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Abstract— We study a model of social learning with partial
observations from the past. Each individual receives a private
signal about the correct action he should take and also observes
the action of his immediate neighbor. We show that in this model
the behavior of asymptotic learning is characterized in terms
of two threshold values that evolve deterministically. Individual
actions are fully determined by the value of their signal relative
to these two thresholds. We prove that asymptotic learning
from an ex ante viewpoint applies if and only if individual
beliefs are unbounded. We also show that symmetry between the
states implies that the minimum possible amount of asymptotic
learning occurs.

I. INTRODUCTION

Many important decision are taken by individuals under
conditions of imperfect information. In such situations, it
is natural for individuals to gather information in order to
improve their decisions. A major source of information is
the past actions of other individuals facing similar decision
problems. This motivates the analysis of social learning
problems, where a group of individuals are simultaneously
learning from others and also taking important economic
or social decisions. Examples of social learning problems
include behavior in financial markets, where each trader may
try to learn from the positions of other traders or from prices,
consumer decisions in product markets, where purchases
by other consumers are a key source of information, and
political decision-making, where in voting or other political
actions individuals typically learn from and condition on the
behavior of others. A central question is therefore whether
the equilibrium process of social learning will lead to the
correct actions by groups.1

A large literature in game theory investigates the first
question. A well-known result in this context, first derived
by Banerjee [1] and Bikchandani et al. [3], establishes the
possibility of a “pathological” result that features no learning

Ilan Lobel (lobel@mit.edu) is with the Operations Research Center at the
Massachusetts Institute of Technology, Cambridge, MA.

Daron Acemoglu (daron@mit.edu) is with the Department of Economics
at the Massachusetts Institute of Technology, Cambridge, MA.

Munther Dahleh (dahleh@mit.edu) and Asuman Ozdaglar
(asuman@mit.edu) are with Department of Electrical Engineering
and Computer Science at the Massachusetts Institute of Technology,
Cambridge, MA.

1A related and equally important question concerns what types of com-
munication and observation structures will facilitate learning. For example,
is learning more or less likely when individuals observe actions and
communicate within their narrow communities? More generally, what is
the impact of the topology of a social network on the patterns of learning?
We study this question in our companion paper [7].

and the possibility of incorrect actions by a large group of
individuals. Consider N individuals ordered exogenously and
choosing between two actions, say 0 and 1. Each individual
receives a signal about which action is the right one and
also observes the actions of all other agents that have
moved before him. The signal received by each individual
takes two possible values (one favoring 0 the other one
favoring 1) and is identically and independently distributed
across individuals. Banerjee [1] and Bikchandani et al. [3]
show that the perfect Bayesian equilibrium of this game
involves a particular type of “herding” in which following
two consecutive actions in the same direction (for example,
two individuals choosing 0), each subsequent individual
ignores his own signal and follows the actions of these
two individuals. Clearly, since two individuals choosing the
action 0 is possible even when the right action is 1, this result
illustrates a pathological form of non-learning and incorrect
actions by individuals.

A more complete analysis of this model is provided by
Smith and Sorensen [9], who analyze the case in which
signals can also differ in their informativeness. Smith and
Sorensen’s main result can be summarized as follows. Let
us refer to signals as unbounded if the likelihood ratio of
a particular state can be arbitrarily large conditional on
individual signals and as bounded otherwise. Smith and
Sorensen show that with unbounded signals, there will be
asymptotic learning, i.e., the probability of the correct action
being chosen converges to 1.

This literature typically focuses on social learning envi-
ronments in which individuals observe all previous actions.
Consequently, the information set of individuals making
decision later is necessarily finer than those moving earlier,
which implies that Bayesian posteriors form a martingale.
This property enables the use of the martingale convergence
theorem and significantly simplifies the analysis. However,
most relevant cases of social learning in practice do not fea-
ture this property. Often, each individual will have observed
a different sample of actions than those who have acted
before and will not necessarily have superior information
relative to them. The existing literature, except for the more
recent paper by Smith and Sorensen [8], has not studied
the properties of equilibrium social learning in this more
realistic environment. An investigation of the patterns of



social learning in such an environment is not only important
because of its greater realism, but also because it will
enable us to address the second question posed above and
study what types of social structures are more conducive to
learning and information aggregation.

In this paper, we take a step in this direction by studying
the simplest model of social learning without the martingale
property. Each individual again receives a signal (with vary-
ing degree of informativeness) but only observes the action of
the person who has moved before him. Despite the simplicity
of this environment, existing results in the literature do not
apply. Moreover, the mathematical structure of this simple
case is very similar to the case in which each individual
observes a uniformly random decision from the past and our
result extend in a straightforward manner.

Our main results are as follows. First, we provide a
recursive characterization of individual decisions in terms of
two deterministic thresholds, such that the value of individual
signals relative to these thresholds completely determines
decisions. Second, as in Smith and Sorensen [9], unbounded
signals ensure asymptotic learning. Third, when signals are
bounded, there will never be asymptotic learning. Finally,
we show that under a symmetry condition on the conditional
signal distributions and with bounded signals, there will exist
an equilibrium with the minimum amount of learning in
the long-run. Under very mild conditions, this equilibrium
is unique. In contrast, with asymmetry between the states,
the amount of asymptotic learning can be quite high.

Our paper is related to the large and growing social
learning literature (see [1], [3], [5], [4], [10]). Most closely
related are the recent papers by Banerjee and Fudenberg [2]
and Smith and Sorensen [8]. Banerjee and Fudenberg analyze
a model of social learning in which individuals observe a
random sample of past actions under the assumption that
there is a continuum of agents, so that past actions reveal
sufficient information about the underlying state. Smith and
Sorensen study a related environment of social learning
without the martingale property. While their method of
analysis is different from ours, a number of our results are
present in their work. In particular, Smith and Sorensen also
show that unbounded signals will lead to social learning.
However, our results on the dynamics of beliefs, the limiting
distribution of probabilities and the role that asymmetry plays
in asymptotic learning are novel.

The rest of the paper is organized as follows. In Section
2 we present the model, followed by an analysis of the
properties of private beliefs in Section 3. In Section 4, we
characterize the evolution of ex ante probabilities of taking
the correct action. Section 5 presents our main results on
asymptotic learning under unbounded signals and charac-

Fig. 1. Model of Social Learning with Limited Information.

terizes the convergence behavior of actions under bounded
signals.

II. THE MODEL

The game consists of a countably infinite number of agents
indexed by n ∈ N, acting sequentially. Each agent n has a
single action xn ∈ {0,1}. The underlying state of the world
is a ∈ {0,1}. If xn = a, then the payoff of agent n is given
by un = 1, and otherwise, un = 0. A priori, both states of the
world are equally likely.

Let the information set of agent n be Ωn. We assume that
Ωn = {sn,xn−1}, where sn is the private signal of the individ-
ual drawn independently from the conditional distribution Fa

given the underlying state a ∈ {0,1}, and xn−1 is the action
of the previous agent.

Our goal is to understand the limiting properties of a
perfect Bayes-Nash equilibrium in this model. In particular,
we want to determine the level of learning that is achieved
by the agents as measured by their ex ante probability of
choosing the best decision, i.e., P(xn = a).

Definition 1: (Asymptotic Learning) There is asymp-
totic learning if xn converges to a in probability, i.e.,
limn→∞ P(xn = a) = 1.

III. PRIVATE BELIEFS

How the sequence of decisions {xn} evolves depends on
inference based on individuals’ signals regarding the under-
lying state. It is convenient to work with a transformation of
these signals, which we refer to as private beliefs (see [9]).

Definition 2: (Private Belief) Agent n’s private belief pn

is the probability that the state is equal to 1 conditional on
his private signal sn, i.e., pn = P(a = 1|sn).

For a given signal sn, by Bayes’ rule, the private belief is

pn =
1

1+ dF0(sn)
dF1(sn)

, (1)

where dFa reduces to the density of Fa if the distribution
function has a density and the ratio in the denominator is
the likelihood ratio.



Since pn is a function of sn only, the sequence of random
variables {pn} is also independent and identically distributed.
We will denote the cumulative distribution function for
private beliefs given the true state a by Ga. That is,

Ga(x) = P(pn ≤ x|a), for all n ∈ N. (2)

It can be seen that pn contains all the useful information
from the signal in estimating the state. Hence, pn = P(a =
1|pn) and the following result follows.

Lemma 1: Given G0 and G1 defined as in Eq. (2), the
following relation holds with probability 1,

dG0(r)
dG1(r)

=
1− r

r
, for all r ∈ (0,1). (3)

Moreover, given any cumulative distribution function G1

such that G1(0) = 0 and G1(1) = 1, there exists a G0 that
satisfies Eq. (3) if and only if

∫ 1

0

dG1(r)
r

= 2.

The proof of this lemma and all other omitted proofs are
provided in [6]. Because the private beliefs contain all the
useful information about the signals, we will directly work
with private beliefs, or equivalently we suppose that each
agent n knows only xn−1 and pn when making his decision.

The following inequalities involving (G0,G1) will be used
to provide bounds on the evolution of decision rules.

Lemma 2: Let (G0,G1) be a pair of distribution functions
that satisfies Eq. (3). Then, for all 0 < z < p < 1,

G0(p)≥
(

1− p
p

)
G1(p)+

p− z
2

G1 (z) ,

and for all 0 < p < w < 1,

1−G1(p)≥ (1−G0(p))
(

p
1− p

)
+

w− p
2

(1−G1(w)).

Definition 3: (Bounded and Unbounded Private Beliefs)
Let β and 1− γ be the infimum and the supremum of the
support of the distribution function G1, i.e.,

β = inf
x∈[0,1]

{x : G1(x) > 0}. (4)

γ = 1− sup
x∈[0,1]

{x : G1(x) < 1}. (5)

Then, private beliefs are unbounded if β = γ = 0. The beliefs
are bounded if both β > 0 and γ > 0.

We ignore the possibility that only one of β and γ is
strictly positive to simplify the presentation.2

Unbounded private beliefs correspond to the likelihood
ratio in Eq. (1) being unbounded, which implies that an agent
can receive an arbitrarily strong signal about the underlying
state. As in the existing work on the social learning literature,

2Note that β and γ can be alternatively defined in terms of G0 since the
two distributions have the same support by Eq. (3).

this feature will have important implications for the limiting
behavior of the sequence {xn}.

Throughout the paper, we adopt the following assumption.
Assumption 1: β = γ .
This assumption simplifies the exposition by imposing a

natural symmetry on the distributions of private beliefs.
The next lemma provides a natural bound on the amount

of learning at each step and will be used in the convergence
analysis in the subsequent sections.

Lemma 3: Let β and γ be as defined in Equations 4 and
5 and let Assumption 1 hold, then

G0(1/2)−G1(1/2)≤ 1−2β .

IV. EVOLUTION OF THE PROCESS

In this paper, we will characterize the limiting behavior
of the agents by focusing on ex ante probabilities of correct
decisions conditional on the true state a. These probabilities
will be denoted

Yn = P(xn = 1|a = 1) and Nn = P(xn = 0|a = 0). (6)

The unconditional probability of a correct decision is then

P(xn = a) =
Yn +Nn

2
, (7)

and therefore asymptotic learning (from an ex ante point
of view) is equivalent to the convergence of the sequence
{(Yn,Nn)}.3

Let us next define the thresholds

Un =
Nn

1−Yn +Nn
and Ln =

1−Nn

1−Nn +Yn
, (8)

which will fully characterize the decision rule as described
by Lemma 4 below. Note that the sequence {(Un,Ln)}
only depend on {(Yn,Nn)} and therefore are deterministic.
This reflects the fact that each individual recognizes the
amount of information that will be contained in the action
of the previous agent, which determines his own decision
thresholds. Individual actions are still stochastic since they
are determined by whether the individual’s private beliefs is
below Ln, above Un or in between.

Definition 4: Agent n’s strategy σn is a mapping from his
information set to his possible actions, i.e.,

σn : Ωn →{0,1}.

A perfect Bayesian equilibrium of the game is a se-
quence of strategies for the players {σ∗n } such that for
each n, σ∗n maximizes the agent’s expected utility given
{σ∗1 , . . . ,σ∗

n−1,σ∗n+1, . . .}.

3Note that since the amount of learning is captured by P(xn = a),
asymptotic learning only requires that {xn} converges in probability.



Fig. 2. Equilibrium Decision Rule Depicted on the Private Belief Interval.

Lemma 4: Let Un and Nn be given by Eq. (8). Then, it
is a perfect Bayesian equilibrium for agent n to select xn

according to the following rule:

xn =





0, if pn < Ln,
xn−1, if pn ∈ [Ln,Un],
1, if pn > Un.

Proof: To maximize his expected payoff, agent n will
choose xn = 1 only if

P(a = 1|sn,xn−1) = P(a = 1|xn−1, pn)≥ 1/2. (9)

Using Bayes’ Rule and the fact that both states are a priori
equally likely,

P(a = 1|xn−1, pn) =
dP(xn−1, pn|a = 1)

∑1
k=0 dP(xn−1, pn|a = k)

.

Given that xn−1 and pn are independent conditionally on the
state, we have that Eq. (9) holds if and only if

dG1(pn)
dG0(pn)

≥ P(xn−1|a = 0)
P(xn−1|a = 1)

.

Using Lemma 1, this condition is equivalent to

pnP(xn−1|a = 1)≥ (1− pn)P(xn−1|a = 0),

which can be rewritten to yield

pn ≥ P(xn−1|a = 0)

∑1
k=0 P(xn−1|a = k)

.

By plugging in the two possible values of xn−1, we obtain
the desired decision rule.

Lemma 4 represents one particular tie-breaking rule,
where agent n favors copying the choice of agent n−1 when
pn is equal to Ln or Un and he is indifferent between two
options. Any other choice of tie-breaking rule would also
produce an equilibrium.

Lemma 5: Let Yn,Nn,Un and Ln be given by Eqs. (6) and
(8). If the tie-breaking rule of Lemma 4 is adopted, then Yn

and Nn satisfy the following recursive relations:

Nn+1 = G0(Ln)+(G0(Un)−G0(Ln))Nn,

Yn+1 = 1−G1(Un)+(G1(Un)−G1(Ln))Yn.

Fig. 3. Stationary Zone on (Yn,Nn) Graph.

Lemma 6: If there exists an integer K such that

LK ≤ β and UK ≥ 1−β ,

then there exists a perfect Bayesian equilibrium where

Yn = YK and Nn = NK for all n≥ K,

where Ln and Un are defined in Eq. (8) and β is defined in
Eq. (4). Also, if there exists an integer K such that

LK < β and UK > 1−β ,

then the same holds for all equilibria.
Proof: Suppose such a K exists. Then, G0(LK) = 1−

G1(UK) = 0, which, by induction, using Lemma 5 implies
that Yn =YK and Nn = NK for all n≥K. In the case of a strict
inequality, there is no issue of tie-breaking and all equilibria
force stationarity.

This lemma defines a stationary zone such that once the
sequence {(Yn,Nn)} enters this area, it remains constant.
Using Eq. (8), it follows for any β > 0 that Ln ≥ β if and
only if

Nn +
(

β
1−β

)
Yn ≤ 1. (10)

Similarly, Un ≤ 1−β if and only if
(

β
1−β

)
Nn +Yn ≤ 1. (11)

This region is the singleton (1,1) when beliefs are un-
bounded and is a non-degenerate quadrilateral as shown
by the shaded area in Figure 3 when beliefs are
bounded. Asymptotic learning is clearly equivalent to
limn→∞{(Yn,Nn)}= (1,1).

V. CONVERGENCE ANALYSIS

The first useful property we can obtain about the sequence
{xn} is what we refer to as “information monotonicity”.
Agents who act later will have higher probability of making



the right choice. This is equivalent to the welfare improve-
ment property of Smith and Sorensen [8].

Lemma 7: (Information Monotonicity) The sequence
P(xn = a) = 2(Yn +Nn) is nondecreasing.

Proof: The recursive relation in Lemma 5 yields

Yn+1 +Nn+1 = Yn +Nn

+ [(1−Nn)G0(Ln)−YnG1(Ln)]

+ [(1−Yn)(1−G1(Un))−Nn(1−G0(Un))] .

By Lemma 2, it follows that for any z ∈ (0,Ln) and w ∈
(Un,1), the two terms in the brackets are strictly positive,
showing the desired result.

The next proposition is one of the main results of our
paper and shows that the sequence {(Yn,Nn)} asymptotically
approaches the stationary zone given by the shaded area in
Figure 3.

Proposition 1: Let Ln and Un be as defined in Eq. (8) and
β as in Eq. (4). The sequences Ln and Un satisfy

limsup
n→∞

Ln ≤ β , and liminf
n→∞

Un ≥ 1−β .

Proof: Let L∗ = limsupn→∞ Ln. Suppose L∗ > β . Then,
there exists a subsequence {LN}n∈N such that

Ln >
L∗+β

2
, for all n ∈N .

By Lemma 2, it can be seen that for every n in N ,

Yn+1 +Nn+1 ≥ Yn +Nn +
(1−Nn)(Ln− z)

2
G1(z),

for all z ∈ (0, L∗+β
2 ). Choose z = L∗+2β

3 . It can be seen that

1−Nn >

(
L∗+β

2−L∗−β

)
, for all n ∈N .

We also get that for this choice of z,

(Ln− z)≥ L∗−β
6

, for all n ∈N .

Let C be defined as

C =
1
2

(
L∗+β

2−L∗−β

)(
L∗−β

6

)
G1

(
L∗+2β

3

)
.

Note that C is a strictly positive constant and

Yn+1 +Nn+1 ≥ Yn +Nn +C, for all n ∈N ,

which is impossible since Yn +Nn is a monotonically nonde-
creasing sequence bounded above by 2. Therefore, L∗ ≤ β .
A similar argument can be used to establish that

U∗ = liminf
n→∞

Un ≥ 1−β .

A. Asymptotic Learning

An immediate implication of Proposition 1 is that asymp-
totic learning occurs when the private beliefs are unbounded.

Proposition 2: Assume that private beliefs are unbounded.
Then asymptotic learning occurs, i.e., limn→∞ P(xn = a) = 1.

Proof: Since β = 0, Proposition 1 implies that
limn→∞ = 0. Equivalently, limn→∞ Un = 1. By Eq. (8), these
imply that the sequence {(Yn,Nn)} converges to (1,1), show-
ing the desired result.

Proposition 3: Let Assumption 1 hold and assume as well
that the private beliefs are bounded. Then, limn→∞ P(xn =
a) < 1.

Proof: The proof is divided into two steps:

Step 1: First, we show that under the assumption that β > 0
(i.e., private beliefs are bounded), we have Yn +Nn < 2 for all
n≥ 1. We show this result by induction. We have Y0 +N0 = 1.
Suppose that Nn +Yn < 2 for some n. Then, by the evolution
described in Lemma 5,

Yn+1 +Nn+1 = Yn +Nn

+ (1−Nn)G0(Ln)−YnG1(Ln)

+ (1−Yn)(1−G1(Un))−Nn(1−G0(Un)).

From this we obtain

Yn+1 +Nn+1 ≤ Yn +Nn + (1−Nn)G0(Ln)

+ (1−Yn)(1−G1(Un)).

Using the monotonicity of G0 and G1, we have

Yn+1 +Nn+1 ≤ Yn +Nn

+ (1−Nn)G0(1/2)+(1−Yn)(1−G1(1/2)).

Suppose first that G0(1/2) < 1. Then

Yn+1 +Nn+1 < Yn +Nn

+ (1−Nn)+(1−Yn)(1−G1(1/2))

≤ Yn +Nn +(1−Nn)+(1−Yn) = 2.

If, on the other hand, G0(1/2) = 1, then by Lemma 3,
G1(1/2) ≥ 2β > 0, where the strict inequality is by the
assumption that the private beliefs are bounded. Then,

Yn+1 +Nn+1 < Yn +Nn

+ (1−Nn)G0(1/2)+(1−Yn)

= Yn +Nn +(1−Nn)+(1−Yn) = 2.

Step 2: Since Yn + Nn < 2 for all n ≥ 1, the only way Yn +
Nn could converge to 2 is if (1,1) is a limit point of the
set {(Yn,Nn)}n≥1. We show by contradiction that this is not
possible. Suppose (1,1) is indeed a limit point of the set.



Then, ∀ ε > 0, there exists some N such that, YN > 1−ε and
NN > 1− ε . Let

ε =
β

4(1−β )
.

Then, LN as defined in Eq. (8),

LN ≤ ε
1− ε

=
β

4−5β
< β ,

where the last inequality is true since β ≤ 1/2. Equally, this
value of ε implies that

UN > 1−β .

By Lemma 6, the sequence (Yn,Nn) enters the stationary zone
and

(Yk,Nk) = (YN ,NN), for all k ≥ N.

Therefore, the set {(Yn,Nn)}n≥1 has finitely many points and
(1,1) is not a limit point.

Propositions 2 and 3 together show that asymptotic learn-
ing (from and ex-ante viewpoint) will occur if and only if
the beliefs are unbounded.

B. Learning under Symmetry

When beliefs are bounded, Proposition 3 does not specify
whether and where the sequence {(Yn,Nn)} will converge.
We will next establish that under a symmetry assumption
there exists an equilibrium with the minimum amount of
asymptotic learning possible.

Assumption 2: (Symmetry) The states are symmetric if

G0(r) = G1(1− r) for all r ∈ [0,1].
Assumption 3: G0 and G1 have densities.
Lemma 8: Let Assumption 2 hold. Then, there exists an

equilibrium where Yn = Nn for all n. If Assumption 3 also
holds, then this equilibrium is unique.

Lemma 9: Let β and Nn,Yn be as defined in Eqs. (4)
and (8). Assume symmetry holds. Then, there exists an
equilibrium where for all n≥ 1, we have

Nn +Yn ≤ 2(1−β ).

If Assumption 3 also holds, this equilibrium is unique.
The following lemma shows that the sequence {Nn +Yn}

converges. The proof relies on using the upper bound on this
sequence established in the preceding lemma and Proposition
1.

Lemma 10: Assume symmetry holds. Then, there exists
an equilibrium where the sequence {Nn +Yn} converges to
the limit 2(1−β ), i.e.,

lim
n→∞

Nn +Yn = 2(1−β ).

Proof: By Proposition 1, we have

limsup
n→∞

Ln ≤ β , and liminf
n→∞

Un ≥ 1−β .

This implies that for all ε > 0, there exist some K1 ≥ 0 and
K2 ≥ 0 such that

Ln ≤ β − ε, for all n≥ K1,

Un ≥ 1−β + ε, for all n≥ K2.

Let K3 = max{K1,K2}. The preceding relations then imme-
diately imply that for all n≥ K3,

Ln ≤ β + ε, and Un ≥ 1−β − ε.

Using the definition of Ln and Un [cf. Eq. (8)], it follows
from these relations that for all n≥ K3,

Nn +
(

β + ε
1−β − ε

)
Yn ≥ 1,

Yn +
(

β + ε
1−β − ε

)
Nn ≥ 1.

Summing the preceding two relations yields

Yn +Nn ≥ 2(1−β − ε), for all n≥ K3.

Combined with Lemma 9, we obtain

2(1−β − ε)≤ Nn +Yn ≤ 2(1−β ), for all n≥ K3.

Since ε was arbitrary, the preceding yields the desired
convergence result, i.e., limn→∞ Nn +Yn = 2(1−β ).

The next proposition contains the main convergence result
of this subsection. In particular, we show that both sequences
{Nn} and {Yn} converge to the limit (1−β ).

Proposition 4: Assume that symmetry holds. Then, there
exists an equilibrium where the sequences {Nn} and {Yn}
both converge to the limit (1−β ), i.e.,

lim
n→∞

Nn = lim
n→∞

Yn = (1−β ).

If Assumption 3 also holds, this equilibrium is unique.
Proof: The proof follows two steps:

Step 1: We first show that the sequence {Ln} converges to
the limit β , i.e, limn→∞ Ln = β . Proposition 1 establishes that
limsupn→∞ Ln ≤ β . Therefore, it suffices to show that

liminf
n→∞

Ln ≥ β .

Assume to arrive at a contradiction that liminfn→∞ Ln < β .
Let δ = 1/2(β − liminfn→∞ Ln) > 0. Then there exists a
subsequence {Ln}n∈N such that

Ln ≤ β −δ , for all n ∈N .

By the definition of Ln [cf. (8)], it follows that

1≤ Nn +
(

β −δ
1−β +δ

)
Yn, for all n ∈N ,



from which, in view of the fact that β > δ > 0, we obtain
that for all n ∈N ,

1≤ Nn +
(

β −δ
1−β +δ

)
Yn ≤ Nn +

(
β −δ
1−β

)
Yn.

Combined with Lemma 9, i.e., Nn +Yn ≤ 2(1− β ) for all
n ∈N , this yields

Nn +Yn

1−β
−1≤ Nn +

(
β −δ
1−β

)
Yn,

or equivalently for all n ∈N ,

Nn

(
β

1−β

)
+Yn ≤ 1− δ

(1−β )
Yn. (12)

Since Nn +Yn converges to 2(1− β ) (cf. Lemma 10), for
every ε > 0 and for sufficiently large n, we have

Yn ≥ 2(1−β )− ε−Nn ≥ 1−2β − ε,

where the second inequality follows by the fact that Nn ≤
1. Assume without loss of generality that β < 1

2 .4 Then, ε
can be taken arbitrarily close to 0, the preceding implies
the existence of some α > 0 such that δ

1−β Yn ≥ α for all n
sufficiently large. Hence, Eq. (12) implies that for all n∈N

sufficiently large,

Nn

(
β

1−β

)
+Yn ≤ 1−α,

from which we can obtain

Nn

(
β

1−β

)
+αNn +Yn ≤ Nn

(
β

1−β

)
+α +Yn ≤ 1.

Since the function 1−x
x is an unbounded increasing function

in the (0,1) interval, there exists some w ∈ (β ,1) such that
(

β
1−β

)
+α =

(
ω

1−ω

)
.

Combining the preceding two relations, we see that for all
n ∈N sufficiently large, we have

Nn

(
ω

1−ω

)
+Yn ≤ 1,

which using the definition of Un [cf. (8)] can be rewritten as

Un ≤ 1−ω, for all n ∈N sufficiently large.

Taking the limit along the subsequence N , this implies that

liminf
n→∞

Un ≤ limsup
n→∞, n∈N

Un ≤ 1−ω,

which in view of the fact that w < β yields a contradiction
to Proposition 1, thus showing that limn→∞ Ln = 1−β .

Step 2: We now show that limn→∞ Nn = limn→∞ Yn = 1−β .

From the definition of Ln [cf. (8)] and step 1,

lim
n→∞

1−Nn

1−Nn +Yn
= β ,

4If β = 1
2 , the result holds trivially since no agent has any information

about the state of the world.

Fig. 4. Example Showing Asymmetry Could Lead to More Learning.

which implies that

lim
n→∞

(1−β )Nn +βYn = 1−β .

We also have from Lemma 10 that

lim
n→∞

Nn +Yn = 2(1−β ).

Because β < 0.5, this pair of limits can only be satisfied if
both Yn and Nn converge. Furthermore, the limit points of
both Yn and Nn can only be 1−β to satisfy both limits.

If symmetry does not hold, then the sequence {Yn + Nn}
might converge to a value greater than 2(1−β ), i.e., not to
the edge of region C in Figure ??.

As an example of the behavior of asymptotic learning
without symmetry, Figure 4 represents the dynamics of
{(Yn,Nn)} for the following pair of distributions(G0,G1):

G0(r) =
18
30

, r ∈ [0.1,1−0.7),

G1(r) =
2

30
, r ∈ [0.1,1−0.7),

and both cumulative distributions having value 0 if r < 0.1
and value 1 for r ≥ 0.7. In this example, private beliefs can
take only two values, 0.1 and 0.7. The private belief of 0.1
implies a strong likelihood that 0 is the true state, while a
belief of 0.7 implies a much weaker likelihood in favor of
state 1. In this example, the sequence {(Yn,Nn)} converges
to a point in the interior of the stationary zone as can be
seen in Figure 4. As noted above, this limit point involves a
greater amount of asymptotic learning than in the case with
symmetric pair.

VI. CONCLUSIONS

In this paper, we presented an analysis of social learning
when individuals only observe the action of their immediate
neighbor. Despite the simplicity of this environment, the
evolution of beliefs is substantially different than the typical
models of social learning in the game theory literature. We



characterized the behavior of asymptotic learning in terms of
two threshold values that evolve deterministically. Individual
actions are fully determined by the value of their signal
relative to these two thresholds. We prove that asymptotic
learning from an ex ante viewpoint applies if and only
if individual beliefs are unbounded. We also show that
for symmetric states bounded signals imply the minimum
possible amount of asymptotic learning.

The tools introduced in this paper can be generalized to
analyze social learning in environments in which individuals
observe random samples of past actions and investigate
how the topology of communication across agents affects
information aggregation and the likelihood of asymptotic
learning. This is an area we are investigating in [7].
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