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1 Introduction

The analysis of the stability in matching literature can be traced back to Gale

and Shapley (1962). These authors showed that stable matchings (in the sense

of core) always exist in simple two-sided markets, however, this property is not

true neither in problems with more complicated agents�preferences nor in one

or three-sided markets.

In this paper we consider the special case of the roommate problem, an

instance of one-sided market, introduced by Gale and Shapley (1962) as a gen-

eralization of the classical marriage problem. A roommate problem consists of

a set of agents and for each agent a preference list which is a total order over

the set of agents. They showed by means of an example that, in contrast to the

marriage problem, the roommate problem is one of those matching problems

where stable matchings do not always exist. Empirical results in Pittel and Irv-

ing (1994) suggest that as the number of agents increases, the probability that

a roommate problem with n agents admits a stable matching decreases fairly

steeply. Hence it is clear the necessity of the study of the stability for the entire

class of the roommate problem.

While (core) stability for matching problems has been investigated exten-

sively, Gale and Shapley (1962) Irving (1985) Roth and Sotomayor (1990) Tan

(1991) Abeledo and Isaak (1991) Chung (2000) and Diamantoudi, Miyagawa

and Xue (2004), to the best of our knowledge, with the exception of few pa-

pers (see for instance Tan (1990) and Abraham, Biro and Manlove (2005) there

are not works applying alternative notions of stability to unsolvable roommate

problems, that is roommate problems that do not admit core stable matchings.

In this paper we model the roommate problem as a matching system1 where

the vertices are the matchings that can be formed and the edges depict the

existence of a myopic blocking pair which allows to go from one matching to

another by satisfying it. To solve the matching system we propose the absorbing

set solution2 , which extends the notion of (core) stability and that solves the

entire class of the roommate problems with strict preferences. This solution

applied to a matching system can be illustrate as follows:
1An abstract system is a pair (X;R), where X is a set of elements and R is a binary relation

de�ned on X.
2An absorbing set is a minimal closed subset of the admissible set, Kalai, Pazner and

Schmeidler, 1976, and Kalai and Schmeidler [1977] and it coincides with the elementary dy-
namic solution of Shenoy [].
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Consider a point for each matching and imagine that a point of

light is switched on each of these matching points. Then the fol-

lowing process follows inde�nitely: each time each matching-point

turns o¤ and passes the light to all matchings-points that can result

from it by some blocking couple (in this way a matching can keep its

light only if receives the light from another). After a �nite number

of periods only the matchings-points belonging to some �stable con-

stellation�will keep permanently on light. Moreover, a particular

stable constellation can be individualized as such among all the stars

by the fact that it is �energetically closed�, that is, more precisely,

it is a minimal set of self-lightening matching-points. In this termi-

nology a stable matching is then just a stable constellation which

consists of a single star.

In this paper we explore the solution of absorbing sets for the roommate

problem with strict preferences.

With respect to the existence of the solution proposed we �nd that every

roommate problem have at least one absorbing set. We also prove that if the

roommate problem is solvable then the absorbing sets are singletons consisting

of a single stable matching. Consequently this solution concept extends the

notion of core stability.

We characterize the absorbing sets in terms of the stable partitions3 . This

characterization allows to determine the matchings belonging to the absorb-

ing sets. Moreover, we �nd exactly the stable partitions which determine the

absorbing sets.

In case of multiplicity we �rst determine the number of absorbing sets. Next,

we show that all the absorbing sets share the same structure in the following

sense: Given an arbitrary absorbing set, the set of agents can be partitioned

into the set of agents which form part of some blocking pair of some matching

belonging to the absorbing sets and the set of non blocking agents. Then we �nd

for any two absorbing sets blocking and non blocking agents coincide. Moreover

3Tan (1991) introduces the notion of stable partition and gives a necessary and su¢ cient
condition for the existance of a stable matching in roommate problems with stric preferences.
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the matchings restricted to the blocking agents coincide in the two sets, whereas

those restricted to non blocking agents are singletons consisting of a stable

matching. Informally, it can be said that the constellations are quasi-replicas of

one another.

Finally, we show that the absorbing sets has the property of outer stability in

the following sense: Every matching not in any absorbing set can be dominated

by a matching belonging to some absorbing set. Following the metaphor used

above it can be said that after a �nite number of periods only the matching-

points belonging to some constellations will keep illuminated.

The paper is organized as follows. Section 2 contains the preliminaries of

the paper. In Section 3 we recall the notion of stable partition and de�ne

some speci�c matchings related to them. Section 4 contains the analysis of the

absorbing sets.

2 Preliminaries

A roommate problem is a pair (N; (<x)x2N ) where N is a �nite set of agents and

for each agent x 2 N , <x is a complete, transitive preference relation de�ned
over N . Let �x be the strict preference associated with <x. In this paper we
only consider roommate problems with strict preferences, which we denote by

(N; (�x)x2N ).

A matching � is a one to one mapping from N onto itself such that for all

x, y 2 N , if �(x) = y, then �(y) = x. Let �(x) denote the partner of agent x
under the matching �. If �(x) = x, then agent x is single under �.

Let M be the set of all matchings. Let S � N . For any � 2 M such that

�(S) = S, � jS denotes the restriction of � to S. Moreover, if A �M and, for

any � 2M, �(S) = S, then A jS= f� jS : � 2 Ag.

A pair of agents fx; yg � N (without ruling out x = y) blocks the matching

� if

y �x �(x) and x �y �(y). [1]

That is, x and y prefer each other to their current partners at �. If x = y, [1]

means that agent x prefers being alone to being matched with �(x). When [1]

holds, we call fx; yg a blocking pair of �.
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A matching satis�es individual rationality if it is not blocked by any pair

fx; yg such that x = y. A matching is called stable if it is not blocked by any
pair.

Let fx; yg be a blocking pair of �. A matching �0 is obtained from � by

satisfying fx; yg if �0(x) = y and for all z 2 Nnfx; yg,

�0(z) =

�
z if �(z) 2 fx; yg
�(z) otherwise.

That is, once fx; yg is formed, their partners (if any) at � are alone in �0 while
the remaining agents are matched as in �.

The abstract system associated with a roommate problem (N; (�x)x2N ) is the
pair (M; R) where R is the binary relation de�ned over M as follows: Given

�, �0 2 M, �0R� if and only if �0 is obtained from � by satisfying a blocking

pair of �. Let RT denote the transitive closure of R. Then �0RT� if and only

if there exists a �nite sequence of matchings (� = �0; �1; :::; �m = �
0) such that

for all i 2 f1; :::;mg, �iR�i�1.

RT is called a domination relation. Then, if �0RT� we say that �0 dominates

to � and that �0 directly dominates to � when �0R�.

3 P -stable matchings

In [] we de�ne the P -stable matching concept associated with the notion of a

stable partition introduced by Tan (1991) as follows.

Let A = fa1; :::; akg � N be an ordered set of agents. The set A is a ring

if k � 3 and for all i 2 f1; :::; kg, ai+1 �ai ai�1 �ai ai (subscript modulo k).
The set A is a pair of mutually acceptable agents if k = 2 and for all i 2 f1; 2g,
ai�1 �ai ai (subscript modulo 2)4 . The set A is a singleton if k = 1.

A stable partition is a partition P of N such that:

(i) For all A 2 P , the set A is a ring, a mutually acceptable pair of agents or a
singleton, and

(ii) For any sets A = fa1; :::; akg and B = fb1; :::; blg of P (possibly A = B),

the following condition holds:

if bj �ai ai�1 then bj�1 �bj ai;
4Hereafter we omit subscript modulo k.
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for all i 2 f1; :::; kg and j 2 f1; :::; lg such that bj 6= ai+1:

Condition (ii) may be interpreted as a notion of stability over partitions.

Remark 1 The following assertions are proved by Tan (1991):

(i) For any roommate problem (N; (�x)x2N ), there exists at least one stable
partition. Furthermore, any two stable partitions have exactly the same odd

sets5 .

(ii) Each even ring of a stable partition can be broken into pairs of mutually

acceptable agents preserving stability.

(iii) A roommate problem (N; (�x)x2N ) has no stable matchings if and only if
there exists a stable partition with some odd ring.

De�nition 1 Let P be a stable partition. A P -stable matching is a matching �

such that for each A = fa1; :::; akg 2 P , �(ai) 2 fai+1, ai�1g for all i 2 f1; :::; kg
except for a unique j where �(aj) = aj if A is odd.

To illustrate the notion of P -stable matching let us consider the following

example.

Example 1 Consider the following 10-agent roommate problem:

2 �1 3 �1 4 �1 5 �1 6 �1 7 �1 8 �1 9 �1 1 �1 10
3 �2 1 �2 4 �2 5 �2 6 �2 7 �2 8 �2 9 �2 2 �2 10
1 �3 2 �3 4 �3 5 �3 6 �3 7 �3 8 �3 9 �3 3 �3 10
7 �4 8 �4 9 �4 5 �4 6 �4 1 �4 2 �4 3 �4 4 �4 10
8 �5 9 �5 7 �5 4 �5 6 �5 5 �5 1 �5 2 �5 3 �5 10
9 �6 7 �6 8 �6 4 �6 5 �6 6 �6 1 �6 2 �6 3 �6 10
5 �7 6 �7 1 �7 4 �7 9 �7 8 �7 7 �7 2 �7 3 �7 10
6 �8 4 �8 5 �8 7 �8 9 �8 8 �8 1 �8 2 �8 3 �8 10
4 �9 5 �9 6 �9 7 �9 8 �9 9 �9 1 �9 2 �9 3 �9 10
10 �10 1 �10 :::

It is easy to verify that P = ff1; 2; 3g; f4; 7g; f5; 8g; f6; 9g; f10gg is a sta-
ble partition where A1 = f1; 2; 3g is an odd ring, A2 = f4; 7g, A3 = f5; 8g,
A4 = f6; 9g are pairs of mutually acceptable agents and A5 = f10g is a single-
ton. Partition P can be represented graphically as follows:

5We say that A is an odd (even) set of P if the cardinal of A is odd (even).
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The P -stable matchings associated with the stable partition P are:

�1 = [f1g; f2; 3g; f4; 7g; f5; 8g; f6; 9g; f10g]

�2 = [f2g; f1; 3g; f4; 7g; f5; 8g; f6; 9g; f10g]

�3 = [f3g; f1; 2g; f4; 7g; f5; 8g; f6; 9g; f10g]:

Remark 2 If � is a P -stable matching, then the matching that results if the

single agents from odd rings are excluded from � is stable.6

Remark 3 For a solvable roommate problem (N; (�x)x2N ) the set of P -stable
matchings for all stable partitions coincides with the set of stable matchings7 .

For solvable roommate problems with strict preferences Diamantoudi et

al.(2004) prove that for any unstable matching, there exists a �nite sequence of

successive myopic blockings leading to a stable matching. In Theorem 1 of [] we

generalize the previous result by proving for any roommate problem with strict

preferences, that "for any matching �, there exists a �nite sequence of match-

ings (� = �0; �1; :::; �m = �) such that for all i 2 f1; :::;mg, �i is obtained from
�i�1 by satisfying a blocking pair of �i�1 and � is a P -stable matching for some

stable partition P".

4 Absorbing sets

In this section we introduce our solution concept for a roommate problem with

strict preferences.

6See Tan (1990).
7See [].

7



De�nition 2 A set A �M is an absorbing set if

i) for any two distinct �; �0 2 A, �RT�0, and
ii) for any � 2 A there is no a �0 =2 A such that �0R�.

Notice that condition i) means that the matchings of A are symmetrically

connected by the relation RT and condition ii) that the set A is R closed.

We know some such solution exists from Theorem 1 of [] 8 . Our purpose is

to characterize this solution concept in terms of stable partitions.

In what follows whenever we write stable partition we refer to a stable par-

tition which no contains any even ring.9

Given a stable partition P denoted by AP to the set of all P -stable matchings
and those that dominate to them.

We �rst establish that an absorbing set is one of these sets AP .

Lemma 1 Let (N; (�x)x2N ) be a roommate problem. If A is an absorbing set

then A = AP for some stable partition P .

Proof. First we prove that there exists a P -stable matching � such that � 2 A.
Let � 2 A. If � is a P -stable matching for some stable partition P , � = � and
we are done. Otherwise, by Theorem 1 of [ ], there exists a P -stable matching

� such that �RT�. But then, by condition ii) of De�nition 2, � 2 A.
Now we prove that A = AP . By Lemma 7 of the Appendix, we have

AP = f�g [
�
� 2M : �RT�

	
.

(�): Let � 2 A. We must show that � 2 AP . If � = � as � 2 AP we are done.
Suppose that � 6= �. As � 2 A, by condition i) of De�nition 2, we have �RT�.
Hence � 2 AP .
(�): Let � 2 AP . We must show that � 2 A. If � = � since � 2 A we are done.
If � 6= � then �RT�. But as � 2 A, by condition ii) of De�nition 2, it follows
that � 2 A.

Then as an easy corollary of Lemma 1 and Remark 3 we have:

8The admissible set of (M; R) (Kalai and Schmeidler[]) is the set

A� = f� 2 M : �0RT�, �RT�0g

This set is the union disjoint of the minimally R -closed subsets ofM, which are the absorbing
sets.

9By Remark 1, we can assume it, without loss of generality.
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Remark 4 If the roommate problem (N; (�x)x2N ) is solvable then A is an

absorbing set if and only if A = f�g where � is a stable matching.

In fact, if A is an absorbing set then, by Lemma 1, A is the set of all P -stable
matchings and those that dominate to them for some stable partition P . But

as the roommate problem is solvable then there is an unique P -stable matching

which is stable. Hence A = f�g where � is a stable matching. Conversely, if
A = f�g where � is a stable matching then it is very easy to see that A satis�es
conditions i) and ii) of De�nition 2.

No all stable partitions determine an absorbing set, that is, no all sets AP
are absorbing sets. For example, the roommate problem given in Example 1 has

three stable partitions:

P1 = ff1; 2; 3g; f4; 7g; f5; 8g; f6; 9g; f10gg, P2 = ff1; 2; 3g; f4; 8g; f5; 9g; f6; 7g; f10gg
and P3 = ff1; 2; 3g; f4; 9g; f5; 7g; f6; 8g; f10gg. It is very easy to verify, using a
computer, that this roommate problem has two absorbing sets A and A0 where
A = AP2 and A0 = AP3 . However, A 6= AP1 and A

0 6= AP1 .

Our purpose is to �nd the stable partitions which determine the absorbing

sets. To it, denote by DP the set of agents that form part of a blocking pair of

some � 2 AP and by SP = NnDP .

Fix a stable partition P the set DP can be obtained by an iterative procedure

with a �nite number of steps. To it, we de�ne recursively a sequence of sets D0,

D1,..., Dt, ... as follows:

i) for t = 0, D0 is the union of all odd rings of P .

ii) for t � 1, Dt = Dt�1 [Bt where Bt = fb1; :::; blg 2 P (l = 1 ó 2), for which
there exists a At = fa1; :::; akg 2 P , At � Dt�1, such that

bj �ai ai and ai �bj bj�1, [2]

for some i 2 f1; :::; kg and j 2 f1; :::; lg.
Given that P contains a �nite number of sets then the procedure terminates in

a �nite number of steps. Let r be the minimun number such that Dr+1 = Dr.

Then, by Lemma 8 of the appendix, Dr = DP .

To illustrate how this procedure may be used, let us consider again the room-

mate problem given in Example 1. Let P = ff1; 2; 3g; f4; 7g; f5; 8g; f6; 9g; f10gg.
First note that P contains an unique odd ring. Then D0 = f1; 2; 3g. Let

9



B1 = f4; 7g and A1 = f1; 2; 3g. Since 7 �1 1 and 1 �7 4, then D1 =
D0 [ B1 = f1; 2; 3; 4; 7g. Consider now the sets B2 = f5; 8g and A2 = f4; 7g.
As 8 �4 4 and 4 �8 5, then D2 = D1 [ B2 = f1; 2; 3; 4; 7; 5; 8g. Finally, let
B3 = f6; 9g and A3 = f5; 8g. Since 9 �5 5 and 5 �9 6, then D3 = D2 [ B3 =
f1; 2; 3; 4; 7; 5; 8; 6; 9g and the procedure �nishes. Hence DP = D3.

Notice that, for any set A 2 P , either A � DP or A � SP . Denote by

P jDP
= fA 2 P : A � DP g, P jSP= fA 2 P : A � SP g and by P = fP jSP : P

is a stable partitiong.

We next state and prove one of our main results.

Theorem 2 Let (N; (�x)x2N ) be a roommate problem. Then, A is an absorb-

ing set if and only if A = AP for some stable partition P such that P jSP is

maximal in P10 .

Proof. (=)): Let A be an absorbing set. Then, by Lemma 1, A = AP for

some stable partition P . We prove that P jSP is maximal in P. Suppose, by
contradiction, that P jSP is not maximal. Then there exists a stable partition
P 0 such that P jSP� P 0 jSP 0 . Let � and �0 be P -stable and P 0-stable matchings,
respectively. Then, by Lemma 11 of the Appendix, �0RT�. Now, as � 2 A and
�0 dominates to �, then, by condition ii) of De�nition 2, �0 2 A. But then, by
condition i), �RT�0 and therefore, by Lemma 11, P 0 jSP 0� P jSP , contradicting
the fact that P jSP� P 0 jSP 0 .
((=): We prove that if P jSP is maximal in P then AP is an absorbing set.
To it, we must show that AP satis�es conditions i) and ii) of De�nition 2. By
Lemma 7 of the Appendix, AP = f�g[

�
� 2M : �RT�

	
where � is a P -stable

matching. Let � 2 AP . If �0R� we have �0RT�. But then, �0 2 AP and

Condition ii) follows.

Now we show that AP satis�es the conditions ii). It su¢ ces to prove that

�RT� for any � 2 AP such that � 6= �. If � is not a P 0-stable matching for any
stable partition P 0, by Theorem 1 [ ], there exists a P 0-stable matching �0 such

that �0RT�. As �RT� we have �0RT� (If �0 is a P 0-stable matching consider

�0 = �). But then, by Lemma 11, P jSP� P 0 jSP 0 , and as P jSP is maximal in
P, P jSP= P 0 jSP 0 , hence �RT�0. Since �0RT� we have �RT�.
10We say that P jSP is maximal in P if there is no a stable partition P 0 such that P jSP�

P 0 jSP 0 .
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We now determine the number of absorbing sets for a roommate problem.

Theorem 3 Let (N; (�x)x2N ) be a roommate problem. Then, the number of
absorbing sets is equal to the number of maximal partitions of P.

Proof. It follows of Theorem 2 and Lemma 12 of the Appendix.

Let A be an absorbing set. Denote by DA the set of agents that form part

of a blocking pair of some matching � 2 A and by SA = NnDA.
Next, we show that all the absorbing sets share a "similar" structure, in the

following sense:

Theorem 4 Let (N; (�x)x2N ) be a roommate problem. Then, for any two ab-
sorbing sets A and A0, it holds that
i) DA = DA0 and SA = SA0 .

ii) A jD= A0 jD where D = DA = DA0 .

iii) A jS and A0 jS are singletons consisting of a stable matching in (S; (�x)x2S),
where S = SA = SA0 .

Proof. From Theorem 2 there exist stable partitions P and P 0 such that

A = AP , A0 = AP 0 where P jSP and P 0 jSP 0 are maximals in P.
i) As SA = SP and SA0 = SP 0 and, by Lemma 14, SP = SP 0 , then SA = SA0

and therefore DA = DA0 .

ii) It is very easy to verify that A jD and A0 jD are absorbing sets in the

roommate problem (D; (�x)x2D) such that A jD= AP jD and A0 jD= AP 0jD .

Now, as S
P jD

= S
P 0jD

= �, by Lemma 12, we have A jD= A0 jD.
iii) It follows directly from Lemma 10.

Remark 5 An immediate consequence of this property is that the roommate

problem restricted to D is unsolvable and contains an unique absorbing set.

However the roommate problem restricted to S is solvable.

An interesting property of absorbing sets is the property of "outer stability"

in the following sense11 .

11For an arbitrary �nite abstract system (X;R) (Kalai, Pazner, and Schmeidler[]) show
that the admissible set has this property of "outer stability" We give an easy proof for the
roommate problem with strict preferences.
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Theorem 5 Let (N; (�x)x2N ) be a roommate problem and let A� be the union
of the absorbing sets. Then, for any � =2 A� there exists a �0 2 A� such that
�0RT�.

Proof. If � is a P -stable matching for some stable partition P , as � =2 A�

then AP is not an absorbing set, i.e., P jSP is not maximal in P. Then, there
exists a maximal partition P 0 jSP 0 of P such that P jSP� P 0 jSP 0 . Let �0 be a
P 0-stable matching. Since AP 0 is an absorbing set then �0 2 A�. Moreover, by
the Lemma 11, we have �0RT� and therefore the result follows. Suposse now

that � is not a P -stable matching for any stable partition P . Then, by Theorem

[], there exists a P -stable matching � such that �RT�. If � 2 A� we are done.
Otherwise, by the proved before, there exists a �0 2 A� such that �0RT�. But
as �RT� we have �0RT�.

We close this section by showing how these results may be used to determine

the absorbing sets. Let us consider the 9-agent roommate given in Example 1.

Let P1 = ff1; 2; 3g; f4; 7g; f5; 8g; f6; 9g; f10gg, P2 = ff1; 2; 3g; f4; 8g; f5; 9g; f6; 7g; f10gg
and P3 = ff1; 2; 3g; f4; 9g; f5; 7g; f6; 8g; f10gg the stable partitions of N . By
applying the iterative procedure the set DP can be obtained for each one of

them. We have DP1 = N and DP2 = DP3 = f1; 2; 3g. Therefore, SP1 = f10g
and SP2 = SP3 = f4; 5; 6; 7; 8; 9; 10g. Then P1 jSP1 = ff10gg, P2 jSP2 =
ff4; 8g; f5; 9g; f6; 7g; f10gg and P3 jSP3 = ff4; 9g; f5; 7g; f6; 8g; f10gg. Hence

P2 jSP2 and P3 jSP3 are the maximal partions of P. Then, by Theorems 2
and 3, this roommate problem has exactly two absorbing sets A and A0 where
A = AP2 and A0 = AP3 . Moreover, as D = f1; 2; 3g, A = f�1; �2; �3g and
A0 = f�01; �02; �03g where �1; �2; �3 are the P2- stable matchings and �01; �02; �03
the P3- stable matchings (See �gure).
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Observe that A jD= f�1 jD; �2 jD; �3 jDg and A jD= f�01 jD; �02 jD; �03 jDg
where �1 jD= �01 jD= [f1g ; f2; 3g], �2 jD= �02 jD= [f2g ; f1; 3g] and �3 jD=
�03 jD= [f3g ; f1; 2g]. Moreover, A jS and A jS are singletons consisting of
the stable matchings [f4; 8g; f5; 9g; f6; 7g; f10g] and [f4; 9g; f5; 7g; f6; 8g; f10g],
respectively in (S; (�x)x2N 0) where S = f4; 5; 6; 7; 8; 9; 10g.

Appendix

Lemma 6 For any two distinct P -stable matchings � and �0, �0RT�.

Proof. If P no contains any odd ring then there exists an unique P -stable

matching. Supposse that P contains some odd ring. Let A1; :::; Ar be the odd

rings of P and T =
rS
i=1

Ai. Set A1 = fa1; :::; akg. As A1 is a ring, then

ai+1 �ai ai�1 �ai ai, [3]

for all i = f1; :::; kg. By De�nition 1, since � and �0 are P -stable matchings,
there exist agents al, as 2 A1 such that �(al) = al and �0(as) = as. Now, since
�(al) = al and �(al�1) = al�2; by condition [3], fal; al�1g blocks �, inducing a
P -stable matching �1 for which �(al�2) = al�2. By repeating the process, we

can consider a sequence of P -stable matchings �0, �1,..., �i, ... as follows:

i) for i = 0, �0 = �.

ii) for i � 1, �i is the P -matching obtained from �i�1 by satisfying the blocking
pair fal�2(i�1); al�2(i�1)�1g.
Let m1 2 f1; :::; kg such that al�2m1

= as. Then � = �0; �1; :::; �m1
is a

�nite sequence of P -stable matchings such that, for all i 2 f1; :::;m1g, �iR�i�1
and �m1

jA1
= �0 jA1.

Consider now the ring A2. Reasoning in the same way as before for �m1
and

�0 we obtain a �nite sequence of P -stable matchings �m1
, �m1+1, ..., �m1+m2
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such that, for all i 2 fm1 + 1; :::;m1 +m2g, �iR�i�1 and �m1+m2
j(A1[A2)=

�0 j(A1[A2).

By repeating the same procedure to the remaining odd rings, we obtain eventu-

ally a �nite sequence of P -stable matchings � = �0; �1; :::; �m, wherem =
rP
i=1

mi,

and such that, for all i 2 f1; :::;mg, �iR�i�1 and �m jT= �0 jT . Now, as

�m j(NnT )= �0 j(NnT ), then �m = �0 and the proof is complete.

Lemma 7 Let P be a stable partition and let � be a P -stable matching. Then,

AP = f�g [
�
� 2M : �RT�

	
.

Proof. (�): Let � 2 AP . If � is a P -stable matching and � = � we are done.
If � 6= � then, by Lemma 6, we have �RT�. Otherwise, there exists a P -stable
matching e� such that �RT e�. If e� = � we are done. If e� 6= � again by Lemma
6 we have e�RT�. Hence �RT�.
(�): It follows directly of the de�nition of AP .

Lemma 8 Dr = DP

Proof. (�): To it, we prove that, for all t 2 f0; :::; rg:
a) Dt � DP and
b) There exist a �t 2 AP and a P -stable matching �t such that �t(x) = x if

x 2 Bt12 and �t(x) = �t(x), otherwise.
We argue by induction on t. If t = 0, let A = fa1; :::; akg be an odd ring of

P . Let e� be the P -stable matching such that e�(ai) = ai. As e�(ai�1) = ai�2

and ai �ai�1 ai�2, then fai; ai�1g blocks e� and therefore ai 2 DP . Hence

Condition a) follows. Moreover, for �0 = �0 = � where � is any P -stable

matching Condition b) is veri�ed.

For t � 1, as Dt = Dt�1 [ Bt, by the inductive hypothesis, it su¢ ces to prove
that Bt � DP . If At is not an odd ring, then At = Bt0 for some t0 2 f1; :::; t�1g.
Then, by condition b), there exist a �t0 2 AP and a P -stable matching �t0 such
that �t0(x) = x if x 2 Bt0 and �t0(x) = �t0(x), otherwise. If At is an odd ring,
consider �t0 = �t0 = e�, where e� is the P -stable matching such that e�(ai) = ai.
Then �t0(ai) = ai and as �t0(bj) = �t0(bj) = bj�1, by [2], we have bj �ai �t0(ai)
and ai �bj �t0(bj). Hence fai; bjg blocks �t0 and therefore bj 2 DP . Let e�t0 be
the matching obtained from �t0 by satisfying this blocking pair. As ai �bj bj�1,
12We assume that Bt =Ø, if t = 0.
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by the stability of P , ai�1 �ai bj and as e�t0(ai�1) 2 fai�1; ai�2g then fai; ai�1g
blocks e�t0 ; inducing a matching ��t0 for which agents bj and bj�1 are alone. Then
fbj ; bj�1g blocks ��t0 . Hence, bj�1 2 DP and therefore Condition a) follows.

Moreover, it is very easy to see that for �t = �
�
t0 and �t = �t0 Condition b) is

satis�ed.

(�): We must to prove that Dr contains all blocking pairs of all matchings of
AP . Now, by Lemma 7, AP = f�g [

�
� 2M : �RT�

	
where � is a P -stable

matching. Hence it su¢ ces to show that, for any �nite sequence of matchings

(� = �0; �1; :::; �m = �) where, for all i 2 f1; :::;mg, �i is obtained from �i�1

by satisfying the blocking pair fxi; yig, then fxi; yig � Dr.
We argue by induction on m. If m = 1, let A = fa1; :::; akg and B = fb1; :::; blg
sets of P such that x1 2 A and y1 2 B. Then x1 = ai and y1 = bj for

some i and j. As fx1; y1g blocks � then y1 �x1 �(x1) and x1 �y1 �(y1), i.e.,
bj �ai �(ai) and ai �bj �(bj). Now, if A and B are odd rings, then ai, bj 2 D0
and we are done. If neither of them is an odd ring then we have �(ai) = ai�1

and �(bj) = bj�1. But then bj �ai ai�1 and ai �bj bj�1, contradicting the
stability of P . If A is an odd ring but B is not. Then ai 2 D0. As �(bj) = bj�1
we have bj �ai ai and ai �bj bj�1. Hence bj 2 D1. If B is an odd ring and A

is not, we argue in similar way.

For m � 2, let A0 = fa01; :::; a0k0g and B0 = fb01; :::; b0l0g sets of P such that

xm = a0i and ym = b0j for some i and j. As fxm; ymg blocks �m�1 then b0j �a0i
�m�1(a

0
i) and a

0
i �b0j �m�1(b

0
j). Suposse, by contradiction, that fa0i; b0jg * Dr. If

fa0i; b0jg \Dr = � then �m�1(a0i) = �(a0i) and �m�1(b0j) = �(b0j). Hence fa0i; b0jg
blocks �. But then, by the inductive hypothesis, fa0i; b0jg � Dr, contradicting

that fa0i; b0jg * Dr. If a0i 2 Dr and b0j =2 Dr since �m�1(b0j) = �(b0j) = b0j�1 then
b0j �a0i a

0
i and a

0
i �b0j b

0
j�1. Hence b

0
j 2 Dr, which contradicts that b0j =2 Dr. If

a0i =2 Dr and b0j 2 Dr, we argue in similar way.

Lemma 9 Let P be a stable partition. Then, there exist a � 2 AP and a P -

stable matching � such that �(x) = x if x 2 DP nD0 and �(x) = �(x), otherwise.

Proof. By Lemma 8 we have Dr = DP . We argue by induction on r. If r = 0,

consider � = �, where � is any P -stable matching. For r � 1, by Lemma 8 (to
see the proof), there exist a �r 2 AP and a P -stable matching �r such that

�r(x) = x if x 2 Br and �r(x) = �r(x), otherwise. Let N
0 = NnBr. Then

P 0 = Pn fBrg is a stable partition of N 0 for which DP 0 = Dr�1. Therefore, by
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the inductive hypothesis, there exist a �0 2 AP 0 and a P 0-stable matching �0

such that �0(x) = x if x 2 DP 0nD0 and �0(x) = �0(x), otherwise. Let � and

� such that � jN 0= �0, � jBr
= �r jBr

, � jN 0= �0 and � jBr
= �r jBr

. It is very

easy to check that � and � satisfy the condition given in the Lemma.

Lemma 10 Let P be a stable partition. Then,

i) For any � 2 AP , �(SP ) = SP and � jSP is stable.
ii) For any �,�0 2 AP , � jSP= �0 jSP .

Proof. By Lemma 7, we have AP = f�g [
�
� 2M : �RT�

	
where � is a P -

stable matching.

i) Let x 2 SP and A 2 P such that x 2 A. If � = �, as � is a P -stable matching
then �(x) 2 A and since A � SP we have �(x) 2 SP . If � 6= � then �RT�. But
as �(x) = �(x) and �(x) 2 SP then �(x) 2 SP . Obviously � jSP is stable.
ii) Since � jSP= � jSP for all � 2 AP , the result follows directly.

Lemma 11 Let P and P 0 be two distinct stable partitions and let � and �0

be any P -stable and P 0-stable matchings. Then, �0RT� if and only if P jSP�
P 0 jSP 0 .

Proof. (=)): Let A 2 P such that A � SP . We must to prove that A 2 P 0

and A � SP 0 . As �0RT� then �0 2 AP hence AP 0 � AP . Therefore SP � SP 0 .

Now, by Lemma 10, we have �0 jSP= � jSP ; hence �0 jA= � jA and therefore
A 2 P 0. Moreover, as A � SP and SP � SP 0 then A � SP 0 .

((=): By Lemma 9, there exist a � 2 AP and a P -stable matching � such

that �(x) = x if x 2 DP nD0 and �(x) = �(x), otherwise. First we prove

that there exist a P 0-stable matching e� such that e�RT�. Let e� be the P 0-
stable matching such that e� jD0

= � jD0
. As �(x) = �(x) for all x 2 D0 thene� jD0

= � jD0
. Moreover, since P jSP� P 0 jSP 0 we have e� jSP = � j

SP
and as,

by Lemma 10, � j
SP
= � j

SP
then e� j

SP
= � j

SP
. Then, for every x 2 DP nD0

we have e�(x) 2 DP nD0 (Otherwise, e�(x) = �(x) = x hence x =2 DP nD0).
So we can write DP nD0 = [si=1fxi; yig where yi = e�(xi). Now, as agents

xi and yi are alone under � we can consider the �nite sequence of matchings

(� = �0; �1; :::; �s) where, for all i 2 f1; :::; sg, �i is obtained from �i�1 by

satisfying the blocking pair fxi; yig. Then we have �s = e� and e�RT�. Hencee�RT� and the result follows directly from Lemma 6.
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Lemma 12 Let P and P 0 be two stable partitions. Then AP = AP 0 if and only

if P jSP= P 0 jSP 0 .

Proof. From Lemma 7, we have AP = f�g [
�
� 2M : �RT�

	
and AP 0 =

fe�g [ �� 2M : �RT e�	 where � and e� are P -stable and P 0-stable matchings,
respectively. As AP = AP 0 then e� 2 AP and � 2 AP 0 . If e� = � then P = P 0
and we are done. If e� 6= � we have e�RT� and �RT e�. Hence, by Lemma 11,
P jSP= P 0 jSP 0
The converse is analogous.

Lemma 13 Let P and P 0 be two stable partitions. Then, for each A 2 P either
A � DP 0 or A � SP 0 .

Proof. Let A 2 P . If A is an odd ring then A � DP 0 . If A is a singleton we

are done. We may, therefore, assume that A is a pair of mutually acceptable

agents. Then A = fx; yg. Suppose, by contradiction, and without loss of

generality, that x 2 DP 0 and y 2 SP 0 . We may now consider the sequence of

agents x0; x1; :::; xt; ::: de�ned recursively as follows:

i) for t = 0, x0 = x.

ii) for t � 1, xt is the predeccesor of xt�1 in At where At is the set of P

(respectively, P 0) such that xt�1 2 At if t is odd (respectively, even).
First we prove, by induction on t, that for all t � 1, xt 2 SP 0 and xt+1 �xt

xt�1. If t = 1, as A1 = A then x1 = y. Hence x1 2 SP 0 . Moreover, as x0 2 DP 0

and x1 2 SP 0 , by [2], we have x2 �x1 x0.
For t � 2. By the inductive hypothesis, xt�1 2 SP 0 and xt �xt�1 xt�2. As
agent xt�1 prefers xt to his predecessor xt�2 in At�1, then by stability of P (re-

spectively, P 0) if t is odd (respectively, even) agent xt prefers to his predecessor

xt+1 in At to xt�1. Hence xt+1 �xt xt�1. Moreover, if t is even, as At 2 P 0 and
xt�1 2 SP 0 then At � SP 0 and therefore xt 2 SP 0 . If t is odd and xt 2 DP 0 , as

xt �xt�1 xt�2 then xt�1 2 DP 0 , contradicting that xt�1 2 SP 0 . Hence xt 2 SP 0 .

Now since the number of agents is �nite, some agent appear more than once

in this sequence. Let r be the minimun number such that xr+1 = xt for some

t � r. Thus t = r (As xt 2 SP 0 and x0 2 DP 0 then xt 6= x0 for all t � 1). Hence
At = fxt�1; xtg for all t = 1; :::; r and Ar+1 = fxrg. But as xr+1 �xr xr�1 and
xr+1 = xr then xr �xr xr�1, which contradicts that Ar = fxr�1; xrg is a pair
of mutually acceptable agents.
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Lemma 14 If P jSP and P 0 jSP 0 are any two maximal partitions of P, then
SP = SP 0 .

Proof. Supposse that SP 6= SP 0 . Then, we can assume, without loss of gen-

erality that, there exists a x 2 SP such that x 2 DP 0 . By Lemma 13, for each

A 2 P either A � DP 0 or A � SP 0 . We may now consider the partition P of

N such that P = fA 2 P : A � DP 0g [ fA 2 P 0 : A � SP 0g. It is very easy to
verify that P is a stable partition such that P 0 jSP 0� P jSP . Let A 2 P such

that x 2 A. As x 2 DP 0 then A � DP 0 . Now, it is easy to see that A � SP ,

hence P 0 jSP 0� P jSP , contradicting the maximality of P
0 jSP 0 .

5 Reference

Abeledo H, Rothblum UG, (1995) Paths to Marriage Stability. Discrete

Applied Mathematics 63:1-12Abraham D and Manlove D, (199?) Pareto

optimality in the Roommates problem.

Abraham D, Biro P, and Manlove D, (2005) "Almost stable" matchings

in the roommates problem. Paper ID: 7953. In Proceedings of WAOA 2005:

the 3rd Workshop on Approximation and Online Algorithms, volume 3879 of

Lecture Notes in Computer Science: 1-14

Abeledo H. and G. Isaak, (1991) A Characterization of Graphs that Ensure

the Existence of Stable Matchings, Math. Social Sciences, 22, 93-96

Biro P, Cechlarova K and Fleiner T (2006) On the dynamics of stable

matching markets. Proceedings of the 17th International Conference on Game

Theory at Stony Brook University

Chung, K-S, 2000. On the Existence of Stable Roommate Matchings. Games

and Economic Behaviour: 33, 206-230.

Diamantoudi, E., Miyagawa, E., Xue, L., 2004. Random Paths to Stability

in the Roommate Problem. Games and Economic Behaviour: 48, 18-28.

Gale, D., Shapley, L., 1962. College Admissions and the Stability of Mar-

riage. American Mathematical Monthly: 69, 9-15.

Irving R. (1985) An e¢ cient algorithm for the stable roommates problem.

Journal of Algorithms 6:577-595.

18



Kalai E, EA Pazner and D Schmeidler, 1976. Admissible Outcomes of So-

cial Bargaining Processes as Collective Choice Correspondence. Econometrica:

63, 299-325.

Kalai, E., Schmeidler, D.,1977. An Admissible Set Ocurring in Various

Bargaining Situations. Journal of.Economic Theory: 14, 402-411.

Pittel, B. G., Irving, R. W., 1994. An upper bound for the solvability

probability of a random stable roommates instance Random Structures and Al-

gorithms 5: 465-486.

Roth, A., Vande Vate, J. H., 1990. Random Paths to Stability in Two-Sided

Matching. Econometrica: 58, 1475-1480.

Shenoy, P., 1979. On Coalition Formation: A Game-Theoretical Approach.

International Journal of Game Theory: 8, 133-164

Tan J.J.M., 1990. On a maximum stable matching problem. BIT 29:631-640

Tan, J.J.M., 1991. A Necessary and Su¢ cient Condition for the Existence of

a Complete Stable Matching. Journal of Algorithms: 12, 154-178.

19


