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1. Introduction

In an assignment problem, a number of indivisible objects that are collectively owned

need to be assigned to a set of agents who can consume at most one object each. University

housing allocation and student placement in public schools are examples of important

assignment problems in real life.1 The mechanism designer is faced with the problem of

assigning the objects in an efficient and fair fashion, while eliciting the true preferences

of the agents. The mechanism may need to meet other constraints as well. For example,

fairness considerations preclude monetary transfers and motivate random assignments

in many applications. Also, the assignment usually has to be based on agents’ reports

of ordinal preferences over objects rather than full cardinal preferences, as elicitation

of cardinal preferences may be difficult.2 Two main solutions to the random assignment

problem have been considered in the literature: the random serial dictatorship mechanism

(Abdulkadiroğlu and Sönmez 1998) and the probabilistic serial mechanism (Bogomolnaia

and Moulin 2001). Although the random serial dictatorship mechanism is widely used

in practical assignment problems,3 our main result implies that the probabilistic serial

mechanism has more desirable properties in reasonably large assignment problems.

Random serial dictatorship chooses each possible ordering of the agents with equal

probability and, for each realization of the ordering, assigns the first agent his most

preferred object, the next agent his most preferred object among the remaining ones,

and so on. Random serial dictatorship is strategy-proof, that is, truthful reporting of

ordinal preferences is a weakly dominant strategy for every agent (for any expected utility

1See Abdulkadiroğlu and Sönmez (1999) and Chen and Sönmez (2002) for application to house allo-

cation, and Balinski and Sönmez (1999) and Abdulkadiroğlu and Sönmez (2003b) for student placement.

For the latter application, Abdulkadiroğlu, Pathak, and Roth (2005) and Abdulkadiroğlu, Pathak, Roth,

and Sönmez (2005) discuss practical considerations in designing student placement mechanisms in New

York City and Boston.
2The market-like mechanism of Hylland and Zeckhauser (1979) is one of the few solutions to the

random assignment problem existent in the literature in which agents report their cardinal preferences

over objects.
3Random serial dictatorship is used for housing allocation in many universities. In the context of

school choice, it is used in the third round of the student placement mechanism in New York City for

instance (Abdulkadiroğlu, Pathak, and Roth 2005).
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function consistent with the ordinal preferences). Moreover, random serial dictatorship

is ex-post efficient, that is, the assignment after the ordering lottery is resolved is Pareto

efficient. Abdulkadiroğlu and Sönmez (1998) show that the random serial dictatorship

mechanism is equivalent to the core from random endowments mechanism, and argue that

the equivalence further justifies the use of random serial dictatorship in practice.

Despite its ex-post efficiency, random serial dictatorship may result in unambiguous

efficiency loss ex ante. Bogomolnaia and Moulin (2001) provide an example in which the

random serial dictatorship assignment is first-order stochastically dominated by another

random assignment for each agent. Bogomolnaia and Moulin define a random assignment

to be ordinally efficient if it is not first-order stochastically dominated for all agents by

any other random assignment. Clearly, any ordinally efficient random assignment is ex-

post efficient. Ordinal efficiency is probably the most compelling efficiency concept in the

context of assignment mechanisms based solely on ordinal preferences.

Bogomolnaia and Moulin propose the probabilistic serial mechanism as an alternative

to the random serial dictatorship mechanism. The basic idea is to regard each object

as a continuum of “probability shares.” Each agent “eats” the best available object

with speed one at every point in time between 0 and 1. The probabilistic serial random

assignment is defined as the profile of shares of objects eaten by agents by time 1. The

random assignment prescribed by the probabilistic serial mechanism is ordinally efficient

and envy-free (every agent prefers his random assignment to the one of any other agent)

if all the agents report their ordinal preferences truthfully.

The desirable properties of the probabilistic serial mechanism come at some cost, how-

ever. The mechanism is not strategy-proof. In other words, in some circumstances an

agent can receive a more desirable random assignment (with respect to his true expected

utility function) by misstating his ordinal preferences. Ordinal efficiency and envy-freeness

with respect to misstated preferences have little relevance since they do not imply ordinal

efficiency and envy-freeness with respect to true preferences. Due to the incentive problem

it has been unclear whether the probabilistic serial mechanism is a good solution to the

random assignment problem.

We show that agents have incentives to state their ordinal preferences truthfully when

the market is sufficiently large. More specifically, our main result shows that, given a fixed
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set of object types and an agent with a fixed expected utility function over these objects,

if the number of copies of each object type is sufficiently large, then truthful reporting of

ordinal preferences is a weakly dominant strategy for the agent (for any set of other partic-

ipating agents and their possible preferences). The better efficiency and fairness properties

of the probabilistic serial mechanism, together with the non-manipulability property we

discover, support its use rather than the random serial dictatorship mechanism in many

circumstances.

The lower bound on the size of the supply of each object type that is sufficient for

truthful reporting of ordinal preferences to be a weakly dominant strategy equals 1.76322

times the ratio of the difference between the utility of the most preferred object and the

utility of being unassigned an object, and the smallest difference between the utility of

two objects, the more preferred of which is acceptable. We show that the bound cannot

be improved by more than a factor of 1.76322.

In our model, the large market assumption means that there is a large number of copies

of each object type. This model is very general and subsumes several interesting cases. For

instance, the “replica economy” model that is often used to discuss asymptotic properties

of markets is a special case, as the number of copies of each object type is large in an

economy that is replicated a large number of times. Also, the assumption is natural in

a number of real life applications. In the context of university housing allocation, rooms

may be divided into several categories according to building and size, and all rooms of the

same type can be treated as identical.4 In student placement in public schools, there are

typically a large number of identical seats at each school. Our result may apply to these

markets. For example, in a school choice setting where a student finds only 10 schools

acceptable, and his utility difference between any two consecutively ranked schools is

constant, a sufficient condition for truth-telling to be a dominant strategy for him in the

probabilistic serial mechanism is that each school have at least 18 seats.

Related literature. Manea (2006a) shows that random serial dictatorship results in

an ordinally inefficient assignment for most realizations of preference profiles in a large

4For example, the assignment of Harvard on-campus graduate housing is only based on the preferences

of each student over eight types of rooms: two possible sizes, large and small, for each of four dorms.
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market. The result complements our paper by suggesting that the efficiency gain of the

probabilistic serial mechanism over the random serial dictatorship mechanism is realized

in most large markets. Simulations based on real data also suggest that there exists an

efficiency gain of the probabilistic serial mechanism over the random serial dictatorship

mechanism in large markets. Using the data of student placement in public schools in New

York City, Pathak (2006) compares the resulting random assignments for each student

with respect to first order stochastic dominance in the probabilistic serial mechanism and

the random serial dictatorship mechanism. He finds that about 50% of the students are

better off in the former mechanism, and about 6% are better off in the latter mechanism

(for the rest of the students, the random assignments corresponding to the two mechanisms

are not comparable in the sense of first order stochastic dominance).

Incentive properties in large markets are studied in various areas of economics. An

example is a pure exchange economy, where the classical result of Hurwicz (1972) implies

that the Walrasian mechanism is not strategy-proof.5 Roberts and Postlewaite (1976)

show that, under some conditions, the Walrasian mechanism becomes increasingly difficult

to manipulate as the market becomes large. Similarly, in the context of double auctions,

Gresik and Satterthwaite (1989), Rustichini, Satterthwaite, and Williams (1994), and

Cripps and Swinkels (2006) show that the equilibrium behavior converges to truth-telling

as the number of traders increases. Two-sided matching is an area closely related to

our model. In that context, Roth and Peranson (1999), Immorlica and Mahdian (2005)

and Kojima and Pathak (2006) show that the deferred acceptance algorithm proposed

by Gale and Shapley (1962) becomes increasingly hard to manipulate as the number of

participants becomes large. Most of these results show either that the gain from false

reporting of preferences converges to zero or that the equilibrium behavior converges to

truth-telling, but do not claim that truth-telling is a dominant strategy in a sufficiently

large market. Our result is stronger in this respect, as we show that truth-telling is an

exactly dominant strategy in a (finitely) large market.

In contrast to the mechanisms mentioned above, some popular mechanisms may be

highly manipulable even in an environment with a large supply of each object type. For

5The result of Hurwicz (1972) is generalized by Zhou (1991) and Serizawa (2002).
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example, the housing assignment mechanism of Harvard College in the 1970s randomly

assigned rooms in a house to students who indicated the house as their first choices.

Students who indicated a house as their second or lower choices were assigned to the

house only if there were still available rooms in the house. Hylland and Zeckhauser

(1979) note that this mechanism is not strategy-proof. Indeed, some students may be

able to manipulate the mechanism even in a large market.6

Finally, there is a growing literature on ordinal efficiency. Abdulkadiroğlu and Sönmez

(2003a) give a characterization of ordinal efficiency based on the idea of dominated sets

of assignments. McLennan (2002) proves that any ordinally efficient random assignment

with respect to some ordinal preferences is welfare-maximizing with respect to some ex-

pected utility function consistent with the ordinal preferences. A short constructive proof

is given by Manea (2006b). Kesten (2006) introduces the top trading cycles from equal

division mechanism, and shows that it is equivalent to the probabilistic serial mecha-

nism. The probabilistic serial mechanism is generalized to cases with indifferences in

preferences and with existing property rights by Katta and Sethuraman (2006) and Yil-

maz (2006), respectively. On the restrictive domain of the scheduling problem, Crès and

Moulin (2001) show that the probabilistic serial mechanism is group strategy-proof and

stochastically dominates the random serial dictatorship mechanism, and Bogomolnaia and

Moulin (2002) give two characterizations of the probabilistic serial mechanism.

The remainder of the paper is organized as follows. Section 2 presents the model,

Section 3 presents the main result, and Section 4 concludes. The proof of the main result

is presented in the Appendix.

2. Model

A random assignment problem is a quadruple Γ = (N, (Âi)i∈N , O, (qa)a∈O). N

represents the set of agents, and O represents the set of proper object types; both

N and O are finite. There are qa copies of object a, where a positive integer qa is called

6The mechanism of Harvard College described here is analogous to the so-called Boston mechanism

studied by Abdulkadiroğlu and Sönmez (2003b) and Ergin and Sönmez (2006). Kojima and Pathak

(2006) give an example of a large market where the Boston mechanism can be manipulated, and their

example can be easily adapted to the housing allocation mechanism described here.
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the quota of a. There exist an infinite number of copies of a null object ø (which

is not included in O), qø = +∞. Each agent i ∈ N has a strict preference Âi over

Õ := O ∪ {ø}. We write a ºi b if either a Âi b or a = b holds. When N and O are fixed,

we write Â for (Âi)i∈N , ÂN ′ for (Âi)i∈N ′ where N ′ ⊂ N , and q for (qa)a∈Õ.

A deterministic assignment for the problem Γ is a function α from N to Õ such that

at most qa agents are assigned to a for each a ∈ Õ, with α(i) denoting the object that i

receives at α. A deterministic assignment matrix is a matrix X = [Xia]i∈N,a∈Õ with

Xia ∈ {0, 1} for all i and a,
∑

a∈Õ Xia = 1 for all i, and
∑

i∈N Xia ≤ qa for all a. For each

deterministic assignment α, there exists a (one-to-one) corresponding deterministic

assignment matrix Xα such that Xα
ia = 1 if and only if α(i) = a. Denote by A the set

of all deterministic assignments.

A lottery assignment is a probability distribution w over A, with w(α) denoting the

probability of assignment α. A random assignment is a matrix P = [Pia]i∈N,a∈Õ, where

Pia ≥ 0 for all i and a,
∑

a∈Õ Pia = 1 for all i, and
∑

i∈N Pia ≤ qa for all a; Pia stands

for the probability that agent i receives object a. For each lottery assignment w, there

exists a corresponding random assignment Pw, with Pw
ia equal to the probability that

agent i is assigned object a under w, i.e., Pw
ia =

∑
α∈A,α(i)=a w(α). We say that the lottery

assignment w induces the random assignment Pw.

The following proposition is a generalization of the Birkhoff-von Neumann theorem (see

Birkhoff (1946) and von Neumann (1953)), showing that the correspondence w → Pw

from lottery assignments to random assignments is surjective on the set of all random

assignments.

Proposition 1. Every random assignment can be written as a convex combination of

deterministic assignment matrices, hence any random assignment is induced by a lottery

assignment.7

Proof. Consider a random assignment P = [Pia]i∈N,a∈Õ. Let P ′ = [Pia]i∈N∪N ′,a∈Õ be a

matrix with rows corresponding to the agents in N ∪N ′, where N ′ is a set of n′ fictitious

agents not in N , with P ′
ia = Pia for all i ∈ N and a ∈ Õ, P ′

ja = (qa −
∑

i∈N Pia)/n
′ for all

7The convex combination is not unique in general.
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j ∈ N ′ and a ∈ O, and P ′
jø = 1 −∑

a∈O P ′
ja for all j ∈ N ′.8 For sufficiently large n′, all

entries of the matrix P ′ are non-negative. Each row of P ′ sums to 1, and column a of P ′

sums to qa for all a ∈ O. Since all rows and columns have integer sums and each entry is

non-negative, the procedure described by Hylland and Zeckhauser (1979) in the section

“Conduct of the Lottery” may be adapted to the current environment to find a convex

decomposition of P ′ in deterministic assignment matrices corresponding to an assignment

problem with set of agents N ∪ N ′ and set of objects O. Obviously, the restriction of

these deterministic assignment matrices for the problem (N ∪N ′, (Âi)i∈N∪N ′ , O, (qa)a∈O)

to the agents in N , with the corresponding weights in the convex decomposition, yield a

convex decomposition of P in deterministic assignment matrices for the problem (N, (Âi

)i∈N , O, (qa)a∈O).

¤

By Proposition 1, for any random assignment P , there exists a lottery over deterministic

assignments that induces P . Henceforth, we identify a lottery assignment with a random

assignment, and use these terminologies interchangeably.

We assume that agents have von Neumann-Morgenstern expected utility. The

utility index of agent i is a function ui : Õ → R. Agent i’s expected utility for the random

assignment P is then given by Ui(P ) =
∑

a∈Õ Piaui(a).9 We say that ui is consistent

with Âi when ui(a) > ui(b) if and only if a Âi b.

A random assignment P ordinally dominates another random assignment P ′ at Â
if for each agent i the lottery Pi first-order stochastically dominates the lottery P ′

i ,

(2.1)
∑

bºia

Pib ≥
∑

bºia

P ′
ib ∀i ∈ N, ∀a ∈ Õ,

with strict inequality for some i, a. The random assignment P is ordinally efficient at

Â if it is not ordinally dominated at Â by any other random assignment. If P ordinally

dominates P ′ at Â, then every agent i prefers Pi to P ′
i according to any expected utility

function with utility index consistent with Âi.

8McLennan (2002) uses a similar construction.
9Without any risk of confusion, we let the domain of Ui be either the set of random assignment matrices

or the set of random assignments for agent i.
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Consider the binary relation B(P,Â) on Õ defined by

(2.2) a B (P,Â)b ⇐⇒ ∃i ∈ N, a Âi b and Pib > 0.

In a setting in which each object has quota 1 and there exist an equal number of agents and

objects, Bogomolnaia and Moulin show that a random assignment P is ordinally efficient

at Â if and only if B(P,Â) is acyclic. Their characterization extends straightforwardly to

our setting. We say that P is non-wasteful if there exists no agent i ∈ N and objects

a, b ∈ Õ such that a Âi b, Pib > 0 and
∑

j∈N Pja < qa.

Proposition 2. The random assignment P is ordinally efficient at Â if and only if the

relation B(P,Â) is acyclic and P is non-wasteful.

Now we introduce the probabilistic serial mechanism, which is an adaptation of the

mechanism proposed by Bogomolnaia and Moulin to our setting. The idea is to regard each

object as a divisible good of “probability shares.” Each agent “eats” the best available

object with speed one at every time t ∈ [0, 1] (object a is available at time t if less than

qa share of a has been eaten away by time t). The resulting profile of shares of objects

eaten by agents by time 1 obviously corresponds to a random assignment matrix, which

we call the probabilistic serial random assignment.

Formally, the symmetric simultaneous eating algorithm,10 used to determine the

probabilistic serial random assignment, is defined as follows. For any a ∈ O′ ⊂ Õ, let

N(a,O′) = {i ∈ N |a ºi b for every b ∈ O′} be the set of agents whose most preferred

object in O′ is a. For a preference profile Â, the assignment under the probabilistic serial

mechanism is defined by the following sequence of steps. Let O0 = Õ, t0 = 0, and P 0
ia = 0

for every i ∈ N and a ∈ Õ. Given O0, t0, [P 0
ia]i∈N,a∈Õ, . . . , Ov−1, tv−1, [P v−1

ia ]i∈N,a∈Õ, for

any a ∈ Ov−1 define

(2.3) tv(a) = sup

{
t ∈ [0, 1]|

∑
i∈N

P v−1
ia + |N(a,Ov−1)|(t− tv−1) < qa

}
.

10Bogomolnaia and Moulin (2001) consider a broader class of simultaneous eating algorithms, where

eating speeds may vary across agents and time.
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(For any set S, we denote by |S| the cardinality of S.) Define

tv = min
a∈Ov−1

tv(a),(2.4)

Ov = Ov−1 \ {a ∈ Ov−1|t(a) = tv},(2.5)

P v
ia =





P v−1
ia + tv − tv−1, i ∈ N(a,Ov−1),

P v−1
ia , otherwise.

(2.6)

Since O is a finite set, there exists v̄ such that tv̄ = 1. We define PS(Â) := P v̄ to be the

probabilistic serial random assignment for the preference profile Â.

Bogomolnaia and Moulin (2001) show that the random assignment resulting from the

probabilistic serial mechanism is ordinally efficient in their simplified setting. Their proof

can be adapted easily to our setting, using Proposition 2.

Proposition 3. For all preference profiles Â, the probabilistic serial random assignment

PS(Â) is ordinally efficient at Â.

Bogomolnaia and Moulin (2001) also show that the probabilistic serial mechanism is

envy-free, that is, every agent who reports her preference truthfully weakly prefers, in

the sense of first order stochastic dominance, her own random assignment to a random

assignment of any other agent; the proof extends to our setting as well. Ordinal efficiency

and envy-freeness are not satisfied by another popular mechanism called random serial

dictatorship (Abdulkadiroğlu and Sönmez 1998) or random priority (Bogomolnaia

and Moulin 2001).

The high level of efficiency and fairness of the probabilistic serial mechanism comes at

a cost, however. The mechanism is not strategy-proof, that is, an agent is sometimes

made better off misstating his preferences (Bogomolnaia and Moulin (2001) show that,

however, the probabilistic serial mechanism is weakly strategy-proof, an agent cannot

misstate his preferences and obtain a random assignment that stochastically dominates

the one corresponding to truth-telling). Actually, Bogomolnaia and Moulin (2001) prove

that there exists no mechanism that satisfies strategy-proofness, ordinal efficiency and
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equal treatment of equals.11 Moreover, the ordinal efficiency and envy-freeness of the

probabilistic serial mechanism are based on the presumption that agents state their ordinal

preferences truthfully. If agents behave strategically, then neither of the two desirable

properties is guaranteed. Therefore, it is important to find out under what circumstances

there exist incentives for truthful reporting of the ordinal preferences in the probabilistic

serial mechanism.

3. Result

Theorem 1. Let Âi be an arbitrary strict preference relation and ui be a utility index

consistent with Âi. There exists M such that, if qa ≥ M for all a ∈ O, then for any

ordinal preferences Â′i, any set of agents N 3 i and any profile of strict preferences ÂN\{i}

Ui(PS(Âi,ÂN\{i})) ≥ Ui(PS(Â′i,ÂN\{i})),

where Ui is the expected utility function with utility index ui. One M that satisfies

the claim is M = xD/d where x ≈ 1.76322,12 d = minaÂib,aºiø ui(a) − ui(b), D =

maxaºibºiø ui(a)− ui(b).

A formal proof of the theorem is given in the Appendix. For a sketch of the argument,

we first note that manipulations of preferences in the symmetric simultaneous eating

algorithm have two effects: (1) at each point in time in the symmetric simultaneous

eating algorithm, given the same set of available objects, reporting false preferences may

prevent the agent from eating his most preferred available object; (2) reporting false

preferences can affect the schedule of availability of objects, that is, reporting an object

that is highly desirable as less desirable may lengthen the time that the object is available,

and thus change the eating behavior of other agents and the availability schedule for other

objects. The first effect is always detrimental to the manipulating agent, while the second

effect can be positive. We prove that the second effect becomes of smaller order than the

first effect when the number of units of each object type becomes large. If over some time

11A mechanism satisfies equal treatment of equals if any two agents who report identical ordinal

preferences receive identical random assignments. In particular, envy-freeness implies equal treatment of

equals.
12x solves x = e1/x (e is the base of the natural logarithm).
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interval an agent eats object a in the case of misstated preferences and object b in the case

of truthfully reported preferences, and the agent prefers a to b, then it can be shown that

many agents are eating from a over that time interval in the case the agent misstates his

preferences (in the case the agent states his preferences truthfully, a is not available over

that time interval, since otherwise the agent would be eating from it; it follows that, even

in the case the agent misstates his preferences, the share of a eaten before the beginning

of that time interval is close to qa, and since qa is large, many agents should be eating

a over that time interval). Then the time interval over which the manipulating agent is

better off by misstating his preferences (eating a instead of b) is short. We show that

the length of any such interval is of smaller order than the sum of length of intervals on

which the consumption when the agent misstates his preferences is less preferred to the

consumption when he reports his true preferences.

Let Â be the profile of true preferences (Âi,ÂN\{i}), and Â′ be the profile of preferences

(Â′i,ÂN\{i}) in which agent i reportsÂ′i instead ofÂi. Define λ to be the sum of the lengths

of the time intervals on which agent i’s consumption in the symmetric simultaneous eating

algorithm under Â is Âi-preferred to the one under Â′. Let k = |{a ∈ O|a Âi ø}| be the

number of proper object types that are Âi-preferred to the null object.

In Appendix A, we find a rough lower bound on the quotas of all objects sufficient for

truth-telling to be a dominant strategy for player i. Based on the observations above,

we show that the sum of the lengths of the time intervals on which i benefits from the

change in the availability schedule caused by misstating preferences is at most λ((1 +

1/M)k − 1), so the expected utility gain from misstating preferences over these intervals

is at most Dλ((1 + 1/M)k− 1). Since the expected utility loss over the intervals in which

i’s consumption under Â is Âi-preferred to the one under Â′ is at least dλ,

Ui(PS(Â))− Ui(PS(Â′)) ≥ dλ−Dλ

((
1 +

1

M

)k

− 1

)
.(3.1)

We show that the right hand side of 3.1 is non-negative, and hence truth-telling is a

dominant strategy for player i, if

(3.2) M ≥ (k + 1)
D

d
.
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Note that for this lower bound for M , the expected benefit from reporting false preferences

is of order at most Dλk/M .

In Appendix B, we refine the lower bound. The argument is based on the observation

that Λ = λ
M

(
1 + 1

M

)k−1
has the property that the object eaten at any time t under Â

is ºi-preferred to the one eaten at time t + Λ under Â′. Then, we can evaluate the

expected utility gain from misstating preferences by translating the eating schedule under

Â by Λ with respect to the one under Â′, with the only positive difference contribution

corresponding to the difference in consumption over the interval [0, Λ] when Â′ is reported

and consumption over the interval [1 − Λ, 1] when Â is reported. Thus a bound on the

expected utility gain from misstating preferences of DΛ is obtained. Therefore,

(3.3) Ui(PS(Â))− Ui(PS(Â′)) ≥ dλ−D
λ

M

(
1 +

1

M

)k−1

.

A sufficient condition for the right hand side of 3.3 be nonnegative, and truth-telling be

a dominant strategy for player i, is

(3.4) M ≥ x
D

d
with x ≈ 1.76322.

This computation yields a weaker sufficient condition for M , since the bound on the ex-

pected benefit from reporting false preferences is shown to be of order Dλ/M in Appendix

B, while in Appendix A the bound we find is of order Dλk/M .

Remark 1. The bound we find in Appendix B (3.4) for truth-telling to be a dominant

strategy for player i is linear in D/d. Note that D/d ≥ k. However, if the utility difference

between any two consecutively ranked objects does not vary a lot, then D/d is of order k.

For example, in a school choice setting where a student finds only 10 schools acceptable,

and his utility difference between any two consecutively ranked schools is constant, a

sufficient condition for truth-telling to be a dominant strategy for him in the probabilistic

serial mechanism is that each school has at least 18 seats.

One important feature of the bound for M in 3.4 is that it is independent of the

misstated ordinal preferences Â′i, the set of agents N \ {i} and their profile of strict

preferences ÂN\{i}. In particular, agent i may verify whether 3.4 holds only using his

information about D/d. Therefore, whenever 3.4 holds, truth-telling is a best response

for player i independently of how many other agents participate and what their reported
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preferences are. Even when M is not large enough to make truth-telling a dominant

strategy for all agents, truth-telling may be a dominant strategy for some of the agents.

Remark 2. We present an example that serves three purposes. First, it illustrates some

of the ideas of the proof. Second, it shows that the lower bound for M necessary for truth-

telling is D/d − 1, hence the bound we find in the proof of Theorem 1 (3.4) cannot be

improved by more than a factor of x ≈ 1.76322 (we do not know whether there exists an

example with the lower bound for M necessary for truth-telling closer to xD/d). Third, it

shows that the conclusion of the theorem cannot be strengthened to imply the existence

of M such that, in the probabilistic serial mechanism for all markets with qa ≥ M for all

a ∈ O, agent i has incentives to report his ordinal preferences truthfully irrespective of

his expected utility function.

Consider an agent i in an environment with 2 types of proper objects, a and b, each

having quota M . Let the true preferences of agent i be given by a Âi b Âi ø. Fix

D > d > 0, and let ui be a utility index such that ui(a) = D, ui(b) = D − d, ui(ø) = 0.

Note that ui is consistent with i’s true preferences.

Let N = {i} ∪ N ′ ∪ N ′′ be the set of agents, with N ′ containing M agents and N ′′

containing M + 1 agents. Assume that the preferences of the agents are specified by

a Âj ø Âj b, ∀j ∈ N ′,

b Âj ø Âj a, ∀j ∈ N ′′.

Let Â′i be a preference relation for agent i specified by b Â′i a Â′i ø. Suppose all other

2M + 1 agents report their preferences truthfully.

Consider the symmetric simultaneous eating algorithm. If i reports his preferences

truthfully, then he eats object a in the time interval [0,M/(M + 1)), and the null object

in the time interval [M/(M + 1), 1]. Therefore his assignment under the probabilistic

serial mechanism is given by

(3.5) (Pia, Pib, Piø) =

(
M

M + 1
, 0,

1

M + 1

)
.

If i reports Â′i instead of Âi, then he eats object b in the time interval [0,M/(M + 2)),

object a in [M/(M +2),M(M +3)/(M +1)(M +2)), and then the null object in [M(M +
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3)/(M + 1)(M + 2), 1]. Hence his assignment under the probabilistic serial mechanism is

given by

(3.6) (P ′
ia, P

′
ib, P

′
iø) =

(
2M

(M + 1)(M + 2)
,

M

M + 2
,

2

(M + 1)(M + 2)

)
.

Figure 1 illustrates the eating schedules for agent i under the two preference profiles.

M
M+2

M(M+3)
(M+1)(M+2)

M
M+1

0 1

a ø

b a ø

Â

Â′

Figure 1. Eating schedules for agent i under Â and Â′.

In the time interval [0,M/(M +2)), agent i eats a if he reports Âi and b if he reports Â′i;
agent i’s expected utility loss from misstating his preferences corresponding to that time

interval is dM/(M + 2). In the time interval [M/(M + 1),M(M + 3)/(M + 1)(M + 2)),

i eats ø if he reports Âi and a if he reports Â′i; agent i’s expected utility gain from

misstating his preferences corresponding to that time interval is DM/(M + 1)(M + 2).

At any time except for these intervals, the object i eats if he reports Âi is identical to the

one he eats if he reports Â′i. In Figure 1, by misstating his preferences, agent i loses over

the first thick interval, and gains over the second thick interval. (Note that the length of

the latter is of order M times smaller than the length of the former.)

If Ui is the expected utility function corresponding to ui,

(3.7) Ui(Pi)− Ui(P
′
i ) =

dM

(M + 1)(M + 2)

(
M + 1− D

d

)
.

Therefore, agent i has an incentive to report false preferences Â′i when M < D/d − 1

(in particular, there exists no M such that, in the probabilistic serial mechanism for all

markets with qa ≥ M for all a ∈ O, agent i has incentives to report his ordinal preferences

truthfully irrespective of his expected utility function). Conversely, if M ≥ D/d−1, truth-

telling is a dominant strategy for i (note that the probabilistic serial assignment when i

reports any preferences different from Âi and Â′i is first-order stochastically dominated

by either Pi or P ′
i ).
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Remark 3. The proof can be adapted (with straightforward changes to Claims 1 and 2

in the appendix) to show that the condition “qa ≥ M for all a ∈ O” can be replaced with

“qa ≥ M for all a Âi ø” in the statement of the theorem.

Theorem 1 has a couple of corollaries.

Corollary 1. Suppose that the set O of possible proper object types and the set U of

possible von Neumann-Morgenstern expected utility functions on lotteries over Õ are fixed

and finite (we maintain the assumption that ordinal preferences over Õ consistent with

the utility functions in U are strict). There exists M such that if qa ≥ M for all a ∈ O,

then for any set of agents N with utility functions in U , truth-telling is a weakly dominant

strategy for each agent in the probabilistic serial mechanism.

Fix a problem Γ = (N, (Âi)i∈N , O, (qa)a∈O) with utility index ui consistent with Âi

for each i in N , and a positive integer M . The M -fold replica economy of (Γ, u) is a

random assignment problem in which there are M “replicas” of each agent i, all having

utility index ui, and there are Mqa copies of each object a in O.

Corollary 2. For any random assignment problem Γ = (N, (Âi)i∈N , O, (qa)a∈O) with

utility indices (ui)i∈N , there exists M such that for any M-fold replica economy of (Γ, u)

with M ≥ M , truth-telling is a weakly dominant strategy for each agent in the probabilistic

serial mechanism.

4. Conclusion

Truth-telling is a dominant strategy for an agent under the probabilistic serial mecha-

nism when there is a large supply of each object type. This result gives support to the

use of the mechanism in applications such as university housing and student placement

in schools. A surprising feature of our result is that truth-telling is an exact dominant

strategy as opposed to an “almost dominant strategy” common in the literature on as-

ymptotic incentive compatibility. Fixing the set of object types, and one agent with his

utility function, our conclusion holds irrespective of the set of other agents and their

ordinal preferences.

The bound on the size of the supply of each object type we find in the proof of Theorem

1 cannot be improved by more than a factor of x ≈ 1.76322. Whether the bound can be
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improved on at all is an open question. However, the bound we find is sufficiently low to

make truth-telling a weakly dominant strategy in practical assignment problems.

Appendix A. Proof of Theorem 1

Let Â be the profile of true preferences (Âi,ÂN\{i}), and Â′ be the profile of preferences

(Â′i,ÂN\{i}) in which agent i states Â′i instead of Âi.

Let an eating function e describe some eating schedule for each agent, ei : [0, 1] → Õ

for all i ∈ N , with ei(t) representing the object agent i is eating at time t. We demand

that ei be right-continuous with respect to the discrete topology on Õ (the topology in

which all subsets are open), that is,

(A.1) t < 1, ei(t) = a ⇒ ∃ε > 0, ei(t
′) = a, ∀t′ ∈ [t, t + ε).

Let na(t, e) be the number of agents eating from object a at time t, and Ga(t, e) be the

share of object a eaten away by time t under the eating function e, i.e.,

na(t, e) =
∑
i∈N

1ei(t)=a,(A.2)

Ga(t, e) =

∫ t

0

na(s, e)ds,(A.3)

where 1 is the indicator function. Note that Ga(·, e) is continuous.

Define eÂ as the eating function determined by the symmetric simultaneous eating

algorithm when the agents report Â. Formally, let eÂi (t) = a if i ∈ N(a,Ov−1) for

t ∈ [tv−1, tv), where (Ov)v=0,...,v̄ and (tv)v=0,...,v̄ are defined by 2.4 and 2.5. Note that

(A.4) PS(Â)ia =

∫ 1

0

1eÂi (t)=adt,

for each i and a.

Given Â and Â′, let e be the eating function with ei defined by

(A.5) ei(t) =





eÂi (t) if eÂi (t) = eÂ
′

i (t)

ø otherwise
,

and, ej, for j 6= i, defined such that j starts eating from his most preferred object at time

0, and subsequently eats from his most preferred object at speed 1 among the ones still

available. Note that the eating function ei of i is fixed, and that ēj may be different from
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eÂj or eÂ
′

j for j 6= i since available objects at various times may be different across ē, eÂ

and eÂ
′
due to different eating behavior for i.

Let β(t) and γ(t) be the sums of the lengths of the time intervals, before time t, on which

agent i’s consumption in the symmetric simultaneous eating algorithm is Âi-preferred, and

respectively Âi-less preferred, if the reported preferences change from Â to Â′; let δ(t) be

the sum of the lengths of the time intervals, before time t, on which agent i’s consumption

in the symmetric simultaneous eating algorithm is not identical if the reported preferences

change from Â to Â′,

β(t) =

∫ t

0

1
eÂ′i (s)Âie

Â
i (s)

ds(A.6)

γ(t) =

∫ t

0

1
eÂi (s)Âie

Â′
i (s)

ds(A.7)

δ(t) = β(t) + γ(t).(A.8)

Note that β(·), γ(·), δ(·) are continuous.

Lemma 1. For all t ∈ [0, 1] and a ∈ O,

0 ≤ Ga(t, e
Â)−Ga(t, e)(A.9)

−δ(t) ≤ Gø(t, e
Â)−Gø(t, e)(A.10)

0 ≤ Ga(t, e
Â′)−Ga(t, e)(A.11)

−δ(t) ≤ Gø(t, e
Â′)−Gø(t, e).(A.12)

Proof. By symmetry, we only need to prove the first two inequalities.

To prove the first inequality, we proceed by contradiction. Assume that there exist t

and a such that Ga(t, e
Â)−Ga(t, e) < 0. Let

(A.13) t0 = inf{t ∈ [0, 1]|∃a ∈ O,Ga(t, e
Â)−Ga(t, e) < 0}.

By continuity of Ga(·, eÂ)−Ga(·, e), it follows that t0 < 1, and

(A.14) 0 ≤ Ga(t0, e
Â)−Ga(t0, e), ∀a ∈ O.

(When t0 = 0, this holds trivially.)
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It follows that all objects that are not eaten away by time t0 under eÂ are not eaten

away by time t0 under e either. So, the set of available objects at t0 under eÂ is included

in the set of available objects at t0 under e. Hence, if agent j ∈ N is eating object a ∈ O

at t0 under e and a is available at t0 under eÂ, then j needs to be eating a at t0 under eÂ,

formally

(A.15) ej(t0) = a & Ga(t0, e
Â) < qa ⇒ eÂj (t0) = a, ∀j ∈ N.

(This holds for j = i by the definition of e.) Therefore,

(A.16) Ga(t0, e
Â) < qa ⇒ na(t0, e

Â) ≥ na(t0, e).

Given the right-continuity of eÂ and e, for sufficiently small ε > 0, we have that for all

t ∈ [t0, t0 + ε) and a ∈ O

Ga(t, e
Â) = Ga(t0, e

Â) + na(t0, e
Â)(t− t0)(A.17)

Ga(t, e) = Ga(t0, e) + na(t0, e)(t− t0).(A.18)

By A.14 and A.16, it follows that for all t in [t0, t0 + ε) and a ∈ O with Ga(t0, e
Â) < qa

(A.19) 0 ≤ Ga(t, e
Â)−Ga(t, e).

Note that if Ga(t0, e
Â) = qa the inequality holds trivially for all t ≥ t0.

By the definition of t0, for all t in [0, t0] and a in O

(A.20) 0 ≤ Ga(t, e
Â)−Ga(t, e).

Therefore, for all t in [0, t0 + ε) and a in O

(A.21) 0 ≤ Ga(t, e
Â)−Ga(t, e),

which contradicts the definition of t0.

To prove that −δ(t) ≤ Gø(t, e
Â)−Gø(t, e), note that

(A.22) Gø(t, e
Â)−Gø(t, e) + δ(t) =

∫ t

0

[nø(s, e
Â)− nø(s, e) + 1

eÂi (s)6=eÂ′i (s)
]ds.

By an argument similar to the one above, using the fact that for all a ∈ O and t ∈ [0, 1]

(A.23) 0 ≤ Ga(t, e
Â)−Ga(t, e),

we have
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(1) if eÂ(s) 6= e(s) then nø(s, e
Â) ≥ nø(s, e)− 1

(2) if eÂ(s) = e(s) then nø(s, e
Â) ≥ nø(s, e),

so the integrand nø(s, e
Â) − nø(s, e) + 1

eÂi (s)6=eÂ′i (s)
is non-negative for all s ∈ [0, t], com-

pleting the proof.

¤

Lemma 2. For all t ∈ [0, 1] and a ∈ O,

Ga(t, e
Â)−Ga(t, e) ≤ δ(t).(A.24)

Proof. The inequality follows trivially from Lemma 1, noting that for each t in [0, 1]

(A.25)
∑

a∈Õ

Ga(t, e
Â)−Ga(t, e) = 0.

¤

Lemma 3. For all t ∈ [0, 1] and a ∈ O,

Ga(t, e
Â)−Ga(t, e

Â′) ≤ δ(t).(A.26)

Proof. The inequality follows from Lemmata 1 and 2 (A.11 and A.24), writing

(A.27) Ga(t, e
Â)−Ga(t, e

Â′) = [Ga(t, e
Â)−Ga(t, e)]− [Ga(t, e

Â′)−Ga(t, e)].

¤

Proof of the Theorem. If eÂi (t) ºi eÂ
′

i (t) for all t in [0, 1) the proof is immediate. So,

assume eÂ
′

i (t) Âi eÂi (t) for some t in [0, 1).

Let

(A.28) {a1, a2, . . . , al} = {a ∈ O|∃t ∈ [0, 1), a = eÂ
′

i (t) Âi eÂi (t)},

be the set of objects that are consumed at some time under eÂ
′

i , and are Âi-preferred to

the consumption at that time under eÂi . We label the set such that a1 Â′i a2 Â′i . . . Â′i al.

For l = 1, 2, . . . , l, let

(A.29) Tl = inf{t|al = eÂ
′

i (t) Âi eÂi (t)}

be the first time when al is consumed under eÂ
′

i , and is Âi-preferred to the consumption

at that time under eÂi . Obviously, 0 < T1 < T2 < . . . < Tl < 1.



STRATEGY-PROOFNESS OF THE PROBABILISTIC SERIAL MECHANISM 21

Let k = |{a ∈ O|a Âi ø}| be the number of proper object types that are Âi-preferred

to the null object. Note that l ≤ k since, for all l, al is Âi-preferred to some object that

is eaten under eÂ, hence is Âi-preferred to the null object, and that l ≥ 1 by the initial

assumption that eÂ
′

i (t) Âi eÂi (t) for some t ∈ [0, 1). Recall the definitions of β(·), γ(·), δ(·)
in A.6-A.8. Define

(A.30) λ = γ(1),

as the sum of the lengths of the time intervals on which agent i’s consumption in the

symmetric simultaneous eating algorithm under Â is Âi-preferred to the one under Â′.
Set T0 = 0, Tl+1 = 1, as a technical notation convention.

Claim 1. If qa ≥ M for all a ∈ O, then for all l = 0, 1, . . . , l,

(A.31) β(Tl+1)− β(Tl) ≤ λ

M

(
1 +

1

M

)l−1

.

Proof of the claim. We prove the claim by induction on l for l = 0, 1, . . . , l.

For l = 0, the induction hypothesis holds trivially since β(T1) = 0.

Let l ≥ 1. Assume the induction hypothesis holds for 0, 1, . . . , l− 1, and we prove that

it holds for l.

By the induction hypothesis,

(A.32) δ(Tl) ≤ λ +
l−1∑
g=1

β(Tg+1)− β(Tg) ≤ λ +
λ

M

l−1∑
g=1

(
1 +

1

M

)g−1

= λ

(
1 +

1

M

)l−1

.

(Note that the inequality above holds for l = 1 as well.)

Since

(A.33) al = eÂ
′

i (Tl) Âi eÂi (Tl),

it follows that object al is not available at Tl under the eating function eÂ, i.e., Gal
(Tl, e

Â) =

qal
. By Lemma 3,

(A.34) Gal
(Tl, e

Â′) ≥ Gal
(Tl, e

Â)− δ(Tl) ≥ qal
− Tl > qal

− 1.

Note that nal
(·, eÂ′) is increasing on the time interval for which object al is available

under eÂ
′
, so

(A.35) nal
(Tl, e

Â′) > nal
(Tl, e

Â′)Tl ≥
∫ Tl

0

nal
(s, eÂ

′
)ds = Gal

(Tl, e
Â′) > qal

− 1.
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Then nal
(Tl, e

Â′) ≥ qal
, because nal

(Tl, e
Â′) is an integer. Since al is still available at Tl

under eÂ
′
, it follows that the number of agents eating from al, nal

(s, eÂ
′
), is greater or

equal to qal
for all times s ≥ Tl where al is still available under eÂ

′
(or, equivalently,

eÂ
′

i (s) = al). Therefore

(A.36) nal
(s, eÂ

′
) ≥ qal

1
eÂ′i (s)=al

, ∀s ∈ [Tl, Tl+1).

Then, by A.34,

δ(Tl) ≥ qal
−Gal

(Tl, e
Â′)(A.37)

= Gal
(Tl+1, e

Â′)−Gal
(Tl, e

Â′)(A.38)

=

∫ Tl+1

Tl

nal
(s, eÂ

′
)ds(A.39)

≥ qal

∫ Tl+1

Tl

1
eÂ′i (s)=al

ds(A.40)

= qal
(β(Tl+1)− β(Tl)),(A.41)

where the last equality holds since, by the definition of the sequence (al, Tl)l∈{1,...,l}, the

times in [Tl, Tl+1) at which agent i’s consumption in the symmetric simultaneous eating

algorithm is Âi-preferred when the reported preferences change from Â to Â′ are exactly

the times at which agent i is eating object al.

Since qal
≥ M by assumption, A.32 implies that

(A.42) β(Tl+1)− β(Tl) ≤ λ

M

(
1 +

1

M

)l−1

,

ending the proof of the induction step.

¤

To finish the proof, note that if we set

d = min
aÂib,aºiø

ui(a)− ui(b)(A.43)

D = max
aºibºiø

ui(a)− ui(b),(A.44)

then

(A.45) Ui(PS(Â))− Ui(PS(Â′)) =

∫ 1

0

ui(e
Â
i (s))− ui(e

Â′
i (s))ds ≥ dγ(1)−Dβ(1).
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By definition, γ(1) = λ. Since l ≤ k, and β(T1) = 0, adding the inequalities of Claim 1

for l = 1, 2, . . . , l,

(A.46) β(1) ≤
l∑

g=0

λ

M

(
1 +

1

M

)g−1

= λ

((
1 +

1

M

)l

− 1

)
≤ λ

((
1 +

1

M

)k

− 1

)
.

Therefore,

Ui(PS(Â))− Ui(PS(Â′)) ≥ λ

(
d−D

((
1 +

1

M

)k

− 1

))
,(A.47)

which is non-negative if

(A.48) M ≥ 1(
d
D

+ 1
)1/k − 1

,

completing the proof.

¤

Remark 4. We can linearize the bound in A.48 as a function of k and D/d. Using Taylor

expansions of (1 + x)1/k − 1 at x = 0 we get the inequalities13

(A.49)
d

D

1

k
−

(
d

D

)2
1

k

(
1− 1

k

)
≤

(
d

D
+ 1

)1/k

− 1 ≤ d

D

1

k
,

which offer bounds for the denominator in A.48.

Therefore, truth-telling is a dominant strategy for player i if

(A.50) M ≥ k
D

d

1

1− d
D

(
1− 1

k

) .

Noting that d/D ≤ 1/k it follows that k + 1 > k

1− d
D (1− 1

k)
, hence a sufficient condition for

truth-telling to be a dominant strategy for player i is

(A.51) M ≥ (k + 1)
D

d
.

13These inequalities can be checked by taking first and second order derivatives of (1 + x)1/k − 1− 1
kx

and (1 + x)1/k − 1− 1
kx + 1

k (1− 1
k )x2 for x ≥ 0.



24 FUHITO KOJIMA AND MIHAI MANEA

Appendix B. Refinement of the Bound

Assume qa ≥ M for all a ∈ O. We prove that

(B.1) M ≥ x
D

d
with x ≈ 1.76322

is a sufficient condition for the conclusion of the theorem to hold.

Let

(B.2) Λ =
λ

M

(
1 +

1

M

)k−1

.

Claim 2. For all a ∈ O, t ≤ Tl and t′ = t + Λ with t′ ≤ 1, if Ga(t, e
Â) = qa then

Ga(t
′, eÂ

′
) = qa.

Proof of the claim. Let a ∈ O, t ≤ Tl and t′ = t + Λ, with Ga(t, e
Â) = qa.

By the proof of Claim 1 (A.32),

(B.3) δ(t) ≤ δ(Tl) ≤ MΛ.

By Lemma 3,

(B.4) Ga(t, e
Â′) ≥ Ga(t, e

Â)− δ(t) ≥ qa − t > qa − 1.

We prove that Ga(t
′, eÂ

′
) = qa by contradiction. Assume that Ga(t

′, eÂ
′
) < qa. Note

that na(·, eÂ′) is increasing on the time interval for which object a is available under eÂ
′
,

so

(B.5) na(t, e
Â′) > na(t, e

Â′)t ≥
∫ t

0

na(s, e
Â′)ds = Ga(t, e

Â′) > qa − 1.

Then na(t, e
Â′) ≥ qa, because na(t, e

Â′) is an integer. Since a is still available at t′ under

eÂ
′
, it follows that

(B.6) na(s, e
Â′) ≥ qa,∀s ∈ [t, t′).
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Then, by B.3 and B.4, Ga(t, e
Â′) ≥ Ga(t, e

Â) − δ(t) ≥ Ga(t, e
Â) −MΛ = qa −MΛ >

Ga(t
′, eÂ

′
)−MΛ. Therefore

MΛ > Ga(t
′, eÂ

′
)−Ga(t, e

Â′)(B.7)

=

∫ t′

t

na(s, e
Â′)ds(B.8)

≥ qa(t
′ − t)(B.9)

= qaΛ,(B.10)

a contradiction with qa ≥ M .

¤

By the construction of the sequence (al, Tl), and by the fact that Gal
(Tl + Λ, eÂ

′
) = qal

when Tl + Λ ≤ 1, we get that ui(e
Â′
i (s)) ≤ ui(e

Â
i (s)) for all s ≥ min{Tl + Λ, 1}.

For technical purposes, extend the definition of eÂi such that eÂi (s) = eÂi (0) for all

s ∈ [−Λ, 0). It follows from Claim 2, and the observation above, that ui(e
Â′
i (s)) ≤

ui(e
Â
i (s− Λ)) for all s ∈ [0, 1].

Then,

Ui(PS(Â))− Ui(PS(Â′)) =

∫ 1

0

ui(e
Â
i (s))− ui(e

Â′
i (s))ds(B.11)

=

∫ 1

0

max{0, ui(e
Â
i (s))− ui(e

Â′
i (s))}ds(B.12)

+

∫ 1

0

min{0, ui(e
Â
i (s))− ui(e

Â′
i (s))}ds(B.13)

≥ dλ +

∫ 1

0

min{0, ui(e
Â
i (s))− ui(e

Â
i (s− Λ))}ds(B.14)

= dλ +

∫ 1

0

ui(e
Â
i (s))− ui(e

Â
i (s− Λ))ds(B.15)

= dλ +

∫ 1

0

ui(e
Â
i (s))ds−

∫ 1−Λ

−Λ

ui(e
Â
i (s))ds(B.16)

= dλ +

∫ 1

1−Λ

ui(e
Â
i (s))ds−

∫ 0

−Λ

ui(e
Â
i (s))ds(B.17)

= dλ−
∫ 0

−Λ

ui(e
Â
i (s))− ui(e

Â
i (s + 1))ds(B.18)

≥ dλ−DΛ.(B.19)
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Therefore,

(B.20) Ui(PS(Â))− Ui(PS(Â′)) ≥ dλ−DΛ =
dλ

M

(
M − D

d

(
1 +

1

M

)k−1
)

.

Suppose M ≥ xD/d, where x solves x = e1/x (e is the base of the natural logarithm;

x ≈ 1.76322). Since D/d ≥ k,

(B.21)

(
1 +

1

M

)k−1

<

(
1 +

1

xk

)k

=

((
1 +

1

xk

)xk
)1/x

< e1/x.

It follows that

(B.22) Ui(PS(Â))− Ui(PS(Â′)) ≥ dλ

M

(
x
D

d
− D

d
e1/x

)
= 0,

hence a sufficient condition for truth-telling to be a dominant strategy for player i is

(B.23) M ≥ x
D

d
with x ≈ 1.76322.
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