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Abstract

This paper analyzes a stochastic best reply evolutionary model with
inertia in normal form games. The long-run behavior of individuals
in this model is investigated in the limit where experimentation rates
tend to zero, while the expected number of experimenters, and hence
also population sizes, tend to infinity. Conditions on the learning-rate
which are necessary and sufficient for the evolutionary elimination of
weakly dominated strategies are found. The key determinant is found
to be the sensitivity of the learning-rate to small payoff differences.

JEL classification: C62, C72, C73
Keywords: learning, experimentation, S∞W -procedure, weak dominance,
iterated strict dominance
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1 Introduction

The elimination of weakly dominated strategies is at the heart of virtually
every Nash equilibrium refinement based on strategic considerations. Sel-
ten’s (1975) trembling hand perfect equilibrium and Myerson’s (1978) proper
equilibrium are examples for this. Kohlberg and Mertens (1986) even made
it a requirement for a solution concept to be called strategically stable that
it does not contain weakly dominated strategies.

Evolutionary models so far, with the exception of Theorem 5 in Samuel-
son (1994), do not support the deletion of weakly dominated strategies.
This is true for dynamic models such as the replicator dynamics of Taylor
and Jonker (1978) as shown in Samuelson (1993), as well as for stochas-
tic models such as that of Kandori, Mailath, and Rob (1993) as shown in
Samuelson (1994, Theorem 3). This is somewhat surprising as evolutionary
models directly or indirectly allow for random mutation or experimentation,
which on the face of it should serve a similar purpose to trembles in strategic
refinements. Yet, this is not so.

In deterministic models weakly dominated strategies can survive evolu-
tion when all opponents’ strategies, against which the weakly dominated
strategy performs poorly, diminish much faster than the weakly dominated
strategy and then vanish before the weakly dominated strategy does (see
e.g. Example 3.4 in Weibull, 1995).

In a stochastic finite-population model a la Kandori, Mailath, and Rob
(1993), weakly dominated strategies may feature in the support of the limit-
ing invariant distribution of play because of the possibility of ”evolutionary
drift” (see Samuelson 1994, Theorem 3). Suppose play is currently in a
state in which three conditions are satisfied. First, a given weakly domi-
nated strategy is not played by anyone in the relevant player population.
Second, opponents’ strategies, against which the weakly dominated strategy
performs worse than the strategy it is dominated by, are not present either.
Third, the strategy which dominates the said weakly dominated strategy is
a best reply in the given state. But then the weakly dominated strategy
is an alternative best reply in the given state, and if employed by one in-
dividual in the relevant population by mutation, there is no evolutionary
pressure to remove it. In fact one could have a series of single mutations
in this population toward more and more individuals playing the weakly
dominated strategy. If nothing else changes, i.e. no other individual in any
other population changes strategy, evolutionary pressure does not bear on
individuals using the weakly dominated strategy, as it continues to be an
alternative best reply in these circumstances.

In this paper I take up Samuelson’s (1994) model of stochastic evolution
based on a best-reply dynamic with or without inertia and with random
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small probability experimentation. From the beginning I will make every
individual’s learning-rate dependent on the payoff difference between the
strategy the individual is currently playing and a best reply. This assump-
tion is immaterial for the finite population case, but becomes important,
as Samuelson (1994) notes, when populations sizes tend to infinity. While
Samuelson (1994) does not make this dependence explicit, he does discuss
it in the aftermath of his Theorem 5.

Samuelson (1994) in Theorem 5 shows, for a particular 2-player game,
that stochastically modelled evolution can eliminate weakly dominated strate-
gies if population sizes tend to infinity. The proof of this theorem, based on
tree arguments, introduced to Game Theory by Foster and Young (1990),
Young (1993), and Kandori, Mailath, and Rob (1993) does extend to some
degree to cover some other finite normal form games, see Samuelson’s (1994)
Footnote 14, but does not extend to all finite normal form games. In the
discussion of his Theorem 5, Samuelson (1994) concludes that the assump-
tions needed to guarantee the elimination of weakly dominated strategies is
that the learning-rate is a discontinuous function of the payoff difference be-
tween the weakly dominated strategy and the best-reply, which admittedly
is a somewhat radical, if not implausible, assumption given individuals in
an evolutionary model are usually somewhat boundedly rational and slow
to adapt to change.

In this paper I investigate the same limit Samuelson (1994) does in his
Theorem 5, but with the additional, and I believe reasonable, requirement
that while the experimentation rate µ tends to zero, and population sizes mi

tend to infinity, their product µmi, the expected number of experimenters
in any given period, tends to infinity as well. This implies, and is in fact
necessary to imply, that play, in this limit, will be in the interior of the
strategy simplex with probability 1 as shown in Corollary 1. I believe this
to be the appropriate limit if we want to have an evolutionary model of
trembles. Recall that the presence of trembles also imply that play is in the
interior of the simplex with probability 1, albeit in a very different sense.

In any case, under this limit I can avoid the tree arguments and use
the properties of the invariant distribution more directly. In Theorems 4
and 5 I provide necessary and sufficient conditions on, what one might call,
the sensitivity of the learning-rate to payoff differences, for the evolutionary
elimination of weakly dominated strategies. This adds to Theorem 5 of
Samuelson (1994) in two ways. First, these theorems hold for all finite
normal form games. Second, these theorems show how exactly this required
sensitivity to payoff differences depends on the number of players in the
normal form game. The latter also demonstrates that Samuelson’s (1994)
conclusion in the discussion of his Theorem 5, that the learning-rate needs
to be a discontinuous function of the pay-off differences, is not warranted.

4



In fact for 2-player games, while if the learning-rate depends on the payoff
differences in a linear fashion evolution does not necessarily eliminate weakly
dominated strategies, if this learning function is a power function with any
power less than 1 evolution does eliminate all weakly dominated strategies.
The learning rate thus does not need to be discontinuous, but needs to have
infinity slope at a payoff-difference of 0. One interpretation one could give
a power function with degree less than 1 is that learning individuals are
risk-averse over payoff-differences. In 2-player games any small degree of
such ”risk-aversion” would lead to the evolutionary elimination of all weakly
dominated strategies in these games. For games with more than 2 players
the required ”risk-aversion” would have to be higher. This implies that the
more players, or better the more player-positions, there are in the game,
the harder it is for evolution to eliminate all weakly dominated strategies.
All this follows from Theorems 4 and 5. The proofs of Theorems 4 and 5
also suggest a taxonomy or at least a partial order of weakly dominated
strategies with respect to the ease with which evolution eliminates them.
This is discussed in Section 4.

The structure of this paper is as follows. Section 2 states the model. All
of the main results are then presented in Section 3, which after some pre-
liminary lemmas first proves the elimination of strictly dominated strategies
in Theorems 1 and 2 before providing the main results on the evolutionary
elimination of weakly dominated strategies, Theorems 3, 4, and 5. Finally
Section 4 provides a discussion of these results as well as Theorem 7 show-
ing that provided evolution eliminates all weakly dominated strategies it
will then also eliminate all strategies which are not rationalizable (Bern-
heim, 1984, and Pearce, 1984) in the game obtained from the original game
by removing all weakly dominated strategies. I.e. Theorem 7 provides some
evolutionary support for the so-called S∞W -procedure of Dekel and Fuden-
berg (1990).

2 Model

For finite populations sizes (mi, see below) the following model is essentially
the same as the stochastic best-reply model with (or without) inertia of
Samuelson (1994) and a special case of the evolutionary model of Kandori,
Mailath, and Rob (1993). The only difference to the model of Samuelson
(1994) is that I will assume from the beginning that any individual’s learning
rate depends directly on the difference between the payoff of the strategy
currently used by the individual and the largest payoff this individual could
obtain in the given situation.

Let Γ(N,S, u) be a normal form game, where N = {1, ..., n} is the set
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of n players, S = ×i∈NSi is the set of pure strategy profiles (Si is player i’s
set of pure strategies) and u is the payoff function.

Let each player i be replaced by a population of individuals M(i) with
population size mi = |M(i)|. Individuals are characterized by the pure
strategy they are playing. A state is a characterization for each individual
in each population. Let the state space be denoted by Ωm.

Individuals in every period t play against every possible configuration of
opponents. Between times t and t + 1 each individual in each population
first receives a draw from a Bernoulli random variable either to learn with
probability σ or not to learn, and then receives a second draw from an
independent Bernoulli variable either to experiment with probability µ or
not to experiment.

While µ is assumed to be a constant, the learning rate σ is assumed to
be dependent on the payoffs obtainable by the various strategies. Suppose
the current state is some ω ∈ Ω. Suppose a given agent in population M(i)
plays strategy s ∈ Si in this state ω. The probability that this agent will
learn shall now depend on the payoff-difference between the payoff, the agent
could get when playing a best-reply (against state ω), and the payoff the
agent receives currently. Let u∗i (ω) = maxsi∈Si ui(si, ω), where ui(si, ω) is
the payoff strategy si yields given the state is ω. Then the probability that
this agent (currently playing s) switches to a best-reply given state ω is
given by σ(s, ω) = fi (u∗i (ω)− ui(si, ω)), where fi is some function from the
non-negative part of the real line into the unit interval. I will assume that,
while all fi’s, for different i ∈ N , can be different, they all satisfy fi(0) = 0,
fi(x) > 0 for all x > 0, and that fi is weakly increasing. Typical functions
for fi shall be a step function for which fi(x) = σ (constant) for all x > 0, a
scaled identity function fi(x) = αx for some α that guarantees fi(x) ∈ [0, 1]
for all relevant x, or generally any power function fi(x) = αxβ , again with
α such that fi(x) ∈ [0, 1] for all relevant x.

If an agent learns, the agent chooses a best reply to the aggregate be-
havior of individuals at time t. If there are multiple best replies the agent
chooses one according to a fixed probability distribution with full support
over all best replies. If the agent already plays a best reply she is assumed
to continue playing it. If she does not learn, the agent continues to play her
old strategy.

If the agent receives an experimentation-draw she chooses an arbitrary
strategy according to a (conditional) probability distribution λi ∈ int[∆(Si)],
where generally ∆ (D) denotes the set of all probability distributions over
D, while int[∆(D)] signifies that this distribution has full support. Hence,
all strategies available to this agent (including the one she is playing at the
moment) are possible realizations for an experimentation-draw. Let λ =
{λ1, ..., λn} ∈ ×n

i=1int[∆(Si)] be the profile of these conditional mutation
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probabilities. In the absence of an experimentation-draw the agent does not
change her strategy.

The above ”mutation-selection” mechanism constitutes a Markov chain
on the state space Ωm with transition probability matrix denoted by Qm

µ ,
indicating that it is different for different population sizes and different ex-
perimentation rates. The transition probabilities also vary with different
choices of f . However, as I will study the limit of this process for any fixed
f = (f1, ..., fn) but taking µ to zero and mi to infinity, I suppress the f in
the notation.

The Markov chain induced by the above selection-mutation dynamics is
aperiodic and irreducible. Hence, it has a unique stationary distribution,
which shall be denoted by πm

µ , and satisfies

πm
µ Qm

µ = πm
µ . (1)

3 Results

In this paper I am interested in the long-run behavior of individuals for the
limiting model with infinite population sizes. I first discuss, by means of a
few lemmas, why I choose to study the limit in which, while population sizes
tend to infinity, the experimentation rate tends to zero in such a way that
their product, the expected number of experimenters (in any given period),
tends to infinity as well. This not only makes proofs easier, I also think this
is the most interesting case, as it represents, in my opinion, the evolutionary
equivalent of the idea of trembling-hand perfection. Using these results I will
then move on to prove the main theorems. First, I need some additional
notation.

3.1 More Notation

Let i ∈ N be an arbitrary player and let s ∈ Si be an arbitrary strategy
available to individuals at population M(i). Let Λi,s

k denote the set of states
in which the proportion of individuals at population M(i) playing strategy s
is k

mi
. Let Φi,s

τ =
⋃

k≤τmi
Λi,s

k denote the set of states in which not more than
a proportion of τ individuals play s at player population M(i). Let P i,s

µ,m :
Ωm → IR denote a random variable (given probability space (Ωm, πm

µ )) such
that P i,s

µ,m(ω) denotes the proportion of s-players in population M(i) given

state ω. Note that πm
µ

(
P i,s

µ,m ≤ ε
)

= πm
µ

(
Φi,s

ε

)
. Throughout this section the

conditional mutation-probability vector, λ ∈ ×n
i=1int[∆(Si)] is arbitrary.

Hence, the results hold for any such λ. Then λs shall denote the probability
λ puts on pure strategy s ∈ Si.
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3.2 Preliminary Results

Consider the most adversarial environment for a strategy to survive evolu-
tion. Let s ∈ Si be strictly dominated and let fi be such that fi(0) = 0 and
fi(x) = 1 for all x 6= 0. In this environment learning is as quick as it can be,
given the assumptions of the model. Hence, evolutionary pressure against
the strictly dominated strategy s is as severe as it can possibly be.

Lemma 1 Let s ∈ Si be strictly dominated and let fi be such that fi(0) = 0
and fi(x) = 1 for all x 6= 0. Then πm

µ

(
Λi,s

0

)
= (1− λsµ)mi.

Proof: From the fact that πm
µ is the invariant distribution it follows that

πm
µ

(
Λi,s

0

)
=

mi∑
k=0

πm
µ

(
Λi,s

k

) (
Qm

µ

)
k0

,

where
(
Qm

µ

)
k0

is the transition probability of switching to any given state

in Λi,s
k (the same for all such states) to a state in Λi,s

0 . This transition
probability, given the assumptions of the lemma, is given by

(
Qm

µ

)
k0

=
(1− λsµ)mi , the same for any k. This is due to the fact that under the
severe learning assumption fi(x) = 1 for all x 6= 0 and the fact that the
payoff difference between s and the optimal strategy is strictly positive, in
the learning phase every individual in population i who plays s will switch
strategy away from s. To then stay in the set Λi,s

0 we need that no-one
switches to s in the experimentation phase, the probability of which is given
by (1− λsµ)mi . Plugging

(
Qm

µ

)
k0

= (1− λsµ)mi into the above equation
yields the result. QED

The limit I am investigating in this paper is the one in which popula-
tion sizes mi tend to infinity and the experimentation rate tends to zero
such that their product tends to infinity as well. One definitely thinks of
experimentation rates (or mutation rates in biological evolution) as small.
This is the reason why Kandori, Mailath, and Rob (1993) and also Young
(1993) investigate the limit in which µ tends to zero. Given that, how-
ever, the limit I am considering is the only limit in which we can guarantee
for any finite normal form game and for any choice of learning functions
f = (f1, ..., fn), that every pure strategy is played by at least one person in
the game. To see this, suppose that µ → 0 and µmi → δ < ∞. But then
lim (1− λsµ)mi = lim

(
1− λs

δ
mi

)mi
= e−λsδ > 0. Hence, under this limit,

we cannot guarantee that a strictly dominated strategy s is always played by
at least 1 person. Now, if we recall the idea behind introducing trembles to
the ”rational” formulation of a normal form game, it is exactly to guarantee
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that every pure strategy is used with at least some probability. I believe
that the appropriate evolutionary counterpart of this is that the event that
every strategy is played by at least 1 individual has limiting probability 1.
Only then, do we have probability 1 in both cases that play is in the strict
interior of the strategy simplex.

Let ρm
µ =

(
µ, 1

m1µ , ..., 1
mnµ

)
and let ρm

µ → 0 mean that each component
of ρm

µ tends to zero.

Lemma 2 Let i ∈ {1, ..., n} be an arbitrary player and s ∈ Si an arbitrary
strategy available to individuals at population M(i).

lim
ρm

µ →0
πm

µ

(
Λi,s

0

)
= 0. (2)

Proof: πm
µ

(
Λi,s

0

)
≤ (1− λsµ)mi by the way we chose s and fi in Lemma 1.

Hence, limρm
µ →0 πm

µ

(
Λi,s

0

)
≤ limρm

µ →0(1− λsµ)mi = 0. QED
The following corollary is immediate from Lemma 2.

Corollary 1 Denote by Ψ the set of states, in which there is a population
such that at least one strategy is not played by any individual at this popu-
lation, i.e.

Ψ =
n⋃

i=1

⋃
x∈Si

Λi,x
0 . (3)

Then
lim

ρm
µ →0

πm
µ (Ψ) = 0. (4)

3.3 Strictly Dominated Strategies

So far we know that, in the limit considered here, every strictly dominated
strategy will be played by at least one person. In this section I am interested
in the expected number (or proportion) of people who play any given strictly
dominated strategy. Recall that P i,s

µ,m(ω) denotes the proportion of s-players
in population M(i) given state ω.

Let s ∈ Si be a strictly dominated strategy. Then the difference between
the payoff derived from using strategy s and the maximal obtainable payoff
in a given state ω must be positive. I.e. u∗i (ω) − ui(si, ω) > 0. In fact we
must have that minω∈Ω (u∗i (ω)− ui(si, ω)) = a > 0. But then under the
assumptions about fi we must have that there is a σ̃ such that σ(s, ω) =
fi (u∗i (ω)− ui(si, ω)) ≥ σ̃ for all ω ∈ Ω. On the other hand, we, of course,
have that σ(s, ω) ≤ 1 for all ω ∈ Ω. In the following the expectation IE
is always understood to be the expectation given the invariant distribution
πm

µ .
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Theorem 1 Let s ∈ Si be a strictly dominated strategy∗. Then

µλs ≤ IE
[
P i,s

µ,m

]
≤ µλs

σ̃(1− µ) + µ
.

Proof: Let {Ω× Ω,Pr}† denote a probability space, where Pr is such that‡

Pr(ω, ω′) = πm
µ (ω)

(
Qm

µ

)
ω,ω′

for all (ω, ω′) ∈ Ω× Ω.

Let
(
P i,s

µ,m

)
t

denote the proportion of s-players in population M(i) at

time t. Let dP i,s
µ,m denote the change in proportion of s-players in population

M(i) between times t and t + 1. I.e.(
P i,s

µ,m

)
t+1

=
(
P i,s

µ,m

)
t
+ dP i,s

µ,m. (5)

If
(
P i,s

µ,m

)
t
is distributed according to the invariant distribution πm

µ then so

is
(
P i,s

µ,m

)
t+1

and, hence, the expected value IE
[
dP i,s

µ,m

]
= 0. Also all these

three random variables are measurable given the above stated probability
space.

By the law of iterated expectations the last expectation can be written
as IE

[
dP i,s

µ,m

]
= IE

[
IE dP i,s

µ,m

∣∣∣ (
P i,s

µ,m

)]
, and hence

0 = IE
[
dP i,s

µ,m

]
=

mi∑
k=0

πm
µ

(
Λi,s

k

)
IE

(
dP i,s

µ,m

∣∣∣ (
P i,s

µ,m

)
t
=

k

mi

)
. (6)

Conditional on
(
P i,s

µ,m

)
t
= k

mi
, the change dP i,s

µ,m can be viewed as the differ-

ence of two random variables Y
mi

and X
mi

, again both measurable given our
specification of the probability space above, where X(ω, ω′) is the num-
ber of individuals at M(i) who, in the transition from ω to ω′, switch
strategy from something other than s to s, and Y (ω, ω′) is the number
of individuals at M(i) who, in the transition from ω to ω′, switch strat-
egy from s to anything other than s. Conditional on

(
P i,s

µ,m

)
t

= k
mi

, X

and Y are binomially distributed, i.e. X ∼ Bin (mi − k, µλx) and Y ∼
∗In fact this Theorem extends to any pure strategy which is never a best-reply. In

2-player games a strategy is strictly dominated if and only if it is a never best-reply. In
more than 2 player games every strictly dominated strategy is obviously never a best reply,
while there may be a strategy which is never a best reply yet not strictly dominated (see
e.g. Ritzberger (2002, Example 5.7))

†As the state space is finite I omit the sigma-algebra, which can be taken as the set of
all subsets of Ω× Ω, in the description of the probability space.

‡Given the axioms of a probability measure this is sufficient to uniquely define Pr.
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Bin (k, σ(s, ω)(1− µ) + µ(1− λx)). Given that s is a strictly dominated
strategy we know that σ̃ ≤ σ(s, ω) ≤ 1. Given all this, the term

IE
(

dP i,s
µ,m

∣∣∣ (
P i,s

µ,m

)
t
=

k

mi

)
is the difference between the expectation of these two binomial variables,
divided by mi, and bounded below by

IE
(

dP i,s
µ,m

∣∣∣ (
P i,s

µ,m

)
t
=

k

mi

)
≥ k

mi
(σ̃(1− µ) + µ)− µλs

and above by

IE
(

dP i,s
µ,m

∣∣∣ (
P i,s

µ,m

)
t
=

k

mi

)
≤ k

mi
− µλs.

Plugging the lower bound back into Equation 6 we obtain

0 ≥ [σ̃(1− µ) + µ]
mi∑
k=0

k

mi
πm

µ

(
Λi,s

k

)
− µλs, (7)

which by the assumptions of the lemma and by the fact that
∑mi

k=0
k

mi
πm

µ

(
Λi,s

k

)
=

IE
(
P i,s

µ,m

)
yields IE

(
P i,s

µ,m

)
≤ µλs

σ̃(1−µ)+µ . Doing same with the upper bound

yields IE
(
P i,s

µ,m

)
≥ µλs. QED

Note that the expectation in Theorem 1 does not depend on the popu-
lation size. Hence, in any limit in which µ tends to zero, regardless of the
limiting behavior of population sizes mi, we must have that the expected
proportion of s-players tends to zero. In the case of fixed population sizes
this implies that not only the expected proportion, but also the expected
number of s-players tends to zero. In fact this also implies that in this
limit (with fixed mi) the event that no individual plays s has probability 1.
While I do not know whether this has been put on record quite like this, it is
clear, from reading e.g. Samuelson (1994) that the evolutionary elimination
of strictly dominated strategies in such models is well understood. In any
case Theorem 1 has the following corollary, which I will also call a Theorem,
which is somewhat of an analogue to Proposition 5.6 in Weibull (1995), due
to Samuelson and Zhang (1992), which proves the same in the context of
deterministic payoff-monotonic dynamics.

Theorem 2 Let s ∈ Si be a strictly dominated strategy. Then

lim
µ→0

IE
[
P i,s

µ,m

]
= 0.
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Proof: Immediate from Theorem 1. QED
I would like to draw attention to one more observation. Theorem 1

implies, for the limit I consider in this paper, where µ tends to zero while
µmi tends to infinity, that the expected number of s-players tends to infinity,
while the expected proportion tends to zero.

The following result about the variance of P i,s
µ,m when s ∈ Si is a strictly

dominated strategy will become useful later. As in Lemma 1 I will again
consider the most adversarial environment for a strictly dominated strategy
to survive evolution. Let again s ∈ Si be strictly dominated and let fi be
such that fi(0) = 0 and fi(x) = 1 for all x 6= 0.

Lemma 3 Let s ∈ Si be strictly dominated and let fi be such that fi(0) = 0
and fi(x) = 1 for all x 6= 0. Then V

(
P i,s

µ,m

)
= µλs(1−µλs)

2mi
.

Proof: From equation 5 we obtain

V

[(
P i,s

µ,m

)
t+1

]
= V

[(
P i,s

µ,m

)
t

]
+ 2Cov

[(
P i,s

µ,m

)
t
, dP i,s

µ,m

]
+ V

[
dP i,s

µ,m

]
.

As we assume that at time t behavior is governed by the stationary invariant
distribution, we then have that

2Cov
[(

P i,s
µ,m

)
t
, dP i,s

µ,m

]
+ V

[
dP i,s

µ,m

]
= 0. (8)

By definition

Cov
[(

P i,s
µ,m

)
t
, dP i,s

µ,m

]
= IE

[(
P i,s

µ,m

)
t
dP i,s

µ,m

]
− IE

[(
P i,s

µ,m

)
t

]
IE

[
dP i,s

µ,m

]
.

By Theorem 1 and the given assumption about fi we have that IE
[(

P i,s
µ,m

)
t

]
=

µλs. Given the assumption that time t behavior is governed by the station-
ary invariant distribution we have that IE

[
dP i,s

µ,m

]
= 0. Hence,

Cov
[(

P i,s
µ,m

)
t
, dP i,s

µ,m

]
= IE

[(
P i,s

µ,m

)
t
dP i,s

µ,m

]
.

By the law of iterated expectation we have

IE
[(

P i,s
µ,m

)
t
dP i,s

µ,m

]
= IE

[(
P i,s

µ,m

)
t
IE

[
dP i,s

µ,m

∣∣∣ (
P i,s

µ,m

)
t

]]
.

Recall the argument given in the proof of Theorem 1 that dP i,s
µ,m conditional

on
(
P i,s

µ,m

)
t

= k
mi

can be written as the difference between two random

variables Y
mi

and X
mi

(given there). Under the additional assumption about

fi this yields the result that IE
[
dP i,s

µ,m

∣∣∣ (
P i,s

µ,m

)
t
= k

mi

]
= µλs− k

mi
and, hence
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IE
[(

P i,s
µ,m

)
t
IE

[
dP i,s

µ,m

∣∣∣ (
P i,s

µ,m

)
t

]]
= µλsIE

[(
P i,s

µ,m

)
t

]
− IE

[(
P i,s

µ,m

)2

t

]
. Given

that IE
[(

P i,s
µ,m

)
t

]
= µλs we finally have that

Cov
[(

P i,s
µ,m

)
t
, dP i,s

µ,m

]
= IE

[(
P i,s

µ,m

)
t

]2
− IE

[(
P i,s

µ,m

)2

t

]
= −V

[(
P i,s

µ,m

)
t

]
.

Turning to the second term in equation 8 note that

V
[
dP i,s

µ,m

]
= IE

[
V

[
dP i,s

µ,m

∣∣∣ (
P i,s

µ,m

)
t

]]
,

again, by the law of iterated expectation. Recall again that dP i,s
µ,m condi-

tional on
(
P i,s

µ,m

)
t
= k

mi
can be written as the difference between two random

variables Y
mi

and X
mi

as given in the proof of Theorem 1. These are indepen-

dent of each other, conditional on
(
P i,s

µ,m

)
t

= k
mi

, and hence, the variance
of their difference is the sum of their variances. Given the fact that Y is a
binomial random variable, the variance of Y

mi
is given by k

m2
i
(1 − µλs)µλs.

Similarly, the variance of X
mi

is given by mi−k
m2

i
(1− µλs)µλs. The sum of the

two variances is then given by 1
mi

(1− µλs)µλs regardless of the value of k.
This then finally yields that

V
[
dP i,s

µ,m

]
=

1
mi

(1− µλs)µλs. (9)

Using both intermediate results in equation 8 we obtain the desired re-
sult. QED

The next lemma will also be useful later.

Lemma 4 Let s ∈ Si be strictly dominated and let fi be such that fi(0) = 0
and fi(x) = 1 for all x 6= 0. Then it is true that

πm
µ

(
P i,s

µ,m ≤ µλs

2

)
≤ 4

µλsmi
.

Proof: This is immediate from Chebyshev’s inequality, Theorem 1, and
Lemma 3. QED

3.4 Weakly Dominated Strategies

Let w ∈ Si be a weakly dominated strategy which is not strictly dominated.
We then have that ui(w,ω) ≤ u∗i (ω). Let w be in fact weakly dominated
by some mixed strategy x ∈ ∆(Si). We then have that u∗i (ω) − ui(w,ω) ≥

13



ui(x, ω) − ui(w,ω) ≥ 0. Let S−i = ×j 6=iSj . Now, by definition, for any
x ∈ ∆(Si),

ui(x, ω) =
∑

s−i∈S−i

ui(x, s−i)P−i,s−i
µ,m (ω),

where P
−i,s−i
µ,m (ω) =

∏
j 6=i P

j,sj
µ,m(ω), where sj is player j’s part of the strategy

combination s−i. Given that we have that

ui(x, ω)− ui(w,ω) =
∑

s−i∈S−i

(ui(x, s−i)− ui(w, s−i))P−i,s−i
µ,m (ω),

and, given that all elements in the sum are non-negative,

u∗i (ω)− ui(w,ω) ≥ (ui(x, s−i)− ui(w, s−i))P−i,s−i
µ,m (ω) (10)

for any s−i ∈ S−i.
By definition of a weakly dominated strategy we know that there must be

at least one strategy combination s−i such that ui(x, s−i) > ui(w, s−i). The
prevalence of these strategy combinations will then be the determinant as
to whether this weakly dominated strategy will or will not survive evolution
as modelled in this paper. For the given weakly dominated strategy w ∈ Si

let A−i(w) ⊂ S−i be the set of all these strategy combinations against which
x does strictly better than w, i.e. A−i = {s−i ∈ S−i|ui(x, s−i) > ui(w, s−i).
Let P

−i,A−i
µ,m (ω) =

∑
s−i∈A−i

P
−i,s−i
µ,m (ω). The following Theorem is somewhat

of an analogue to Proposition 5.8 in Weibull (1995), which proves the same
in the context of 2-player games and deterministic payoff-linear dynamics.

Theorem 3 Let w ∈ Si be weakly dominated. Suppose limρm
µ →0 IEP

−i,A−i
µ,m >

0. Then limρm
µ →0 IE

[
P i,w

µ,mP
−i,A−i
µ,m

]
= 0 for any choice of learning function

fi.

Proof: Reconsider equation 5, now for strategy w,
(
P i,w

µ,m

)
t+1

=
(
P i,w

µ,m

)
t
+

dP i,w
µ,m. Let Bw ⊂ Ω denote the set of states in which w is a best reply for

individuals at population M(i). The expectation IE
[
dP i,w

µ,m

]
, which as in

the proof of Theorem 1 must be zero, using the law of iterated expectations,
can be written as

IE
[
dP i,w

µ,m

]
= πm

µ (Bw)IE
[
dP i,w

µ,m|Bw
]
+ (1− πm

µ (Bw))IE
[
dP i,w

µ,m|Bw,c
]
, (11)

where Bw,c is the complement of Bw in Ω. Much like in the proof of Theorem
1 the expectation IE

[
dP i,w

µ,m|Bw,c
]

can be rewritten with the recurrent use
of the law of iterated expectations as

IE
[
IE

[
dP i,w

µ,m|Bw,c ∧
(
P i,w

µ,m

)
t
∧

(
P−i,A−i

µ,m

)
t

]]
.
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Given Bw,c w is not a best reply and we can, again as in Theorem 1, write
this conditional expectation as the expectation of the difference between two
random variables Y

mi
and X

mi
, with the same interpretation as in Theorem

1. Given P i,w
µ,m = k

mi
we still have X ∼ Bin(mi − k, µλw) as well as Y ∼

Bin(k, σ(w,ω)(1−µ)+µ(1−λw)). Of course, σ(w,ω) = fi(u∗i (ω)−ui(w,ω))
by the model assumptions. Given the definition of A−i(w) we have that
mins−i∈S−i ui(x, s−i)−ui(w, s−i) = a > 0. Using inequality 10, and the fact
that fi is weakly increasing, we obtain that σ(w,ω) ≥ fi

(
aP

−i,A−i
µ,m (ω)

)
.

Putting all this together we obtain

IE
[
IE

[
dP i,w

µ,m|Bw,c ∧
(
P i,w

µ,m

)
t
∧

(
P−i,A−i

µ,m

)
t

]]
≥

IE
[
P i,w

µ,m

(
fi

(
aP−i,A−i

µ,m

)
(1− µ) + µ

)
− µλw

]
(12)

By the fact that w is weakly dominated we have that Bw ⊂ Ψ, and,
hence, by Corollary 1 we have that limρm

µ →0 πm
µ (Bw) = 0. Hence, from

equation 11 we have that limρm
µ →0 IE

[
dP i,w

µ,m|Bw,c
]

= 0. But then, by in-
equality 12, we have that

lim
ρm

µ →0
IE

[
P i,w

µ,m

(
fi

(
aP−i,A−i

µ,m

)
(1− µ) + µ

)
− µλw

]
≤ 0,

which, given the assumption that limρm
µ →0 IEP

−i,A−i
µ,m > 0 and, hence, that

limρm
µ →0 IEfi

(
aP

−i,A−i
µ,m

)
> 0 implies that

lim
ρm

µ →0
IE

[
P i,w

µ,mfi

(
aP−i,A−i

µ,m

)]
≤ 0. (13)

In fact, given both random variables P i,w
µ,m and fi

(
aP

−i,A−i
µ,m

)
are strictly

non-negative, we must have that

lim
ρm

µ →0
IE

[
P i,w

µ,mfi

(
aP−i,A−i

µ,m

)]
= 0.

Given the assumption that any fi(x) > 0 for all x > 0 and that IE
[
P
−i,A−i
µ,m

]
>

0 this implies the result. QED
Suppose now that for all j 6= i fj is as severe as possible, i.e. fj(x) = 0

if x = 0 and fj(x) = 1 for all x > 0. Suppose furthermore that there is
an s−i ∈ A−i such that for every j 6= i player j’s component of s−i, sj , is
strictly dominated for player j.

Lemma 5 Let w ∈ Si be a weakly dominated strategy for player i. For all
j 6= i let fj be such that fj(x) = 0 if x = 0 and fj(x) = 1 for all x > 0. Let
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s−i ∈ A−i(w) be such that for every j 6= i player j’s component of s−i, sj,
is strictly dominated for player j. Then, for β ∈ IR,

IE

P i,w
µ,m

∏
j 6=i

P
j,sj
µ,m

β
 ≥

∏
j 6=i

µλsj

2

β IE
[
P i,w

µ,m

]
−

∑
j 6=i

4
µλsjmj

 .

Proof: Let 1(·) denote the indicator function, equal to 1 when the expression
in the subscript (·) is true and zero otherwise. Then

IE

P i,w
µ,m

∏
j 6=i

P
j,sj
µ,m

β
 ≥ IE

P i,w
µ,m

∏
j 6=i

P
j,sj
µ,m

β ∏
j 6=i

1(
P

j,sj
µ,m≥

µλsj
2

)
 (14)

≥

∏
j 6=i

µλsj

2

β

IE

P i,w
µ,m

∏
j 6=i

1(
P

j,sj
µ,m≥

µλsj
2

) (15)

≥

∏
j 6=i

µλsj

2

β IE
[
P i,w

µ,m

]
− IE

P i,w
µ,m

1−
∏
j 6=i

1(
P

j,sj
µ,m≥

µλsj
2

) (16)

≥

∏
j 6=i

µλsj

2

β IE
[
P i,w

µ,m

]
− IE

1−
∏
j 6=i

1(
P

j,sj
µ,m≥

µλsj
2

) (17)

≥

∏
j 6=i

µλsj

2

β IE
[
P i,w

µ,m

]
−

∑
j 6=i

πm
µ

(
P

j,sj
µ,m ≤

µλsj

2

) , (18)

which, given Lemma 4, yields the result. QED

Theorem 4 Let Γ = (N,S, u) be an n-player game, i.e. |N | = n. Let the
learning function fi for player i be fi(x) = αxβ for some α > 0. Let w ∈ Si

be a weakly dominated strategy. If β < 1
n−1 then limρm

µ →0 IE
[
P i,w

µ,m

]
= 0.

Proof: Equation 11, in the proof of Theorem 3, still applies here. I.e.

0 = IE
[
dP i,w

µ,m

]
= πm

µ (Bw)IE
[
dP i,w

µ,m|Bw
]
+ (1− πm

µ (Bw))IE
[
dP i,w

µ,m|Bw,c
]
,

where the notation is the same as in the proof of Theorem 3. By Lemma 1,
and the fact that Bw ⊂ Ψ (defined in Corollary 1) we have that πm

µ (Bw) ≤
c(1 − τµ)mi for some constant c > 0 and some τ ∈ (0, 1). By the fact that
dP i,w

µ,m ∈ [−1, 1] we then have that πm
µ (Bw)IE

[
dP i,w

µ,m|Bw
]
≥ −c(1 − τµ)mi .

Hence,

0 ≥ −c(1− τµ)mi + (1− c(1− τµ)mi)IE
[
dP i,w

µ,m|Bw,c
]
. (19)
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Again, as in the proof of Theorem 3, by definition σ(w,ω) = fi(u∗i (ω) −
ui(w,ω)). Given the definition of A−i(w) we have that mins−i∈S−i ui(x, s−i)−
ui(w, s−i) = a > 0. Using inequality 10, and the fact that fi(x) = αxβ, we

obtain that σ(w,ω) ≥ αaβ
(∏

j 6=i P
j,sj
µ,m(ω)

)β
, where sj ∈ Sj is player j’s part

of some s−i ∈ A−i. Similarly to inequality 12, we here obtain

IE
[
dP i,w

µ,m|Bw,c
]

=

IE
[
IE

[
dP i,w

µ,m|Bw,c ∧
(
P i,w

µ,m

)
t
∧

(
P
−i,A−i
µ,m

)
t

]]
≥

IE
[
P i,w

µ,m

(
αaβ

(∏
j 6=i P

j,sj
µ,m

)β
(1− µ) + µ

)
− µλw

]
=

αaβ(1− µ)IE
[
P i,w

µ,m

(∏
j 6=i P

j,sj
µ,m

)β
]

+ µIE
[
P i,w

µ,m

]
− µλw

(20)

Using this in Inequality 19 we obtain

c(1− τµ)mi ≥ (1− c(1− τµ)mi) αaβ(1− µ)IE
[
P i,w

µ,m

(∏
j 6=i P

j,sj
µ,m

)β
]

+(1− c(1− τµ)mi)
(
µIE

[
P i,w

µ,m

]
− µλw

)
.

Now using Lemma 5 we obtain

c(1− τµ)mi ≥ (1− c(1− τµ)mi) αaβ(1− µ)
(∏

j 6=i

µλsj

2

)β

IE
[
P i,w

µ,m

]
− (1− c(1− τµ)mi) αaβ(1− µ)

(∏
j 6=i

µλsj

2

)β ∑
j 6=i

4
µλsj mj

+(1− c(1− τµ)mi)
(
µIE

[
P i,w

µ,m

]
− µλw

)
.

Rearranging and letting d = αaβ

(∏
j 6=i

λsj

2

)β

> 0, we obtain that IE
[
P i,w

µ,m

]
≤

c(1− τµ)mi + (1− c(1− τµ)mi)
(

d(1− µ)µ(n−1)β ∑
j 6=i

4
µλsj mj

+ µλw

)
d(1− µ)µ(n−1)β + µ

,

or alternatively

c(1−τµ)mi

µ(n−1)β + (1− c(1− τµ)mi)
(

d(1− µ)
∑

j 6=i
4

µλsj mj
+ µλw

µ(n−1)β

)
d(1− µ) + µ

µ(n−1)β

.

Now as ρm
µ tends to 0, and under the assumption that β < 1

n−1 , the denomi-
nator tends to d, while the numerator tends to 0. To see the last statement,
note that under this limit, (1−τµ)mi tends to 0 at a faster rate than µ(n−1)β ,
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(1 − c(1 − τµ)mi) tends to 1, and both
∑

j 6=i
4

µλsj mj
as well as µλw

µ(n−1)β tend
to zero. QED

Theorem 4 provides sufficient conditions on the learning function fi un-
der which any weakly dominated strategy in any finite n-player normal form
game is eliminated in the course of evolution. In fact this condition is also
necessary in the following sense.

Theorem 5 Let fi(x) = xβ with β ≥ 1
n−1 . Then there is a finite n-player

normal form game, a set of learning functions {fj}j 6=i, and a weakly domi-
nated strategy w for player i such that limρm

µ →0 IE
[
P i,w

µ,m

]
> 0.

Proof: Let Γ = (N,S, u) be such that |N | = n, Si = {Ai, Bi} for all i ∈ N ,
ui(Ai, s−i) = 1 for all s−i ∈ S−i, ui(Bi, B−i) = 0 where B−i is the strategy
combination where each player j 6= i plays Bj , ui(Bi, s−i) = 1 for all s−i 6=
B−i, uj(Aj , s−j) = 1 for all s−j ∈ S−j for all j 6= i , uj(Aj , s−j) = 1 for all
s−j ∈ S−j for all j 6= i, fj(0) = 0 for all j 6= i, and fj(x) = 1 for all x > 0 for
all j 6= i. Then w = Bi is weakly dominated by Ai for player i, while Bj is
strictly dominated by Aj for all j. We will show the Theorem for β = 1

n−1 .

Given that xβ ≤ x
1

n−1 for all x ∈ [0, 1] for all β > 1
n−1 the Theorem must

then clearly also be true for all such β > 1
n−1 .

Equation 11 still applies here:

0 = IE
[
dP i,w

µ,m

]
= πm

µ (Bw)IE
[
dP i,w

µ,m|Bw
]
+ (1− πm

µ (Bw))IE
[
dP i,w

µ,m|Bw,c
]
,

where the notation is as in the proof of Theorem 3. By Lemma 1 and the fact
that Bw ⊂ Ψ (defined in Corollary 1) we have that πm

µ (Bw) ≤ c(1− τµ)mi

for some constant c > 0 and some τ ∈ (0, 1). By the fact that dP i,w
µ,m ∈ [−1, 1]

we then have that πm
µ (Bw)IE

[
dP i,w

µ,m|Bw
]
≤ c(1− τµ)mi . Hence,

0 ≤ c(1− τµ)mi + (1− c(1− τµ)mi)IE
[
dP i,w

µ,m|Bw,c
]
. (21)

Inequality 20 here holds as an equality,

IE
[
dP i,w

µ,m|Bw,c
]

= (1−µ)IE

P i,w
µ,m

∏
j 6=i

P
j,Bj
µ,m

β
+µIE

[
P i,w

µ,m

]
−µλw. (22)

As the covariance between P i,w
µ,m and

∏
j 6=i P

j,Bj
µ,m must be non-positive, we

have that

IE

P i,w
µ,m

∏
j 6=i

P
j,Bj
µ,m

β
 ≤ IE

[
P i,w

µ,m

]
IE


∏

j 6=i

P
j,Bj
µ,m

β
 .
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By the obvious independence of the P
j,Bj
µ,m for all j 6= i, we have that

IE


∏

j 6=i

P
j,Bj
µ,m

β
 =

∏
j 6=i

IE
[(

P
j,Bj
µ,m

)β
]
.

Jensen’s inequality (given β = 1
n−1 ≤ 1) then implies that

IE
[(

P
j,Bj
µ,m

)β
]
≤

(
IE

[
P

j,Bj
µ,m

])β
.

Given the particular choice of fj ’s here, by Theorem 1 we have that IE
[
P

j,Bj
µ,m

]
=

µλBj . Putting all this together into Inequality 21, we have

0 ≤ c(1−τµ)mi+(1−c(1−τµ)mi)

(1− µ)IE
[
P i,w

µ,m

] ∏
j 6=i

(
µλBj

)β
+ µIE

[
P i,w

µ,m

]
− µλw

 .

Rearranging leads to

IE
[
P i,w

µ,m

]
≥ (1− c(1− τµ)mi)µλw − c(1− τµ)mi

(1− c(1− τµ)mi)
(

(1− µ)µ(n−1)β
∏

j 6=i

(
λBj

)β
+ µ

) ,

or equivalently

IE
[
P i,w

µ,m

]
≥

(1− c(1− τµ)mi)λw − c (1−τµ)mi

µ

(1− c(1− τµ)mi)
(

(1− µ)µ(n−1)β

µ

∏
j 6=i

(
λBj

)β
+ 1

) .

Given β = 1
n−1 the right-hand side of the last inequality converges to

λw∏
j 6=i

(
λBj

)β
+1

> 0. QED

4 Discussion

4.1 The sensitivity to payoff differences

Restricting attention to learning functions of the power form, i.e. fi(x) =
αxβ, for β ∈ (0, 1], one could call 1

β the sensitivity to the payoff-difference
between the individual’s current strategy and the best option available for
an individual with this learning function. The limit when β tends to zero
yields the extreme learning function fi(0) = 0 and fi(x) = α for all x > 0.
This learning function then has an infinity sensitivity to payoff-differences.
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Using the tree arguments introduced to Game Theory by Foster and
Young (1990), Young (1993), and Kandori, Mailath and Rob (1993), Samuel-
son (1994) in his Theorem 5 showed that taking the population size to infin-
ity can lead to the elimination of weakly dominated strategies. Samuelson’s
(1994) Theorem 5 is for a particular 2-player example only. The proof,
however, see Samuelson’s (1994) footnote 14, does extend to all cases in
which the invariant distribution eventually puts limiting probability 1 on
any small neighborhood of a single state. The proof technique based on
these tree arguments, however, does not extend beyond that, i.e. does not
cover all finite normal form games. Under the additional assumption that
the expected number of experimenters in each period, µmi, tends to infinity
while µ tends to zero, and, hence, mi tends to infinity, I was able to avoid the
usual tree arguments by using the properties of the invariant distribution
more directly. My Theorem 4 then gives sufficient conditions, depending on
the number of players n, under which evolution does indeed eliminate all
weakly dominated strategies in any finite normal form game with up to n
players.

Samuelson’s (1994) conclusion, on page 61, that in order for evolution to
eliminate weakly dominated strategies the learning rate must be discontinu-
ous, is not quite warranted. Theorem 4 shows that in order to guarantee the
evolutionary elimination of all weakly dominated strategies in an arbitrary
finite n-player game the individuals’ sensitivity to payoff differences in their
learning functions must be above a certain threshold, in fact above n − 1,
but does not need to be infinite.

I find it quite interesting that this threshold depends on the number of
players. For 2-player games it means that while (by Theorem 5) if individ-
uals’ sensitivity to payoff differences is 1 (i.e. the learning rate is a linear
function of the payoff-difference) the evolutionary elimination of all weakly
dominated strategies is not guaranteed, any sensitivity greater than 1 would
guarantee it. This does mean that the derivative of the learning function
with respect to the payoff difference must be infinite, but the learning func-
tion need not be discontinuous. While I agree with Samuelson (1994) that a
discontinuous learning-function is somewhat counter-intuitive to the idea of
somewhat boundedly rational individuals slowly learning to play the game,
an infinite derivative at zero I do not find so implausible. In fact, it is as if
these individuals have a certain degree of risk-aversion over payoff differ-
ences, not over payoffs, when choosing to switch strategies or not.

Theorems 4 and 5 indicate that in general weakly dominated strategies
are more readily eliminated by evolution the fewer the number of players, or
player positions, n. While it may require a high degree of sensitivity to payoff
differences to guarantee the elimination of all weakly dominated strategies
in an arbitrary finite normal form game with a large number of players n,
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any given weakly dominated strategy may not require such high sensitivity.
Consider the case where a certain weakly dominated strategy w for player i
is only worse than the strategy it is dominated by for one specific strategy
combination of the other players. Suppose now that every other players’s
part of this strategy combination is strictly dominant for this player. But
then this one strategy combination will be played with limiting probability
1, given Theorem 2. In this case, however, it should be obvious that any
degree of sensitivity to payoff differences is sufficient to eliminate the weakly
dominated strategy w. In fact, the results in the previous section suggest
a taxonomy or at least a partial order of weakly dominated strategies with
respect to the sensitivity required for evolution to eliminate them. Of all
strategy combinations against which a certain weakly dominated strategy is
not a best reply there must be one which is most prevalent (in expectation)
among them. Suppose now that this strategy combination is such that for
n1 of the n − 1 other player positions their component of this strategy is
strictly dominant. Suppose further that for another n2 of the n− 1 other
player positions their component of this strategy is strictly dominated.
Of course n1 + n2 ≤ n − 1. The required sensitivity to payoff differences
needed for evolution to eliminate this weakly dominated strategy, according
to the arguments made in the proofs of Theorems 4 and 5 must then lie
between n2 and n− 1− n1.

4.2 S∞W

I now turn to a brief discussion about which other strategies will have to
be eliminated by evolution as modelled in this paper, supposing evolution
eliminates all weakly dominated strategies. In the previous section I investi-
gated under what circumstances, for a given strategy w ∈ Si, does IE

[
P i,w

µ,m

]
tend to zero as ρm

µ tends to 0. Lemma 6, given in the appendix, shows that

whenever limρm
µ →0 IE

[
P i,w

µ,m

]
= 0 then it must be true that, for any ε ∈ (0, 1)

we have πm
µ

(
P i,x

µ,m ≤ ε
)

= πm
µ

(
Φi,x

ε

)
tends to 1 in the limit. This means

that with probability 1 the proportion of individuals playing this strategy
w is below any ε > 0. Given this, however, it must be true that strategies
which are strictly dominated once all weakly dominated strategies are thus
eliminated, must also be eliminated in the course of evolution.

Let Γ1 denote the game which remains when all such weakly dominated
strategies are eliminated. I.e. Γ1 is derived from Γ by reducing each player’s
pure strategy set by all weakly dominated strategies, while the payoff func-
tion is the same (with restricted domain). Let S1

i denote the restricted
strategy set for player i. The next theorem states that, if indeed all weakly
dominated strategies are eliminated, then strategies which are strictly dom-
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inated in Γ1 must also disappear in the limit I consider.

Theorem 6 For i ∈ N let s ∈ S1
i be a strategy which is strictly dominated§

in Γ1. Whenever limρm
µ →0 IE

(
P j,w

µ,m

)
= 0 for every weakly dominated strategy

w ∈ Sj for every player j, then

lim
ρm

µ →0
IE

(
P i,s

µ,m

)
= 0. (23)

Proof: Note that in Γ1 there is a payoff-wedge between strategy s and the
strategy by which it is strictly dominated. But as all the strategies which are
available only on Γ but not Γ1 are played by a vanishing fraction in the limit,
this payoff-wedge is present with probability 1. But then a straightforward
adaptation of the proof of Theorem 1 yields the result. QED

In fact, the above argument can be iterated any finite number of times.
A strategy which survives the iterated deletion of never best replies is called
rationalizable (Bernheim, 1984, and Pearce, 1984). Let a strategy which
is rationalizable in the game obtained from the original by deletion of all
weakly dominated strategies be termed strongly rationalizable. We then
have the following

Theorem 7 For i ∈ N , let di ∈ Si, be a strategy which is not strongly
rationalizable. Whenever limρm

µ →0 IE
(
P j,w

µ,m

)
= 0 for every weakly dominated

strategy w ∈ Sj for every player j, then

lim
ρm

µ →0
IE

(
P i,di

µ,m

)
= 0. (24)

While epistemic conditions for the use of what has been termed the
S∞W -procedure, which stands for the deletion of first all weakly dominated
strategies and then iteratively all strictly dominated strategies, have been
identified by Dekel and Fudenberg (1990), Brandenburger (1992), Börgers
(1994), Gul (1996), and Ben Porath (1997), the above theorem provides an
evolutionary justification for its use. The plausibility of this justification de-
pends only on the plausibility of the degree of sensitivity in payoff differences
required to eliminate all weakly dominated strategies.

4.3 Other related papers

The papers by Hart (2002) and more so Kuzmics (2004) are related to this
paper in terms of the techniques of proof. Both of these papers deal, how-
ever, with a stochastic model of evolution in generic extensive form games

§Again, as in Theorem 1, strictly dominated can be replaced be never a best reply.
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of perfect information. Hart’s (2002) model is perhaps more biologically
flavored and is such that at any given point in time only 1 individual in
each population can change strategy and will typically do so to a better
reply. The limit Hart (2002) considers is one in which the product of ex-
perimentation or mutation rate and the population sizes are bounded from
below. The interpretation of this product, in Hart (2002), is, however, not
quite the same as here, given that in his model only 1 individual in each
population changes strategy at any given point in time. The proofs in Hart
(2004) are quite different from the ones given here, primarily because in
Hart’s (2002) limit one cannot rule out that play is on the boundary of the
strategy simplex.

The model in Kuzmics (2004) is essentially the same as the finite popula-
tion model in Nöldeke and Samuelson (1993). Kuzmics (2004) investigates
the same limit as in this paper, in which the expected number of experi-
menters µmi tends to infinity, while µ tends to zero. The learning-rate in
Kuzmics (2004), however, does not depend on the payoff differences. Yet,
the proofs of Lemma 1, and Corollaries 1 and 2 in Kuzmics (2004) are sim-
ilar, but not identical to the proofs of Lemmas 1 and 2, and Corollary 1 in
this paper. The combined proofs of Theorems 1 and 2 are reminiscent of
the proof of Lemma 4 in Kuzmics (2004). The main Theorems 3, 4 and 5,
although of course in a somewhat similar vein, do not have a counterpart to
any statement in Kuzmics (2004).

A Lemma 6

Lemma 6 Let {Xt}t∈IN ∈ [0, 1] be a sequence of random variables (defined
on a sequence of probability spaces Pt), each of which realizes into the unit
interval. Then the following two statements are equivalent.

1. limt→∞ IE [Xt] = 0

2. limProb (Xt ≤ ε) = 1 for all ε ∈ (0, 1).

Proof: First, suppose limt→∞ IE [Xt] = 0. Suppose lim Prob (Xt ≤ ε) <
1 for some ε ∈ (0, 1). Then there is an ε > 0 and a δ > 0 such that
Prob (Xt ≤ ε) ≤ 1− δ for all t greater than some T . But then

IE [Xt] = IE [Xt|Xt ≤ ε] · Prob (Xt ≤ ε) + IE [Xt|Xt > ε] · Prob (Xt > ε)
≥ 0 · 0 + δ · ε (25)

for all t ≥ T which provides a contradiction.
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Second, suppose lim Prob (Xt ≤ ε) = 1 for all ε ∈ (0, 1). Then

lim
t→∞

IE [Xt] = lim
t→∞

IE [Xt|Xt ≤ ε] · lim
t→∞

Prob (Xt ≤ ε) +

+ lim
t→∞

IE [Xt|Xt > ε] · lim
t→∞

Prob (Xt > ε)

≤ 1 · ε + 0 · 1. (26)

As this is true for any ε ∈ (0, 1) we arrive at the wanted result. QED
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