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Summary. Every agent reports his willingness to pay for one unit of good.
A mechanism allocates some goods and cost shares to some agents. A tie-
breaking rule describes the behavior of an agent who is offered a price equal
to his valuation. We characterize the group strategyproof (GSP ) mechanisms
under two alternative tie-breaking rules. With the maximalist rule (MAX)
an indifferent agent is always served. With the minimalist rule (MIN) an
indifferent agent does not get a unit of good.

GSP and MAX characterize the population-monotonic mechanisms. These
mechanisms are appropriate for submodular cost functions. On the other hand,
GSP and MIN characterize the sequential mechanisms. These mechanisms are
appropriate for supermodular cost functions.

Our results are independent of an underlying cost function; they unify and
strengthen earlier results for particular classes of cost functions.

Keywords: Cost sharing, Mechanism design, Group strategyproof, Tie-breaking
rule.

1 Introduction

Units of a nontransferable, indivisible and homogeneous good (or service) are
available at some non-negative cost. Agents are interested to consume at most
one unit of that good and are characterized by their valuation for it (which we
call their utility). We look for mechanisms that elicit these utilities from the
agents, allocate some goods to some agents and charge some money only to the
agents who are served.

∗I am indebted to Herve Moulin for his very helpful comments, suggestions and support.
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These mechanisms have been widely explored in the cost-sharing literature
(see below). The canonical example is sharing the cost of providing service to
some communities (electricity, water, Internet, etc.), where the cost function is
not necessarily symmetric. Another example is auctions where the seller has
multiple copies of a good.

When agents have private information about their utility, incentive compat-
ibility, here interpreted as strategyproofness (SP), of the mechanism is an issue.
The mechanisms that satisfy SP are the “auction” type mechanisms. That is,
every agent is offered to buy a unit of good at a price that depends exclusively
on the reports of the other agents.

A familiar strengthening of SP is group strategyproofness (GSP ). This
property rules out coordinated misreports of any group of agents. Unlike SP ,
the GSP property depends critically on the way the mechanism serves the
agents who are offered a price equal to their valuation. GSP is clearly violated
if such an agent can be “bossy,” i.e. affect the welfare of another agent without
altering his own.1 For instance, consider the mechanism that offers to the agents
in {1, 2}, following the order 1 � 2, the first unit at price p and the second unit
at price p′, p′ > p. If agent’s 1 utility for a unit of good equals exactly p and
agent’s 2 utility is strictly bigger that p, then GSP requires agent 1 not to be
served. Otherwise, agent 1 gets zero net utility at this profile and he can help
agent 2 by reporting a utility below p. The mechanism will offer agent 2 a unit
of good at price p, so he is better off.

In this paper, we consider two alternative tie-breaking rules and characterize
the GSP mechanisms that satisfy these rules. With the maximalist tie-breaking
rule (MAX), an agent who is indifferent between getting or not getting a unit
of good will always get a unit of good. With the minimalist rule (MIN), the
indifferent agents never get a unit of good.

The mechanisms that satisfy GSP and MAX are the population-monotonic
mechanisms (Theorem 1). Namely, for any subset of agents S consider a vector
of nonnegative payments xS ∈ [0,∞]N such that it is zero for all agents not in S.
A collection of payments is cross-monotonic if the payments are weakly inclusion
decreasing. Given a cross-monotonic collection of payments, we construct the
mechanism as follows. For a report of utilities allocate S∗ at cost xS∗

, where
S∗ is the biggest coalition of agents such that everyone in S∗ is willing to pay
xS∗

to get service –this coalition exists by cross-monotonicity of the payments.
The mechanisms that satisfy GSP and MIN are the sequential mechanisms

(Theorem 2). Loosely speaking, consider any binary tree of size n such that
to every node is attached exactly one agent and any path from root to end
pass through all agents exactly once. At every decision node we also attach
a nonnegative price. Given this tree, we construct the mechanism as follows.
First we offer service to the root agent at the price attached to his node. We
proceed on the right branch from the root if service is purchased and on the left
branch if it is not. The key restriction on prices is that for any two nodes with

1In some contexts, GSP is equivalent to the combination of SP and non-bossiness:
Papai[18][19], Ehlers et.al.[4], Svensson et.al.[24].
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the same agent, the price on the rightist node is smaller than that on the leftist
node.2

Surprisingly, the (welfarewise) intersection of sequential and population-
monotonic mechanisms is almost empty. It contains only the fixed cost mecha-
nisms (Corollary 1), offering the each agent a price completely independent of
the reports.

The most compelling property of population-monotonic mechanisms is that
they are the only GSP mechanisms that treat equal agents equally (Proposition
1). Their downplay is that they ex-ante exclude some agents when there is a
limited number of units. That is, if only k units of good are available, k < n,
then n−k agents will never be served at any profile (see section 6.3). Sequential
mechanisms do not ex-ante exclude any agent. In fact, when there is exactly one
unit of good available, only the priority mechanisms3 meet GSP and allocate at
most one unit of good at any profile (Proposition 2).

We do not make an actual cost function part of the definition of a mechanism.
That is, we place no constraint on the total cost shares collected from the agents
who are served. Thus our characterization results of GSP mechanisms are entire
orthogonal to budget balance and other feasibility requirements (such as bounds
on the budget surplus or deficit). Naturally, one of the first questions we ask
about the class of mechanisms identified in theorems 1 and 2 is when can they
be chosen so as to cover exactly a given cost function. In examples 3 and 9 we
answer these questions under a weak variation of symmetry. In this way, we
recover most types of mechanisms identified in the earlier literature.

2 Related literature

There is some interesting literature in the design of GSP mechanisms for as-
signment problems of heterogeneous goods (Ehlers[3], Ehlers et.al.[4], Ergin[2],
Papai[18][19] and Svensson et.al.[24]). Literature on the design of GSP mecha-
nisms for homogeneous goods was first discussed by Moulin[10] and followed by
several computer science applications (see below).

Population-monotonic mechanisms of our Theorem 1 have received the most
attention in literature because, unlike the sequential mechanisms, they allow a
symmetric treatment of the agents when the cost function is symmetric.

Literature of population-monotonic mechanisms starts with Moulin[10]. When
the cost function is submodular (concave), these mechanisms are characterized
by GSP , budget balance, voluntary participation, nonnegative transfers and
strong consumer sovereignty.4 Roughgarden et.al.[20][21], Pa’l et.al.[17] and Im-
morlica et.al.[6] consider population-monotonic mechanisms when the cost func-
tion is not submodular. Roughgarden et.al.[20] uses submodular population-

2See definition 9 for precise conditions.
3These are a subset of sequential mechanisms that offer to the agents, following an inde-

pendent order, the unit of good at a fixed price until someone accepts the offer.
4Strong consumer sovereignty says that every agent has reports such that he gets (or does

not get) a unit of good irrespective of other people reports.
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monotonic mechanisms to approximate budget balance when the actual cost
function is not submodular. Immorlica et.al.[6] shows that new population-
monotonic mechanisms emerge when consumer sovereignty is relaxed.

Sequential mechanisms of our Theorem 2 are mostly discussed by Moulin[10]
who imposes budget balance for a supermodular (convex) cost function. Theo-
rem 1 there asserts wrongly that all GSP mechanisms meeting budget balance,
voluntary participation, nonnegative transfers and strong consumer sovereignty
charge successively marginal cost following an independent ordering of the agents.
We correct this erroneous statement in example 8.

Roughgarden et.al.[22] uncovers a very clever class of weakly GSP mecha-
nisms that are neither population-monotonic nor sequential (see also Devanur
et.al.[1]). This class contains sequential, population-monotonic mechanisms and
combinations of them. They apply these mechanisms to the vertex cover and
Steiner tree cost sharing problems to improve the efficiency of algorithms derived
by population-monotonic mechanisms. A closely related paper is the companion
paper Juarez[9] developing a model where indifferences are not important. For
instance, agents report an irrational number and payments are rational. It finds
that the class of GSP mechanisms becomes very large. In particular, it con-
tains mechanisms very different from the population-monotonic and sequential
mechanisms (and also those discussed by Roughgarden et.al.[22]). It provides
three equivalent characterizations of the GSP mechanism in this economy, two
of these characterizations are generalizations of the population-monotonic and
sequential mechanisms discussed in this paper.

When a cost function is specified, an important question is to evaluate the
trade-offs between efficiency and budget balance. Moulin and Shenker[14] center
their analysis in population-monotonic mechanisms when the underlying cost
function is submodular. In particular, they find that the population-monotonic
Shapley value mechanism, where the payment of a coalition equals its stand
alone cost, minimizes the worst absolute surplus loss.5 Juarez[8] analyzes similar
trade-offs for the supermodular case. Contrary to the submodular case, he
constructs optimal sequential mechanisms that cuts the efficiency loss by half
with respect to the optimal budget balanced mechanism.

Finally a result by Goldberg et.al.[5] on fixed cost mechanisms is closely
related to our Corollary 1. It characterizes these mechanisms under a very strong
GSP , in particular when agents can coalitionally manipulate by misreporting,
transferring goods and money between them.

3 The model

For a vector x, x ∈ RM , we denote by x[S] the projection of x over S ⊂ M.
xS represents the sum of the S−coordinates of x, xS =

∑
i∈S xi. When there is

no confusion we denote the projection x[S] simply as xS . Let 1M the unitarian
vector in RM , that is 1M = (1, 1, . . . , 1).

5See also Juarez[7] and Moulin[11] for applications of this and another similar measure.
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There is a finite number of agents N = {1, 2, . . . , n}. Every agent has a
utility (willingness to pay) for getting one unit of good. Let u, u ∈ RN

+ , the
vector of those utilities. Therefore, if agent i gets a unit paying xi, his net utility
is ui − xi. If he does not get a unit his net utility is zero.

Definition 1 A mechanism (S, ϕ) allocates to every vector of utilities u a
coalition of agents that gets goods S(u) ⊂ N and the cost shares (payments)
ϕ(u) ∈ RN .

Therefore, the net utility of agent i in the mechanism, denoted by NUi,
is NUi(u) = δi(S(u))(ui − ϕ(u)).6 Let NU(u) the vector of such net utilities.
Notice two mechanism may be equivalent in the welfare sense, that is their net
utilities at any profile are equal, but the mechanisms may be different.

We restrict our attention to mechanisms that satisfy two familiar normative
properties.

• Nonnegative Transfers (NNT): ϕ(u) ∈ RN
+ .

• Individual Rationality (Voluntary participation (VP)): ϕi(u) ≤
uiδi(S(u)).

Nonnegative transfers requires all cost shares to be positive or zero. This is
a common assumption when no transfers between agents are allowed and we do
not want to subsidize any of them.

On the other hand, individual rationality implies that all agents enter the
mechanism voluntarily. That is, the ex-post net utility of the agents is never
smaller than their ex-ante net utility. Because we are assuming nonnegative
transfer, individual rationality implies the agents with zero utility should pay
nothing. However, they may get a unit for free. This is a basic equity condition
protecting individual rights.

We want to characterize the mechanisms that are group strategyproof. That
is, any misreport of a group of agents do not decrease their net utility and strictly
increase one o them.

• Group strategyproof (GSP): For all S ⊂ N, and all utility profiles
u and u′ such that u′N\S = uN\S , it cannot be that NUi(u) ≤ (ui −
ϕi(u′))δi(S(u′)) for all i ∈ S and strict for at least one agent.

We define next our two systematic tie-breaking rules.

• Maximalist tie-breaking rule (MAX): If an agent is indifferent be-
tween getting or not getting a unit of good, then he will get it.

• Minimalist tie-breaking rule (MIN): If an agent is indifferent be-
tween getting or not getting a unit of good, then he will not get it.

6δ is the classic delta function, δi(T ) = 1 if i ∈ T , and 0 otherwise.
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To properly define tie-breaking rule, consider a strategyproof mechanism
(SP). Then there are functions fi : RN\i

+ → [0,∞] for every agent i such that
this mechanism is welfare equivalent to the mechanism which offers agent i a
unit of good at price fi(u−i). That is, if ui > fi(u−i) then i is assigned a unit
of good and pays fi(u−i). If ui < fi(u−i) then i is not assigned a unit of good
and pays nothing. Under MAX, if ui = fi(u−i) then the agent gets a unit of
good at price fi(u−i). On the other hand, under MIN, if ui = fi(u−i) then i
does not get a unit of good and pays nothing.

Remark 1 Notice, on the space of SP mechanisms, MAX is implied by upper
continuity of the mechanism. That is, we say that a rule is upper continuous if
for any decreasing and convergent sequence of utility profiles u1 ≥ u2 ≥ · · · → u∗

such that i ∈ S(uk) for all k, then i ∈ S(u∗). This is easy to check by taking a
decreasing sequence of profiles where the utility of all agents but i is fixed and
uk

i →k fi(u−i).
Similarly, say that a rule is lower continuous if for any increasing and con-

vergent sequence of utility profiles u1 ≤ u2 ≤ · · · → u∗ such that i ∈ S(uk) for
all k, then i ∈ S(u∗). One also checks that lower continuity implies MIN.

Finally, our model is equivalent to the reduced model where agents have
utility bounded above by a positive value L. A price equal to ∞, fi(u−i) = ∞,
is reinterpreted in the new model as a price of L + ε, ε > 0. That is, agent i is
offered a unit of good at a price above his maximum utility.

4 Population-monotonic mechanisms and MAX

Definition 2 A cross-monotonic set of cost shares (payments) assigns to every
coalition S ⊆ N a vector xS ∈ [0,∞]N such that xS

[N\S] = 0 and moreover

If S ⊆ T then xS
[S] ≥ xT

[S].

We denote by χN a cross-monotonic set of cost shares, χN = {xS | S ⊆ N}.
We interpret xS as the payment when the agents in S, and only them, are

served. Therefore, by NNT and V P it should be zero for the agents outside S.
The key feature is that payments should not increase as coalition increases.

This implies that for every utility profile u the set of feasible coalitions, F (u) =
{S ∈ 2N | xS ≤ u}, has a maximum element with the inclusion ⊂. To see this,
notice if S, T ∈ F (u) then by cross-monotonicity S ∪ T ∈ F (u).

Definition 3 Given a cross-monotonic set of cost shares χN , we define a population-
monotonic mechanism (S, ϕ) as follows. For every utility profile u, S(u) is the
maximum feasible coalition at u and ϕ(u) = xS(u).

Theorem 1 i. A mechanism satisfies GSP and MAX if and only if it is
population-monotonic.
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ii. A mechanism is GSP and monotonic in size, that is if u ≤ ũ then S(u) ⊆
S(ũ), if and only if it is welfare equivalent to a population-monotonic
mechanisms.

Notice part i of this theorem is an exact characterization of population-
monotonic mechanisms. On the other hand, part ii is weaker than part i because
only holds in the welfarewise sense. An easy example can be constructed for
one agent (see example 4).

Given a cross-monotonic set of cost shares χN , we can also implement its
associated population-monotonic mechanism by playing the following demand
game proposed by Moulin[10]. We offer agents in N units of good at price xN .
If all of they accept it, then everyone is served at prices xN . If only agents in
S accept, then we remove agents in N \ S from the game and offer agents in S
units of good at price xS . Continue similarly until all of the agents in a coalition
accepted or every agent in N was removed from the game.

Example 1 (Geometric description of population-monotonic mechanisms for n = 1, 2)
The one agent mechanisms can be described by a constant x, x ∈ R+ ∪ {∞}.
The agent gets a unit and pays x if his utility is bigger than or equal to x. He
does not get a unit and pays nothing otherwise.

Figure 1: Generic form of 2-agent population-monotonic mechanisms.

The two agent mechanisms should be generated by a cross-monotonic set of
cost shares. Thus 0 ≤ x

{1,2}
1 ≤ x1

1 and 0 ≤ x
{1,2}
2 ≤ x2

2 (see figure 1).
By MAX, the level set of {1, 2} is closed. The borders between the level sets

of {1} and ∅, and {2} and ∅, should belong to the {1} and {2} respectively.

As is well know from previous literature, if the actual cost of the service C is
submodular with respect to coalitions, we can choose a population-monotonic
mechanism to cover this cost exactly. For instance, we can choose the cross-
monotonic set of cost shares χN where the payments of the agents in S are given
by the egalitarian solution C(S)

|S| . We can alternatively choose the payments of
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those agents given by the Shapley value or the Dutta-Ray egalitarian solution
on the stand alone cost function.

Definition 4 We say a mechanism satisfies strong consumer sovereignty (SCS)
if every agent i has utility profiles ūi and ũi such that for any profile of the other
agents u−i, i 6∈ S(ūi, u−i) and i ∈ S(ũi, u−i).

Moulin[10] proved that, in the space of submodular cost functions, any
mechanism that is budget balanced, SCS and GSP should be implemented
as a population-monotonic mechanism for a set of cross-monotonic and budget-
balanced cost shares. The result we propose is more general. We show that
population-monotonic mechanisms are related to the cross-monotonic cost shar-
ing function. However, as shown in example 3, this does not imply the associ-
ated budget balanced cost sharing function is submodular. Hence we capture
Moulin’s mechanisms and a few more.

Example 2 Immorlica et.al.[6] proposes an example where exactly one agent
pays a positive amount when a coalition of agents is served. This example relaxes
the SCS condition on Moulin[10] result (see above), therefore is not captured
by Moulin’s mechanisms. However, it is captured by our class of population-
monotonic mechanisms. For a submodular cost function, order the agent arbi-
trary, say i1 �, . . . ,� in. Offer the agents, following this order, a unit of good at
the cost of himself and the agents after him. The mechanism ends when some-
one accepts the offer or when we made an offer to all agents. That is, agent
i1 will be offer a unit at price C(i1, . . . , in). If he accepts, the mechanism ends
there. If he rejects, we offer agent i2 a unit of good at price C(i2, . . . , in), and
so on. The cross-monotonic set of cost shares that implements this mechanism
is xS

i∗ = C(Di∗) and xS
j = 0 for all j 6= i∗, where i∗ is the maximal element in

S and D∗
i is the set of dominated agents by i∗ with � .

Definition 5 We say the mechanism (S, ϕ) meets the equal share property
(ESP) if every agent in the coalition that is getting service pays the same. That
is, if ϕi(u) = ϕj(u) for all i, j ∈ S(u).

Example 3 Consider any cost function C : 2N → R+ such that its average
cost function AC, AC(S) = C(S)

|S| , is not increasing as coalition increases.
xS

i = AC(S) if i ∈ S, xS
i = 0 if i 6∈ S, defines a cross-monotonic set of cost

shares that covers the cost exactly and meets the ESP .
It is easy to see that the monotonicity of AC does not imply the concavity of

C. Hence, there are ESP cross-monotonic set of cost shares whose associated
cost function is not concave.

Finally, notice that a ESP cross-monotonic set of cost shares covers exactly
the cost of C if and only if its average cost AC is not increasing.

In general, if the cross-monotonic set of cost shares χN does not meet the
ESP , then the cost function C such that χN covers exactly its cost may not be
easy to describe. See Sprumont[23] and Norde et.al.[16] for characterizations of
these cost functions.
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5 Sequential mechanisms and MIN

Definition 6 A sequential tree is a binary tree of length n such that:

i. at every node there is exactly one agent in N and a price in [0,∞].

ii. Every path from the root to a terminal node contains all agents in N
exactly once.

In figure 3 we show sequential trees for the agents in N = {1, 2, 3}. Every
node contains a number and a letter. The number represent the agent in this
node. The letter represent a prices in [0,∞].

Given this sequential tree, consider any path in the tree and a non terminal
node ζ in this path. We say ζ is leftist (rightist) on this path if the edge in the
path that follows ζ is a left (right) edge.

For instance, in figure 3(a), the path [1w, 2y, 3c] contains one rightist node
and one leftist node. 1w is rightist and 2y is leftist.

One very important path is from a node to the root of the tree. We denote
by P0(ζ) this path starting at node ζ. For instance, in figure 3(a), P0(3c) =
[1w, 2y, 3c], P0(3d) = [1w, 2y, 3d] and P0(2x) = [1w, 2x].

Notice the intersection of two paths is also path. We use u to denote it. For
instance, P0(3c) u P0(3d) = [1w, 2y].

Definition 7 Let ζ and ζ ′ two nodes in a sequential tree. We say the node ζ
is on the left of ζ ′ if the terminal node of P0(ζ) u P0(ζ ′) is leftist on P0(ζ) and
rightist on P0(ζ ′).

For instance, in figure 3(a), P0(3c) = [1w, 2y, 3c], P0(3d) = [1w, 2y, 3d].
Since 2y is leftist in [1w, 2y, 3c] and rightist in [1w, 2y, 3d], then 3c is on the left
of 3d.

Finally, if T is a path and i is an agent in this path, i ∈ T, then xT
i is the

price of i in T.

Definition 8 (Feasible tree) Consider a sequential tree and any two nodes ζ
and ζ ′ with a common agent k such that ζ is on the left of ζ ′. Also, assume
every rightist node in P0(ζ) or P0(ζ ′) has finite value. Let L the maximal path
of P0(ζ) that does nos intersect P0(ζ ′), that is L = P0(ζ) \ (P0(ζ) u P0(ζ ′)).
Similarly, let R = P0(ζ ′) \ (P0(ζ) u P0(ζ ′)).

We say a sequential tree is feasible if for any two nodes ζ and ζ ′ as above,
if the price of agent k is such that xL

k > xR
k , then there is an agent i ∈ R ∩ L

such that:

(a) i is leftist in L and rightist in R and xL
i < xR

i , or

(b) i is rightist in L and leftist in R and xL
i ≥ xR

i .

Notice a sufficient condition to guarantee a feasible sequential tree is that
for any two nodes with the same agent, the price of leftist node is not bigger
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than the price of rightist node. This condition is necessary when there are three
agents or less (see examples 4, 5 and 6). Example 7 shows this is not true when
there are more than three agents.

Definition 9 (Sequential mechanisms) Given a feasible sequential tree we
construct a sequential mechanisms as follows:

We offer the agent in the root of the tree a unit of good at the price of his
node. If his utility is bigger than the offered price, then we allocate him a unit
at this price and go right on the tree. If his utility is smaller than or equal to
the offered price then we do not allocate him a unit and go left on the tree. We
continue similarly with the following agent until we reach the end of the tree.

Theorem 2 A mechanism is GSP and MIN if and only if it is sequential.

Example 4 (Geometric description of sequential mechanisms for n = 1, 2)
The one agent mechanisms are easy to describe. For every x1 ∈ [0,∞], agent 1
gets a unit of good at price x1 if u1 > x1.

A two agents mechanism such that 2 has priority over 1, is shown in figure
2. Agent 2 gets a unit of good at price x2 if u2 > x2. If 2 gets a unit of good,
then agent 1 gets a unit of good at price d1 if u1 > d1. On the other hand, if
agent 2 did not get a uit of good, then agent 1 gets a unit of good at price d2 if
u1 > d2. By feasibility of the tree d2 ≤ d1.

Figure 2: Generic form of 2-agent sequential mechanisms.

Example 5 Assume there are three agents. Figure 3 shows sequential trees
for three agents. Every node contains an agent from {1, 2, 3} and a nonegative
price.

On figure 3(a), a feasible sequential tree (assuming finite values) implies:
x ≤ y, a ≤ b and c ≤ d. Also, if x < y then b ≤ c.

To see this, consider nodes 2x and 2y. Since they are consecutive nodes,
their paths to the root of the tree only differ in 2x and 2y respectively. Then
conditions (a) and (b) cannot be satisfied. Hence x ≤ y.
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Figure 3: Possible orders for three agents. (a) Agents follow order 1,2,3. (b)
Agents 2 and 3 follow different order depending on whether agent 1 is getting
or not getting service.

Similarly, a ≤ b and c ≤ d are satisfied by comparing nodes 3a and 3b, and
3c and 3d respectively.

Now consider the nodes 3b and 3c. If x < y, then condition (a) is not satisfied
because 2y is not rightist. Condition (b) is clearly not satisfied. Therefore it
cannot be that b > c. Hence x < y and a ≤ b ≤ c ≤ d.

Finally, assume x = y. Comparing nodes 3a and 3c, then conditions (a)
and (b) cannot be satisfied. Thus a ≤ c. Similarly, comparing nodes 3b and 3d
we have that conditions (a) and (b) cannot be satisfied satisfied. Thus b ≤ d.
Therefore, x = y, a ≤ b ≤ d and a ≤ c ≤ d.

If b ≤ c then for every two nodes with same agent, the value on leftist node
is smaller than value on rightist node.

If b > c then because agents 1 and 2 have priority, we can exchange their
order on the tree. This will look like figure 4. With this order, for every two
nodes with same agent, the value on leftist node is smaller than value on rightist
node.

Example 6 Now consider the figure 3(b). Then feasibility of the tree (assuming
finite values) requires that a ≤ b ≤ y and x ≤ c ≤ d. That is for every two nodes
with same agent, the value on leftist node is smaller than value on rightist node.

To see this, by comparing nodes 3a and 3b, and 2c and 2d, we get (similarly
as example above) that a ≤ b and c ≤ d respectively.

Now we compare nodes 3b and 3y. Then there is no common agent in their
path to the root, thus conditions (a) and (b) cannot be satisfied. Hence b ≤ y.
That is, a ≤ b ≤ y.

Similarly, by comparing nodes 2x and 2c, x ≤ c. Hence x ≤ c ≤ d.

Example 7 Consider the mechanism generated by sequential tree of figure 5
(agents are in the rectangles). For every two nodes with same agent, the value
on leftist node is not bigger than value on rightist node, except for nodes (4 10)
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Figure 4: .

Figure 5: Four agent example such that for every two nodes with same agent,
the value of rightist node may not be smaller than value of leftist node.

and (4 9). At these nodes, their paths to the root contain agent 2. This agent
meets condition (b). Therefore this tree is feasible.

However, the value on leftist node (4 10) is not smaller than value on leftist
node (4 9).

Since agents 1 and 2 have priority, we can also exchange their positions and
leave agent agent 2 in the root. If this the case, node (3 8) is on the left of (3
7).

Consider a sequential mechanism and assume agent i∗ is in the root of its
feasible sequential tree. Consider the leftist (rightist) sequential mechanism
for N \ i∗ agents, generated by the feasible sequential subtree where agent i∗

is leftist (rightist). Then, this leftist mechanism should Pareto dominate the
rightist mechanism at any profile of N \ i∗ agents. That is, for any profile of
uN\i∗ agents, any agent in N \i∗ should be better off without agent i∗ than with
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agent i∗. To see this, assume at this profile agent j ∈ N \ i∗ is strictly better off
with rightist mechanism. Then when the utility of agent i∗ equals his offered
price, ui∗ = x∗i , by MIN we should allocate with leftist mechanism and i∗ is
not served. Thus agent i∗ can help agent j∗. He can increase his utility profile,
he will be served at a price equal to his valuation and agent j∗ will be better
off.

The class of sequential mechanisms resembles the incremental cost mecha-
nism (Moulin[10]). That is, consider a supermodular (convex) cost function and
a tree as above. Start with the agent i1 in the root and offer him a unit of good
at price C(i1). If he buys, continue with the agent i2 on the right of the tree
and offer him a unit of good at price C(i1, i2) − C(i1). If i1 did not buy, then
offer the agent on the left of the tree, k2, a unit of good at price C(k2). Proceed
similarly with the following agents until you reach the end of the tree.

Theorem 1 in Moulin[10] suggests the incremental cost mechanism capture
all mechanism that are budget balanced, V P, NNT and SCS when the cost
function C is supermodular. However, this is not true, as shown on next exam-
ple.

Example 8 Consider the supermodular cost function:

C(i) = 1, C(1, 2) = 3, C(1, 3) = 5, C(2, 3) = 6, C(1, 2, 3) = 15.

By choosing the ordering 1 � 2 � 3, the cost shares are as follows:
x{1,2,3} = (1, 2, 12), x{1,2} = (1, 2, 0), x{1,3} = (1, 0, 4), x{2,3} = (0, 1, 5), x{i} =

1i.
When the utility profile is u = (1, 1.5, 4.5) there are two options depending

on whether 1 decides to get or not get a unit. If agent 1 gets a unit, then 2 does
not get a unit and 3 gets a unit. Thus {1, 3} gets service and the cost share is
(1, 0, 4). If agent 1 does not get a unit, then 2 get a unit and 3 does not get
a unit. Thus {2} gets service and the cost share is (0, 1, 0). Given that 1 is
indifferent between getting and not getting a unit, he may help 2 or 3. Thus
the mechanism cannot be GSP . The reason is clear by our analysis. The leftist
mechanism without agent 1 does not Pareto dominate the rightist mechanism.

What is important from Moulin[10] is that incremental cost mechanism may
not be fully GSP , but they are GSP except when agents are indifferent between
getting and not getting a unit of good (see Juarez[9]). Thus the mistake is very
tiny.

Whenever the supermodular cost function and the ordering of the agents give
a sequential game that is GSP , it should be captured by a sequential mechanism
discussed above.

On the other hand, given a sequential mechanism, the associated budget
balance cost function —the cost of S defined as the sum of the payments on
coalition S— may not be supermodular (see example below). So these mech-
anisms capture even more mechanism that those generated by the incremental
cost mechanisms.
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Example 9 (Sequential mechanisms that meet ESP ) Consider an arbi-
trary order of the agents, assume without loss of generality that 1 � 2 � · · · � n,
and arbitrary values a1 ≥ a2 ≥ · · · ≥ an. Given this order and numbers, con-
struct the cost function as follows:

C(S) =| S | max
k∈S

ak.

For this cost function, there is a sequential mechanism that covers its cost
exactly and meets ESP. To see this, construct a sequential tree following linearly
the order � . The price of a node ζ is ak, where k is the maximal rightist agent
(with �) in P0(ζ).

In this mechanism, the agents of every coalition that contains agent 1 pay
a1. The agents of every coalition that contains agent 2 but not 1 pay a2. The
agents of every coalition that contains agent 3 but not 1 or 2 pay a3, etc.

Clearly, this mechanism meets ESP . This tree is feasible because for every
two nodes with the same agent, the price of leftist node is not smaller than the
price of rightist node. Thus the mechanism is sequential and covers the cost C
exactly.

Similarly, it is easy to check that any sequential mechanism that meets ESP
should be of this form. Hence, the class of cost functions whose cost is covered
exactly by ESP -sequential mechanism are those described above.

Finally, notice this cost function may not be supermodular. We can easily
find values that meet the next inequality:

C(1, 3) + C(2, 3) = 2a1 + 2a2 > 3a1 + a3 = C(1, 2, 3) + C(3).

6 Comparison between population-monotonic and
sequential mechanisms

6.1 The intersection of population-monotonic and sequen-
tial mechanisms

Although the intersection of MAX and MIN is empty by definition, there is a
small class of mechanisms that are welfare equivalent to both a sequential and
a population-monotonic mechanism.

Definition 10 Given x1, . . . , xn ∈ [0,∞], a fixed cost mechanism is imple-
mented by offering to agent i a unit of good at price xi. Indifferences are broken
arbitrary. That is, for the utility profile u, agent i is guaranteed a unit if ui > xi.
Agent i does not get a unit if ui < xi. At ui = xi he may or may not get a unit.

Corollary 1 A mechanism is welfare equivalent to a sequential and a population-
monotonic mechanism if and only if it is a fixed cost mechanism.

This result shows that the behavior of indifferences have a big impact on the
class of GSP mechanism. But one can argue that indifferences are rare event,
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so that a better model is one where the domain of utilities and mechanisms
precludes indifferences. On such domain, the class of GSP mechanisms will
plow and contain (much) more than the sequential and population-monotonic
mechanisms. We analyze such domain in Juarez[8] and characterize the GSP
mechanisms in this domain.

6.2 Sequential trees and population-monotonic mechanisms

When there is priority of agents, we may get population-monotonic mechanisms
very similar to sequential mechanisms. Indeed, consider any feasible sequen-
tial tree. Using this tree, we construct a population-monotonic mechanism as
follows:

Implement the mechanism as before, but the direction to go in the tree is
the opposite. That is, we offer to the agent in the root a unit of good at the
price of his node. If he buys, we go left on the tree (instead of right). If he does
not buy, we go right on the tree (instead of left). We continue similarly with
next agents until we reach the end of the tree.

Since the payments in a feasible sequential tree are decreasing as coalition
increases, then the payments are cross-monotonic when we follow the opposite
direction. Therefore this mechanism is population-monotonic.

Thus, we have an injective relation between sequential and population-
monotonic mechanisms. Hence a social planner has much more freedom when
he chooses a population-monotonic mechanism rather than a sequential mecha-
nism.

6.3 Treatment of equal agents

Definition 11 We say a mechanism satisfies equal treatment of equals (ETE)
if for any u such that ui = uj , i ∈ S(u) then j ∈ S(u) and ϕi(u) = ϕj(u).

Proposition 1 A mechanism meets GSP and ETE if and only if it is welfare
equivalent to a population-monotonic mechanism that meets ESP .

This proposition not only talks in favor of population-monotonic mecha-
nisms as GSP mechanisms meeting this basic equity requirement. It also shows
the incompatibility of GSP and fairness for any other mechanism that is not
welfare equivalent to a population-monotonic. In particular, it rules out se-
quential mechanisms and also those GSP mechanisms discussed by Juarez[9]
and Roughgarden[22].

6.4 Limited number of goods

When a social planner or seller has (can produce) less than n units of good,
it is impossible to meet simultaneously ETE and GSP .7 This is easy to
check by looking at the utility profiles of the form (x, . . . , x), x > 0. By ETE,

7Except by the trivial mechanism that does not serve anyone at any profile.
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S(x, . . . , x) = ∅ for all x. Hence, by proposition 1 above and taking into account
that the smallest cost share in a population-monotonic mechanism is achieved
when serving N, the mechanism should not allocate any unit at all.

Instead of ETE, another equity requirement is to not exclude ex-ante any
agent from the mechanisms. As we see, this cannot be satisfied by population-
monotonic mechanisms. That is, if only k units of good are available, k < n,
then any population-monotonic mechanism is such that n − k agents are not
served at any profile. To see this, notice coalition N never gets service, therefore
the cost shares of N should have at least one coordinate equal to ∞. Thus the
agent i with such coordinate never participates in the game because his smallest
payment is achieved when serving N . We remove this agent from the game and
proceed similarly with the remaining coalition N \ i, until we have removed at
least n− k agents.

On the other hand, there are many sequential mechanisms that do not ex-
ante exclude any agent. If k ≥ 2, some easy combination of sequential and
population-monotonic mechanisms can be constructed.

Definition 12 Given an arbitrary an arbitrary order of the agents i1, . . . , in
and arbitrary prices (some of them may be infinity) x1, x2, . . . , xn, we define
a priority mechanism as follows: Start with agent i1 and offer him a unit of
good at price x1. If he buys the mechanism stops there. If he does not buy,
then continue with agent i2 and offer him a unit of good at price x2. Continue
similarly until some agent buy or we offered a unit to all agents.

Notice priority mechanisms are sequential mechanisms for the feasible se-
quential tree such that agents are ordered linearly following the order i1, . . . , in;
only the most leftist branch of the tree has prices equal to (x1, x2, . . . , xn) and
any other node has a price equal to ∞.

Proposition 2 Suppose a mechanism is GSP and allocates at most one unit
of good at any profile, then the mechanism is welfare equivalent to a priority
mechanism.

Notice this proposition is independent of the tie-breaking rule. In particular,
it shows that when there is only one unit of good, sequential mechanisms are
the only GSP mechanisms that do not exclude ex-ante any agent.
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Proofs

Proof of Theorem 1.

Population-monotonic mechanisms meet MAX and GSP.

Population-monotonic mechanisms clearly meet MAX.
We prove by contradiction that these mechanisms meet GSP . Assume coali-

tion S̃ misreports ũS̃ when the true profile is u.
Let ūS̃ = max(uS̃ , ũS̃), where max is taken element by element. By cross-

monotonicity, coalition S̃ also misreports ūS̃ when the true profile is u.
By cross-monotonicity and since there is one agent who strictly increases his

net utility, S(ūS̃ , u−S̃) ⊃ S(u). Finally, since S(ūS̃ , u−S̃) is not feasible at u,

ũi ≥ ϕi(ūS̃ , u−S̃) > ui for some i ∈ S̃. This is contradiction because agent i is
worse off by misreporting.

Any mechanism that is MAX and GSP is population-monotonic.

Let (S, ϕ) a mechanism that meets these properties. We denote by fi(u−i)
the price agent i should pay to get a unit of good when the utilities of the
remaining agents is u−i.

Step 0.[Monotonicity] fj(ũi, u−ij) ≤ fj(ui, u−ij) for all ũi > ui.
Proof.
We prove this by contradiction. Suppose fj(ũi, u−ij) > fj(ui, u−ij). Let ūj

such that fj(ũi, u−ij) > ūj > fj(ui, u−ij).
Case 1. fi(ūj , u−ij) > ũi or fi(ūj , u−ij) ≤ ui

By SP and MAX, at the profiles (ũi, ūj , u−ij) and (ui, ūj , u−ij) agent i is
simultaneously served or not served at price fi(ūj , u−ij). Hence when the true
utility is (ũi, ūj , u−ij), agent i can help j by misreporting ui. This contradicts
GSP .

Case 2. ui < fi(ūj , u−ij) ≤ ũi.
Let ûi = fi(ūj , u−ij). By SP and MAX, agent i is being served at price ûi at

the profiles (ũi, ūj , u−ij) and (ûi, ūj , u−ij). Thus, by GSP, fj(ûi, u−ij) ≥ ūj . To
see this, assume fj(ûi, u−ij) < ūj . Then, when the true profile is (ũi, ūj , u−ij),
agent i helps j by misreporting ûi. This contradicts GSP.

Hence, at the true profile (ûi, ūj , u−ij), agents i and j get zero net utility be-
cause fj(ûi, u−ij) ≥ ūj and ûi = fi(ūj , u−ij). Thus agent i helps j by reporting
ui. This contradicts GSP.

Step 1. If S(u) = S∗ and ϕ(u) = ϕ∗ then for all ũ such that ũ[S∗] ≥ ϕ[S∗]

and ũ[N\S∗] ≤ u[N\S∗], S(ũ) = S∗ and ϕ(ũ) = ϕ∗.
Proof.
Let i ∈ S∗. Since ũi ≥ fi(u−i) = ϕ∗

i , then by SP and MAX, i ∈ S(ũi, u−i)
and ϕi(ũi, u−i) = ϕ∗

i .
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Let j, j 6= i. Then NUj(ũi, u−i) = NUj(u). To see this, if NUj(ũi, u−i) >
NUj(u), then when the true profile is u, agent i helps j by reporting ũi.
This contradicts GSP. The case NUj(ũi, u−i) < NUj(u) is analogous. Thus
NUj(ũi, u−i) = NUj(u) for all j 6= i.

Therefore, if j ∈ S∗ and NUj(ũi, u−i) = NUj(u) > 0 then j ∈ S(ũi, u−i)
and ϕj(ũi, u−i) = ϕ∗

j .
Assume j ∈ S∗ and NUj(ũi, u−i) = NUj(u) = 0. Moreover, to get a contra-

diction, assume j 6∈ S(ũi, u−i). Thus, fj(ũi, u−ij) > uj = fj(u−j). By step 0,
ui > ũi ≥ ϕ∗

i . Let ūj such that ūj > uj . By step 0,

fi(ūj , u−ij) ≤ fi(uj , u−ij) ≤ ũi < ui.

Hence, when the true profile is (ūj , ũi, u−ij), agent i can help j by misreporting
ui : Agent i is served in both profiles at price fi(ūj , u−ij), however agent j
is offered a unit at a cheaper price fj(u−j). This contradicts GSP. Hence j ∈
S(ũi, u−i) and ϕj(ũi, u−i) = ϕ∗

j .
Similarly as above, assume to get a contradiction that j 6∈ S∗ but j ∈

S(ũi, u−i). Thus, fj(ũi, u−ij) = uj > fj(u−j). So, we are in exactly in the
previous case but changing the role of ũi and ui. Therefore this cannot occur,
thus j 6∈ S(ũi, u−i)

Hence S(ũi, u−i) = S∗ and ϕ(ũi, u−i) = ϕ∗. By changing one agent at a
time, we have that S(ũS∗ , u−S∗) = S∗ and ϕ(ũS∗ , u−S∗) = ϕ∗.

Let j 6∈ S∗. By SP and MAX, ũj ≤ uj < fj(ũS∗ , u−S∗∪j), hence j 6∈
S(ũj , ũS∗ , u−S∗∪j). Similarly as above, by GSP NUk(ũj , ũS∗ , u−(S∗∪j)) = NUk(ũS∗ , u−S∗)
for all k 6= j.

By step 0, fk(ũj , ũS∗\k, u−S∗∪j) ≥ fk(uj , ũS∗\k, u−S∗∪j) for all k 6= j.
Clearly, if NUk(ũS∗ , u−S∗) > 0, then fk(ũj , ũS∗\k, u−(S∗∪j)) = fk(uj , ũS∗\k, u−(S∗∪j)).

Assume, k ∈ S∗ and NUk(ũj , ũS∗ , u−S∗∪j) = NUk(ũS∗ , u−S∗) = 0. Also, as-
sume to get a contradiction that k 6∈ S(ũj , ũS∗ , u−S∗∪j). Then, fk(ũj , ũS∗\k, u−S∗∪j) >
uk = fk(uj , ũS∗\k, u−S∗∪j).

Let ūk such that ūk > uk. By monotonicity

fj(ūk, ũS∗\k, u−S∗∪j) ≤ fj(uk, ũS∗\k, u−S∗∪j).

First assume fj(ūk, ũS∗\k, u−(S∗∪j)) > uj > ũj . Then when the true profile
is (ūk, ũj , ũS∗\k, u−(S∗∪j)), agent j can help agent k by misreporting uj : Agent
j does not get a unit in both profiles, however agent k gets a unit at a cheaper
price fk(uj , ũS∗\k, u−S∗∪j). This contradicts GSP.

Second, assume fj(ūk, ũS∗\k, u−(S∗∪j)) ≤ uj . Let ūj such that ūj > uj . By
step 1,

fk(ūj , ũS∗\k, u−S∗∪j) ≤ fk(uj , ũS∗\k, u−S∗∪j) = uk < ūk.

Thus when true profile is (uk, ūj , ũS∗\k, u−S∗∪j), agent k helps j by misreporting
ūk : In both profiles agent k is served at a price fk(ūj , ũS∗\k, u−S∗∪j). On the
other hand, agent j is served at a cheaper price fj(ūk, ũS∗\k, u−S∗∪j). This
contradicts GSP.
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Hence, if k ∈ S∗ then k ∈ S(ũS∗∪j , u−S∗∪j) and ϕk(ũS∗∪j , u−(S∗∪j)) =
ϕk(ũS∗ , u−S∗).

Finally, notice the case k 6∈ S∗, NUk(ũj , ũS∗ , u−(S∗∪j)) = NUk(ũS∗ , u−S∗) =
0, but k ∈ S(ũS∗∪j , u−(S∗∪j)) cannot occur. This is analogous to previous case
by exchanging the role of ũj and uj .

By changing one agent at a time, S(ũ) = S∗ and ϕ(ũ) = ϕ∗.

Step 2. If S(u) = S(ũ) then ϕ(u) = ϕ(ũ).
Proof.
Let S∗ = S(u) = S(ũ), ū[S] = max(ũ[S], u[S]) and ū[N\S] = min(ũ[N\S], u[N\S])

(where max and min are taken element by element).
By step 1, comparing ū and u, S(ū) = S∗ and ϕ(ū) = ϕ(u). Similarly,

comparing ū and ũ, ϕ(ū) = ϕ(ũ).

Step 3.
In this final step we prove the theorem by induction on the number of agents.

The base of induction is the case n = 1. The mechanisms are easy to construct.
Given x ∈ [0,∞], if u1 ≥ x then (S, ϕ)(u1) = (1, x). On the other hand, if u1 < x
then (S, ϕ)(u1) = (∅, 0). These mechanisms are clearly population-monotonic.

For the induction hypothesis, assume that any GSP and MAX mechanism
for k agents, k < n, is population-monotonic. We prove this for a mechanism
(S, ϕ) defined for the agents N = {1, . . . , n}.

First, assume there is a utility profile u such that S(u) = N. Let xN = ϕ(u).
Then, by step 1, for all ũ ≥ xN S(ũ) = N and ϕ(ũ) = xN .

For every agent j ∈ N, consider the set of utility profiles such that uj = 0,
that is

U j = {u ∈ RN
+ | uj = 0}.

By induction, there is a population-monotonic mechanism for N \ j agents
defined on U j . Let ρi the cross-monotonic set of cost shares in U j (where we
define xN ı = xN in case xN

i = 0).
Notice that if S∗ is such that i, j 6∈ S∗, then for xS∗ ∈ U j and yS∗ ∈

U j it should be that xS∗
= yS∗

. To see this, assume S(u) = S∗. By step 1,
S(u−ij , 0, 0) = S∗. Since (u−ij , 0, 0) ∈ U j ∩ U i then by step 2 xS∗

= yS∗
.

Finally, notice that the set of cost shares defined this way is cross-monotonic.
To see this, by induction we just need to check that xN

i ≤ xS∗

i for all i and S∗

such that i ∈ S∗. Assume this is not true, so i ∈ S(u) = S∗ and ϕi(u) < xN
i

for some u. By step 1, S(ϕi(u), u−i) = S∗. By step 0, i ∈ S(ϕi(u), ũ−i) where
ũ−i = max(xN

−i, u−i). This is a contradiction because ϕi(u) < xN
i = fi(ũ−i).

From above, we have the mechanism (S, ϕ) satisfies:

• If u ≥ xN then S(u) = N.

• If ui < xN
i then i 6∈ S(u). Thus S(u) = S(0, u−i).

These two properties, the induction hypothesis and cross-monotonicity of
the cost-shares clearly implies the mechanism is population-monotonic.
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Now assume there is no u such that S(u) = N. Then there is j ∈ N such
that j 6∈ S(ũ) for all ũ. We prove this by contradiction. Assume for any j there
is uj such that j ∈ S(uj). Let ū = max(u1, . . . , un). By step 0, at ū every agent
j is offered a unit of good at price not bigger than uj

j , thus j ∈ S(ū) for all
j ∈ N. This is a contradiction.

Since there is an agent who is not serviced at any profile, say agent j∗, then
S(u) = S(u−j∗ , 0) for all u. Hence by induction the mechanism is population-
monotonic. Notice in this case the cross-monotonic set of cost shares are such
that:

Proof of Theorem 2.

Sequential mechanisms meet MIN and GSP.

Sequential mechanisms trivially meet MIN.
We prove by contradiction these mechanisms meet GSP. Assume coalition S̃

misreports ũS̃ at the true profile u. Let k ∈ S̃ the agent that strictly increases
his net utility by misreporting. Let ζ and ζ ′ in the path that generate S(u) and
S(ũS̃ , u−S̃) respectively such that they contain agent k.

First notice ζ is on the left of ζ ′. To see this, let i∗ the terminal node in
P0(ζ)∩P0(ζ ′). Then, in order to move from P0(ζ) to P0(ζ ′), agent i∗ misreports.
If i∗ is rightist in P0(ζ) then by MIN his net utility is positive, so he will never
agree to move to P0(ζ ′) because he is not served there.

Let L and R as in definition 9. Since agent k strictly increases his net utility,
then xL

k > xR
k . Assume condition (a) of feasibility is satisfied. That is, there is

i ∈ L ∩ R such that i is leftist in L and rightist in R and xL
i < xR

i . Since i is
leftist in L then ui ≤ xL

i < xR
i . Then i 6∈ S∗ and P0(ζ ′) does not realize with

(ũS̃ , u−S̃) because i is rightist at P0(ζ ′) and ui < xR
i . This is a contradiction.

On the other hand, assume condition (b) of feasibility is satisfied. That is,
there is i ∈ L∩R such that i is rightist in L and leftist in R and xL

i ≥ xR
i . Since

i is rightist in L then ui > xL
i ≥ xR

i . Then agent i cannot be leftist in R. This
is a contradiction.

Any GSP and MIN mechanism is sequential.

Step 1. If S(u) = S∗ and ϕ(u) = ϕ∗ then for all ũ such that ũ[S∗] >> ϕ[S∗]

and ũ[N\S∗] ≤ u[N\S∗], S(ũ) = S∗ and ϕ(ũ) = ϕ∗.
Proof.
First notice that by MIN, an agent gets positive net utility if and only if he

is served.
Let i ∈ S∗. Then S(ũi, u−i) = S∗ and ϕ(ũi, u−i) = ϕ∗. To see this, if

i 6∈ S(ũi, u−i) or ϕ(ũi, u−i) > ϕ∗, then agent i misreports ui when the true
profile is (ũi, u−i), which contradicts SP. On the other hand, if i ∈ S(ũi, u−i)
and ϕ(ũi, u−i) < ϕ∗, then agent i misreports ũi when the true profile is u, which
also contradicts SP. Therefore, i ∈ S(ũi, u−i) and ϕi(ũi, u−i) = ϕ∗

i .
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Let j, j 6= i. If NUj(ũi, u−i) > NUj(u), then agent i helps j by reporting
ũi when the true profile is u. This contradicts GSP. The case NUj(ũi, u−i) <
NUj(u) is analogous. Thus NUj(ũi, u−i) = NUj(u) for all j 6= i. Therefore, by
MIN, S(ũi, u−i) = S∗ and ϕ(ũi, u−i) = ϕ∗.

By changing one agent at a time, we have that S(ũS∗ , u−S∗) = S∗ and
ϕ(ũS∗ , u−S∗) = ϕ∗.

Let j 6∈ S∗. Then S(ũS∗∪j , u−S∗∪j) = S∗ and ϕ(ũS∗∪j , u−S∗∪j) = ϕ∗. First
notice that j 6∈ S(ũS∗∪j , u−S∗∪j), otherwise by voluntary participation

ϕj(ũS∗∪j , u−S∗∪j) < ũj ≤ uj .

Thus agent j misreports ũj when true profile is (ũS∗ , u−S∗). This contradicts
SP.

On the other hand, if NUk(ũS∗∪j , u−(S∗∪j)) < NUk(ũS∗ , u−S∗) for some k 6=
j, then agent j helps k by reporting ũj when true profile is (ũS∗ , u−S∗), which
contradicts GSP. Similarly by GSP NUk(ũS∗∪j , u−(S∗∪j)) > NUk(ũS∗ , u−S∗)
cannot occur. Thus NUk(ũS∗∪j , u−(S∗∪j)) = NUk(ũS∗ , u−S∗) for all k 6= j.
Hence, by MIN, S(ũS∗∪j , u−(S∗∪j)) = S∗ and ϕ(ũS∗∪j , u−S∗∪j) = ϕ∗.

By changing one agent at a time, S(ũ) = S∗ and ϕ(ũ) = ϕ∗.

Step 2. If S(u) = S(ũ) then ϕ(u) = ϕ(ũ).
Proof.
Let S∗ = S(u) = S(ũ), ū[S] = max(ũ[S], u[S]) and ū[N\S] = min(ũ[N\S], u[N\S])

(where max and min are taken element by element).
By step 1, comparing ū and u, S(ū) = S∗ and ϕ(ū) = ϕ(u). Similarly,

comparing ū and ũ, ϕ(ū) = ϕ(ũ).

By step 2, there exist at most one vector of payments for every coalitions.
Let xS∗

the payment of coalition S∗ when S∗ is served at some profile.

Step 3. Let u such that S(u) = S∗ and ϕ(u) = ϕ∗. Then for every i ∈ S∗

and u∗i ≤ ϕ∗
i , S∗\i ⊆ S(u∗i , u−i) and ϕS∗\i(u∗i , u−i) ≤ ϕ∗

S∗\i.

Let j ∈ S∗, then j ∈ S(ϕ∗
i , u−i) and ϕj(ϕ∗

i , u−i) ≤ ϕ∗
j . Indeed, by MIN the

net utility of agent j with u is positive. If j 6∈ S(ϕ∗
i , u−i) or ϕj(ϕ∗

i , u−i) > ϕ∗

then agent i can help j when true profile is (ϕ∗
i , u−i). He is indifferent between

misreporting ui and geting a unit at price ϕ∗
i , or truly reporting ϕ∗

i and not
getting a unit.

Finally, by MIN i 6 S(ϕ∗
i , u−i). Thus, by step 1, S(u∗i , u−i) = S(ϕ∗

i , u−i)
and ϕ(u∗i , u−i) = ϕ(ϕ∗

i , u−i) for all u∗i ≤ ϕ∗
i .

In particular, notice step 3 implies that if S(u) = S∗, then for any T, T ⊂ S∗,
there exist ũ such that S(ũ) = T and xT

[T ] ≤ xS∗

[T ].

To see this, let u = xS∗
+ ε1[S∗], ε > 0. By step 1, S(u) = S∗. Let i ∈ S∗.

By MIN i 6∈ S(xS∗

i , u−i). By step 3, S∗ \ i ⊂ S(xS∗

i , u−i). Since utilities of
agents outside S∗ are zero, then by MIN S∗ \ i = S(xS∗

i , u−i). Thus by step 3,
x

S\i∗

[S\i∗] ≤ xS
[S\i∗].
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Step 4. Assume there is u such that S(u) = N. Then there is an agent who
has priority.

We prove this by induction in the size of N.
If N = {1} then the mechanism are the fixed cost mechanisms. That is,

there is a fixed value x, x ∈ [0,∞] such that If u1 > x then 1 is served at price
x. If u1 ≤ x then he is not served.

Assume there is an agent who has priority for every mechanism of at most
n− 1 agents. Let (S, ϕ) a mechanism for the agents in N = {1, . . . , n}.

For every j, consider the restriction of the mechanism to the profiles

U j = {u | uj = 0}.

By MIN, agent j is not getting a unit of good at any profile of U j . Thus, this
defines a GSP mechanism for the agents in N \ j. Let ρj = {xS | j 6∈ S} the set
of payments in this mechanism. Notice because N is being served, then by step
3 every coalition S ⊂ N is being served. In particular ρj contains a payment
for every coalition that does not contain agent j.

By induction hypothesis, on ρ1 there is an agent i1 who has priority. That
is, x

N\1
i1

= xi1
i1

. Similarly, for agent i1 there is an agent who has priority on ρi1 .

Call this agent i2, thus x
N\i1
i2

= xi2
i2

. We continue this procedure until we reach
a cycle. Without loss of generality, we assume the cycle is i1, i2, . . . , ik. This
means ij+1 has priority on ρj for j = 1, . . . , k − 1, and ik has priority on ρ1.

Case 1. The cycle has size less than n, that is k < n.

Let ū[N\{i1,i2,...,ik}] such that ū[N\{i1,i2,...,ik}] >> xN
[N\{i1,i2,...,ik}].

Consider the profiles

U = {u | u[N\{i1,i2,...,ik}] = ū[N\{i1,i2,...,ik}]}.

Notice that for every u ∈ U, N \ {i1, i2, . . . , ik} ⊂ S(u). Indeed, con-
sider (ũ{i1,i2,...,ik}, u−{i1,i2,...,ik}), where ũ{i1,i2,...,ik} ≥ xN

[i1,i2,...,ik]. By step 1,
S(ũ{i1,i2,...,ik}, u−{i1,i2,...,ik}) = N. By steps 1 and 3, N\i1 ⊂ S(ui1 , ũ{i2,...,ik}, u−{i1,i2,...,ik}).
Similarly, N \ i1, i2 ⊂ S(ui1,i2 , ũ{i3,...,ik}, u−{i1,i2,...,ik}). Continuing this way,
N \ i1, i2, . . . , ik ⊂ S(u{i1,i2,...,ik}, u−{i1,i2,...,ik}).

By step 3, for every coalition T such that N \ {i1, i2, . . . , ik} ⊂ T, there is
ũ ∈ U such that S(ũ) = T. This is clear because coalition N is being served at
some profile of U, so we can reduce (one step at a time) the utility of the agents
not in T to zero.

Clearly, the mechanism restricted to U defines a GSP mechanism for the
agents in {i1, i2, . . . , ik}. By the induction hypothesis, there is an element who
has priority, say i1. Thus, x

N\{i2,...,ik}
i1

= xN
i1

. Therefore, xN
i1

= xi1
i1

. Hence agent
i1 has priority over the other agents in N .

Case 2. The cycle has size n, that is k = n.
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Without loss of generality, assume agent 2 has priority over N \ 1, agent 3
has priority over N \ 2, . . . , etc. Thus,

x2
2 = x

N\1
2 , . . . x3

3 = x
N\2
3 , . . . x1

1 = x
N\n
1 . (1)

Also, assume to get a contradiction that there is no agent who has priority.
That is,

x
N\1
2 < xN

2 , x
N\2
3 < xN

3 , . . . , x
N\n
1 < xN

1 .

Let u such that S(u) = N. By MIN , u >> xN .
By step 3, 2 ∈ S(xN

1 , u−1) and 2 pays x2
2, x2

2 < x2
N . Also by step 3, 2 ∈

S(xN
1,3, u−1,3) and 2 pays not more than x2

2. Continuing similarly, 2 ∈ S(xN
−2, u2)

and 2 pays not more than x2
2. By step 1, 2 ∈ S(xN ) because u2 > xN

2 > x2
2.

Finally, since everything is symmetric, S(xN ) = N. This is a contradiction
to MIN.

Step 5. Assume there is no u such that S(u) = N. If the mechanism is not
trivial (S(u) 6= ∅ for some u), there is an agent who has finite priority. That is,
there is an agent i∗ and a payment x∗, 0 ≤ x∗ < ∞ such that i∗ ∈ S(u) for all
u, ui∗ > x∗.

First notice there is a group of agents S∗ who has priority. That is, for
all ũ such that ũ[S∗] ≥ xS∗

[S∗], S(ũ) = S∗. To see this, consider ũ such that
ũ >> xT for all T. Let S∗ such that S(ũ) = S∗. First notice that, for any
i, i 6∈ S∗, S(ũ−i, ūi) = S∗ for all ūi. To see this, if ūi ≤ ũi then by step 1
i 6∈ S(ũ−i, ūi). On the other hand, if ūi > ũi, then i 6∈ S(ũ−i, ūi). This is
easy to see by contradiction, assume i ∈ S(ũ−i, ūi), then by the choice of ũ,
ϕi(ũ−i, ūi) < ũi < ūi. Therefore, by step 1, i ∈ S(ũ), which is a contradiction.

By step 1, S(ũ−i, ūi) = S∗ for all ūi. Thus, by changing the utilities of the
agents in N \ S∗ one at a time, S(ũS∗ , u−S∗) = S∗ for all ũS∗ ≥ xS∗

[S∗].

We now prove step 5 by induction. For n = 1, if S(u) 6= 1 for all u then
clearly the mechanism is trivial (S(u) = ∅ for all u). So the claim is true.

For the induction hypothesis, assume the claim is true for any mechanism
of n− 1 agents. Furthermore, assume the mechanism is not trivial.

Let S∗ defined as above and j 6∈ S∗. Consider the restriction of the mecha-
nism to U j = {u | uj = 0}. Then this restriction is GSP for the agents in N \ j.
By induction and step 4, there is an agent i∗ who has (finite) priority for the
agents N \ j. Clearly i∗ ∈ S∗, otherwise his payment is dependent on other
agents.

We now prove by contradiction that for any profile u, i∗ has priority. As-
sume there is u such that fi∗(u−i∗) 6= xS∗

i∗ . Let ui∗ > xS∗

i∗ , then j ∈ S(u).
Otherwise, by step 1 S(u) = S(0, u−j). Thus i∗ is served at price xS∗

i∗ , which is
a contradiction to GSP . Hence j ∈ S(u). By step 3, fi∗(u−i∗) > xS∗

i∗ .
Let k ∈ S∗ and ũk > max(uk, xS∗

k ). If k ∈ S(u), then S(ũk, u−k) = S(u),
thus fi∗(ũk, u−k,i∗) = fi∗(uk, u−k,i∗) > xS∗

i∗ . If k 6∈ S(u) and k 6∈ S(ũk, u−k),
then by GSP S(ũk, u−k) = S(u), thus fi∗(ũk, u−k,i∗) = fi∗(uk, u−k,i∗) > xS∗

i∗ .
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Finally, if k 6∈ S(u) and k ∈ S(ũk, u−k), then by step 3 fi∗(ũk, u−i∗,k) ≥
fi∗(uk, u−i∗,k) > xS∗

i∗ .
By increasing step by step every agent in S∗ we conclude that fi∗(u−S∗ , ũS∗) >

xS∗

i∗ for some ũS∗ ≥ xS∗

[S∗]. This contradicts the priority of coalition S∗.

Step 6. The mechanism is implemented by a feasible sequential tree.
Proof.
By steps 4 and 5 and MIN, the mechanism is implemented by a sequential

tree as in definition 10. We just have to prove the sequential tree is feasible.
Assume it is not feasible, let ζ and ζ ′ two achievable nodes that contain the

same agent k as in definition 9. Furthermore, to get a contradiction assume
xL

k > xR
k and for every common agent i ∈ R∩L one of the next conditions hold:

1. i is leftist in L and rightist in R and xL
i ≥ xR

i .

2. i is rightist in L and leftist in R and xL
i < xR

i .

3. i is leftist in L and R.

4. i is rightist in L and R.

Let i∗ the agent in the terminal node of P0(ζ) ∩ P0(ζ ′). We choose u such
that:

• ui∗ equal the value of his node.

• uk such that xL
k > uk > xR

k

• ui = xR
i if condition 1 holds.

• ui = xL
i +xR

i

2 .

• ui = 0 if condition 3 holds.

• ui such that ui > max(xL
i , xR

i ).

• If j is rightist node in (P0(ζ)∪P0(ζ ′)) \ (L∩R) then uj is bigger than the
price of its node.

• If j is leftist node in (P0(ζ) ∪ P0(ζ ′)) \ (L ∩R) then uj = 0.

• Any other agent has zero utility.

First notice the profile u realizes the path P0(ζ). Indeed, an agent j ∈
(P0(ζ)∪P0(ζ ′)) \ (L∩R) is served if rightist and not served of leftist. Agent i∗

is not served because his valuation equals the offered price. If i ∈ L∩R is leftist
in L, then he is not being served because xL

i ≥ xR
i = ui. On the other hand, if

i ∈ L ∩R is rightist in R, then he is being served because ui = xL
i +xR

i

2 > xL
i .

Let T the common agents of condition 1 and S = T ∪{i∗, k}. We now check
that when the true profile is u, coalition S can misreport. First notice all agents
in S are not being served at u, so they get zero net utility.

Let ũS such that:
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• ũi > ui if i ∈ T ∪ {i∗}.

• ũk = uk

Then at the profile (ũS , u−S) the path P0(ζ ′) realizes. Indeed, an agent
j ∈ (P0(ζ) ∪ P0(ζ ′)) \ (L ∩ R) is served if rightist and not served of leftist. If
i ∈ L ∩ R is leftist in R, then by condition 2 ui = xR

i +xL
i

2 < xR
i , so he is not

served. On the other hand, i∗ is served at a price equal to his true valuation
ui, thus his net utility is zero. If i ∈ T , that is i ∈ L ∩ R is rightist in R, then
he is being served at a price equal to his valuation because ũi > ui = xR

i , thus
his net utility is zero. Finally, agent k is being served at a price xR

k , uk > xR
k .

Hence his net utility is positive.

Proof of Corollary 1.

If the mechanism meets GSP and MIN (MAX), then for every agent i his
payment does not decrease (increase) when coalition increases.

Therefore, in order to have a common point at every coalition, it must be
that xN

i = xi
i for all i. Hence, the cost share of agent i is fixed.

Proof of Proposition 1.

By ETE, S(x · 1N ) serve N or ∅.
First notice that S(x ·1N ) = ∅ for all x > 0 implies the mechanism is welfare

equivalent to the trivial mechanism where no agent is served at any profile. To
see this, if NUk(u) > 0 for some k at some profile u, then when the true profile
is uk · 1N agents in N misreport u. This contradicts GSP.

On the other hand, assume S(x·1N ) = N for some x > 0 and ϕi(x·1N ) = ϕ∗

for all i. Notice we can assume w.l.g. that x > ϕ∗. Indeed, assume x = ϕ∗.
Consider x̃ such that x̃ > x. By GSP and ESP, S(x̃·1N ) = N and ϕi(x̃·1N ) = ϕ∗.
Otherwise if ϕi(x̃ · 1N ) < ϕ∗ then agents in N misreport x̃ · 1N when the true
profile is x · 1N . Similarly, if ϕi(x̃ · 1N ) > ϕ∗ then agents in N misreport x · 1N

when the true profile is x̃ · 1N .
By GSP, for all u >> ϕ∗ · 1N , S(u) = N and ϕi(u) = ϕ∗ for all i. To see

this, let v = x · 1N . By SP, 1 ∈ S(v−1, u1) and ϕ1(v−1, u1) = ϕ∗. Thus, by GSP,
S(v−1, u1) = N and ϕi(v−1, u1) = ϕ∗ for all i. Changing the profiles one agent
at a time S(u) = N and ϕi(u) = ϕ∗ for all i.

We now prove the proposition by induction in the number of agents. This
is obvious when there is only one agent. Assume this is true for any number of
agents less than n. We prove it for n agents.

Consider U j the set of utility profiles where agent j has utility zero. By
induction, the restriction of the mechanism to U j is welfare equivalent to a
ESP population-monotonic mechanism of N \ j agents. Let xS the payment of
coalition S on U j and xN = ϕ∗ · 1N . First notice xS

i ≥ ϕ∗ for all S ⊆ N \ j.
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To see this, by population-monotonicity we just need to check that x
N\j
i ≥

ϕ∗. Assume x
N\j
i < ϕ∗.

Let ε > 0 such that ϕ∗− ε > x
N\j
i and u = (xN + ε1N ). Then S(u) = N and

ϕ(u) = xN . By SP, i 6∈ S(ϕ∗ − ε, u−j). Thus by GSP S(ϕ∗ − ε, u−j) = N \ j
and ϕ(ϕ∗ − ε, u−j) = xN\j .

Since ui > x
N\j
i for all i ∈ N \ j, then by GSP S((ϕ∗ − ε) · 1N ) = N \ j and

ϕ((ϕ∗ − ε) · 1N ) = xN\j . This contradicts ETE. Hence xS
i ≥ ϕ∗ for all j ∈ N,

S ⊆ N \ j.
Thus the mechanism is clear. If u ≥ xN then the mechanism is welfare equiv-

alent to S(u) = N and ϕ(u) = xN . If ui < xN then i 6∈ S(u). Hence by GSP the
mechanism is welfare equivalent to S(u) = (0, u−i) and ϕ(u) = ϕ(0, u−i). Since
the restriction to U i is welfare equivalent to a population-monotonic mechanism
with cost-shares not smaller than xN , then S(u) is the biggest feasible coalition.

Proof of Proposition 2.

First notice if agent i is not served at any profile, then by GSP NUk(u) =
NUk(ũi, u−i) for all u, k 6= i, and ũi. Thus we can remove this agent from the
game without any welfare consequence.

Then, assume without loss of generality that every agent in N is served at
least in one profile and that there is no agent who has priority. Then for every
agent i there exist profiles ui and ũi such that i ∈ S(ui), i 6∈ S(ũi), ui

i, ũ
i
i > x̄i

where x̄i = ϕi(ui).
Let ū >> maxk∈N (uk, ũk) where max is taken element by element over all

utility profiles uk, ũk.
By GSP, S(ū) 6= ∅, otherwise coalition N misreport u1 when true profile is

ū. Assume S(ū) = i∗. By GSP, ϕi∗(ū) = x̄i, otherwise coalition N misreport u1

when true profile is ū or viceversa.
By SP, k 6∈ S(ũi∗

k , ū−k) for all k 6= i∗. Thus by GSP, S(ũi∗

k , ū−k) = i∗ and
ϕi∗(ũi∗

k , ū−k) = x̄i∗ . Changing the profiles one agent at a time, S(ũi∗

−i∗ , ūi∗) = i∗

and ϕi∗(ũi∗

−i∗ , ūi∗) = x̄i∗ .

Since ũi∗ > x̄i∗ then by strategyproof S(ũi∗) = i∗. This is a contradiction.
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