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der which a bidder participates in the auction if and only if his value exceeds a threshold.

Secondly, for any given set of participation thresholds whose corresponding virtual val-
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tential bidders even if the revenue-maximizing symmetric threshold-participation auction

is adopted. Lastly, we illuminate that the revenue-maximizing auction must be discrimi-
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1 Introduction

Opportunity costs are ubiquitous in an economic world. For example, it is costly and

time-consuming for potential bidders to travel to the auction site and stay for the entire

duration. The bidders could have invested their resources in other opportunities and

enjoyed a positive payoff. In this paper, we study the revenue-maximizing auctions when

any bidder who does not bid earns a positive payoff from an outside option. We consider

an independent private value (IPV) setting where the potential bidders learn their private

values before their entry decisions as in Samuelson [10] and Stegeman [11].1 Samuelson [10]

studies the ex ante efficient auction and revenue-maximizing auction within the first-price

sealed-bid auction class allowing no entry fee (subsidy). Stegeman [11] considers ex ante

efficient auction without restricting the auction format. The revenue-maximizing auction

with positive opportunity cost for bidders is yet to be derived without restrictions.2

The existence of opportunity cost leads to an auction design problem, in which every

bidder has a positive instead of a zero reservation utility adopted by Myerson [9]. To

induce participation, an auction must provide the participants with at least this positive

reservation utility (the opportunity cost of bidding). Due to this positive reservation

utility of the bidders, the revenue-maximizing mechanism potentially involves nonpartic-

ipation of the bidders with lower private values. Since participation can be uncertain,

the procedure of deriving the revenue-maximizing auctions in Myerson [9] needs to be

modified to accommodate for the nonparticipation of the bidders. We use “shutdown”

to refer to the outcomes where some types of bidders prefer not to participate. To catch

the essence of the shutdown policy of the seller and the endogenous entry of the potential

1Since Samuelson [10] and Stegeman [11] assume positive real participation cost and zero opportu-

nity cost for bidders, their setting is essentially equivalent to ours if their participation cost equals our

opportunity cost.
2Menezes and Monteiro [8] attempted a “restricted” revenue-maximizing auction design problem with

participation cost by assuming symmetric participation across bidders.
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bidders, based on a semirevelation principle in Stegeman [11, Lemma 1], our mechanism

requires only the participating bidders to reveal their types, whereas those who do not

participate are not required to submit signals. Our allocation rule thus depends on both

the participation decisions of all potential bidders and the signals of all participants.

We first establish that there is no loss of generality in deriving the revenue-maximizing

auctions within the class of threshold-participation mechanisms, under which a bidder

participates in the auction if and only if his value exceeds (weakly) a threshold. Following

this result, we then look for the revenue-maximizing auction within the mentioned class

while allowing asymmetric participation thresholds across bidders. Myerson [9] introduced

the concept of bidders’ “virtual value”, defined by J(v) = v − 1/ρ(v), where ρ(v) is the

hazard rate of the distribution of the bidders’ values v. The virtual value J(v) measures

the maximal surplus the seller can extract from a winning bidder whose private value is v.

Following the literature, we assume that J(·) is an increasing function.3 For a given set of

participation thresholds whose corresponding virtual values exceed the seller’s value, the

revenue-maximizing auction takes the form of a modified second-price sealed-bid auction

with appropriately set reserve prices and participation subsidy for participants whose bids

are higher than the reserve prices for them.4 The entry subsidy equals their opportunity

cost, and the reserve price for each bidder equals his participation threshold. The reserve

prices and the discriminating entry subsidy turn away those bidders whose values are

below the participation thresholds. More importantly, the participation subsidy functions

to eliminate the impact of entry cost on the entry and bidding behavior of the higher types

whose values exceed the entry thresholds.

We further restrict the participation thresholds to be symmetric across bidders and

study the revenue-maximizing symmetric threshold-participation auctions. The condition

3An increasing hazard rate function ρ(·) guarantees an increasing J(·) function. Please also refer to

pages 69, 72 and 73 in Krishna [3] for further interpretation of the virtual value.
4As will be shown later in Corollary 2, a threshold whose corresponding virtual value is less than the

seller’s value is never revenue-maximizing.
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characterizing the revenue-maximizing symmetric participation-threshold is provided. We

find that the revenue-maximizing symmetric threshold-participation auctions can take a

variety of first-price or second-price auctions with or without entry subsidy (fee), including

the revenue-maximizing auction identified by Samuelson [10] within the first-price sealed-

bid auction class. We further provide sufficient conditions under which it is in the seller’s

interest to limit the number of potential bidders even if the revenue-maximizing symmet-

ric threshold-participation auction is adopted. This implies that the revenue-maximizing

auction must be discriminatory in many cases, in the sense that asymmetric threshold par-

ticipation is implemented across symmetric bidders. Thus asymmetry among the bidders

is not a necessary condition for obtaining a discriminatory revenue-maximizing auction.

The following example shows that at optimum, the seller wants to shut down the potential

bidders asymmetrically, even if his expected revenue increases with the number of poten-

tial bidders when the revenue-maximizing symmetric-participation auctions are adopted.

There are two potential bidders with opportunity cost 0.2, and the potential bidders’

values follow a cumulative distribution function of F (t) = t−0.6
0.4

on [0.6, 1.0]. The seller’s

value of the object is 0. The revenue-maximizing symmetric participation threshold is

0.76, which gives the seller an expected revenue of 0.427 when the corresponding revenue-

maximizing auction is taken. When the seller completely shuts down one potential bidder,

he gets the expected revenue of 0.40 by optimally setting a participation threshold for the

remaining bidder at 0.60. However, participation thresholds of 0.66 and 0.86 respectively

for bidder 1 and bidder 2 provide the seller with the best expected revenue of 0.431. The

optimality of the discriminatory auction from the view of the seller is parallel to that in

Stegeman [11] in terms of efficiency. One policy implication of the above result is that

the seller does not necessarily engage in limiting the number of potential bidders. What

the seller needs to do is to discriminate the ex ante symmetric bidders by shutting down

the potential bidders asymmetrically, which can be implemented through setting different

reserve prices across bidders.
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In Section 2, we first set up the model for symmetric bidders with known positive op-

portunity costs. We show that any mechanism that implements other participation pat-

terns renders less expected revenue to the seller than a threshold-participation mechanism.

In Section 3, we present the revenue-maximizing auction that implements a given set of

participation thresholds. In Section 4, the paper derives the revenue-maximizing symmet-

ric participation-threshold and shows that the revenue-maximizing symmetric threshold-

participation auctions can take a variety of first-price or second-price auctions with or

without entry subsidy (fee). In Section 5, we investigate how the seller’s expected rev-

enue is affected by the number of potential bidders, as well as the asymmetry in the

participation thresholds across bidders. Finally, the conclusion will be presented in Sec-

tion 6.

2 The Optimality of Threshold-Participation Mech-

anisms

The existence of opportunity costs means that bidders have a positive reservation util-

ity in the auction design problem. Due to the positive reservation utility, the revenue-

maximizing mechanism potentially involves nonparticipation of a portion of bidders with

low private values. In this section, we show that there is no loss of generality in deriving

the revenue-maximizing auctions within the class of threshold-participation mechanisms,

under which a bidder participates in the auction if and only if his value exceeds (weakly)

a threshold.

2.1 The Model

There is one seller who wants to sell one indivisible object to N(≥ 2) potential bidders

through an auction, N is assumed to be public information. We use N = {1, 2, .., N} to
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denote the set of all potential bidders. The ith bidder’s private value of the object is ti,

which is his private information. These values ti, i ∈ N are i.i.d. distributed on interval

[t, t] following cumulative distribution function F (·) and density function f(·)(> 0). The

density f(·) is assumed to be public information. We adopt the regularity condition that

the virtual value function J(t) = t− 1−F (t)
f(t)

increases with t on interval [t, t]. The concept

of “virtual value” measures the maximal surplus the seller can extract from a winning

bidder whose private value is t. Krishna [3] interprets the virtual value as the seller’s

marginal revenue from the corresponding bidder. The regularity condition of increasing

virtual value is well-adopted in the auction design literature, since it was first introduced

by Myerson [9]. The seller’s private value for the object is t0 ∈ [0, t), which is public

information. Any bidder who does not bid earns a positive payoff U0 from an outside

option. U0 is also public information. Every bidder observes his private value before he

makes his participation decision.5 The seller and bidders are assumed to be risk neutral.

Following Stegeman [11], we introduce a null message ∅ to denote the signal of a

nonparticipant. Without loss of generality, we consider message space M = [t, t]∪{∅} for

every bidder. The outcome functions of a general mechanism announced by the seller

accommodate for all participation possibilities in the following form: payment function

xi(s) and winning probability function pi(s) of bidder i, ∀i ∈ N , where s = (s1, s2, ..., sN)

is the message vector and si ∈ M is the message from bidder i. A positive xi(s) means a

payment to the seller from bidder i, and pi(s) refers to the probability that bidder i receives

the object. We denote the above mechanism by (p,x), where p = (p1(s), p2(s), ..., pN(s))

and x = (x1(s), x2(s), ..., xN(s)). We assume that (p,x) satisfy the following conditions:

(c1) pi(s) ≥ 0, ∀i ∈ N , ∀s ∈ MN , and
∑N

i=1 pi(s) ≤ 1, ∀s ∈ MN , and

(c2) pi(s) = xi(s) = 0 if si = ∅, ∀i ∈ N .

5This setting differs from the other strand of literature on endogenous entry and participation cost,

which includes McAfee and McMillan [6], Engelbrecht-Wiggans [1, 2], Tan [12], and Levin and Smith [4].

They study the case where bidders learn their values after paying the entry cost.
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While (c1) says that the sum of all bidders’ winning probabilities should not be higher

than 1, (c2) means that the nonparticipating bidders have no chance to win the object

and their payments to the seller are zero. Restriction (c2) reflects the fundamental rela-

tionship between the seller and a nonparticipant: if a bidder does not participate, then

the bidder and seller are not bonded by any agreement. Thus it is reasonable to assume

that both the seller and the nonparticipant maintain their status quo. This implies that

the nonparticipants get their outside option U0. In addition, (c2) is consistent with the

no passive reassignment (NPR) assumption adopted by Stegeman [11].6 We use S0 to

denote the set of all the mechanisms (p,x) specified above.

Before we proceed, we first introduce the timing of the auction.

Time 0: The number of potential bidders N , their gain U0 from the outside option,

the seller’s private value t0 and the distributions of the bidders’ values are revealed by

Nature as public information. Every bidder i observes his private value ti, i ∈ N .

Time 1: The seller announces an allocation rule (p,x) defined on the message space

MN . The seller’s strategy space is S0.

Time 2: The bidders simultaneously and confidentially make their participation prob-

ability decisions and announce their messages si ∈ [t, t] if they participate.

6The approach in Menezes and Monteiro [8] is flawed and is not adopted in this paper. To begin, the

first 2 paragraphs on page 84 in Menezes and Monteiro [8] assume that qi(y) (the winning probability

of bidder i conditional on his participation) does not depend on the participation of the other bidders,

although other bidders may not participate with positive probabilities. This restriction is unreasonable

because the entry decisions of the other potential bidders do affect the winning probability of a participant.

Second, there is the constraint
∑n

i=1 qi(y) ≤ 1 at the bottom of page 84, which requires the conditional

winning probabilities to sum to less than one for any state y. However, this restriction makes little sense

for the states where bidders do not participate with positive probabilities. It seems that at various points,

the reasoning in Menezes and Monteiro [8] is based on incompatible interpretations of qi(y). Third, the

mechanism in Menezes and Monteiro [8] requires all potential bidders to reveal their true types irrelevant

of their participation decisions, and the allocation rules are based on the signals from all potential bidders.

Readers can refer to the first 2 paragraphs on page 84 in Menezes and Monteiro [8] for details.
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Time 3: The payoffs of the seller and the participating bidders are determined ac-

cording to the rule announced at time 1. The nonparticipants simply get the outside

option U0, as implied by restriction (c2).

Bidder i’s strategy is denoted by πi(ti) = (qe
i (ti), mi(ti, 1)), where qe

i (ti) ∈ [0, 1] is

the participation probability of bidder i if his type is ti, mi(ti, 1) ∈ [t, t] is the signal of

bidder i with value ti if he participates, where “1” means he participates. The strategy

space Si of bidder i is the set of all these πi. For convenience, we use mi(ti, 0) ≡ ∅

to denote bidder i’s null message if he does not participate, where “0” means he does

not participate. We denote (π1(t1), π2(t2), ..., πN(tN )) by π. A strategy profile π is

semidirect if mi(ti, 1) = ti, ∀ti ∈ [t, t], ∀i ∈ N .

Following Stegeman [11], we define triple θ = (π,p,x) a procedure. The payoff of

bidder i is U0 if he does not participate; his payoff is −xi if he participates but does not

win the object; his payoff is ti − xi if he participates and wins the object, where xi is

his payment to the seller when he participates. Bidder i’s objective is to maximize his

expected payoff conditional on his value ti. We use Ui(ti, π
′
i; θ) to denote the expected

payoff of bidder i with value of ti, if he takes strategy π′
i = (q′ei , t′i) where q′ei is his

participation probability and t′i ∈ [t, t] is his signal when participating. Then we have

Ui(ti, π
′
i; θ) = (1 − q′ei )U0 + q′ei Et−i

{ ∑

d−i

[( ∏

j 6=i

qe
j (tj)

dj(1 − qe
j (tj))

1−dj

)

·
(
tipi(t

′
i,m−i(t−i,d−i)) − xi(t

′
i,m−i(t−i,d−i))

)]}
, (1)

where t−i = (t1, ..., ti−1, ti+1, ..., tN ), d−i = (d1, ..., di−1, di+1, ..., dN) and m−i(t−i,d−i) =

(m1(t1, d1), ..., mi−1(ti−1, di−1), mi+1(ti+1, di+1), ..., mN(tN , dN)). Binary variable di, i ∈ N

denotes the entry status of bidder i, it takes value of 0 or 1. If di = 1, bidder i enters; if

di = 0, bidder i does not enter. The support of t−i is T−i = [t, t]N−1. The support of d−i

is {0, 1}N−1.

A procedure is incentive compatible if the strategy profile π is a Bayesian Nash
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equilibrium of the mechanism (p,x). In other words, the following conditions hold:

Ui(ti, πi(ti); θ) ≥ Ui(ti, π
′
i; θ), ∀ti, ∀π′

i, ∀i ∈ N . (2)

We denote entry pattern (qe
1(·), qe

2(·), ..., qe
N(·)) by qe. If procedure (π,p,x) is incentive

compatible, we say π is implemented by mechanism (p,x).

The seller’s revenue equals the total payments of the bidders, plus t0 if he retains the

item. Thus, for an incentive compatible procedure θ = (π,p,x), the seller’s expected

revenue is:

R(θ) = Et{
∑

d

(
∏

i

qe
i (ti)

di(1 − qe
i (ti))

1−di)[t0(1 −
∑

i

pi(m(t,d))) +
∑

i

xi(m(t,d))]}, (3)

where t = (t1, ..., tN), d = (d1, ..., dN) and m(t,d) = (m1(t1, d1), ..., mN(tN , dN)). The

support of t is T = [t, t]N . The support of d is {0, 1}N .

A procedure (π,p,x) is feasible if it is incentive compatible and if restrictions (c1)

and (c2) hold for (p,x). A procedure (π,p,x) is semidirect if π is semidirect. If pro-

cedure (π,p,x) is feasible and semidirect, we say mechanism (p,x) is a feasible and

semidirect mechanism which implements participation qe. Stegeman [11, Lemma 1] pro-

vides a “semirevelation” principle for the case with participation costs, which justifies that

we only need to consider the feasible semidirect procedures/mechanisms for the revenue-

maximizing auction.

2.2 The Optimality of Threshold-Participation Mechanisms

For a threshold-participation procedure, a bidder participates with probability 1 if his

value exceeds (weakly) a threshold, and he participates with probability 0 if his value

is lower than the threshold. If (π,p,x) is a feasible semidirect threshold-participation

procedure, we say (p,x) is a feasible semidirect threshold-participation mechanism. The

following Lemma justifies why we only need to consider the feasible semidirect threshold-

participation procedures/mechanisms for the revenue-maximizing auction.
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Lemma 1: Among all feasible semidirect procedures, a threshold-participation procedure

maximizes the seller’s expected revenue.

Proof: see Appendix.

The intuition behind this result can be explained here: For any given feasible proce-

dure θ, bidder i’s expected payoff Ui(ti, πi(ti); θ) must be nondecreasing with ti. Thus,

there must exist a critical value t∗i ∈ [t, t] satisfying the following properties. If ti > t∗i ,

Ui(ti, πi(ti); θ) > U0; if ti ≤ t∗i , Ui(ti, πi(ti); θ) = U0. If a new feasible procedure shuts

down bidder i if and only if ti < t∗i while ensuring that every participating type of bidder

wins with the same expected probability and makes the same expected payment as in the

original procedure, then every type of bidder enjoys the same expected surplus. While the

bidders’ expected surplus does not change, the seller’s expected revenue increases. The

reason is that the total surplus of the seller and bidders increases by the amount of savings

in the entry costs of the types ti < t∗i who may participate in the original procedure with

positive probabilities. In the Appendix, we prove Lemma 1 by constructing a new feasible

semidirect procedure along the above lines.

According to Lemma 1, there is no loss of generality to consider only the feasible

semidirect procedures/mechanisms implementing threshold-participation for the revenue-

maximizing auction, as long as the participation thresholds are not restricted.

3 Revenue-Maximizing Auction Implementing Given

Threshold-Participation

For convenience, we define r0 = J−1(t0) if t0 ∈ [J(t), J(t)]; r0 = t if t0 < J(t); and r0 = t if

t0 > J(t) = t. It is well known that r0 is the revenue-maximizing reserve price established

by Myerson [9]. In this section, we establish the revenue-maximizing auction implementing

any given participation thresholds tc = (tc1, t
c
2, ..., t

c
N) where tci ≥ r0, ∀i ∈ N . Meanwhile,

we will show that any threshold which is lower than r0 cannot be revenue-maximizing.
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Consider any given participation-threshold vector tc where tci ∈ [t, t], ∀i ∈ N . Define

M∗
i = [tci , t] ∪ {∅} and M∗ =

∏N
i=1 M∗

i . Since we focus on mechanisms implementing

given participation-threshold vector tc in this section, according to the semirevelation

principle, we can further restrict the message space of the bidders to be M∗ without loss

of generality.

Based on Lemma 1, we only need to consider feasible semidirect procedures that

implements participation thresholds tc. This means that we can fix the bidders’ strategy

profile as πtc = (π1(t1), ..., πN(tN )) where πi(ti) = (qe
i (ti), ti). Here, qe

i (ti) = 1 if ti ∈ [tci , t]

and qe
i (ti) = 0 if ti ∈ [t, tci).

For convenience, we define mi(x) = x if x ∈ [tci , t] and mi(x) = ∅ if x ∈ [t, tci). For any

feasible semidirect procedure θ = (πtc,p,x), (3) gives the seller’s expected revenue as:

R(θ) = Et{t0(1 −
N∑

i=1

pi(m1(t1), ..., mN (tN))) +
N∑

i=1

xi(m1(t1), ..., mN(tN))}. (4)

For procedure θ, we use Ui(ti, (1, t
′
i); θ) to denote the interim expected payoff of bidder i

with private value ti, if he adopts strategy (1, t′i), which means that he participates with

probability 1 and submits signal t′i ∈ [tci , t]. (1) gives the following:

Ui(ti, (1, t
′
i); θ) = Et−i

{ti pi(m1(t1), ..., t
′
i, ..., mN (tN)) − xi(m1(t1), ..., t

′
i, ..., mN(tN))}. (5)

The seller’s optimization problem of finding the revenue-maximizing feasible semidirect

mechanism that implements participation thresholds tc is to maximize (4) subject to the

following restrictions (6) ∼ (9). Note that in this optimization problem, the choice variable

of the seller is the mechanism (p,x).

(i) Ui(ti, (1, ti); θ) ≥ U0; ∀i ∈ N , ∀ti ∈ [tci , t], (6)

(ii) Ui(ti, (1, ti); θ) ≥ Ui(ti, (1, t
′
i); θ); ∀i ∈ N , ∀ti ∈ [tci , t], t′i ∈ [tci , t], (7)

(iii) Ui(ti, (1, t
′
i); θ) ≤ U0; ∀i ∈ N , ∀ti < tci , ∀t′i ∈ [tci , t], (8)

(iv) pi(s) = xi(s) = 0 if si = ∅, pi(s) ≥ 0, ∀i ∈ N ,
N∑

i=1

pi(s) ≤ 1, ∀s ∈ M∗. (9)
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Conditions (i) ∼ (iii) come from the incentive compatible conditions (2). Conditions (i)

and (ii) require that bidder i with private values equal to or higher than tci participates

and reveals truthfully his value. Condition (iii) requires that bidder i with private values

lower than tci does not participate, i.e., if he participates, he gets at most his reservation

utility U0. Thus these types of bidders submit the null signal. Conditions (iv) are the

restrictions (c1) and (c2), which are listed in Section 2.1. Compared to Myerson [9],

(8) is an additional constraint guaranteeing that low-type bidders do not participate; (7)

guarantees that high-type bidders reveal truthfully their values when participating while

(6) guarantees that higher-type bidders do participate.

We define:

Qi(ti; θ) = Et−i
pi(m1(t1), ..., mi(ti), ..., mN (tN)). (10)

Note that if ti < tci , then Qi(ti; θ) = 0. The following Lemma that is parallel to Myerson

[9, Lemma 2], gives the necessary and sufficient conditions for a semidirect procedure

θ = (πtc,p,x) to be feasible.

Lemma 2: A semidirect procedure θ = (πtc,p,x) is feasible, if and only if the following

conditions and (8) and (9) hold:

Qi(ri; θ) ≤ Qi(ti; θ), ∀tci ≤ ri ≤ ti ≤ t, ∀i ∈ N , (11)

Ui(ti, (1, ti); θ) = Ui(t
c
i , (1, t

c
i); θ) +

∫ ti

tci

Qi(ri; θ)dri, ∀ti ∈ [tci , t], ∀i ∈ N , (12)

Ui(t
c
i , (1, t

c
i); θ) ≥ U0, ∀i ∈ N . (13)

Proof: see Appendix.

Based on Lemma 2, we can replace (6) and (7) by (11) ∼ (13) in the seller’s optimiza-

tion problem. The following Lemma then rewrites the seller’s expected revenue from a

feasible semidirect procedure θ = (πtc,p,x).

Lemma 3: For a feasible semidirect procedure θ = (πtc,p,x), the seller’s expected revenue

12



can be written as:

R(θ) = t0 −
N∑

i=1

(1 − F (tci))Ui(t
c
i , (1, t

c
i); θ) + Et[

N∑

i=1

pi(m1(t1), ..., mN(tN ))(J(ti) − t0)]. (14)

Proof: see Appendix.

From Lemmas 2 and 3, we immediately have the following revenue equivalence theorem

with endogenous entry in the next Corollary. This result will be applied in Section 4.

Corollary 1: The seller and bidders’ expected payoffs from a feasible auction mechanism

that implements participation thresholds tc are completely determined by the participation

thresholds tc, the expected payoffs of the lowest participating types of tci , i ∈ N and the

bidders’ winning probabilities for all t ∈ T .

Proof: According to the semirevelation principle, for any feasible procedure that imple-

ments tc, there must exist an equivalent feasible semidirect procedure which delivers the

same participation and allocation for any t ∈ T , including the winning probabilities and

payments for every bidder. The result in this Corollary immediately comes from applying

Lemmas 2 and 3 to this equivalent feasible semidirect procedure. 2

We now turn to the revenue-maximizing auction that implements given participation

thresholds tc. We first consider any given participation thresholds tc where tci ≥ r0, ∀i ∈

N . Then we will show that any threshold which is lower than r0 cannot be revenue-

maximizing.

We define the following mechanism (p∗,x∗). The winning probability functions are

defined as following: ∀i ∈ N , ∀s = (s1, s2, ..., sN) ∈ MN ,7

p∗i (s) =





0 if si = ∅ or si < zi(s−i),

1 if si > zi(s−i),
(15)

7Clearly, we can also define the following mechanism on message space M∗ ⊂ MN .
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and the payment functions are defined as:

x∗
i (s) =





0 if si = ∅ or si < tci ,

−U0 if si ∈ [tci , zi(s−i)),

zi(s−i) − U0 if si > zi(s−i),

(16)

where s−i = (s1, ..., si−1, si+1, ..., sN) and zi(s−i) = max{tci , max{j 6=i,sj 6=∅}{sj}}, i ∈ N .

To complete the definition of the winning probability and payment functions, we still

need to consider the situation when si = zi(s−i). When this happens, all participants

submitting the highest signal share equally the winning probability of 1. The winner pays

the highest signal while the losers do not pay anything. All participants bidding higher

than their entry thresholds are subsidized by U0. Clearly, the above defined mechanism

satisfies restriction (9).

Mechanism (p∗,x∗) constitutes exactly the rule for a modified second-price sealed-

bid auction with a reserve price of tci for bidder i, and an entry subsidy of U0 for the

participants whose bids exceed their corresponding reserve prices. The following proposi-

tion shows that θ∗ = (πtc,p
∗,x∗) is a feasible semidirect procedure and it delivers higher

expected revenue than any feasible semidirect procedure (πtc,p,x) for given tc.

Proposition 1: A modified second-price sealed-bid auction with a reserve price of tci

for bidder i and an entry subsidy of U0 for the participants whose bids exceed their cor-

responding reserve prices, is the revenue-maximizing auction that implements any given

entry thresholds tc where tci ≥ r0, ∀i ∈ N . The highest bidder among the participants wins

the object. If there is a tie in the highest bid, all highest bidders win in equal probability.

The winner pays the second highest bid or the reserve price, whichever is higher. Bidder i

participates and bids his true value if and only if his value exceeds his entry threshold tci .

Proof: see Appendix.

The Proposition 1 auction selects the bidders with values higher than their partic-

ipation thresholds to participate through the combination of the discriminating entry

subsidy and reserve prices. While the entry subsidy functions to encourage participation

14



by compensating exactly the entry cost, the reserve prices function to implement the par-

ticipation thresholds that equal the reserve prices. More importantly, the participation

subsidy of the amount U0 eliminates exactly the impact of the entry cost on the partic-

ipation and bidding behavior of the higher types whose values exceed the participation

thresholds. These higher types of bidders would participate and bid as if they are in

the environment of Myerson [9]. This explains why the modified second-price auction in

Proposition 1 is revenue-maximizing.

Define t̃c = (max{tc1, r0}, max{tc2, r0}, ..., max{tcN , r0}), for any given tc where tci ∈

[t, t], ∀i ∈ N . For any feasible semidirect procedure θ = (πtc,p,x), the seller’s expected

revenue is R(θ) as in (4) or (14). Define θ̃∗ = (πt̃c, p̃
∗, x̃∗) where (p̃∗, x̃∗) is the Proposition

1 revenue-maximizing feasible semidirect mechanism that implements t̃c. The correspond-

ing seller’s expected revenue is then R(θ̃∗). We have the following result regarding the

revenue-maximizing participation thresholds.

Corollary 2: (i) R(θ) ≤ R(θ̃∗); (ii) If there exists i0 ∈ N such that tci0 < r0, then

R(θ) < R(θ̃∗). Thus any threshold which is lower than r0 cannot be revenue-maximizing.

Proof: see Appendix.

The intuition for Corollary 2 is as follows: If tci < r0, then J(tci) < t0. Note that

virtual value J(tci) is the maximal surplus the seller can extract if bidder i with value of

tci wins the object. Since J(·) is an increasing function and J(tci) < t0, the seller is better

off if he does not allocate the object to bidder i with ti ∈ [tci , r0) even if he participates.

On top of that, in order to ensure those types ti ∈ [tci , r0) to participate, the seller has to

provide them with a subsidy of at least U0. Therefore, a revenue-maximizing seller prefers

to strictly shut down those types ti < r0.

For any participation thresholds tc ∈ T0 = [r0, t]
N , define R∗(tc) = R(θ∗) where

θ∗ is the revenue-maximizing feasible semidirect procedure that implements tc. Define

t∗c = Argmaxtc∈T0{R∗(tc)}. Then the Proposition 1 revenue-maximizing auction that

implements t∗c is the revenue-maximizing auction in the setting with opportunity costs,
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and t∗c gives the revenue-maximizing participation thresholds.

As R∗(tc) is a highly nonlinear function of tc, we are unable to give an analytical

solution for t∗c. On the other hand, we are usually interested in the auctions treating

bidders symmetrically. In the next section, we will restrict the participation thresholds to

be symmetric across bidders and solve for the revenue-maximizing auctions and the corre-

sponding participation thresholds. The obtained results will help us to investigate further

issues, including the relationship between the seller’s expected revenue and the number

of potential bidders, and conditions under which the revenue-maximizing participation

thresholds are asymmetric across bidders.

4 The Revenue-Maximizing Symmetric Threshold-

Participation Auctions

In this section we solve for the revenue-maximizing symmetric-participation auctions

where potential bidders have a strictly positive reservation utility. The condition char-

acterizing the revenue-maximizing symmetric participation-threshold is provided, and we

find that the revenue-maximizing symmetric threshold-participation auctions can take a

variety of modified first-price or second-price auctions with or without entry subsidy (fee).

4.1 The Revenue-Maximizing Symmetric Threshold-Participation

Auctions

As shown in Corollary 2, the revenue-maximizing symmetric participation threshold tc

must not be less than r0. When tc ∈ [r0, t], according to Proposition 1, the revenue-

maximizing auction that implements uniform participation threshold tc across bidders

can take the form of a modified second-price sealed-bid auction with a reserve price of

tc and a discriminating entry subsidy of U0 for participants who bid higher than the
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reserve price. We denote the seller’s expected revenue from this auction that implements

symmetric participation threshold tc by R∗(tc). We have:

R∗(tc) = t0F (tc)N − NU0(1 − F (tc)) + Ntc(1 − F (tc))F (tc)N−1 +
∫ t

tc
tf (2)(t)dt, (17)

where f (2)(t) = N(N−1)(1−F (t))F (t)N−2f(t) is the density of the second order statistics

of (t1, t2, ..., tN).8 Thus, we have:

dR∗(tc)

dtc
= Nf(tc)F (tc)N−1(t0 +

U0

F (tc)N−1 − J(tc)). (18)

Proposition 2: i) If U0 ∈ (0, t−t0),
9 then the revenue-maximizing symmetric participation-

threshold tc∗ is given by the unique solution of:

t0 +
U0

F (tc)N−1 = J(tc) = tc − 1 − F (tc)

f(tc)
. (19)

We have tc∗ ∈ (t, t) and tc∗ > r0. In addition, tc∗ increases with N and U0, and approaches

t as N goes to ∞.

ii) If U0 ≥ t − t0 then tc∗ = t.

iii) If U0 = 0, then tc∗ = r0, the revenue-maximizing reserve price in Myerson [9].

Proof: see Appendix.

Based on the revenue equivalence theorem in Corollary 1 and Propositions 1 and 2, the

following proposition presents the revenue-maximizing auctions implementing symmetric

participation.

8(17) can also be obtained directly through (14) under the allocation rule defined in (15) and (16)

for the uniform threshold tc. From (14) ∼ (16), we have R∗(tc) = t0 − NU0(1 − F (tc)) +
∫ t

tc(t −
1−F (t)

f(t) − t0)f (1)(t)dt, here f (1)(t) = NF (t)N−1f(t) is the density function of the first order statis-

tics of (t1, t2, ..., tN ). Thus, we have R∗(tc) = t0F (tc)N − NU0(1 − F (tc)) +
∫ t

tc NtF (t)N−1
f(t)dt −

∫ t

tc N(1 − F (t))F (t)N−1
dt. Since

∫ t

tc N(1 − F (t))F (t)N−1
dt = Nt(1 − F (t))F (t)N−1|ttc −

∫ t

tc Nt[(N −

1)(1 − F (t))F (t)N−2 − F (t)N−1]f(t)dt, we have (17).
9Note that if U0 + t0 ≥ t, then selling the object always creates a loss of total surplus.
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Proposition 3: Assume U0 ∈ (0, t− t0). The following auctions are revenue-maximizing

auctions implementing symmetric participation: (i) a first-price or second-price sealed-bid

auction with a reserve price of tc∗ and a participation subsidy of U0 to buyers whose bids

exceed tc∗, where tc∗ is defined in (19); (ii) a first-price or second-price sealed-bid auction

with an entry subsidy E ∈ [0, U0) and a reserve price r = t0 + 1−F (tc∗)
f(tc∗)

+ E
F N−1(tc∗)

< tc∗.

In all these auctions, the bidders participate if and only if their values exceed tc∗.

Proof: A second-price sealed-bid auction with a reserve price of tc∗ and a participation

subsidy of U0 to buyers whose bids exceed tc∗ is revenue-maximizing as immediately

implied by Proposition 1. This auction implements the revenue-maximizing participation

threshold tc∗, which is defined in Proposition 2, and the lowest participating type gains

an expected payoff of U0. In addition, the bidder with the highest value among all

participants wins.

The optimality of the other formats of auctions comes from the revenue equivalence

theorem in Corollary 1.

First, we show that all these auctions implement participation threshold tc∗.

For the first-price sealed-bid auction with a reserve price tc∗ and a participation subsidy

U0 to buyers whose bids exceed tc∗, the types of bidders whose values are lower than tc∗

strictly prefer not to participate. The reason is this: If those bidders bid lower than

tc∗, they just incur their entry costs. If they bid higher than tc∗, they have a positive

probability of winning. As they win, they have to pay at least the reserve price which is

higher than their values.

We now show that a first-price or second-price sealed-bid auction with an entry sub-

sidy E ∈ [0, U0) and a reserve price r = t0 + 1−F (tc∗)
f(tc∗)

+ E
F N−1(tc∗)

implements symmetric

participation threshold tc∗. From (19), we have r = tc∗− U0−E
F (tc∗)N−1 . To implement threshold

t̃, we should have that r satisfies (t̃− r)F N−1(t̃) + E = U0. Thus to implement threshold

tc∗, we need r = tc∗ − U0−E
F (tc∗)N−1 . Under r = tc∗ − U0−E

F (tc∗)N−1 , clearly, it is a Nash equilibrium

that the bidders participate if and only if their values exceed tc∗.
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Second, the lowest participating type gains an expected payoff of U0 in all these auc-

tions from the construct of the reserve prices and entry subsidies.

Third, the participant with the highest value wins as the equilibrium bidding functions

for all these auctions are strictly increasing. 2

From Proposition 3(ii), we see that a positive entry subsidy (fee) is not a necessary

feature for the revenue-maximizing symmetric-participation auctions. Samuelson [10] fo-

cuses on the first-price sealed-bid auctions with no entry fee (subsidy) in a procurement

setting with bidding costs. He characterizes the revenue-maximizing reserve price. An

immediate implication of Proposition 3(ii) is that the Samuelson [10] auction actually is

among the revenue-maximizing auctions that implement symmetric-participation.

From Proposition 3(i), the revenue-maximizing reserve price is tc∗ when entry subsidy

is U0, while the revenue-maximizing subsidy-free reserve price is rf = t0+
1−F (tc∗)

f(tc∗)
. Clearly,

we have rf = tc∗ when U0 = 0. From Proposition 2(i), tc∗ increases with U0. Thus rf

decreases with U0 if 1−F (·)
f(·) is a decreasing function.10 The intuition behind the result

that an increase in the opportunity cost of bidders may lead to lower revenue-maximizing

subsidy-free reserve price is as follows: An increase in U0 leads to an increase in tc∗. A

higher participation threshold tc∗ requires a higher subsidy-free reserve price to implement

the threshold, while a higher U0 requires a lower subsidy-free reserve price to subsidize

entry. The marginal change in the revenue-maximizing subsidy-free reserve price is thus

determined by these two conflicting needs.

The following arguments provide the intuition for obtaining (19) that determines the

revenue-maximizing symmetric participation threshold tc∗. A modified Vickrey auction

with a reserve price of tc and a discriminating participation subsidy of U0 to those

who bid higher than the reserve price, is the revenue-maximizing auction that imple-

ments participation threshold tc(≥ r0) according to Proposition 1. Determining the

revenue-maximizing symmetric participation threshold can be achieved through ascer-

10J(t) increases with t and 1−F (t)
f(t) decreases with t for F (t) = tk on [0, 1] where k ≥ 1.
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taining the revenue-maximizing reserve price tc in a second-price auction with discrim-

inating entry subsidy of U0. Consider an infinitesimal increase in reserve price tc, say

4tc > 0. The seller’s savings in participation subsidy from this change in tc are N(F (tc +

4tc) − F (tc))U0; the seller’s gain from this higher reserve price is approximately N(1 −

F (tc +4tc))F N−1(tc)4tc and the seller’s loss due to less participation is (F N(tc +4tc)−

F N(tc))(tc − t0). For tc to be revenue-maximizing, the marginal gain should be equal to

the marginal loss. This condition corresponds to (19).

From the above analysis, the tc∗ satisfying (19) is the revenue-maximizing reserve

price in a second-price auction with discriminating entry subsidy of U0. We next show

that U0 is the revenue-maximizing entry subsidy in a second-price auction with a reserve

price equal to tc∗. Consider an infinitesimal decrease of magnitude 4E from U0 in the

entry subsidy. We want to show that the marginal impact of 4E on seller’s expected

revenue is zero. As the entry subsidy decreases, the new participation threshold t̃c must

be higher than tc∗, as t̃c must satisfy (t̃c − tc∗)F N−1(t̃c) = 4E. Let 4tc = t̃c − tc∗. We

have that 4tc approximately equals 4E
F N−1(tc∗)

. The marginal impact of 4E on the seller’s

expected revenue can be divided into three components: the seller’s savings in the entry

subsidy due to the lower entry subsidy; the seller’s savings in the entry subsidy due to

less participation; and the seller’s loss in his expected revenue due to less participation.

The seller’s savings in the entry subsidy due to the lower entry subsidy are approximately

N(1 − F (tc∗))4E; the seller’s savings in the entry subsidy due to less participation are

approximately N(F (tc∗ + 4tc) − F (tc∗))U0 ≈ NU0f(tc∗) 4E
F N−1(tc∗)

; the seller’s loss in his

expected revenue due to less participation is approximately (tc∗ − t0)(F
N(tc∗ + 4tc) −

F N(tc∗)) ≈ (tc∗ − t0)Nf(tc∗)4E. Since tc∗ satisfies (19), we have the sum of these three

components is N4Ef(tc∗){t0 + U0

F N−1(tc∗)
− J(tc∗)} = 0. In other words, the aggregate

marginal impact of 4E on the seller’s expected revenue is zero. This means U0 is the

revenue-maximizing entry subsidy.

Based on Proposition 2, we can easily verify that changing the values of every player
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(including the seller and bidders) leads to a corresponding and equivalent change in the

revenue-maximizing entry threshold. However, changing every buyer’s value and partici-

pation cost by the same amount does not change the revenue-maximizing entry threshold

by the same amount. Direct computations using (19) show the change in the entry

threshold is greater. The intuition behind this result is as follows: Suppose the revenue-

maximizing second-price auction in Proposition 3(i) is adopted. Assume initially the

opportunity cost is zero. Consider a simultaneous increase of δ in both the value and

opportunity cost for every bidder. If the new threshold increases by the same amount δ,

the increase in seller’s participation subsidy is δ multiplied by the number of participants.

Thus the increase in the expected total entry subsidy is strictly higher than the increase

δ in the winning bidder’s payment to the seller. For this reason, the increase in the

revenue-maximizing entry threshold has to be higher than δ to decrease the participation.

4.2 Seller’s Revenue and Participation in the Limit

The following Proposition 4 gives the seller’s expected revenue and the expected partic-

ipation in the limit when the number of potential bidders goes to ∞. Both the seller’s

expected revenue and the expected participation converge and the limit values only de-

pend on the maximal private value t and the opportunity cost U0.

Proposition 4: ∀U0 ∈ (0, t− t0), R∗(tc∗) approaches (t−U0) + U0 log U0 − U0 log(t− t0)

and the expected number of participants approaches log t−t0
U0

as N approaches ∞. Note

that the limit values only depend on t and U0.

Proof: see Appendix.

From Proposition 4, we see that the expected participation in the limit decrease

with the opportunity cost U0 and the seller’s value t0. As d[(t−U0)+U0 log U0−U0 log(t−t0)]
dU0

=

log U0

t−t0
< 0, the seller’s expected revenue in the limit also decreases with the opportunity

cost U0 of bidders.
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5 Number of Bidders and Asymmetry in Participa-

tion Thresholds

Samuelson [10] studies the first-price sealed-bid auctions with no entry fee (subsidy) in a

procurement setting with bidding costs. He claims that the seller’s expected revenue may

vary in almost any way with the number of potential bidders, if the revenue-maximizing

reserve price is adopted. Since Proposition 3(ii) has shown that the Samuelson [10] auction

is one of the revenue-maximizing symmetric-participation auctions, we immediately see

that his claim applies to all the revenue-maximizing symmetric participation auctions of

Proposition 3. In Proposition 5, we further provide some sufficient conditions for the

seller’s expected revenue to increase or decrease with the number of potential bidders

when U0 > 0.

Proposition 5: Assume F (t) = tk on support [0, 1], where k ≥ 1. If U0 ∈ (0, 1 − t0),

R∗(tc∗) increases with the number of the potential bidders N if k ∈ [1, 2]. However, if

k > 2
1−t0

(1 − log(U0/(1−t0))
U0/(1−t0)

), we have dR∗(tc∗)
dN

< 0 as N approaches ∞.

Proof: see Appendix. Note that J ′(t) > 0 if k ≥ 1, so Propositions 2 and 3 apply. In

addition, 2
1−t0

(1 − log(U0/(1−t0))
U0/(1−t0)

) ≥ 2
1−t0

≥ 2. 2

Proposition 5 tells us that if the revenue-maximizing symmetric-participation auctions

are adopted, the seller’s expected revenue can decrease as the number of potential bidders

increases if the bidders’ opportunity cost is positive. Therefore in this case, it is in the

seller’s benefit to limit the number of potential bidders even if the revenue-maximizing

symmetric-participation auctions are adopted. The following example illustrates this

point. When k = 4, U0 = 0.3 and t0 = 0, R∗(tc∗) reaches a maximum of 0.3483 when

N = 3. When N = 2, R∗(tc∗) = 0.3459, when N = 4, R∗(tc∗) = 0.3475. In addition, it

approaches 0.3388 when N approaches ∞.

Furthermore, this example suggests that searching the revenue-maximizing auction

within the “symmetric-participation” class is definitely restrictive when there are more
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than 3 potential bidders in the above example. In other words, at the optimum, the seller

should discriminate the ex ante symmetric bidders by shutting them down asymmetrically.

Proposition 5 suggests that this kind of situation is very common. This discrimination

can be implemented through adopting different reserve prices across bidders as pointed

out in Proposition 1. In particular, setting the reserve price for a bidder at his maximal

private value is equivalent to shutting down this bidder completely.

Why may the seller prefer to reduce the number of bidders by shutting them down

asymmetrically rather than symmetrically if entry cost exists? For given participation

thresholds, the probability of sale is pinned down. The expected selling price conditional

on sale is also pinned down by Proposition 1. If the item is unsold, the seller gets t0;

if the item is sold, his expected income is the expected selling price conditional on sale.

However, because of the bidders’ entry cost, the seller has to pay entry subsidy to the

participants. The net revenue of the seller is the difference between his expected income

and the entry subsidy to the bidders. The revenue-maximizing participation has to balance

between these two terms. An asymmetric participation will optimally balance the seller’s

expected income and the entry subsidy to the bidders, when k > 2
1−t0

(1 − log(U0/(1−t0))
U0/(1−t0)

)

and N is big, where k is the parameter in Proposition 5. This can be seen when we

compare the symmetric threshold participation where t(i)c = tc∗N , i ∈ N with a particular

asymmetric threshold participation where t(i)c = tc∗N−1, i ≤ N − 1 and t(N)
c = t. Here, tc∗N

and tc∗N−1 respectively are the thresholds given in Proposition 2 for the cases of N and

N − 1 potential bidders. Based on the calculations found in the proof of Proposition 5,

the difference in the seller’s revenues from the two participation patterns is approximately

(1 − F (tc∗N ))2[U0

2
+ 1

k
log U0

1−t0
− 1

k
U0

1−t0
] which is positive when k > 2

1−t0
(1 − log(U0/(1−t0))

U0/(1−t0)
).

We now understand that generally it is necessary to allow asymmetric participation

thresholds across bidders in order to solve for the revenue-maximizing auction. However,

as pointed out in Section 3, we did not provide an analytical solution for the revenue-

maximizing participation thresholds as the seller’s highest expected revenue R∗(tc) is a
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highly nonlinear function of the participation thresholds tc. We thus solved the following

2-bidder example numerically. Consider a setting in which N = 2, t0 = 0, U0 = 0.2

and F (t) = t−0.6
0.4

on [0.6, 1.0]. Setting the reserve prices at 0.66 and 0.86 respectively

for bidder 1 and bidder 2 provides the seller with the highest expected revenue of 0.431

in a second-price auction with a participation subsidy of U0 = 0.2. This auction is the

revenue-maximizing auction in Proposition 1 which shuts down bidder 1 and bidder 2

respectively at 0.66 and 0.86.

For the above example with two potential bidders, the seller gets the expected revenue

of 0.427 from the revenue-maximizing symmetric-participation auctions while he gets

the expected revenue of 0.40 if he excludes one bidder completely and sets optimally

the participation threshold for the other bidder. These results show that even if the

seller’s expected revenue from the revenue-maximizing symmetric-participation auctions

increases with the number of potential bidders, at the optimum, the seller will still want

to implement asymmetric participation thresholds across bidders.

Moreover, direct calculations show that it is impossible for a second-price auction with

no entry fee and a uniform reserve price to implement the revenue-maximizing asymmetric

participation in the above example.11 This result is in contrast with the Stegeman [11]

result that the efficient participation maximizing the total surplus of the seller and bidders

is always implementable through a second-price auction with no entry fee and a reserve

price equal to the seller’s value.

McAfee and McMillan [7] show that the revenue-maximizing procurement is in general

discriminatory if the bidders’ cost distributions are different. Proposition 5 suggests that

if the bidders’ opportunity cost is positive, discriminatory revenue-maximizing auction

11We show this result by contradiction. Suppose there is a second-price auction with no entry fee and

a uniform reserve price r which implements participation thresholds tc1 = 0.66, tc2 = 0.86. Then r must

satisfy (tc1−r)F (tc2) = U0 and (tc2−r)F (tc1)+
∫ tc

2
tc
1

tf(t)dt = U0. However, the r satisfies (tc1−r)F (tc2) = U0

does not satisfy (tc2 − r)F (tc1) +
∫ tc

2
tc
1

tf(t)dt = U0.
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can arise even with symmetric bidders.

6 Conclusion

In this paper we relax the assumption of zero reservation utility for bidders postulated in

Myerson [9], and study the revenue-maximizing auctions. The revenue-maximizing auc-

tion characterized implements a threshold participation and takes the form of a modified

second-price sealed-bid auction with appropriately set reserve prices and discriminating

participation subsidy for participants. The participation subsidy equals the opportunity

cost of bidders. While the discriminating participation subsidy and reserve prices turn

away bidders whose values are below the participation thresholds, the participation sub-

sidy functions to eliminate the impact of entry cost on the participation and bidding

behavior of the bidders whose values exceed the participation thresholds. This explains

why the modified second-price auction is revenue-maximizing.

We analytically characterized the revenue-maximizing symmetric participation thresh-

old. Two revenue-maximizing symmetric-participation auctions were discovered, which

provide no entry subsidy but set lower reserve price. When the revenue-maximizing

symmetric-participation auctions are adopted, the seller’s expected revenue can decrease

as the number of the potential bidders increases, if the bidders’ private values are distrib-

uted near the highest value. This result has two implications. On one hand, if the seller

cannot discriminate bidders, he wants to limit the number of potential bidders in many

situations. On the other hand, the revenue-maximizing auction must be discriminatory in

many cases, in the sense of implementing asymmetric participation across symmetric bid-

ders. These implications have appeal in general when considering contracting problems

with symmetric agents who have positive opportunity cost.

The revenue-maximizing mechanism when opportunity cost is private information of

bidders should be considered. Following this direction, Lu [5] considers auction design
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when bidders have two-dimensional private signals, namely their private values and their

opportunity costs.
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Appendix

Proof of Lemma 1: It is sufficient to show that for any feasible semidirect procedure, we

can construct a threshold-participation feasible semidirect procedure, which leads to the seller

higher expected revenue.

Consider a feasible semidirect procedure θ = (π,p,x). The equilibrium participation is

described by qe = (qe
1(t1), q

e
2(t2), ..., q

e
N (tN )) where qe

i (ti) ∈ [0, 1] is the participation probability

of bidder i if his type is ti. Since the procedure θ is semidirect, we use mi(ti, 1) = ti to denote

bidder i’s truthful revelation of his type if he participates. Clearly (p,x) has to satisfy the

conditions (c1) and (c2) in Section 2.1.

Ui(ti, πi(ti); θ) is the expected payoff of bidder i with value ti under procedure θ. From (1),

we have

Ui(ti, πi(ti); θ) = (1 − qe
i (ti))U0 + qe

i (ti)Ui(ti, (1, ti); θ), (A.1)

where (1, ti) denotes bidder i’s strategy of participating with probability 1 and revealing truth-

fully his value when participating.

Since θ is a feasible semidirect procedure, it satisfies the following properties. (i) Ui(ti, πi(ti); θ)

≥ U0, ∀i ∈ N as participating with probability of zero is an available choice to bidder i; (ii)

Ui(ti, πi(ti); θ) is nondecreasing in ti because a higher type can always mimic a lower type;

(iii) since bidders truthfully reveal their values when participating, we have Ui(ti, (1, ti); θ) ≥

Ui(ti, (1, t′i); θ), ∀ti, t′i ∈ [t, t], ∀i ∈ N .

Without loss of generality, we consider the case that Ui(t, πi(t); θ) = U0, ∀i ∈ N .12 If

Ui(t, πi(t); θ) > U0, we define t∗i = inf{Ui(ti,πi(ti);θ)>U0}{ti}; if Ui(t, πi(t); θ) = U0, we define

t∗i = t. We have t∗i ∈ [t, t], ∀i ∈ N . We’ll construct a new feasible semidirect procedure θ̃ which

implements participation threshold t∗i for bidder i, and at the same time provides the seller with

an expected revenue higher than that from the original θ.

Hereafter, owing to space constraint, we focus on the most intricate case in which t∗i ∈

(t, t), ∀i ∈ N . Other cases can be similarly dealt with. Before we construct θ̃, we first show

12If Ui(t, πi(t); θ) > U0, then we must have qe
i (ti) = 1, ∀ti ∈ [t, t]. The seller’s expected revenue can be

increased if bidder i is asked to pay an additional fixed amount of Ui(t, πi(t); θ)−U0 when he participates.
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the following two Lemmas that characterize the implementable participation patterns and other

properties of the feasible semidirect procedure θ.

Lemma A.1: ∀i ∈ N ,∀ti > t∗i , we have Ui(ti, πi(ti); θ) > U0, Ui(ti, (1, ti); θ) > U0 and

qe
i (ti) = 1; ∀ti < t∗i , we have Ui(ti, πi(ti); θ) = U0, Ui(ti, (1, ti); θ) ≤ U0. Moreover, we have

Ui(t∗i , πi(t∗i ); θ) = U0 and Ui(t∗i , (1, t
∗
i ); θ) = U0.

Proof of Lemma A.1: When ti > t∗i , we have Ui(ti, πi(ti); θ) > U0 by definition of t∗i . From

(A.1), this implies Ui(ti, (1, ti); θ) > U0 and qe
i (ti) = 1. When ti < t∗i , from the definition of t∗i ,

we must have Ui(ti, (qe
i (ti), ti); θ) = U0. This leads to Ui(ti, (1, ti); θ) ≤ U0.

We show Ui(t∗i , (1, t
∗
i ); θ) = U0 in two steps. First, as ti − t∗i → 0+, we have Ui(ti, (1, ti); θ)−

Ui(t∗i , (1, ti); θ) → 0, which implies that Ui(t∗i , (1, t
∗
i ); θ) ≥ U0. Suppose this is not true, then

Ui(t∗i , (1, ti); θ) ≤ Ui(t∗i , (1, t
∗
i ); θ) < U0. As Ui(ti, (1, ti); θ) > U0, then Ui(ti, (1, ti); θ)−Ui(t∗i , (1, ti);

θ) → 0 cannot hold as ti − t∗i → 0+. Second, as ti − t∗i → 0−, we have Ui(ti, (1, t∗i ); θ) −

Ui(t∗i , (1, t
∗
i ); θ) → 0, which implies that Ui(t∗i , (1, t

∗
i ); θ) ≤ U0. Suppose this is not true, then

Ui(t∗i , (1, t
∗
i ); θ) > U0. As Ui(ti, (1, t∗i ); θ) ≤ Ui(ti, (1, ti); θ) ≤ U0, Ui(ti, (1, t∗i ); θ)−Ui(t∗i , (1, t

∗
i ); θ)

→ 0 cannot hold as ti − t∗i → 0−. Aggregating the above results leads to Ui(t∗i , (1, t
∗
i ); θ) = U0,

which implies Ui(t∗i , πi(t∗i ); θ) = U0. 2

Lemma A.2: If ti < t∗i and qe
i (ti) > 0, we must have Ui(ti, (1, ti); θ) = U0. Moreover, when

bidder i with such ti participates, his expected winning probability is zero, and the expected subsidy

to him from the seller is U0.

Proof of Lemma A.2: First, for any type ti < t∗i who participates with probability qe
i (ti) > 0,

we must have Ui(ti, (1, ti); θ) = U0, because Ui(ti, πi(ti); θ) = U0 according to Lemma A.1.

The intuition for the zero expected winning probability of bidder i with such ti is the follow-

ing. If this is not true, we will have that for t̃i ∈ (ti, t∗i ), Ui(t̃i, (1, ti); θ) > Ui(ti, (1, ti); θ) = U0.

This conflicts with the Ui(t̃i;πi(t̃i); θ) = U0 result of Lemma A.1. The detailed proof is as

follows.

Consider any ti < t∗i with qe
i (ti) > 0,∀i ∈ N . When other bidders participate with the

equilibrium entry probabilities qe
j (tj) and reveal their true types when participating, (1) and
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Lemma A.1 give

Ui(ti, (1, ti); θ) = Et−i

{ ∑

d−i

[( ∏

j 6=i

qe
j (tj)

dj (1 − qe
j(tj))

1−dj

)

·
(
tipi(ti,m−i(t−i,d−i)) − xi(ti,m−i(t−i,d−i))

)]}
= U0. (A.2)

Bidder i’s expected winning probability when he participates with signal ti is

Gi(ti; θ) = Et−i
{
∑

d−i

[(
∏

j 6=i

qe
j (tj)

dj (1 − qe
j(tj))

1−dj ) pi(ti,m−i(t−i,d−i))], ti ∈ [t, t]. (A.3)

For ∀ t̃i ∈ (ti, t∗i ), we have

Ui(t̃i, (1, ti); θ) = Ui(ti, (1, ti); θ) + (t̃i − ti)Gi(ti; θ). (A.4)

Since we have U0 = Ui(ti, (1, ti); θ) ≤ Ui(t̃i, (1, ti); θ) ≤ Ui(t̃i, (1, t̃i); θ) ≤ U0, we must have

that the expected winning probability of bidder i with ti < t∗i when participating is

Gi(ti; θ) = 0, ∀ti < t∗i , qe
i (ti) > 0,∀i ∈ N . (A.5)

(A.2) and (A.5) lead to the expected payment of bidder i with ti < t∗i when participating

Xi(ti; θ) = Et−i
{
∑

d−i

[(
∏

j 6=i

qe
j(tj)

dj (1 − qe
j (tj))

1−dj ) xi(ti,m−i(t−i,d−i))]

= −U0, ∀ti < t∗i , qe
i (ti) > 0,∀i ∈ N . (A.6)

(A.5) indicates that at the equilibrium if bidder i with ti < t∗i participates with a positive

probability, then he has no chance of winning when he participates. (A.6) indicates that in order

to get him to participate with a positive probability, the seller’s expected subsidy to him is U0

when he participates. 2

Based on Lemma A.2, if a feasible semidirect procedure θ̃ implements participation threshold

t∗i for bidder i while maintaining the same expected winning probability and the same expected

payment as in θ for every participating type, then the seller saves the subsidy U0 and has nothing

to lose. Thus, the seller’s expected revenue will be increased. The reason why this result holds

can also be seen from the following argument. By doing so, the total surplus of the seller and

bidders is increased by the savings in the participating costs of the types ti < t∗i who never
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win, while the bidders’ expected surplus does not change. This is the basic intuition why a

threshold-participation feasible semidirect procedure maximizes seller’s expected revenue.

The procedure θ̃ = (π̃, p̃, x̃) is defined as follows. The strategy profile π̃ is (π̃1(t1), ..., π̃N (tN ))

where π̃i(ti) = (q̃e
i (ti), ti). Here q̃e

i (ti) = 1 if ti ≥ t∗i , and q̃e
i (ti) = 0 if ti < t∗i . Note that π̃ is

semidirect. We now turn to the construction of the mechanism (p̃, x̃).

For any message vector s = (s1, s2, ..., sN ) ∈ MN , denote set {i|si = ∅} by I(s), vector

(ti)i∈I(s) by tI(s), set
∏

i∈I(s)[t, t
∗
i ) by TI(s) and set {0, 1}N(I(s)) by D(I(s)), where N(I(s)) is the

cardinality of I(s). Denote a vector in D(I(s)) by dI(s) = (di)i∈I(s). Denote vector (si)i/∈I(s) by

sN\I(s), and vector (mi(ti, di))i∈I(s) by m(tI(s),dI(s)).

The idea of constructing (p̃, x̃) is to let the participating types ti ≥ t∗i , i ∈ N in procedure

θ̃ win in the same expected probability and pay the same expected payment as in the procedure

θ, conditioning on the types of other participants in procedure θ̃. The set of outcome functions

p̃ and x̃ are defined as follows.

For any signal vector s = (s1, s2, ..., sN ) ∈ MN , define

p̃i(s) =





0 if si = ∅ or si < t∗i ,

Ai(s) if si ≥ t∗i ,

where Ai(s) = EtI(s)∈TI(s)
[
∑

∀dI(s)
(
∏

∀j∈I(s) qe
j (tj)

dj (1−qe
j (tj))

1−dj )pi(sN\I(s),m(tI(s),dI(s)))], and

x̃i(s) =





0 if si = ∅, or si < t∗i

Bi(s) if si ≥ t∗i ,

where Bi(s) = EtI(s)∈TI(s)
[
∑

∀dI(s)
(
∏

∀j∈I(s) qe
j (tj)

dj (1 − qe
j(tj))

1−dj )xi(sN\I(s),m(tI(s),dI(s)))].

First, it is clear that (p̃, x̃) satisfies (c1) and (c2) in Section 2.1. Second, by the construct

of (p̃, x̃), the expected winning probability and expected payment of bidder i signaling si ≥ t∗i

remain the same as those from (p,x), given that the other bidders participate with probabilities

q̃e
j (tj) and reveal their true types when participating. Third, by the construct of (p̃, x̃), both

the expected winning probability and expected payment of bidder i are 0 if si = ∅ or si < t∗i .

We now verify that it is a Bayesian Nash equilibrium of the mechanism (p̃, x̃) that the bidders

participate with probabilities q̃e
i (ti) and reveal their true types when participating. Suppose
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other bidders participate with probabilities q̃e
j(tj) and reveal their true types when participating,

we show that the best strategy for bidder i is to participate with probability q̃e
i (ti) and reveal

his true type when participating.

Use U(ti, (q′ei , t′i); θ̃) to denote the expected payoff of bidder i with value ti under procedure θ̃

if he participates with probability of q′ei and signals t′i when participating, given that the others

participate with probabilities q̃e
j (tj) and reveal their true types when participating.

For ti < t∗i , if bidder i participates with probability 1 and submits t′i ≥ t∗i when participating,

then we have Ui(ti, (1, t′i); θ̃) = Ui(ti, (1, t′i); θ) by the construct of θ̃. Since we have truthful

telling when participating with procedure θ, Ui(ti, (1, t′i); θ) ≤ Ui(ti, (1, ti); θ). From Lemma

A.1, we have Ui(ti, (1, ti); θ) ≤ U0. Thus Ui(ti, (1, t′i); θ̃) = Ui(ti, (1, t′i); θ) ≤ Ui(ti, (1, ti); θ) ≤

U0. If bidder i participates with probability 1 and submits t′i < t∗i when participating, then

Ui(ti, (1, t′i); θ̃) = 0. Therefore bidder i has no incentive to deviate from no participation when

ti < t∗i .

When ti ≥ t∗i , if bidder i participates with probability 1 and submits t′i < t∗i when partici-

pating, then Ui(ti, (1, t′i); θ̃) = 0. If bidder i participates with probability 1 and submits t′i ≥ t∗i

when participating, then Ui(ti, (1, t′i); θ̃) = Ui(ti, (1, t′i); θ) ≤ Ui(ti, (1, ti); θ) = Ui(ti, (1, ti); θ̃).

Thus bidder i participates with probability of 1 and reveals his true type when participating if

ti ≥ t∗i , since Ui(ti, (1, ti); θ) ≥ U0 from Lemma A.1. Therefore, it is a Bayesian Nash equilibrium

of the game (p̃, x̃) that the bidders participate with probabilities of q̃e
i (ti) and reveal their true

types when participating. In other words, θ̃ is a feasible semidirect procedure.

Furthermore, the expected winning probability and expected payment of the participants in

procedure θ̃ are the same as those from θ. Recall that Lemma A.2 says that the types ti < t∗i

never win in procedure θ when they participate. As a result, θ̃ increases the total surplus of

the seller and bidders by the amount of the savings in the entry cost of the nonparticipating

types ti < t∗i in θ̃. Meanwhile, every type of bidder still enjoys the same expected surplus.

Consequently, the seller’s expected revenue increases by the amount of savings in the entry costs

of the types ti < t∗i , i ∈ N .

Alternatively, we next show the above result through directly calculating the seller’s expected

revenue. Define m̂i(ti) = ti if ti ≥ t∗i , otherwise m̂i(ti) = ∅. For ∀t ∈ T , denote set {i|m̂i(ti) = ∅}
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by I(t), vector (ti)i∈I(t) by tI(t), and set {0, 1}N(I(t)) by D(I(t)), where N(I(t)) is the cardinality

of I(t). Denote a vector (di)i∈I(t) in D(I(t)) by dI(t). Denote vector (ti)i/∈I(t) by tN\I(t) and

vector (mi(ti, di))i∈I(t) by m(tI(t),dI(t)).

From (3), the seller’s expected revenue from the procedure θ̃ is:

R(θ̃) = Et

{
t0(1 −

N∑

i=1

p̃i(m̂1(t1), ..., m̂N (tN ))) +
N∑

i=1

x̃i(m̂1(t1), ..., m̂N (tN ))
}

= Et

{
t0(1 −

∑

∀dI(t)

(
∏

∀j∈I(t)

qe
j (tj)

dj (1 − qe
j (tj))

1−dj )
∑

∀i∈N\I(t)
pi(tN\I(t),m(tI(t),dI(t))))

+
∑

∀dI(t)

(
∏

∀j∈I(t)

qe
j (tj)

dj (1 − qe
j(tj))

1−dj )
∑

∀i∈N\I(t)
xi(tN\I(t),m(tI(t),dI(t))))

}

= R(θ) + Et

{
t0

∑

∀dI(t)

(
∏

∀j∈I(t)

qe
j (tj)

dj (1 − qe
j (tj))

1−dj )
∑

∀i∈I(t)

pi(tN\I(t),m(tI(t),dI(t)))

−
∑

∀dI(t)

(
∏

∀j∈I(t)

qe
j (tj)

dj (1 − qe
j(tj))

1−dj )
∑

∀i∈I(t)

xi(tN\I(t),m(tI(t),dI(t))))
}

= R(θ) + t0
∑

∀i

∫ t∗i

t
qe
i (ti)Gi(ti; θ)f(ti)dti −

∑

∀i

∫ t∗i

t
qe
i (ti)Xi(ti; θ)f(ti)dti

= R(θ) +
∑

∀i

∫ t∗i

t
qe
i (ti)U0f(ti)dti

≥ R(θ),

where R(θ) is the seller’s expected revenue from θ, i.e,

R(θ) = Et

{
t0(1 −

∑

∀dI(t)

(
∏

∀j∈I(t)

qe
j(tj)

dj (1 − qe
j (tj))

1−dj )
∑

∀i∈N
pi(tN\I(t),m(tI(t),dI(t))))

+
∑

∀dI(t)

(
∏

∀j∈I(t)

qe
j(tj)

dj (1 − qe
j (tj))

1−dj )
∑

∀i∈N
xi(tN\I(t),m(tI(t),dI(t))))

}
.

2

Proof of Lemma 2: From (5) and (10), we have

Ui(ti, (1, t′i); θ) = Ui(t′i, (1, t
′
i); θ) + (ti − t′i)Qi(t′i; θ), ∀ti, t′i ∈ [tci , t], ∀i ∈ N . (A.7)

From (7) and (A.7), we have

Ui(ti, (1, ti); θ) ≥ Ui(t′i, (1, t
′
i); θ) + (ti − t′i)Qi(t′i; θ), ∀ti, t′i ∈ [tci , t], ∀i ∈ N . (A.8)
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Note (7) is equivalent to (A.8).

Using (A.8) twice, we have for ∀ ti, t′i ∈ [tci , t], ∀ i ∈ N ,

(ti − t′i)Qi(t′i; θ) ≤ Ui(ti, (1, ti); θ) − Ui(t′i, (1, t
′
i); θ) ≤ (ti − t′i)Qi(ti; θ). (A.9)

(A.9) implies (11). From (A.9), we have for ∀ si, si + δ ∈ [tci , t], ∀ i ∈ N ,

Qi(si; θ)δ ≤ Ui(si + δ, (1, si + δ); θ) − Ui(si, (1, si); θ) ≤ Qi(si + δ; θ)δ. (A.10)

Since Qi(si; θ) increases with si, (A.10) implies

dUi(si, (1, si); θ)
dsi

= Qi(si; θ), ∀i ∈ N , ∀ si ∈ [tci , t],

where Qi(si; θ) is Riemann integrable, so
∫ ti

tci

Qi(si; θ)dsi = Ui(ti, (1, ti); θ) − Ui(tci , (1, t
c
i ); θ), ∀ ti ∈ [tci , t]. (A.11)

(A.11) is (12), and (13) is directly from (6). Thus (11) ∼ (13) are derived from (6) and (7).

Now we show (6) and (7) from (9), (11) ∼ (13).

∀tci ≤ ri ≤ ti ≤ t, ∀i ∈ N , (11) and (12) imply

Ui(ti, (1, ti); θ) = Ui(ri, (1, ri); θ) +
∫ ti

ri

Qi(x; θ)dx

≥ Ui(ri, (1, ri); θ) +
∫ ti

ri

Qi(ri; θ)dx

= Ui(ri, (1, ri); θ) + (ti − ri)Qi(ri; θ).

Similarly, ∀tci ≤ ti ≤ ri ≤ t, ∀i ∈ N , (11) and (12) imply

Ui(ti, (1, ti); θ) = Ui(ri, (1, ri); θ) +
∫ ti

ri

Qi(x; θ)dx

≥ Ui(ri, (1, ri); θ) −
∫ ri

ti

Qi(ri; θ)dx

= Ui(ri, (1, ri); θ) + (ti − ri)Qi(ri; θ).

Thus we have (A.8), i.e., (7) is shown. (6) is from (9), (12) and (13). 2

Proof of Lemma 3: Define

Vi(ti; θ) = Et−i
{ti pi(m1(t1), ...,mi(ti), ...,mN (tN )) − xi(m1(t1), ...,mi(ti), ...,mN (tN ))}. (A.12)
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Note that Vi(ti; θ) = Ui(ti, (1, ti); θ) if ti ≥ tci , and Vi(ti; θ) = 0 if ti < tci . From (A.12),

EtiVi(ti; θ)

= EtiEt−i
{ti pi(m1(t1), ...,mN (tN )) − xi(m1(t1), ...,mN (tN ))}

= Et{ti pi(m1(t1), ...,mN (tN )) − xi(m1(t1), ...,mN (tN ))}. (A.13)

From (A.13), we have

N∑

i=1

EtiVi(ti; θ) = Et{
N∑

i=1

[ti pi(m1(t1), ...,mN (tN )) − xi(m1(t1), , ...,mN (tN ))]}. (A.14)

From (4) and (A.14),

R(θ) = t0 −
N∑

i=1

EtiVi(ti; θ) + Et{
N∑

i=1

pi(m1(t1), ...,mN (tN ))(ti − t0)}. (A.15)

From (12), we have

EtiVi(ti; θ) =
∫ t

tci

Vi(ti; θ)f(ti)dti =
∫ t

tci

Ui(ti, (1, ti); θ)f(ti)dti

=
∫ t

tci

[Ui(tci , (1, t
c
i ); θ) +

∫ ti

tci

Qi(si; θ)dsi]f(ti)dti

= (1 − F (tci ))Ui(tci , (1, t
c
i ); θ) +

∫ t

tci

[
∫ ti

tci

Qi(si; θ)dsi]f(ti)dti

= (1 − F (tci ))Ui(tci , (1, t
c
i ); θ) +

∫ t

tci

[
∫ t

si

f(ti)dti]Qi(si; θ)dsi

= (1 − F (tci ))Ui(tci , (1, t
c
i ); θ) +

∫ t

tci

[1 − F (si)]Qi(si; θ)dsi

= (1 − F (tci ))Ui(tci , (1, t
c
i ); θ) +

∫ t

t
[1 − F (si)]Qi(si; θ)dsi. (A.16)

From (10), we have

∫ t

t
[1 − F (si)]Qi(si; θ)dsi

=
∫ t

t
[1 − F (si)]Et−i

pi(m1(t1), ...,mi(si), ...,mN (tN ))dsi

= Etpi(m1(t1), ...,mi(ti), ...,mN (tN ))
1 − F (ti)

f(ti)
. (A.17)
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From (A.16) and (A.17), we have

N∑

i=1

EtiVi(ti; θ)

=
N∑

i=1

(1 − F (tci ))Ui(tci , (1, t
c
i ); θ) + Et{

N∑

i=1

pi(m1(t1), ...,mi(ti), ...,mN (tN ))
1 − F (ti)

f(ti)
}. (A.18)

From (A.15) and (A.18), we have the desired result. 2

Proof of Proposition 1: We first show that θ∗ = (πtc ,p∗,x∗) is a feasible semidirect procedure.

Mechanism (p∗,x∗) constitutes exactly the rule for a modified second-price sealed-bid auction

with a reserve price of tci for bidder i, and an entry subsidy of U0 for all participants whose bids

exceed their corresponding reserve prices. Therefore, what we need to show is that the given

auction implements participation thresholds tc, and the types ti ∈ [tci , t] bid their true values

in such an auction. First of all, clearly bidder i with types of ti ∈ [tci , t] would participate, and

bidding his true value is his weakly dominant strategy in this second-price auction. Second,

those lower types with ti ∈ [t, tci ) cannot get the entry subsidy and they cannot win if they

bid lower than tci , they just incur an entry cost. Moreover, if they win they have to pay at

least a reserve price tci which is higher than their values. Therefore, they would bid tci if they

would participate, in order to minimize their winning probability. Without loss of generality,

we assume that tc1 ≥ tc2 ≥ ... ≥ tcN . Suppose tc1 > t. If bidder 1 with t1 ∈ [t, tc1) participates and

bids tc1, he will win in a positive probability which is no less than F (tc1)N−1

N . As he wins, he has

to pay at least a reserve price tc1 which is higher than his value. Thus, his expected gain from

participating is strictly less than his reservation utility. Therefore, those lower types of bidder

1 with t1 ∈ [t, tc1) prefers not to participate. Suppose tc2 > t. We can similarly show that those

lower types of bidder 2 with t2 ∈ [t, tc2) will not participate. This process continues until the last

participation threshold which is higher than t.

Second, p∗ maximizes component Et{
∑N

i=1 pi(m1(t1), ...,mN (tN ))(ti − t0 − 1−F (ti)
f(ti)

)} in (14)

among all p satisfying (9). Based on the above discussion, we see that the given mechanism

allocates the object to the participant with the highest value. For the given tc and the corre-

sponding truthful semirevelation functions mi(·),∀i ∈ N , the above defined winning probability

functions p∗ maximize
∑N

i=1 pi(m1(t1), ...,mN (tN )(ti − t0− 1−F (ti)
f(ti)

),∀t ∈ T among all the possi-
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bilities for p satisfying (9), because J(t) = t− 1−F (t)
f(t) increases with t and winner’s value (≥ r0)

is the highest among all participants. Therefore, the winning probability functions p∗ maximize

Et{
∑N

i=1 pi(m1(t1), ...,mN (tN ))(ti − t0 − 1−F (ti)
f(ti)

)}.

Third, we show Ui(tci , (1, t
c
i ); θ) = U0, ∀i ∈ N . For the given mechanism, this is true because

the threshold types of bidders receive the entry subsidy of U0 when they participate, and they

do not gain further from winning because of the reserve prices which equal their values.

Based on (13) and the above results, (14) is maximized under the mechanism (p∗,x∗) or

the corresponding modified second-price auction. Thus the modified second-price auction is the

revenue-maximizing auction implementing given participation thresholds tc. 2

Proof of Corollary 2: Denote the truthful semirevelation functions corresponding to t̃c by

m̃i(ti), ∀i ∈ N , where m̃i(ti) = ti if ti ≥ t̃ci , and m̃i(ti) = ∅ if ti < t̃ci . First, note that
∑N

i=1 pi(m1(t1), ...,mN (tN ))(ti − t0 − 1−F (ti)
f(ti)

) ≤
∑N

i=1 p̃∗i (m̃1(t1), ..., m̃N (tN ))(ti − t0 − 1−F (ti)
f(ti)

),

∀t ∈ T , where p̃∗i (s) is bidder i’s winning probability function in (p̃∗, x̃∗) and pi(s) is bidder

i’s winning probability function in (p,x). Second, we have (1 − F (tci ))Ui(tci , (1, t
c
i ); θ) ≥ (1 −

F (t̃ci ))U0 = (1−F (t̃ci ))Ui(t̃ci , (1, t̃
c
i ); θ̃

∗), since t̃ci ≥ tci and we have Ui(tci , (1, t
c
i ); θ) ≥ U0 from (13).

Note that Ui(t̃ci , (1, t̃
c
i ); θ̃

∗) = U0. Therefore, based on Lemma 3, we have R(θ) ≤ R(θ̃∗).

When there exists i0 ∈ N such that tci0 < r0, we have (1 − F (tci0))Ui0(t
c
i0

, (1, tci0 ); θ) >

(1 − F (t̃ci0))U0 = (1 − F (t̃ci0))Ui0(t̃
c
i0 , (1, t̃

c
i0); θ̃

∗). Thus R(θ) < R(θ̃∗). It follows that any tci < r0

cannot be a revenue-maximizing participation threshold. 2

Proof of Proposition 2: Clearly, we have tc∗ > r0. Note that U0

F (tc)N−1 decreases with tc

and J(tc) increases with tc. Thus t0 + U0

F (tc)N−1 − J(tc) decreases with tc. If U0 ∈ (0, t − t0),

t0 + U0

F (tc)N−1 −J(tc) goes to +∞ when tc goes to t; while t0 + U0

F (tc)N−1 −J(tc) goes to t0 +U0 − t

(< 0) when tc goes to t. Therefore, the revenue-maximizing symmetric participation threshold

is determined by the unique solution of t0+ U0

F (tc)N−1 −J(tc) = 0, since a unique solution exists in

(t, t). We can use contradiction method to show that the revenue-maximizing tc∗ increases with

the number of the potential bidders N . Suppose tc∗ does not increase when the number of the

potential bidders increases from N1 to N2. Then we have that the left-hand-side of (19) strictly

increases when the number of the potential bidders increases from N1 to N2, while the right-

hand-side does not. Thus (19) cannot hold simultaneously for both the revenue-maximizing
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participation thresholds for N1 and N2. Similarly we can show the monotonicity of tc∗ with

regard to U0. We next show that tc∗ approaches t as N approaches ∞. Suppose there is an

upper bound for tc∗ which is smaller than t, then the left-hand-side of (19) approaches to ∞ as

N approaches ∞, while the right-hand-side is lower than t. This means that (19) cannot hold

for the revenue-maximizing participation thresholds as N approaches ∞.

If U0 ≥ t− t0, clearly the revenue-maximizing threshold is a boundary solution, i.e., tc∗ = t.

If U0 = 0, then clearly tc∗ = r0 according to (18). 2

Proof of Proposition 4: From (17), we have R∗(tc∗)

= t0F (tc∗)N − NU0(1 − F (tc∗)) + t − tc∗F (2)(tc∗) + Ntc∗(1 − F (tc∗))F (tc∗)N−1 −
∫ t

tc∗
F (2)(t)dt,

where F (2)(t) = F (t)N + NF (t)N−1(1 − F (t)). Thus

R∗(tc∗) = t0F (tc∗)N − NU0(1 − F (tc∗)) + t − tc∗FN (tc∗) −
∫ t

tc∗
F (2)(t)dt. (A.19)

We first show that N(1 − F (tc∗)) = − log
(

U0

t−t0

)
+ o(1) as N → ∞ (i.e., F (tc∗) → 1 from

Proposition 2(i)). (19) gives F (tc∗)N−1 = U0

tc∗−t0− 1−F (tc∗)
f(tc∗)

, we thus have

(N − 1) log F (tc∗) = log U0 − log
(
tc∗ − t0 −

1 − F (tc∗)
f(tc∗)

)
. (A.20)

Thus

(N − 1) log F (tc∗) = log
U0

t − t0
+ o(1). (A.21)

(A.21) implies that

1 − F (tc∗) = O
( 1
N − 1

)
. (A.22)

From (A.20), we have

N(1 − F (tc∗)) = [N(1 − F (tc∗)) + (N − 1) log F (tc∗)] −
[

log U0 − log
(
tc∗ − t0 −

1 − F (tc∗)
f(tc∗)

)]

=
[
N(1 − F (tc∗)) − (N − 1)(1 − F (tc∗)) − N − 1

2
(1 − F̃ )

2
]
− log

U0

t − t0
+ o(1)

= − log
U0

t − t0
− N − 1

2
(1 − F̃ )

2
+ o(1), (A.23)
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where F̃ ∈ [F (tc∗), 1].

(A.22) and (A.23) lead to that

N(1 − F (tc∗)) = − log
U0

t − t0
+ o(1). (A.24)

From (A.19), R∗(tc∗) = (t0 − tc∗)F (tc∗)N − NU0(1 − F (tc∗)) + t −
∫ t
tc∗ F (2)(t)dt

= −(
1 − F (tc∗)

f(tc∗)
+

U0

F (tc∗)N−1
)F (tc∗)N − NU0(1 − F (tc∗)) + t −

∫ t

tc∗
F (2)(t)dt.

Thus from (A.24), we have R∗(tc∗) → (t − U0) + U0 log U0 − U0 log(t − t0) as N → ∞.

Note that the left hand side of (A.24) is the expected participations when there are N

potential bidders, thus we have that the expected participations in the limit are log t−t0
U0

. 2

Proof of Proposition 5: Applying the Envelope Theorem to (A.19), we have dR∗(tc∗)
dN

= t0F (tc∗)N log(F (tc∗)) − U0(1 − F (tc∗)) − tc∗F (tc∗)N log(F (tc∗))

−
∫ t

tc∗
F (t)N−1{[ log F (t) + (1 − F (t)) ] + (N − 1)(1 − F (t)) log F (t)}dt

= t0F (tc∗)N log(F (tc∗)) − U0(1 − F (tc∗)) + tc∗F (tc∗)N−1(1 − F (tc∗))

−tc∗F (tc∗)N−1[F (tc∗) log(F (tc∗) + (1 − F (tc∗))]

−
∫ t

tc∗
F (t)N−1{[ log F (t) + (1 − F (t))] + (N − 1)(1 − F (t)) log F (t)}dt

= t0F (tc∗)N log(F (tc∗)) + t0F (tc∗)N−1(1 − F (tc∗)) + (1 − F (tc∗))[−U0 + (tc∗ − t0)F (tc∗)N−1]

−tc∗F (tc∗)N−1[F (tc∗) log(F (tc∗) + (1 − F (tc∗))]

−
∫ t

tc∗
F (t)N−1{[ log F (t) + (1 − F (t))] + [(N − 1)(1 − F (t)) log F (t)]}dt

= t0F (tc∗)N−1[F (tc∗) log(F (tc∗)) + (1 − F (tc∗))] + (1 − F (tc∗))
1 − F (tc∗)

f(tc∗)
F (tc∗)N−1

−tc∗F (tc∗)N−1[F (tc∗) log(F (tc∗) + (1 − F (tc∗))]

−
∫ t

tc∗
F (t)N−1{[ log F (t) + (1 − F (t))] + [(N − 1)(1 − F (t)) log F (t)]}dt. (A.25)

Since [F (tc∗) log(F (tc∗)) + (1 − F (tc∗))] > 0, we have t0F (tc∗)N−1[F (tc∗) log(F (tc∗)) + (1 −

F (tc∗))] > 0. Since both [ log F (t) + (1 − F (t))] and (N − 1)(1 − F (t)) log F (t) are negative,

we have −
∫ t
tc∗ F (t)N−1{[ log F (t) + (1 − F (t))] + [(N − 1)(1 − F (t)) log F (t)]}dt > 0. For
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k ∈ [1, 2], we have (1 − F (tc∗))2 − f(tc∗)tc∗[F (tc∗) log(F (tc∗)) + (1 − F (tc∗))] = (1 − F (tc∗))2 −

kF (tc∗)[F (tc∗) log(F (tc∗)) + (1 − F (tc∗))] > 0. Thus the sum of the other two components in

(A.25) is positive. Therefore, dR∗(tc∗)
dN > 0 holds for k ∈ [1, 2].

From (A.25), dR∗(tc∗)
dN

= (t0 − tc∗)F (tc∗)N−1[F (tc∗) log(F (tc∗)) + (1 − F (tc∗))] + (1 − F (tc∗))
1 − F (tc∗)

f(tc∗)
F (tc∗)N−1

−
∫ t

tc∗
F (t)N−1{[ log F (t) + (1 − F (t))] + [(N − 1)(1 − F (t)) log F (t)]}dt

= −(
1 − F (tc∗)

f(tc∗)
+

U0

F (tc∗)N−1
)F (tc∗)N−1[F (tc∗) log(F (tc∗)) + (1 − F (tc∗))]

+(1 − F (tc∗))
1 − F (tc∗)

f(tc∗)
F (tc∗)N−1

−
∫ t

tc∗
F (t)N−1{[ log F (t) + (1 − F (t))] + [(N − 1)(1 − F (t)) log F (t)]}dt

= −1 − F (tc∗)
f(tc∗)

F (tc∗)N log(F (tc∗)) − U0[F (tc∗) log(F (tc∗)) + (1 − F (tc∗))]

−
∫ t

tc∗
F (t)N−1{[ log F (t) + (1 − F (t))] + [(N − 1)(1 − F (t)) log F (t)]}dt. (A.26)

Let h = 1−F (tc∗), using tc∗ = (1 − h)1/k, f(tc∗) = k(1−h)
k−1

k and F (tc∗)N−1 = −U0

t0−tc∗+
1−F (tc∗)

f(tc∗)

,

we have

−1 − F (tc∗)
f(tc∗)

F (tc∗)N log(F (tc∗))

= −h

k
(1 − h)1/kU0 log(1 − h)

1

(1 − h)1/k − t0 − h(1−h)1/k

k(1−h)

=
U0

(1 − t0)k
h2 + o(h2), as N → ∞ ( i.e., F (tc∗) → 1), (A.27)

and

−U0(F (tc∗) log(F (tc∗)) + (1 − F (tc∗)))

= −U0

2
h2 + o(h2), as N → ∞ ( i.e., F (tc∗) → 1). (A.28)

Using (A.24), we have that

−
∫ t

tc∗
F (t)N−1{[ log F (t) + (1 − F (t))] + [(N − 1)(1 − F (t)) log F (t)]}dt
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≤ −{[log(F (tc∗)) + (1 − F (tc∗))] + N(1 − F (tc∗)) log(F (tc∗))}(1 − F (tc∗)1/k)

= −{[ log(1 − h) + h] + (− log(
U0

1 − t0
) + o(1)) log(1 − h)}(1 − (1 − h)1/k)

=
−1
k

log(
U0

1 − t0
)h2 + o(h2), as N → ∞ ( i.e., F (tc∗) → 1). (A.29)

Form (A.26), (A.27), (A.28) and (A.29), when k > 2
1−t0

(1 − log(U0/(1−t0))
(U0/(1−t0)) ), dR∗(tc∗)

dN < 0 holds as

N → ∞. 2
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