈N

δi(θi, θ−i)− 1

n− 2

∑
i∈N

∑

j 6=i

∑

k 6=i,j

ρjθjθk =
∑
i∈N

δi(θi, θ−i)− 1

n− 2

∑
i∈N

∑

j 6=i

(n−2)ρiθiθj = 0

and

1

n− 2

∑
i∈N

∑

j 6=i

∑

k 6=i,j

ρjθjE(θk)−
∑
i∈N

Eθ−i
[δi(θi, θ−i)] =

=
1

n− 2

∑
i∈N

∑

j 6=i

(n− 2)ρiθiE(θj)−
∑
i∈N

Eθ−i
[δi(θi, θ−i)] = 0,

hence
∑
i∈N

tBB
i (θ) =

∑
i∈N

Eθ̃−i

[∑

j 6=i

Vj(x(θi, θ̃−i), θ̃j)

]
+

∑
i∈N

hi(θ−i) = 0,

because transfers are balanced in the expected externality mechanism. Furthermore,
tBB
i is clearly continuous in θ̂−i for each θ̂i and usc in θ̂i for each θ̂−i. It follows from

standard arguments that Eθ[t
SM
i (θ̂i(θi), θ̂−i(θ−i))] is continuous in θ̂−i(.) and usc in θ̂i(.).

Next I show that it is possible to take ρi so that the complete information payoffs have
increasing differences in (θ̂i, θ̂−i). By assumption, there exists a lower bound Ti on the
substitutes from Vi ◦ xi(.). Set ρi > −Ti. Choose any θ′′−i ≥−i θ′−i and pick any θ′′i > θ′i.
Given (32), notice

tBB
i (θ′′i , θ

′′
−i)− tBB

i (θ′′i , θ
′
−i)− tBB

i (θ′i, θ
′′
−i) + tBB

i (θ′i, θ
′
−i) =

= δi(θ
′′
i , θ

′′
−i)− δi(θ

′′
i , θ

′
−i)− δi(θ

′
i, θ

′′
−i) + δi(θ

′
i, θ

′
−i). (33)

Therefore, ui(xi(θ̂i, θ̂−i), θi) has increasing differences in (θ̂i, θ̂−i) for all θi, if the follow-
ing expression is positive for each θi,

Vi(xi(θ
′′
i , θ

′′
−i),θi) + Vi(xi(θ

′
i, θ

′
−i), θi)− Vi(xi(θ

′′
i , θ

′
−i),θi)− Vi(xi(θ

′
i, θ

′′
−i), θi)

+
∑

j 6=i

ρi

(
θ′′i θ

′′
j + θ′iθ

′
j − θ′′i θ

′
j − θ′iθ

′′
j

)
. (34)

The proof then follows similarly to that of Theorem 1. Q.E.D

Proof of Proposition 4: Since τi − Ti < δi/(n − 1), there is ρi > −Ti such that
ρi + τi < δi/(n− 1). By Theorem 2, (x, tBB) is supermodular implementable whenever
ρi > −Ti. Because Vi ◦ xi(.) has complements bounded by τi, the definition of tBB

i

implies that ui ◦ f has complements bounded by ρi + τi. Theorem 4 applies, which
completes the proof. Q.E.D

9.2 Supermodular Revelation Principles

Lemma 2 Let (X,≥) be a complete lattice. For Y ⊃ X, let φ : X →→ Y be a corre-
spondence whose range is Y and such that, for all x ∈ X, x ∈ φ(x) and for all x′ 6= x,
φ(x′) ∩ φ(x) = ∅. Then, there exists an extension ≥∗ of ≥ such that:

(i) (Y,≥∗) is a complete lattice,
(ii) For all distinct x, x′ ∈ X, and all y ∈ φ(x), y′ ∈ φ(x′), y ≥∗ y′ iff x ≥ x′,
(iii) For all x ∈ X, φ(x) is a complete chain.
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Proof: Define ≥∗ on Y such that (ii) is satisfied. That is, for all distinct x, x′ ∈ X, and
all y ∈ φ(x), y′ ∈ φ(x′), x ≥ x′ if and only if y ≥∗ y′. By the Well Ordering Principle
of set theory, for all x ∈ X, there exists º on φ(x) such that (φ(x),º) is a chain, and
any B ⊂ φ(x) has a least upper bound and a greatest lower bound in φ(x).32 For each
x ∈ X, define ≥∗ to be equal to º on φ(x). Therefore, for all x ∈ X, φ(x) is a complete
chain and (iii) is satisfied. I show next that (Y,≥∗) is a complete lattice with the order
≥∗ just defined on all of Y .

First, I prove that it is a partially ordered set. For all x ∈ X, x ∈ φ(x) and thus
x ≥∗ x because (φ(x),≥∗) is a chain. This proves reflexivity. Now take x, y, z ∈ Y
such that x ≥∗ y and y ≥∗ z. If x ∈ φ(x′), y ∈ φ(y′) and z ∈ φ(z′) where x′, y′, z′ are
pairwise distinct in X, then x ≥∗ y implies x′ > y′ and y ≥∗ z implies y′ > z′. By
transitivity of ≥, we have x′ > z′, which implies x ≥∗ z. Suppose that x, y ∈ φ(x′) and
z ∈ φ(z′) for distinct x′, z′ ∈ X. Since y ≥∗ z, we have x′ > z′ which implies x ≥∗ z. If
x, y, z ∈ φ(x′), then x ≥∗ z because (φ(x),≥∗) is a chain, which completes the proof of
transitivity. Now, if x ≥∗ y and y ≥∗ x for some x ∈ φ(x′) and y ∈ φ(y′), then x′ = y′.
Therefore, x, y ∈ φ(x′) and so x = y because (φ(x′),≥∗) is a chain. This establishes
antisymmetry of ≥∗.

Secondly, I prove that (Y,≥∗) is a complete lattice. For any subset S ⊂ Y , I
show that supY S and infY S exist. Let X be such that x ∈ X ⊂ X if and only if
S ∩ φ(x) 6= ∅. If |X | = 1, then S ⊂ φ(x) where x is the unique element of X . By
definition of ≥∗, S has an infimum and a supremum in φ(x) ⊂ Y . Now assume |X | ≥ 2
and let S(x) = S ∩ φ(x) for all x ∈ X. Note {S(x)}x∈X forms a partition of S. Define
s(x) = supY S(x) and s(x) = infY S(x) which exist and are in φ(x) for all x ∈ X by
definition of ≥∗. Note that if supY S and infY S exist, then supY S ≡ supY (∪X s(x))
and infY S ≡ infY (∪X s(x)) by associativity. Since (X,≥) is a complete lattice, supX X
exists; call it x. If x ∈ X , then s(x) = supY (∪X s(x)) and so supY S exists. So suppose
x /∈ X and define s∗ = infY φ(x). Note s∗ ∈ φ(x) is well-defined by definition of ≥∗. I
show s∗ = supY (∪X s(x)). Since x /∈ X , x > x for all x ∈ X . This implies s∗ ≥∗ s(x)
for all x ∈ X . Hence s∗ is an upper bound for ∪X s(x). Take any upper bound y 6= s∗

for ∪X s(x). Then y /∈ ∪X s(x), for if there were x′ ∈ X such that y = s(x′) then x′ ≥ x
for all x ∈ X would imply that x ≡ supX X = x′ is in X , a contradiction. Therefore,
y ∈ φ(x̃) for some x̃ ∈ X\X and since y ≥∗ s(x) for all x ∈ X , x̃ > x for all x ∈ X .
Hence x̃ ≥ x. If x̃ 6= x, then y >∗ s∗, and if x̃ = x, then y ∈ φ(x) implies y ≥∗ s∗. As a
result, s∗ = supY (∪X s(x)). Finally, infY S exists by a similar argument. Since (X,≥)
is a complete lattice, infX X exists; call it x. If x ∈ X , then infY (∪X s(x)) = s(x).
Otherwise infY (∪X s(x)) = supY φ(x). Q.E.D

Proof of Theorem 5: By the traditional revelation principle, (Θ, f) truthfully imple-
ments f in Bayesian equilibrium with any order on Θi. It remains to prove that there
is an order ≥∗i on Θi such that the game induced by ({(Θ,≥∗i )}, f) is supermodular. I
prove first that, for any i ∈ N , the order ºi on Mi induces an order ≥∗i on Θi such that
(Θi,≥∗i ) is a (complete) lattice. So, Σi(Θi) is a (complete) lattice with the pointwise
order. Second, I establish that under ≥∗i , uf

i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.) and

has increasing differences in (θ̂i(.), θ̂−i(.)).

32Take ω ∈ φ(x). By the Well Ordering Principle, there is an order that well orders φ(x)\{ω}.
Extend this order to all of φ(x) by setting ω as the greatest element. Let º be the extension. Since
(φ(x),º) is also well ordered, infφ(x)(S) exists for any S ⊂ φ(x). Since the set of upper bounds of S
contains ω, it has a least element because φ(x) is well ordered. Hence supφ(x)(S) exists.
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Denote M∗
i = m∗

i (Θi) for all i ∈ N . For each mi ∈ M∗
i , define the equivalence

class [mi] = {θi ∈ Θi : m∗
i (θi) = mi}. Let θs : M∗

i → Θi be a selection from the
correspondence [ ] : M∗

i →→ Θi. As a mapping from M∗
i to θs(M∗

i ), θs is a bijection
because mi 6= m′

i necessarily implies [mi] ∩ [m′
i] = ∅, given that m∗

i (.) is single-valued.
Since θs is a bijection, we can define ≥i on a subset of Θi such that θs(m′′

i ) ≥i θs(m′
i) if

and only if m′′
i ºi m′

i where m′′
i ,m

′
i ∈ m∗

i (Θi). Because θs is an order-isomorphism from
(M∗

i ,ºi) to (θs(M∗
i ),≥i), it preserves all existing joins and meets. This implies that

(θs(M∗
i ),≥i) is a (complete) lattice because (M∗

i ,ºi) is a (complete) lattice. Define the
extension ≥∗i (or simply ≥∗) of ≥i to all of Θi, as follows:

1. For any mi, m
′
i ∈ M∗

i with mi 6= m′
i and for all θi ∈ [mi], θ′i ∈ [m′

i], then θi ≥∗ θ′i
if and only if θs(mi) ≥i θs(m′

i).

2. For all mi ∈ M∗
i , ([mi],≥∗) is a chain such that any subset B ⊂ [mi] has a least

upper bound and a greatest lower bound in [mi].

By Lemma 2, (Θi,≥∗) is a (complete) lattice. Thus, Σi(Θi) is a (complete) lattice with
the pointwise order. Endow those lattices with their order-interval topology and the
Borel σ-algebra so that all functions are trivially continuous and measurable.

Proving that m∗
i (.) preserves meets and joins will be useful in the last step of

the proof. Take any T ⊂ Θi. Since (M∗
i ,ºi) and (Θi,≥∗) are complete lattices,

supM∗
i
(m∗

i (T )) and supΘi
T exist. Denote mT = supM∗

i
(m∗

i (T )). Since supΘi
T is an

upper bound for T , ≥∗ implies m∗
i (supΘi

T ) is an upper bound for m∗
i (T ) in M∗

i . Thus,
m∗

i (supΘi
T ) ºi mT . But mT is an upper bound for m∗

i (T ), hence sup[mT ]([mT ]) is an
upper bound for T . So, sup[mT ]([mT ]) ≥∗ supΘi

T , and therefore, mT ºi m∗
i (supΘi

T ).
A similar argument applies to show infM∗

i
(m∗

i (T )) = m∗
i (infΘi

T ).

Now I show that uf
i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.) and has increasing dif-

ferences in (θ̂i(.), θ̂−i(.)). Take any i ∈ N and for all j 6= i, endow Θj with ≥∗j and
Σj(Θj) with the corresponding pointwise order. Endow

∏
Σj(Θj) with the product

order. The first step is to show that uf
i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.). For any

θ′′i (.) and θ′i(.), we know m∗
i (θ

′
i(.)) ∨m∗

i (θ
′′
i (.)) = m∗

i (θ
′
i(.) ∨ θ′′i (.)) and similarly for ∧.

Since the mechanism ({(Mi,ºi)}, g) supermodularly implements f , ug
i (mi(.),m−i(.)) is

supermodular in mi(.) for each m−i(.). For any θ̂−i(.),

ug
i (m

∗
i (θ

′
i(.) ∨ θ′′i (.)),m

∗
−i(θ̂−i(.))) + ug

i (m
∗
i (θ

′
i(.) ∧ θ′′i (.)),m

∗
−i(θ̂−i(.)))

≥ ug
i (m

∗
i (θ

′
i(.)),m

∗
−i(θ̂−i(.))) + ug

i (m
∗
i (θ

′′
i (.)),m

∗
−i(θ̂−i(.))),

which implies that for any θ̂−i(.),

uf
i (θ

′
i(.) ∨ θ′′i (.), θ̂−i(.)) + uf

i (θ
′
i(.) ∧ θ′′i (.), θ̂−i(.)) ≥ uf

i (θ
′
i(.), θ̂−i(.)) + uf

i (θ
′′
i (.), θ̂−i(.)).

The second step is to show that uf
i (θ̂i(.), θ̂−i(.)) has increasing differences in (θ̂i(.), θ̂−i(.)).

For any θ′′i (.) ≥∗i θ′i(.) and θ′′−i(.) ≥∗−i θ′−i(.), we know m∗
i (θ

′′
i (.)) ºi m∗

i (θ
′
i(.)) and

m∗
−i(θ

′′
−i(.)) º−i m∗

−i(θ
′
−i(.)). Since the mechanism ({(Mi,ºi)}, g) supermodular imple-

ments f , ug
i (mi(.),m−i(.)) has increasing differences in (mi(.),m−i(.)). For any θi,

ug
i (m

∗
i (θ

′′
i (.)),m

∗
−i(θ

′′
−i(.)))− ug

i (m
∗
i (θ

′
i(.)),m

∗
−i(θ

′′
−i(.))) ≥

≥ ug
i (m

∗
i (θ

′′
i (.)),m

∗
−i(θ

′
−i(.)))− ug

i (m
∗
i (θ

′
i(.)),m

∗
−i(θ

′
−i(.))),

which implies that for any θi,
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uf
i (θ

′′
i (.), θ

′′
−i(.))− uf

i (θ
′
i(.), θ

′′
−i(.)) ≥ uf

i (θ
′′
i (.), θ

′
−i(.))− uf

i (θ
′′
i (.), θ

′
−i(.)),

and completes the proof. Q.E.D

For the next theorem, consider a slightly different framework from that of Section
4. A mechanism is a pair Γ = (M, g). The Bayesian game induced by mechanism Γ is
G = (N, {(Σi(Mi),ºi)}, ug) where ug = (ug

i ) is the vector of ex-ante payoffs and ºi is
some order on Σi(Mi). A mechanism supermodularly implements a scf if it Bayesian
implements that scf such that for all i ∈ N there exists an order ºi on Σi(Mi) for
which G is supermodular. A scf is supermodular Bayesian implementable if there exists
a mechanism Γ that supermodularly implements it. The only difference with Definition
2 is that ºi need not be a pointwise order.

Theorem 6 (Supermodular Revelation Principle for Continuous Types) If
there exists a mechanism (M, g) that supermodularly implements the scf f such that
there is a Bayesian equilibrium m∗(.) for which g◦m∗ = f and m∗

i (Σi(Θi)) is a complete
lattice for all i ∈ N , then f is TSBI.

Proof: The proof unfolds similarly to that of Theorem 5, except that continuity and
measurability have to be dealt with. By the traditional revelation principle, (Θ, f)
truthfully implements f in Bayesian equilibrium with any order on Σi(Θi). I prove first
that, for any i ∈ N , the order ºi on Σi(Mi) induces an order ≥i on Σi(Θi) such that
(Σi(Θi),≥i) is a complete lattice. Second, I show that for all i ∈ N , uf

i (θ̂i(.), θ̂−i(.))

is continuous in θ̂−i(.) for each θ̂i(.), and upper-semicontinuous in θ̂i(.) for each θ̂−i(.).
Third, I establish that under ≥∗i , uf

i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.) and has in-

creasing differences in (θ̂i(.), θ̂−i(.)).
Let M∗

i = m∗
i (Σi(Θi)). For each mi(.) ∈ M∗

i , define the equivalence class [mi(.)] =
{θi(.) ∈ Σi(Θi) : m∗

i (θi(.)) = mi(.)}. Let θs : M∗
i → Σi(Θi) be a selection from the

correspondence [ ] : M∗
i →→ Σi(Θi). As a mapping from M∗

i to θs(M∗
i ), θs is a bijection,

so we can define ≥i such that θs(m′′
i (.)) ≥i θs(m′

i(.)) if and only if m′′
i (.) ºi m′

i(.) where
m′′

i (.),m
′
i(.) ∈ M∗

i . Because θs is an order-isomorphism from (M∗
i ,ºi) to (θs(M∗

i ),≥i),
(θs(M∗

i ),≥i) is a complete lattice. Define the extension ≥∗i (or simply ≥∗) of ≥i to all
of Σi(Θi) as follows:

1. For any mi(.), m
′
i(.) ∈ M∗

i with mi(.) 6= m′
i(.) and for all θi(.) ∈ [mi(.)], θ′i(.) ∈

[m′
i(.)], then θi(.) ≥∗ θ′i(.) if and only if θs(mi(.)) ≥i θs(m′

i(.)).

2. For all mi(.) ∈ M∗
i , ([mi(.)],≥∗) is a chain such that any subset B ⊂ [mi(.)] has

a least upper bound and a greatest lower bound in [mi(.)].

By Lemma 2, (Σi(Θi),≥∗) is a complete lattice.
A similar argument to that of Theorem 5 establishes that m∗

i : (Σi(Θi),≥∗) →
(Σi(Mi),ºi) preserves meets and joins.

The topological properties will follow from continuity of the equilibrium strategies.
Recall m∗

i : (Σi(Θi),≥∗, τ ∗i ) → (Σi(Mi),ºi, τi) where τ ∗i and τi are order-interval topolo-
gies. Take V ∈ τi. So, V = ∪λ∈Λ ∩nλ

i=1 [aλ,i, bλ,i]
c and thus,

m∗−1
i (V ) = ∪λ∈Λ ∩nλ

i=1 (m∗−1
i ([aλ,i, bλ,i]))

c. (35)

Since M∗
i is a complete lattice, mλ,i ≡ infM∗

i
([aλ,i, bλ,i]∩M∗

i ) and mλ,i ≡ supM∗
i
([aλ,i, bλ,i]

∩M∗
i ) exist. Since (Σi(Θi),≥∗) is a complete lattice, infΣi(Θi)([mλ,i]) and supΣi(Θi)

([mλ,i])
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exist. By definition of ≥∗, m∗−1
i ([aλ,i, bλ,i]) = [infΣi(Θi)([mλ,i]), supΣi(Θi)

([mλ,i])], which

is closed in τ ∗i . By (35), m∗−1
i (V ) is open.

I prove that for all i ∈ N , uf
i (θ̂i(.), θ̂−i(.)) is continuous in θ̂−i(.) for each θ̂i(.),

and upper-semicontinuous in θ̂i(.) for each θ̂−i(.). Take any net {θα
−i(.)} → θ∗−i(.).

Since m∗
−i(.) is continuous, {m∗

−i(θ
α
−i(.))} → m∗

−i(θ
∗
−i(.)). Given ug

i (mi(.),m−i(.)) is
continuous in m−i(.) for each mi(.),

limα uf
i (θ̂i(.), θ

α
−i(.)) = limα ug

i (m
∗
i (θ̂i(.)),m

∗
−i(θ

α
−i(.)))

= ug
i (m

∗
i (θ̂i(.)),m

∗
−i(θ

∗
−i(.)))

= uf
i (θ̂i(.), θ

∗
−i(.)).

Hence, for all i ∈ N , uf
i is continuous in θ̂−i(.) for each θ̂i(.). The same argument

applies to establish upper-semicontinuity in θ̂i(.) for each θ̂−i(.).
Proving that uf

i (θ̂i(.), θ̂−i(.)) is supermodular in θ̂i(.) and has increasing differences

in (θ̂i(.), θ̂−i(.)) is analogous to Theorem 5, because m∗
i : (Σi(θi),≥i) → (m∗

i (Σi(θi),ºi)
preserves meets and joins. Q.E.D
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