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Abstract

We propose a logical system in which a notion of the structure of a game is formally

defined and the meaning of sequential rationality is formulated. We provide a set of

decision criteria which, given sufficiently high order of mutual belief of the game structure

and of every player following these criteria, entails Backward Induction decisions in generic

perfect information games. We say that a player is rational if the player follows these

criteria in his/her decisions. The set of mutual beliefs is also necessary, in the sense

that any mutual belief of lower order can not entail the Backward Induction decisions.

These conditions are determined by the length of the game structure, and they are never

involved with common belief. Moreover, we give a set of epistemic conditions for subgame

perfect equilibria for any perfect information game, which requires every player follow

these decision criteria and there be mutual belief of the the equilibrium strategy and of

the game structure.
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1 Introduction

This paper develops a multi-player epistemic logic with additional structures in which

we give a precise notion of the structure of an extensive form game and we express the

meaning of sequential rationality1 by means of a set of decision criteria. An agent is said

to be rational if this agent follows these criteria in making his/her decisions. We consider

the epistemic conditions on mutual belief of players’ belief on the decision criteria they

follow, and their belief of the structure of the game. These decision criteria, with some

adequate epistemic conditions, entail Backward Induction decisions in generic extensive

form games with perfect information. Moreover, these criteria refines the equilibrium

with subgame perfectness. This logical system is a combination of a epistemic logic in

Halpern and Moses[(8)] with a logic of causality similar to the one developed in Giordano

and Schwind[(7)], and it is able to express players’ beliefs and the structures of extensive

form games.

We shall first illustrate the meaning of the structure of a game with the following

2-player simple game playing on the matrix:

×

© ©

× ©

The circle player and the cross player put a circle and a cross in a cell, respectively, in

an alternative manner, and the player who first have a row, a column, or a diagonal of

circles or crosses wins. We call a matrix with some crosses and some circles in its cells

a situation, and we call putting a circle or a cross in a particular cell an action. We say

that a situation is an ending situation if the matrix has entries in all its cells. Denote

the set of situations and ending situations by N and Z, respectively, and denote the set

of actions by A. Notice that not every situation is possible, nor is every action in every

situation.

1This concept is the ‘substantial rationality’ in Aumann[(1)]. The term ‘sequential rationality’ is more

often used in the literature, but with a somehow loose meaning attached to it.
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The rule of the game can then be defined as a function from N × A to N ∪ Z, which

indicates how the situations would involve as players take actions. Moreover, we specify

the situations succeeding each particular situation by giving a relation on N , and we

specify a beginning situation, denoted by v0, which in this case is the empty matrix.

Finally, we specify the preference relation on the ending situations for each player in this

game. In the logical system we develop, all these pieces of information about the structure

of a game can be formulated explicitly, and hence we could formulate the sentence that

says there is certain finite order of mutual belief of the structure of the game, but there

may not be common belief. This is the novel part of this paper, since in the literature on

epistemic conditions of game theory, almost all papers assume that the structure of the

game is common knowledge.2

We follow the interpretation of decision criteria in Kaneko[(10)] and assume that play-

ers use these criteria to reach their final decisions, together with their predictions from

their beliefs and logical derivations. However, since we are dealing with dynamic games

here, we need the notion of sequential rationality. Within our logical system, we can

formulate the concept of sequential best responses, and so the decision criteria that cap-

ture the concept of sequential rationality, in an abstract way, without any reference to a

particular game. Since rationality is defined as following the decision criteria, it then is

possible that a player i believes that another player j follows the criteria but i may not

believe that j knows the structure of the game.

The set of decision criteria we shall investigate in this paper is called DC, which

consists of two parts: RC and PC. The first criterion, RC, requires that any decision to

take an action in a particular situation implies that the action leads to a weakly preferred

consequence to any other consequence lead by some other available action, given the

agent’s predictions of future decisions. The second criterion, PC, requires that the agent

to take an action if it leads to a strictly preferred consequence to all other consequences

2The literature of games with incomplete information deals with incomplete information of payoff

functions, and it seems not very relevant to talk about the structures of the games for normal form games.

Aumann and Brandenburger[(2)] is another paper with models in which there may be no common belief

of the payoff functions.
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lead by other available actions, given the agent’s predictions of future decisions. These

criteria are intended to capture the meaning of sequential rationality and thus the meaning

of the preferences of players and implicitly assumes consequentialism in players’ decisions.

It may be remarkable that all our analysis is concerned with ex ante decisions or plans,

which are differentiated from actual actions or moves in ex post plays. We could not

find such a distinction in previous papers like Aumann[(1)], Balkenborg and Winter[(3)],

or Samet[(15)], since all these papers have taken a model theoretic approach, and have

treated rationality as an attribute of a particular action.3

Our first finding is that, given every player following these decision criteria, there

is a set of sufficient and necessary epistemic conditions such that with these conditions

DC entails Backward Induction decisions. In a given generic game4 with length K,

these epistemic conditions are mutual beliefs of players following these criteria and of the

structure of the game up to order K − 1. This result gives a more precise meaning of

substantial rationality in Aumann[(1)], which is regarded as a feature of a habitual payoff

maximizer. In our framework, this habitual payoff maximizer can be interpreted as an

agent who follows DC for his/her decisions. With this interpretation, it might be easier to

identify situations in which this assumption may apply. Following this particular decision

criteria should be an attribute of a combination of a player and of a situation.

It may not be surprising that these conditions do not demand common belief of the

game structure or common belief of following these criteria. Balkenborg and Winter[(3)]

has already argued that common belief of rationality is not necessary for Aumann[(1)]’s

result.5 Balkenborg and Winter[(3)] also have reached a necessary condition, which almost

coincides with ours regarding rationality but not structure of the game, for a special class

of extensive form games with perfect information. Clausing[(6)] also has provided a

3Although the conditions in these literature often read as belief in players’ rationality, it more or less

means players’ actions’ rationality. In those models, rationality is defined in terms of the consistency

between actions and preferences.
4We use the term to mean a game with perfect information which has a unique subgame perfect

equilibrium.
5The authors even have conjectured that common belief of payoff information is not necessary either.

However, they did not explicitly prove this conjecture.
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theorem which states that even common belief of the game structure is not necessary.

However, the structure of the game is formulated as a belief revision system consistent

with the game structure, which should be implications of the game structure rather than

primitive elements of the structure. Moreover, in his formulation, being rational in a

particular game is not independent of knowledge of the game. We adopt this approach

instead of the belief revision approach taken there and Board[(5)], among others, to model

the structure of the game since we are dealing with ex-ante decision-making processes.

Our second result concerns equilibrium refinement. Given an extensive form game,

we show that there exists a model for this game in which there is mutual belief of the

structure of the game and of all the players following a particular strategy and every

player follows that strategy and DC if and only if the strategy profile is a subgame perfect

equilibrium. This result has similar flavor to those in Aumann and Brandenburger[(2)].

In their paper there is a preliminary observation which states that rationality and mutual

knowledge of players’ actions in normal form games entail that the actions constitute a

Nash equilibrium. We show that DC refines the equilibrium to have subgame perfectness.

However, since we deal with pure strategies here, the results are silent about mixed

equilibria.

The rest of the paper is organized as follows: section 2 provides an example to illustrate

the need for a new logical system, section 3 formulates such a system and states its

completeness and soundness, section 4 gives formulations of game structures and decision

criteria, and in section 5 we present our main results regarding Backward Induction and

subgame perfect equilibrium. Section 6 gives some conclusion remarks.

2 An Example

In this section we shall discuss an example to illustrate potential defects of classical logical

system in formulating game structures. We defer the formal definitions to later sections,

but we introduce some sentences and make inferences somehow informally whenever nec-

essary. Consider an extensive form game with the following game tree:
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U u

v0 −−−−v1 −−−−z3

| |

| D | d

z1 z2

Player 1 has to take an action at v0, while player 2 has to take an action at v1. To

describe the rules of the game, we consider the following sentences: a. d1(v0, U), d1(v0, U),

d2(v1, u), d2(v1, d); the intended meaning of the sentence d1(v0, U) is player 1 taking action

U in situation specified by v0, etc.; b. o(v0), o(v1), o(z1), o(z2), o(z3); the intended meaning

of o(v1) is that v0 occurs, etc. The rules should specify that d1(v0, U) would lead to o(v1),

d1(v0, D) would lead to o(z1), etc. Let ∧, ∼, and ⇒ stand for conjunction, negation, and

material implication in classical propositional logic.

One possible axiomatization of the game structure includes the following sentences as

axioms: d1(v0, U) ⇒ o(v1), d1(v0, D) ⇒ o(z1), d2(v1, u) ⇒ o(z3), d2(v1, d) ⇒ o(z3), and

∧{o(z) ⇒∼ o(z′) : z, z′ = z1, z2, z3, z 6= z′}. Suppose that player 2 decides to take d at

v1 and suppose that player 1 knows this. This could be formulated as o(v1) ⇒ d2(v1, d).

Assume that z1 is strictly preferred to z2, and z2 is strictly preferred to z3 for player 1,

which could be formulated as P1(z1, z2)∧ ∼ P1(z2, z1) and P1(z2, z3)∧ ∼ P1(z3, z2). Then

D is a sequential best response while U is not, given player 2’s decision.

A natural way to formulate a being a sequential best response at v0, a = D or U , in

this context is as follows:

∧{(d1(v0, a) ⇒ o(z)) ∧ (d1(v0, a
′) ⇒ o(z′)) ⇒ P1(z, z

′) : a′ 6= a, z, z′ = z1, z2, z3}.

It can be shown that U not being a best response can be derived form the above axioms

plus the condition o(v1) ⇒ d2(v1, d). However, to show that D is a best response, it

requires that ∼ (d1(v0, D) ⇒ o(z3)) be provable from some the axioms, for otherwise the

sentence

(d1(v0, D) ⇒ o(z3)) ∧ (d1(v0, U) ⇒ o(z2))∧ ∼ P1(z3, z2)
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is consistent with the axioms for the game, and so

(d1(v0, D) ⇒ o(z3)) ∧ (d1(v0, U) ⇒ o(z2)) ⇒ P1(z3, z2)

is not provable from the axioms for the game. By classical propositional logic, it can be

shown that

∼ (d1(v0, D) ⇒ o(z3)) ⇒ d1(v0, D)

is a tautology. This, by completeness of the classical propositional logic, then requires

that d1(v0, D) be derivable from the axioms, which is not plausible.

Thus, we need another formulation of the causality in extensive form games than the

material implication. In particular, Aumann[(1)] could avoid this problem because in his

setup payoffs are implicitly given by the strategies, and the structure is not explicitly

formulated.

3 The Epistemic Logic with Causality

We shall develop a system, called ECL suitable for describing the structure of the game,

players’ beliefs, and their inferences in this section. We call this system an epistemic logic

with causality with n agents {1, ..., n}. In extensive form games, the causal relations of

actions to situations are expressed by a tree structure, and our logical system will be able

to capture the tree structure. Since we shall discuss finite extensive form games with

perfect information, we adopt propositional logic formulation.

First we give a general definition of a language that will be specific to games in next

section. There is a countable set of primitive propositions, which is denoted by Φ, with

typical elements p and q. There are three logical connectives: ∼(negation), ∧(and), and

> (causality). ∼ ϕ means that ϕ does not hold, ϕ ∧ χ means that both ϕ and χ hold,

and ϕ > χ means that ϕ causes χ. Epistemic operators are as follows: B1, ..., Bn. Bi(p)

means that i believes p.

Formulas are defined as follows:
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We define L0 first:

a.1 Any p in Φ belongs to L0.

a.2 If ζ, ξ ∈ L0, then ζ ∧ ξ ∈ L0, and ∼ ζ ∈ L0.

a.3 Any element of L0 is a result of finite applications of a.1 and a.2.

Suppose that we have defined Lk−1, k > 0. We define Lk inductively as follows:

b.1 Any ϕ in Lk−1 belongs to Lk.

b.2 If ζ ∈ L0 and ψ ∈ Lk−1, then (ζ > ψ) ∈ Lk.

b.3 If ϕ, ψ ∈ Lk, then ϕ ∧ ψ ∈ Lk,∼ ϕ ∈ Lk, and Bi(ϕ) ∈ Lk, i = 1, ..., n.

b.4 Any element of Lk is a result of finite applications of b.1, b.2, and b.3.

Define L = ∪∞k=0L
k. The language is similar to the one in standard epistemic logic

except for the new connective >. We complicate the formation of formulas because we

do not allow the precedent of any causation to have epistemic or causation element. For

example, Bi(p) > q is not allowed in L, nor is (p > q) > r. However, both Bi(p >

Bj(q)) and p > Bi(q > r) are allowed. We restrict our language in order to simplify the

presentation of semantics, and these sentences are the only components we need for the

expressions of the extensive form games.6 As usual, we use ϕ ∨ χ for the abbreviation of

∼ (∼ ϕ∧ ∼ χ) and we use ϕ ⇒ χ for ∼ ϕ ∨ χ, ϕ, χ ∈ L. In what follows, we use the

following notation: by ∧{χ1, ..., χk} we mean χ1 ∧ ... ∧ χk.
7

Our logic consists of two parts — semantics and syntax. The syntax gives the formal

description of an axiomatic system and proofs of theoremhood in that system, while

semantics gives formal models for the system in which the truth values of sentences are

given. The two systems are connected by the soundness and completeness theorem, which

states that every theorem in the syntax is true in the semantics and that every true

sentence in the semantics is provable in the syntax. In the following subsections, we

6For more discussions of a suitable language to express causality, please see Giordano and Schwind[(7)].
7This is not precise in terms of logic. However, since all propositional tautologies are true and provable

in our logic, this does not matter too much.

8



shall present the syntax and the semantics for our logic, and prove its soundness and

completeness.

3.1 Syntax

In this subsection, we consider the syntax for our logic ELC. Let ϕ, ψ, χ ∈ L, and let

ξ, ζ, η ∈ L0.

Logical Axiom Schemes:

(PC1) ϕ⇒ (χ⇒ ϕ).

(PC2) (ϕ⇒ (ψ ⇒ χ)) ⇒ ((ϕ⇒ ψ) ⇒ (ϕ⇒ χ)).

(PC3) ((∼ ϕ) ⇒ (∼ χ)) ⇒ (((∼ ϕ) ⇒ χ) ⇒ ϕ).

Causal Axiom Schemes:

(Tran) (ζ > ξ) ∧ (ξ > η) ⇒ (ζ > η).

(Det) (ζ >∼ ϕ) ⇒∼ (ζ > ϕ).

Epistemic Axiom Schemes (i = 1, ..., n):

(K) (Bi(ϕ) ∧Bi(ϕ⇒ χ)) ⇒ Bi(χ).

(D) ∼ Bi(ϕ∧ ∼ ϕ).

(4) Bi(ϕ) ⇒ Bi(Bi(ϕ)).

Inference Rules:

(MP) From ϕ and ϕ⇒ χ, infer χ.

(RCEA) From ζ ⇔ ξ, infer (ζ > ϕ) ⇔ (ξ > ϕ).

(RCK) From (ϕ1 ∧ ... ∧ ϕk) ⇒ χ, infer ((ζ > ϕ1) ∧ ... ∧ (ζ > ϕk)) ⇒ (ζ > χ).

(NEC) From ϕ infer Bi(ϕ).

(CN) From ϕ infer (ζ > ϕ).
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Axioms (PC1-3) are standard in propositional logic. Notice also that by (PC1-3) and

completeness of classical propositional logic, any tautology (including substitution of any

formula in L with any primitive proposition in the original tautology) in classical logic is

also provable in ELC. Axiom (Tran) captures the transitivity in the causal relations in

extensive form games. (Det) captures the assumption that any action has a deterministic

result in extensive form games. If effect, it rules out inconsistent consequences from any

causes. Axioms (K), (D), and (4) are standard in epistemic logic, and we refer the readers

to Kaneko[(11)] for more detailed discussions regarding the plausibility and importance

of these axioms. (MP) and (NEC) are standard inference rules in epistemic logics. We

regard (RCK), (RCEA), and (CN) as intuitive requirements — they are standard in the

literature of conditional logic, and notice that they are inference rules, and so they can

be applied only when (ϕ1 ∧ ... ∧ ϕk) ⇒ χ or ζ ⇔ ξ or ϕ are theorems.

A proof in ELC is a finite ordered set of formulas (ϕ1, ..., ϕk) in L such that each ϕj is

either an instance of the axiom schemes or a result of applications of the rules to formulas

preceding it. We say that ϕ ∈ L is a theorem of ELC if there is a proof (ϕ1, ..., ϕj) with

ϕk = ϕ, and this is denoted by ` ϕ. We list several lemmas that will be useful for later

results.

Lemma 3.1. ` Bi(ϕ ∧ χ) ⇔ Bi(ϕ) ∧Bi(χ).

Proof. See, for example, Kaneko[(11)].

Lemma 3.2. a. ` (η ⇒ ζ) and ` ξ ⇒ (ζ ⇒ χ) implies that ` η ∧ ξ ⇒ χ.

b. ` ((η ∧ ζ) ⇒ ξ) ⇔ (η ⇒ (ζ ⇒ ξ)).

Proof. See the appendix.

3.2 Semantics

In this subsection we present a model theoretical semantics for ELC. The semantics we

present here is based on the semantics adopted in Halpern and Moses[(8)] for epistemic
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logic and we change it to accommodate causality using selection functions along the lines

developed by Lewis[(12)] and others. The closest system to the present one may be the

causal logic in Giordano and Schwind[(7)]. The primitive constitutes are frames usually

adopted in modal logic, and a frame consists of a set of possible worlds W and a binary

relation Ri on W for each agent i. The interpretation of these relations is standard. We

have two additional elements — a collection Σ of subsets of Ω, which is supposed to

include every event that can potentially be a cause, and a function f : Σ×W → 2Ω. The

subset corresponding to a particular event in Σ at w ∈ W could be interpreted as the

set of plausible worlds by amending the world w to accommodate the event. We give a

formal definition as follows.

Definition 3.1. Given the language L defined in the beginning of this section, we define

a model M as a (n+ 4)−tuple: < W,Σ, f, R1, ..., Rn, V >, where W is the set of possible

worlds, f is a mapping from Σ ×W → 2W , where Σ is an algebra of subsets of W, and

each Ri is a mapping from W to 2W , i = 1, ..., n; V is a mapping from Φ×W to {>,⊥}

such that for all p ∈ Φ, {w ∈ W : V (p, w) = >} ∈ Σ. We then extend V to L ×W as

follows:

(a) For ζ, ξ ∈ L0:

(a.1) V (∼ ζ, w) = > if and only if V (ζ, w) = ⊥.

(a.2) V (ζ ∧ ξ, w) = > if and only if V (ζ, w) = V (ξ, w) = >.

(b) Suppose that V has been defined for all (ϕ,w) ∈ Lk−1 ×W ;

(b.1) V (ζ > ϕ,w) = > if and only if for all w′ ∈ f([ζ], w), V (ϕ,w′) = >, where

[ζ] = {w ∈ W : V (ζ, w) = >}.

(b.2) V (∼ ϕ,w) = > if and only if V (ϕ,w) = ⊥.

(b.3) V (ζ ∧ ξ, w) = > if and only if V (ζ, w) = V (ξ, w) = >.

(b.4) V (Bi(ϕ), w) = > if and only if for all w′ ∈ Ri(w), V (ϕ,w′) = >.

Define [ϕ] = {w ∈ W : V (ϕ,w) = >}, for all ϕ ∈ L. We also require f and R1, ..., Rn

satisfy the following conditions:
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(s-Tran) for all w ∈ W and for all X1, X2, X3 ∈ Σ, f(X1, w) ⊆ X2 and f(X2, w) ⊆ X3

imply that f(X1, w) ⊆ X3;

(s-Det) for all w ∈ W and for all X ∈ Σ, f(X,w) 6= ∅;

(s-D) for all w ∈ W , Ri(w) 6= ∅;

(s-4) for all w ∈ W and w′ ∈ Ri(w) and w′′ ∈ Ri(w
′) imply that w′′ ∈ Ri(w).

The set of models satisfying all these restrictions is denoted by M.

Given a model M , we say that ϕ ∈ L is true at state w if and only if V (ϕ,w) = >,

and this is denoted by (M,w) |= ϕ. We say that ϕ ∈ L is true in the model M if and

only if (M,w) |= ϕ for all w ∈ W and this is denoted by M |= ϕ. We say that ϕ ∈ L is

valid (w.r.t. M) if and only if M |= ϕ for all M ∈ M. Validity of ϕ is denoted by |= ϕ.

Lemma 3.3. For any ζ ∈ L0, we have [ζ] ∈ Σ, and so the extension of V to L ×W is

well-defined.

Proof. Clearly [p] ∈ Σ for any p ∈ Φ. Now, suppose that [ζ], [ξ] ∈ Σ, then [∼ ζ] =

W − [ζ] ∈ Σ and [ζ ∧ ξ] = [ζ] ∩ [ξ] ∈ Σ.

Lemma 3.4. We have the following properties for |= :

a. (M,w) |= ϕ if and only if (M,w) 2∼ ϕ;

b. (M,w) |= ϕ⇒ χ if and only if (M,w) |= χ or (M,w) 2 ϕ;

c. (M.w) |= ϕ ∨ χ if and only if (M,w) |= ϕ or (M,w) |= χ;

d. M |= ϕ⇒ χ if and only if [ϕ] ⊆ [χ].

Proof. a. Suppose that (M,w) |= ϕ, then V (∼ ϕ,w) = ⊥ and so (M,w) 2∼ ϕ. Con-

versely, if (M,w) 2∼ ϕ, then V (∼ ϕ,w) = ⊥ and so V (ϕ,w) = >.

c. Suppose that (M.w) |= ϕ∨ χ =∼ (∼ ϕ∧ ∼ χ). Then (M,w) 2 (∼ ϕ∧ ∼ χ), and so

(M,w) 2∼ ϕ or (M,w) 2∼ χ. By (a), this is equivalent to (M,w) |= ϕ or (M,w) |= χ.

b. By c. and ϕ⇒ χ =∼ ϕ ∨ χ.
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d. Suppose that M |= ϕ ⇒ χ. Then for all w, (M,w) |= χ or (M,w) 2 ϕ. Thus, if

(M,w) |= ϕ, then (M,w) |= χ, and so we have [ϕ] ⊆ [χ]. Suppose (M,w) 2 ϕ⇒ χ. Then

(M,w) 2 χ and (M,w) |= ϕ and so w /∈ [χ] but w ∈ [ϕ].

3.3 Completeness

In this subsection, we shall give a theorem which states that a formula in L is a theorem

in ELC if and only if it is valid in all models in M. The “if” part of the theorem is

called the completeness of the logic ELC, and the “only if” part of the theorem is called

soundness.

We shall say that a formula ϕ in L is consistent if and only if it is not the case that

`∼ ϕ. A finite set of formulas {ϕ1, ..., ϕK} is consistent if and only if it is not the case

that `∼ ϕ1 ∨ ....∨ ∼ ϕK . An arbitrary subset of L is consistent if and only if its every

finite subset is consistent. A subset Γ ⊆ L, is maximal consistent if and only if Γ is

consistent and for any ϕ /∈ Γ, Γ ∪ {∼ ϕ} is inconsistent.

We state the completeness and soundness of the logic ELC with respect to M in the

following theorem. The proof can be found in the appendix.

Theorem 3.1. For any ϕ ∈ L, |= ϕ if and only if ` ϕ.

4 Extensive Form Game Logic

In this section we shall develop a logic for extensive form games based on ELC. This

logic enables us to formulate the concepts and decision criteria necessary for Backward

Induction as an ex-ante decision. In order to describe the structure of a game explicitly,

we take a set of decision nodes, a set of terminal nodes, a set of actions, and all possible

succeeding relations of the decision nodes as primitive elements. We take the assignment

of players at each decision node as an attribute of that node. The players are assumed to

know these primitive elements implicitly, and this is common knowledge. However, they
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may not know the structure of a particular game, and this knowledge is never common

belief in this paper.

This formulation can accommodate games with perfect information and, potentially,

multi-stage games, but our focus is the former. Therefore, we shall only present the

formulation of games with perfect information, and leave the latter for further research.

4.1 The Language

We shall now define the extensive form game logic. Let I = {1, ..., n} be the set of players.

Let N0
i denote the set of decision nodes for player i, i = 1, ..., n, and let Z0 denote the

set of terminal nodes. Define N0 = ∪i∈IN
0
i . Since we shall consider games with perfect

information only, N0
i ∩N0

j is assumed to be empty for any pair (i, j) ∈ I2. Also, for any

v ∈ N0, we use τ(v) to denote the index i such that v ∈ N0
i . Both N0 and Z0 are assumed

to be large but finite. Let A0 be the set of all possible actions, which is also assumed to

be finite. Without loss of generality, let v0 ∈ N0
1 be the initial node, and let z∗ ∈ Z0 be a

fixed element that will be interpreted as an impossible outcome.

The set Φ of atomic formulas is as follows:

a. For each v ∈ N0
i and a ∈ A0, di(v, a) is an atomic formula, and we denote the set

of these formulas as ΦGR.

b. For each v ∈ N0 ∪ Z0, o(v) is an atomic formula, and we denote the set of these

formulas as ΦNZ .

c. For each pair v, v′ ∈ N0, S(v, v′) is an atomic formula, and we denote the set of

these formulas as ΦS.

c. For each z, z′ ∈ Z0, Pi(z, z
′) is an atomic formula, and we denote the set of these

formulas as ΦS.

The intended meaning for di(v, a) is that the action taken by player i in situation v is

a, and the intended meaning for o(v) is that the situation v occurs. We shall also denote

the sentence by (o(v) > di(v, a)) by Di(v, a), and it is intended to mean that player i
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decides to take action a in situation v. We distinguish Di(v, a) from di(v, a) as different

concepts — actual behavior and plans are not the same objects — but they should be

closely related. Now we shall express a game structure with the language.

First, we define a description as follows:

Definition 4.1. A description consists of three sets of formulas (GC , GS, GP ) that satisfy

the following properties:

(C1) GC = Γ ∪ {(o(z) >∼ o(z′)) : z, z′ ∈ Z0, z′ 6= z}, for some Γ being a set such

that every formula in it has the form di(v, a) > o(v′) for some v ∈ N0
i , v′ ∈ N0 ∪ Z0,

and some a ∈ A0, and if (di(v, a) > o(z)) and (di(v
′, a′) > o(z)) belong to GC for some

(v, a) 6= (v′, a′), then z = z∗;

(C2) for each pair (v, a) ∈ N0
i ×A0, if (di(v, a) > o(v′)) ∈ GC for some v′ ∈ N0∪Z0, then

for any other v′′ 6= v′, (di(v, a) > o(v′′)) /∈ GC , and for all a′ ∈ A0, (di(v, a
′) > o(v′′)) ∈ GC

for some v′′ ∈ N0 ∪ Z0, and for at least one a′′ ∈ A0, such v′′ is not z∗;

(P1) {Pi(z, z
∗),∼ Pi(z

∗, z), Pi(z
∗, z∗), Pi(z, z) : z ∈ Z0 − {z∗}, i ∈ I} ⊆ GP , and every

formula in GP has the form Pi(z, z
′) or ∼ Pi(z, z

′) for some i ∈ I, z, z′ ∈ Z0;

(P2) for every pair z, z′ ∈ Z0, if there exist (v, a), (v′, a′) ∈ N0
i × A0 such that di(v, a) >

o(z), di(v
′, a′) > o(z′) ∈ GC , then, for each i′ ∈ I, Pi′(z, z

′) or Pi′(z
′, z) or both belong to

GP and either Pi′(z, z
′) or ∼ Pi′(z, z

′) belongs to GP ;

(S1) for every pair (v, v′) ∈ (N0)2, either S(v, v′) or ∼ S(v, v′) belongs to GS and any

formula in GS has this form, and ∼ S(v, v0) ∈ GS for all v ∈ N0, and if dτ(v)(v, a) >

o(v′) ∈ GC , v ∈ N0, v′ ∈ N0 ∪ Z0, then S(v, v′) ∈ GS or S(v′′, v) ∈ GS for some v′′ ∈ N0

or v = v0;

(S2) if S(v, v′) ∈ GS, then there is a unique a ∈ A0 such that (dτ(v)(v, a) > o(v′)) ∈ GC

and if S(v, v′) ∈ GS but there is no v′′ ∈ N0 such that S(v′, v′′) ∈ GS, then there is some

(a, z) ∈ A0 × Z0 such that (dτ(v′)(v
′, a) > o(z)) ∈ GC .

The set GC gives us the rules of the game — it specifies how situations involve as

players take actions in turns. The sentences with the form (o(z) >∼ o(z′)) ensure that
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every consequence is final, and we identify the consequences with the terminal nodes. We

require that, in (C2), every action in every situation leads to some other situation in order

to make our description unique. This requirement, together with the conditions we give

later, asserts that any infeasible action leads a least preferred consequence z∗, which is

an interpretation of infeasibility consistent with Harsanyi[(9)]. GP gives the information

about the personal evaluation of the results for every player, and here we impose only

completeness. GS provides the information necessary for the player to know what are

the possible decision nodes of all the players in the future, and so the players could make

predictions regarding future plays. This set is required, as in (S2), to be consistent with

the rules of the game specified in GC .

Consider an extensive form game:

g = [I, (N,Z,≺), τ, A, {tv}v∈N , {�i}i∈I ],

where

I = {1, ..., n} is the set of players;

(N,Z,≺) is a tree: a. ≺ is a binary relation on N ∪ Z such that for all v, not v ≺ v; b.

there is a unique element v0 ∈ N such that for all v ∈ N, not v ≺ v0, and for all other

v ∈ N ∪Z, v′ ≺ v for a unique v′ ∈ N ; c. for all v ∈ Z, and for all v′ ∈ N ∪Z, not v ≺ v′.

τ is a function from N to I (player assignment);

�i is a preference relation on Z, i = 1, ..., n;

A is a finite set of actions;

tv is a one-to-one mapping from Succ(v) to A, with Succ(v) = {v′ ∈ N ∪Z : v ≺ v′}; We

denote the range of tv by A(v).

For each v ∈ N, define Sub(v) = {v′ ∈ N : for some v1, ..., vk, v ≺ v1 ≺ ... ≺ vk = v′}

and Ter(v) = {v′ ∈ Z: for some v1, ..., vk, v ≺ v1 ≺ ... ≺ vk = v′}. Define Ni = {v ∈ N :

τ(v) = i}.

A strategy s in g is a mapping from N to A such that s(v) ∈ A(v). Given a node
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v ∈ N, we define the sub-game g(v) to be

[I, (({v} ∪ Sub(v)) ∩N, Ter(v) ∩ Z,≺), τ, A, {tv′}v′∈{v}∪Sub(v), {�i}i∈N ].

For any strategy s, we define s|v to be the same strategy but restrict its domain to be

Sub(v) or {v} ∪Sub(v), and it shall be clear which case it is from the context. Moreover,

we define Path(v, z) = {v′ ∈ N : z ∈ Ter(v′) and v′ ∈ Sub(v) ∪ {v}} if z ∈ Ter(v). We

also use Path(z) to denote Path(v0, z). For a given strategy s and a node v ∈ N, we

define Z(v; s) = {z ∈ Z : for some v = v1, ..., vk = z, tvl−1
(vl) = s(vl−1), l = 2, ..., k}.

We assume that Ni ⊆ N0
i , Z ⊆ Z0−{z∗}, and A = A0. Also, we assume that v0 ∈ N0

1

is identified with the initial node in g, i.e., we assume that the game always begins with

player 1.

Given an extensive form game with perfect information, the following description is a

description for g:

a. GC = {(d(v, a) > o(v′) : v, v′ ∈ N ∪ Z, t−1
v (a) = v′} ∪ {d(v, a) > o(z∗) : v ∈ N, a /∈

A(v)} ∪ {(o(z) >∼ o(z′)) : z, z′ ∈ Z0, z′ 6= z};

b. GP = {Pi(z, z
′) : (z, z′) ∈�i, z, z

′ ∈ Z} ∪ {∼ Pi(z, z
′) : (z, z′) /∈�i, z, z

′ ∈ Z} ∪

{Pi(z, z
∗),∼ Pi(z

∗, z) : z ∈ Z0 − {z∗}, i = 1, ..., n};

c. GS = {S(v, v′) : v, v′ ∈ N, v ≺ v′} ∪ {∼ S(v, v′) : v ∈ N, v′ ∈ N, v ⊀ v′, or

(v, v′) ∈ (N0)2 −N2};

d. G = ∧(GC ∪GP ∪GS) is then defined to be the axiom for g, and (GC , GS, GP ) is called

the description for g.

An arbitrary description may (GC , GS, GP ) may not be a description of any game.

The following lemma characterizes the conditions for a description to be a description

of a game in extensive form with perfect information. It also shows that if such a game

exists, it is unique.

Lemma 4.1. Given a description (GC , GS, GP ), the formula G = ∧(GC ∪ GP ∪ GS) is

an axiom for some extensive form game with perfect information if and only if:

a. G is consistent;
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b. (∧GP ) ∧ (∧{Pi(z, z
′) ∧ Pi(z

′, z′′) ⇒ Pi(z, z
′′) : z, z′, z′′ ∈ Z0}) is consistent.

c. (∧GS) ∧ (∧{S(v, v′) ⇒∼ S(v′′, v′) : v, v′, v′′ ∈ N0}) is consistent;

d. (∧GS)∧(∧{S(v, v′) ⇒∼ (S(v′, v1)∧ ...∧S(vn, v)) : {v1, ..., vn} ⊆ N0}) is consistent;

e. (∧GS) ∧ (∧{S(v, v′) ⇒ (∨{S(v′′, v) : v′′ ∈ N0}) : v 6= v0, v, v′ ∈ N0}) is consistent.

Proof. Suppose that G = ∧(GC ∪ GP ∪ GS) is an axiom for some extensive form game,

then it is easy to check that these properties hold. We delay the proof for the fact that

G is consistent to theorem 5.1.

Conversely, let (GC , GP , GS) be a given description such that these requirements are

satisfied. Define the game g = [I, (N,Z,≺), τ, A, {tv}v∈N , {�i}i∈I ] as follows: N = {v0}∪

{v ∈ N0 : S(v0, v1), ..., S(vn−1, vn) ∈ GS for some v1, ..., vn−1, vn = v ∈ N0}, Z = {z ∈

Z0 : dτ(v)(v, a) > o(z) ∈ GC for some v ∈ N0, a ∈ A0 and for any other (v′, a′) 6=

(v, a), dτ(v′)(v
′, a′) > o(z) /∈ GC}, v ≺ v′ if and only if S(v, v′) ∈ GS for any v, v′ ∈ N ,

v ≺ z if and only if dτ(v)(v, a) > o(z) ∈ GC for some a ∈ A0 for any v ∈ N and

z ∈ Z, tv(v
′) = a if and only if dτ(v)(v, a) > o(v′) ∈ GC , and z �i z

′ if and only if

Pi(z, z
′) ∈ GP for any z, z′ ∈ Z. Finally, we define tv(v

′) to be the action a ∈ A0 such

that dτ(v)(v, a) > o(v′) ∈ GC for v ∈ N, v′ ∈ N ∪ Z.

First we show that (N,Z,≺) is a tree. For each v ∈ N−{v0}, there exists a node v′ in

N such that S(v′, v) ∈ GC by definition of N . Moreover, if there were 2 nodes v′, v′′ ∈ N

such that S(v′, v), S(v′′, v) ∈ GC , then we have

` (∧GC) ⇒ S(v′, v) ∧ S(v′′, v),

which then implies that

`∼ ((∧GC)∧ ∼ (S(v′, v) ∨ S(v′′, v)),

a contradiction to property c. Thus, such a node is unique. Now, for any v 6= v0, v ∈ N ,

there is a sequence v1, ..., vn = v such that S(v0, v1), ...., S(vn−1, v) ∈ GS, and this implies

that vn−1 ∈ N or S(v0, v) ∈ GS. Therefore, for any v ∈ N other than v0, there exists

some v′ ∈ N such that v′ ≺ v. Moreover, there is no v ∈ N such that v ≺ v0 by (S1).
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Also, by definition of Z, there is a unique node v ∈ N such that v ≺ z for any z ∈ Z.

Thus, (N,Z,≺) is a tree. Define Prec(z) = {(v, a) ∈ N0 × A0 : dτ(v)(v, a) > o(z) ∈ GC}.

If Prec(z) is not a singleton sets, z = z∗ by (C1), for any z ∈ Z0. This also implies that

if z /∈ Z ∪ {z∗}, then Prec(z) = ∅ and for all z ∈ Z, |Prec(z)| = 1. Moreover, for any

v ∈ N , by (C2), there are some a ∈ A0 and v′ 6= z∗ such that dτ(v)(v, a) > o(v′) ∈ GC ,

and so v ≺ v′.

We show that for the constructed g, its description is (GC , GS, GP ). Clearly, for

v, v′ ∈ N , v ≺ v′ if and only if S(v, v′) ∈ GS. Now, let v ∈ N0 − N, v′ ∈ N . Since, as

we have proven, S(v′′, v′) ∈ GS for some v′′ ∈ N , and since v′′ cannot be the same as

v, it follows that ∼ S(v, v′) ∈ GS by (S1). On the other hand, if S(v′, v) ∈ GS, then

v ∈ N , a contradiction, and thus ∼ S(v′, v) ∈ GS by (S1). Consider now v, v′ ∈ N0 −N

and suppose that S(v, v′) ∈ GS. Since v 6= v0, there is another node v1 ∈ N0 such

that S(v1, v) ∈ GS by e. and (S1). To see this, if S(v′′, v) /∈ GS for all v′′ ∈ N0, then

∼ S(v′′, v) ∈ GS for all v′′ ∈ N0, i.e.

` GS ⇒ (∧{∼ S(v′′, v) : v′′ ∈ N0}),

which implies

∼ (GS ∧ (∨{S(v′′, v) : v′′ ∈ N0})),

a contradiction to e.

If v1 ∈ N , then v ∈ N , impossible. Suppose that we have found vn /∈ N such that

S(vn, vn−1) ∈ GS, then there exists vn+1 /∈ N such that S(vn+1, vn) ∈ GS by the same

argument. Since N0 is finite, let vn, vn+k be the first pair such that k > 0, vn = vn+k.

Then we have

` (∧GS) ⇒ S(vn+k, vn+k−1) ∧ .... ∧ S(vn+1, vn),

which implies that

` (∧GS) ⇒ S(vn, vn+k−1) ∧ (S(vn, vn+k−1) ∧ .... ∧ S(vn+1, vn)),

and so

`∼ (∧GS) ∨ (S(vn, vn+k−1) ∧ S(vn, vn+k−1) ∧ .... ∧ S(vn+1, vn)),
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holds, which is a contradiction to d. Therefore, GS represents the relation ≺ in g.

Consider some v ∈ N . We show that dτ(v)(v, a) > o(v′) ∈ GC if and only if (v, v′) ∈

N × (N ∪ Z) and tv(v
′) = a, or v′ = z∗ and a /∈ A(v). Let dτ(v)(v, a) > o(v′) ∈ GC . If

v′ ∈ N0, then S(v, v′) ∈ GS. By the argument above, we have v′ ∈ N and by (S2) tv(v
′) is

well defined and it has value a. Now suppose that v′ ∈ Z0 and suppose that tv(v
′) is not

defined. Then, Prec(z) is not a singleton, and so, as we have seen, v′ = z∗ and a /∈ A(v).

On the other hand, if tv(v
′) is defined, then v′ ∈ Z and so tv(v

′) = a.

Conversely, let (v, v′) ∈ N × (N ∪ Z) and tv(v
′) = a. By definition of tv, we have

dτ(v)(v, tv(v
′)) > o(v′) ∈ GC . On the other hand, let a /∈ A(v). By (C2) and (S2),

dτ(v)(v, tv(z)) > o(z) ∈ GC for some z ∈ Z0. If |Prec(z)| = 1, then z ∈ Z and tv(z) = a,

i.e., a ∈ A(v), a contradiction, and thus, |Prec(z)| > 1 and so z = z∗.

Suppose that v ∈ N0 − N . Then, if there is some (a, v′) ∈ A0 × N0 such that

dτ(v)(v, a) > o(v′) ∈ GC , then by (S1), S(v, v′) ∈ GS and so v ∈ N , a contradiction. If

there is some (a, z) ∈ A0×Z0 such that dτ(v)(v, a) > o(z) ∈ GC , then either S(v′′, v) ∈ GS

for some v′′ ∈ N0 or v = v0, and both cases imply that v ∈ N , a contradiction. Thus, GC

is derived from g.

It is easy to check that, by definition, GP is derived from {�i}i∈I . We shall show

that each �i is reflexive, transitive, and complete. It is reflexive and complete by (P1)

and (P2). Suppose that z �i z
′ and z′ �i z

′′, z, z′, z′′ ∈ Z. Then Pi(z, z
′) and Pi(z

′, z′′)

are in GP . If ∼ Pi(z, z
′′) ∈ GP , it is to see that this contradicts with b. Then, by (P2),

Pi(z, z
′′) ∈ GP , and so z �i z

′′.

We end this section with some notations and several lemmas for future reference. Let

N ′ be a subset of N . We define Sub(v, v′) = ∨{S(v1, v2) ∧ ... ∧ S(vk−1, vk) : v = v1, vk =

v′, v1, ..., vk ∈ N0}, and define Sub(v,N ′) = (∧{Sub(v, v′) : v′ ∈ N ′}) ∧ (∧{∼ Sub(v, v′) :

v′ /∈ N ′}).

Lemma 4.2. Let G be the axiom of a game g.

(a) ` G⇒ Sub(v, v′) if v, v′ ∈ N , and v′ ∈ Sub(v).
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(b) ` G⇒∼ Sub(v, v′) if v, v′ ∈ N and v′ /∈ Sub(v), or if v′ ∈ N0 −N .

(c) ` G⇒ Sub(v,N ′) if N ′ = Sub(v) and ` G⇒∼ Sub(v,N ′) otherwise.

Lemma 4.3. Let G be the axiom of a game g. For all v ∈ N and a ∈ A(v) such that

t−1
v (a) ∈ Z, z′ 6= t−1

v (a) implies that ` G⇒ (dτ(v)(v, a) >∼ o(z′)).

Proof. Clearly, we have ` GC ⇒ (dτ(v)(v, a) > o(t−1
v (a)) and ` GD ⇒ (o(t−1

v (a)) >∼

o(z′)). Thus, we have ` G ⇒ (dτ(v)(v, a) > o(t−1
v (a)) ∧ (o(t−1

v (a)) >∼ o(z′)). Now, by

(Tran), we have ` (dτ(v)(v, a) > o(t−1
v (a))∧ (o(t−1

v (a)) >∼ o(z′)) ⇒ (dτ(v)(v, a) >∼ o(z′)).

Thus, we have ` G⇒ (dτ(v)(v, a) >∼ o(z′)).

Lemma 4.4. Let G be the axiom of a game g. Suppose that ((v1, a1), ..., (vk, ak), z) is a

path from v1 to z ∈ Z, then we have

` G∧(∧{o(vl) > dτ(vl)(vl, al) : l = 2, ..., k}) ⇒ (dτ(v1)(v1, a1) > o(z))∧(∧{dτ(v1)(v1, a1) >∼

o(z′) : z′ 6= z}).

Proof. We prove by induction on the size of k. For k = 1, it follows directly from the

lemma 4.3.

Suppose that it holds for all l < k, k > 1. Then we have

` G ∧ (∧{o(vl) > dτ(vl)(vl, al) : l = 3, ..., k})

⇒ (dτ(v2)(v2, a2) > o(z)) ∧ (∧{dτ(v2)(v2, a2) > o(z′) : z′ 6= z}).

Now, by (Tran), we have

` (o(v2) > dτ(v2)(v2, a2)) ∧ (dτ(v1)(v1, a1) > o(v2)) ⇒ (dτ(v1)(v1, a1) > dτ(v2)(v2, a2)).

Therefore,

` G ∧ (∧{o(vl) > dτ(vl)(vl, al) : l = 2, ..., k})

⇒ (dτ(v1)(v1, a1) > dτ(v2)(v2, a2)) ∧ (dτ(v2)(v2, a2) > o(z))

∧ (∧{dτ(v2)(v2, a2) >∼ o(z′) : z′ 6= z}).
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By (Tran), we have

` (dτ(v1)(v1, a1) > dτ(v2)(v2, a2)) ∧ (dτ(v2)(v2, a2) > o(z))

∧(∧{dτ(v2)(v2, a2) >∼ o(z′) : z′ 6= z})

⇒ (dτ(v1)(v1, a1) > o(z)) ∧ (∧{dτ(v1)(v1, a1) >∼ o(z′) : z′ 6= z}).

Thus, we have

` G ∧ (∧{o(vl) > dτ(vl)(vl, al) : l = 2, ..., k})

⇒ (dτ(v1)(v1, a1) > o(z)) ∧ (∧{dτ(v1)(v1, a1) >∼ o(z′) : z′ 6= z}).

By lemma 4.4, a player i who has firm predictions of future decisions in the sense that

i believes that the decisions predicted would be carried out if the decision node is reached

could determine the consequence of each action i could take in a particular node.

4.2 Game Theoretical Concepts

We shall formulate the game theoretic concepts with the language, and then formulate

the decision criteria for Backward Induction in this subsection. We formulate the concept

of sequential best response at a particular node v ∈ N0 for a given set of prediction of

decisions at nodes in a set N ′ ⊆ N0 in such a way that the formula itself does not depend

on the formulation of the game, and the player may be able to learn whether a particular

action at v is a sequential best response or not after the player learns the structure of the

game and some of other players’ decisions.

We shall say that an action a at a particular decision node (weakly) dominates another

a′ if the consequence a leads to is better the consequence lead by a′. This is formally

defined as:

Domτ(v),v(a, a
′) =

∧{(dτ(v)(v, a) > o(z)) ∧ (dτ(v)(v, a
′) > o(z′)) ⇒ Pτ(v)(z, z

′) : z, z′ ∈ Z0}. (1)
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We also define strict dominance:

SDomτ(v),v(a, a
′) =

∧{(dτ(v)(v, a) > o(z)) ∧ (dτ(v)(v, a
′) > o(z′))

⇒ Pτ(v)(z, z
′)∧ ∼ Pτ(v)(z

′, z) : z, z′ ∈ Z0}. (2)

We can then formulate sequential best responses:

1. Suppose that N ′ = ∅. Then

Bestτ(v),N ′(v, a) = ∧{Domτ(v),v(a, a
′) : a′ 6= a ∈ A}. (3)

2. Otherwise, given N ′ and s ∈ AN ′
,

Bestτ(v),N ′,s(v, a) =

(∧{o(v′) > dτ(v′)(v
′, s(v′)) : v′ ∈ N ′}) ⇒ (∧{Domτ(v),v(a, a

′) : a′ 6= a ∈ A}). (4)

We also define strictly best responses as follows:

1. Suppose that N ′ = ∅. Then

SBestτ(v),N ′(v, a) = ∧{SDomτ(v),v(a, a
′) : a′ 6= a ∈ A}. (5)

2. Otherwise, given N ′ and s ∈ AN ′
,

SBestτ(v),N ′,s(v, a) =

(∧{o(v′) > dτ(v′)(v
′, s(v′)) : v′ ∈ N ′}) ⇒ (∧{SDomτ(v),v(a, a

′) : a′ 6= a ∈ A}). (6)

The intended meaning of Bestτ(v),N ′,s(v, a) is that a is a sequential best response at v,

given that s ∈ AN ′
will be played at all nodes in N ′, and N ′ should be the set of nodes

succeeding v. Before learning the structure of the game, the player is unaware of what

N ′ will be, and our approach is able to explicitly give the arguments for this thought

process. Moreover, the player will not be able to infer which action is a best response

at v unless the player has predictions of others’ decisions at all nodes in N ′. We remark

that this formula could be adequate for expressing the idea of sequential best responses

in multi-stage games, with some modification. Here we list some intuitive properties of

SBest and Best:
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Lemma 4.5. (a) For any a, a′ ∈ A, we have

` SDom(a, a′) ⇒ Dom(a, a′).

(b) For any v ∈ N0, a ∈ A, and for any N ′ ⊆ N0 and s ∈ AN ′
, we have

` SBestτ(v),N ′,s(v, a) ⇒ Bestτ(v),N ′,s(v, a).

We now turn to the decision criteria that lead to Backward Induction decisions. The

first criterion requires that, at each node v, if the decision maker i has predictions of all

the decisions at all nodes succeeding v, then i should decide to take action a if a is a

strictly sequential best responses with respect to i’s predictions. The second principle

demands any decision to take an action a to be a sequential best response with respect

to i’s prediction. These two criteria correspond to PCv and RCv, respectively. We shall

denote the predictions Bi(Dτ(v)(v, a) ∧ (∧{∼ Dτ(v)(v, a
′) : a′ 6= a, a′ ∈ A})) of decisions

at v as PDi(v, a), and we shall denote ∧{PDi(v, s(v)) : v ∈ N ′} as PDi(N
′, s), for any

s ∈ AN ′
.

We give the formal formulation as follows:

a. Rationality Criteria: (v ∈ N0)

a.1 Suppose that N ′ = ∅. Then

RCv,N ′ = ∧{Dτ(v)(v, a) ∧ Sub(v,N ′) ⇒ Bestτ(v),N ′(v, a) : a ∈ A}; (7)

a.2 Suppose that N ′ 6= ∅. Then

RCv,N ′ = ∧{Dτ(v)(v, a) ∧ Sub(v,N ′) ∧ PDτ(v)(N
′, s)

⇒ Bτ(v)(Bestτ(v),N ′,s(v, a)) : a ∈ A, s ∈ AN ′}; (8)

a.3 Define

RCv = ∧{RCv,N ′ : N ′ ⊆ N}. (9)

This criterion requires players’ decisions be consistent with their preference. If in

situation v, every action will lead to final results, then any plan should be a best response.
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If the result of an action is contingent on future actions, and if the player has beliefs on

these future actions, the plan of the player is required to be a consciously best response

given these future actions.

b. Preference Criteria: (v ∈ N0)

b.1 Suppose that N ′ = ∅. Then

PCv,N ′ = ∧{SBestτ(v),N ′(v, a) ∧ Sub(v,N ′) ⇒ Dτ(v)(v, a) : a ∈ A}; (10)

b.2 Suppose that N ′ 6= ∅. Then

PCv,N ′ = ∧{Sub(v,N ′) ∧ PDτ(v)(N
′, s) ∧Bτ(v)(SBestτ(v),N ′,s(v, a))

⇒ Dτ(v)(v, a) : a ∈ A, s ∈ AN ′}; (11)

b.3 Define

PCv = ∧{PCv,N ′ : N ′ ⊆ N}. (12)

This criterion requires players’ decision to be determined by their preferences given

their beliefs, if the preferences are conclusive. If in situation v, every action will lead

to final results, then the player should decide to take the action that leads to the most

preferred result. If the player is aware of future actions relevant to current actions and is

also aware of a most preferred action given these future actions, then the player should

take the most preferred action.

c. The compound decision criterion at v ∈ N0:

DCv = (Sub(v0, v) ⇒ RCv ∧ PCv), (13)

and

DCv0 = (RCv0 ∧ PCv0),

and the compound decision criterion for the game:

DC = (∧v∈N0DCv). (14)
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These criteria are formulated without any reference a particular game. To apply these

criteria in a particular situation v, DCv require the players to follow these decision criteria

only if v is a situation where decision is necessary. The sentence Sub(v0, v) is equivalent to

say that v is a decision node in the game for player τ(v). To say that a player is rational

in the traditional sense can be replaced by the assumption that the player follows DC.

With this definition, being rational can be an attribute of the combination of a player

and a situation. It is not necessary for a player to follow the same decision criterion in all

situations, and sometimes it is commonly known when players like to adopt criteria like

DC in certain situations. Thus, this may help to identify the scope of the application of

Backward Induction and many other Game-theoretic solution concepts.

5 Backward Induction and Subgame Perfectness

In this section we present the main results for Backward Induction decisions and subgame

perfectness. Before we analyze the consequences of these criteria and beliefs of them, we

first argue that they are consistent so that our inference will not be trivial. We shall

define, for any formula ϕ in L,

B1(ϕ) = ∧{Bi(ϕ) : i ∈ I},

B1
−i(ϕ) = ∧{Bj(ϕ) : j ∈ I, j 6= i},

and define

Bk
i (ϕ) = Bi(B

k−1
−i (ϕ)),

Bk
−i(ϕ) = ∧{Bk

j (ϕ) : j ∈ I, j 6= i},

and

Bk(ϕ) = ∧{Bk
i (ϕ) : i ∈ I}

for k > 1. We shall also use B0ϕ to denote ϕ.

We shall also define, for any strategy profile s of g, the formula that all decisions follow

s as follows:

Dg(s) = (∧{Dτ(v)(v, s(v)) : v ∈ N}) ∧ (∧{∼ Dτ(v)(v, a) : v ∈ N, a 6= s(v)}).
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Theorem 5.1. Let G be the axiom for an extensive for game with perfect information g.

The formula ∧{Bk(DC ∧G ∧Dg(s)) : k = 0, ..., K} is consistent for any extensive game

g and any subgame perfect equilibrium s for g, for any K ∈ N.

Proof. See the appendix.

By this theorem, these decision criteria and common belief of them are consistent.

Moreover, it states that for any subgame perfect equilibrium s, these decision criteria are

consistent with common belief (by this we mean arbitrary high order of mutual belief)

of decisions following s. We shall show that these criteria lead to Backward Induction

decisions if there is a unique subgame perfect equilibrium. Unlike many other papers on

Backward Induction, a strategy is not a primitive element in our model. Players may not

have any decision at some node v, and this can be expressed as ∧{∼ Dτ(v)(v, a) : a ∈

A}. All their decisions, in our model, are derived from their decision criteria and their

predictions on other players’ decisions.

We define dep(v) = max{k : for some v1, ..., vk, v ≺ v1 ≺ ... ≺ vk ∈ Z} to be the

length of the game beginning from v, which turns out to be the exact measurement of

complexity of the mutual belief sufficient and necessary for Backward Induction decisions.

Theorem 5.2. Given a game g and its axiom G, Suppose that dep(v0) = K and suppose

that g has a unique subgame perfect equilibrium s. Then

` (∧{Bk(DC ∧G) : k = 0, ..., K − 1}) ⇒ Dg(s).

Proof. We claim that for any v ∈ N and the sub-game g(v),

` (∧{Bk(DC ∧G) : k = 0, ..., dep(v)− 1}) ⇒ Dg(v)(s|v).

We prove by induction on the depth of v. Define z(v) be such that Z(v, s) = {z(v)} for

any v ∈ N .

Suppose that dep(v) = 1. Then for any a ∈ A,

` (PCv ∧RCv ∧ Sub(v, ∅))

⇒ (Dτ(v)(v, a) ⇒ Bestτ(v),∅(v, a)) ∧ (SBestτ(v),∅(v, a) ⇒ Dτ(v)(v, a)),
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and

` G⇒ Sub(v, ∅) ∧ {∼ Sub(v,N ′) : N ′ ⊆ N0, N ′ 6= ∅}.

Thus, for any a ∈ A,

` G ∧ PCv ∧RCv ⇒

(Dτ(v)(v, a) ⇒ Bestτ(v),∅(v, a)) ∧ (SBestτ(v),∅(v, a) ⇒ Dτ(v)(v, a)). (15)

By lemma 4.3 and (Tran), for all a ∈ A,

` ∧GC ⇒

(dτ(v)(v, a) > o(t−1
v (a))) ∧ (∧{∼ (dτ(v)(v, a) > o(z)) : z 6= t−1

v (a)), z ∈ Z0}). (16)

Since s is the unique subgame perfect equilibrium, it follows that z(v) �τ(v) t
−1
v (a) and

t−1
v (a) �τ(v) z(v) for any a ∈ A(v), a 6= s(v). Thus, we have

` ∧GP ⇒ (∧{Pτ(v)(z(v), t
−1
v (a))∧ ∼ Pτ(v)(t

−1
v (a), z(v)) : a 6= s(v), a ∈ A}). (17)

(We take t−1
v (a) = z∗ for any a /∈ A(v).)

Combining (16) and (17), we have

` G⇒ (∧{SDom(s(v), a)∧ ∼ Dom(a, s(v)) : a 6= s(v), a ∈ A}).

Thus, we have

` G⇒ SBestτ(v),∅(v, s(v)) ∧ (∧{∼ Bestτ(v),∅(v, a) : a 6= s(v), a ∈ A}). (18)

Moreover, since v ∈ N , ` G⇒ Sub(v0, v) or v = v0, and so ` G∧DCv ⇒ PCv ∧RCv.

Combining (15) and (18), we have

` G ∧DC ⇒

Dτ(v)(v, s(v)) ∧ (∧{∼ Dτ(v)(v, a) : a 6= s(v), a ∈ A}). (19)

Suppose that dep(v) = K and suppose that for any v′ ∈ Sub(v), (K ≥ 2)

` (∧{Bk(DC ∧G) : k = 0, ..., K − 2}) ⇒ Dg(v′)(s|v′). (20)
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Then, assuming that τ(v) = i, by (NEC) and (K),

` Bi(∧{Bk(DC ∧G) : k = 0, ..., K − 2})

⇒ (∧{PDi(v
′, s(v′)) : v′ ∈ Sub(v)}).

Therefore, by axiom (4), we have

` (∧{Bk(DC ∧G) : k = 0, ..., K − 1})

⇒ (∧{PDi(v
′, s(v′)) : v′ ∈ Sub(v)}). (21)

Moreover, if we let z(a) be the result of playing a at v, a ∈ A (z(a) = z∗ if a /∈ A(v)),

given everyone follows s in every v′ ∈ Sub(v), i.e., z(a) ∈ Z(t−1
v (a); s), then we have, by

lemma 4.4,

` G ∧ (∧{o(v′) > dτ(v′)(v
′, s(v′)) : v′ ∈ Sub(v)})

⇒ (dτ(v)(v, a) > o(z(a))) ∧ (∧{∼ (dτ(v)(v, a) > o(z′)) : z′ 6= z(a), z′ ∈ Z0}). (22)

Since s is the unique subgame perfect equilibrium, we have that z(s(v)) �τ(v) z(a
′)

and z(a′) �τ(v) z(s(v)) for any a′ 6= s(v), a′ ∈ A(v). Thus, we have (notice that Pi(z, z
∗),

∼ Pi(z
∗, z) ∈ GP for any z ∈ Z)

` ∧GP ⇒ (∧{Pi(z(s(v)), z(a))∧ ∼ Pi(z(a), z(s(v))) : a 6= s(v), a ∈ A}). (23)

We have for any a ∈ A,

` G ∧ (∧{o(v′) > dτ(v′)(v
′, s(v′)) : v′ ∈ Sub(v)})

⇒ (SBesti,Sub(v),s|v(v, a) ⇔ (∧{SDomi,v(a, a
′) : a′ 6= a, a′ ∈ A}))

∧(Besti,Sub(v),s|v(v, a) ⇔ (∧{Domi,v(a, a
′) : a′ 6= a, a′ ∈ A})). (24)

Combining (22) and (23),

` G ∧ {o(v′) > dτ(v′)(v
′, s(v′)) : v′ ∈ Sub(v)}

⇒ (∧{SDomi,v(s(v), a) : a 6= s(v), a ∈ A})

∧(∧{∼ Domi,v(a, s(v)) : a 6= s(v), a ∈ A}). (25)
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Combining (24) and (25),

` G ∧ (∧{o(v′) > dτ(v′)(v
′, s(v′)) : v′ ∈ Sub(v)})

⇒ (SBesti,Sub(v),s|v(v, s(v)) ∧ (∧{∼ Besti,Sub(v),s|v(v, a) : a 6= s(v), a ∈ A})).

By (NEC), (K), (D), and lemma 3.1,

` Bi(G) ∧ (∧{Bi(o(v
′) > dτ(v′)(v

′, s(v′))) : v′ ∈ Sub(v)})

⇒ (Bi(SBesti,Sub(v),s|v(v, s(v)))

∧(∧{∼ Bi(Besti,Sub(v),s|v(v, a)) : a 6= s(v), a ∈ A})). (26)

Now, we shall apply the decision criterion DCv. Since v ∈ N , we have

` G⇒ Sub(v0, v)

or v = v0, and so by lemma 3.2,

` G⇒ (DCv ⇒ PCv ∧RCv).

By lemma 3.2,

` PCv ∧RCv ∧Bi(SBesti,Sub(v),s|Sub(v)
(v, s(v)))

∧(∧{∼ Bi(Besti,Sub(v),s|v(v, a)) : a 6= s(v), a ∈ A})

∧Sub(v, Sub(v)) ∧ PDi(Sub(v), s|Sub(v))

⇒ Di(v, s(v)) ∧ (∧{∼ Di(v, a) : a 6= s(v), s ∈ A}). (27)

Clearly we have

` G⇒ Sub(v, Sub(v)).

Thus, combining these results with (26) and (27), it follows that

` G ∧DCv ∧ PDi(Sub(v), s|v) ∧Bi(G)

∧(∧{Bi(o(v
′) > dτ(v′)(v

′, s(v′))) : v′ ∈ Sub(v)})

⇒ Di(v, s(v)) ∧ (∧{∼ Di(v, a) : a 6= s(v), s ∈ A}). (28)
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Now, by definition:

` PDi(Sub(v), s|v)

⇒ (∧{Bi((o(v
′) > dτ(v′)(v

′, s(v′))) : v′ ∈ Sub(v)}). (29)

Combining (21), (28), and (29),

` DCv ∧Bi(G)

∧(∧{Bk(DC ∧G) : k = 0, ..., K − 1})

⇒ Di(v, s(v)) ∧ (∧{∼ Di(v, a) : a 6= s(v), s ∈ A}). (30)

Notice that, by definition and the the tautology ϕ ∧ χ⇒ ϕ,

` (∧{Bk(DC ∧G) : k = 0, ..., K − 1}) ⇒ DCv ∧Bi(G),

it follows that, combining with (20) and (30),

` (∧{Bk(DC ∧G) : k = 0, ..., K − 1}) ⇒ Dg(v)(s|v).

A corollary of this theorem is that common belief of rationality is not necessary for

Backward Induction decisions, and similar results have been reported in Clausing[(6)]

and Balkenborg and Winter[(3)]. Furthermore, as another corollary, common belief of the

game structure is not necessary either. This gives us a set of sufficient epistemic conditions

and decision criteria for Backward Induction decisions. The following theorem states

that these conditions are also essentially necessary for general extensive form games with

perfect information. This result, to the best of our knowledge, is novel to the literature.

Theorem 5.3. Suppose that dep(v0) = K ≥ 2. Then

(∧{Bk(DC ∧G) : k = 0, ..., K − 2}) ∧ (∧{∼ Dτ(v0)(v0, a) : a ∈ A})

is a consistent formula.

Proof. See the appendix.
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Corollary 5.1. Suppose that dep(v0) = K ≥ 2 and suppose that s is a subgame perfect

equilibrium for g. Then

0 (∧{Bk(DC ∧G) : k = 0, ..., K − 2}) ⇒ Dg(s).

The corollary of the theorem states that any lower order of mutual belief of the game

and of every player following DC than the length of the game minus 1 would not entail

any decision for the player in the initial node even if the player follows DC. This states

that without sufficient epistemic conditions, the decision criteria DC are not able to entail

a particular decision. However, this does not exclude the possibility of making decisions

when the player use DC together with others. For example, if the player decide to use a

strategy if it is dominant in the normal from representation of the game, then it is easy

to imagine a situation where this rule entails a definite decision given that the player

knows the game but knows nothing more. The story behind theorem 5.2 and theorem 5.3

are not about equilibrium strategies; the epistemic conditions may be satisfied because

of learning or judgement, but no belief of equilibrium play is assumed in deriving these

results.

One may also wonder if we impose stronger assumptions on the content of the belief,

whether we could lower the complexity of mutual belief. The following theorem states

that if there is mutual knowledge of following a particular strategy profile and the game

structure, and if every player follows DC, then the strategy profile must be a subgame

perfect equilibrium. We shall give a lemma before we present the theorem.

Lemma 5.1. Let (GC , GS, GP ) be a description that describes g. If there is model M and

a world w in it such that

(M,w) |= G ∧Bestτ(v),Sub(v),s(v, a) ∧ (∧{Dτ(v′)(v
′, s(v′)) : v′ ∈ Sub(v)}),

then a is a sequential best response at v w.r.t. s.

Proof. By the definition of Bestτ(v),Sub(v),s(v, a), we also have that

(M,w) |= G ∧Domτ(v),v(v, a).
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Since (M,w) |= G ∧ (∧{Dτ(v′)(v
′, s(v′)) : v′ ∈ Sub(v)}), by lemma 4.4, we have (M,w) |=

dτ(v)(v, a
′) > o(z(a′)) for each a′ ∈ A0, where z(a′) = Z(a′; s′), s′ is any extension

of s to g. Let a′ be any action in A0 other than a. Then (M,w) |= (dτ(v)(v, a
′) >

o(z(a′)))∧(dτ(v)(v, a) > o(z(a))). Since (M,w) |= Domτ(v),v(v, a), it follows that (M,w) |=

Pτ(v)(z(a), z(a
′)). Since (M,w) |= GP , (M,w) |= Pτ(v)(z(a), z(a

′)) if and only if z(a) �τ(v)

z(a′) or a′ /∈ A(v). Thus, a is a sequential best response at v w.r.t. s in g.

Theorem 5.4. Given a game description (GC , GS, GP ), the formula

B1(G ∧Dg(s)) ∧ (DC ∧G ∧Dg(s))

is consistent if and only if s is a subgame perfect equilibrium in the game g described by

(GC , GS, GP ).

Proof. The ‘if’ part is proved in theorem 5.1. Suppose that B1(DC ∧G∧Dg(s))∧ (DC ∧

G∧Dg(s)) is a consistent formula. Then by theorem 3.1, there is a model M and a world

w in it such that (M,w) |= B1(Dg(s)) ∧ (DC ∧G ∧Dg(s)). Let g be the game described

by (GC , GS, GP ).

We shall show that s(v) is a best move w.r.t. s|v at every node v ∈ N . Let v ∈ N be a

node such that Sub(v) = ∅. Then (M,w) |= DC ∧G∧Dg(s). This implies that (M,w) |=

G ∧ Dτ(v)(v, s(v)) ∧ RCv,∅, which in turn implies that (M,w) |= G ∧ Bestτ(v),∅(v, s(v)).

By lemma 5.1, s(v) is a sequential best response at v.

Consider any v ∈ N such that Sub(v) 6= ∅. Then

(M,w) |= PDτ(v)(Sub(v), s|v) ∧ Sub(v, Sub(v)) ∧Dτ(v)(v, s(v)) ∧RCv,Sub(v).

Thus, we have

(M,w) |= Bτ(v)(Bestτ(v),Sub(v),s|v(v, s(v))).

Let w1 ∈ Rτ(v)(w), then

(M,w1) |= Bestτ(v),Sub(v),s|v(v, s(v)) ∧G ∧ (∧{Dτ(v′)(v
′, s(v′)) : v′ ∈ Sub(v)}).

By lemma 5.1, s(v) is a sequential best response at v w.r.t. s.
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Corollary 5.2. Let s be a strategy profile for a perfect information game g that is not a

subgame perfect equilibrium. Let G be its axiom. Then we have

`∼ (B1(G ∧Dg(s)))∨ ∼ (DC ∧G ∧Dg(s)).

Proof. By theorem 5.4,

B1(G ∧Dg(s)) ∧ (DC ∧G ∧Dg(s))

is not consistent. Thus, its negation is provable.

We interpret an equilibrium strategy as a strategy that is expected to be followed by

all the players. With this interpretation, the decision criteria DC refines the equilibrium

to satisfy subgame perfectness. Theorem 5.4 shows any equilibrium strategy in an envi-

ronment with mutual knowledge of the structure of the game and every player following

DC implies that the equilibrium satisfies subgame perfectness. The condition here is sim-

ilar to the epistemic conditions for Nash equilibrium in Aumann and Brandenburger[(2)],

especially the preliminary observation there, but we do not consider mixed strategies here.

This result is also tight, since by Theorem 5.3, for any game g with dep(v0) > 1, DC ∧G

is consistent with any decision at v0.

6 Conclusion

In this paper we develop an epistemic logic with causality and prove its completeness and

soundness. We use this logic to formalize the notion of the structure of a game, and give a

set of decision criteria that entail Backward Induction decisions, given sufficient epistemic

conditions. We also prove that the set of epistemic conditions provided are also necessary.

Also, we provide some epistemic conditions for subgame perfect equilibrium. We give a

set of precise conditions, which may be tested empirically in many real applications.

However, one more possibility, that people do not possess sufficient inference ability, is

not investigated here. We conjecture that it is possible to estimate the complexity of the

inferences for Backward Induction decisions.
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Another line of extension may be the investigation of multi-stage games. We conjecture

that a generalization of Theorem 5.4 should hold for general multi-stage games. Also,

we have not touched the problem of belief revision in extensive form games, which is

extensively discussed in the literature. Our result suggests that if an agent who has

planned to play the Backward Induction actions observe an off-equilibrium action can

infer that at least one condition we give in Theorem 5.2 is wrong. However, there seems

no obvious way to say which one is it. Our approach, nonetheless, provides a framework in

which one could model the situation where the fault has to do with belief in the structure

of the game.

7 Appendix

We provide proofs of several theorems in the appendix.

Before the proof of theorem 3.1, we give a lemma first, and its proof can be found in

standard textbook for Modal logic.

Lemma 7.1. Let Γ be a maximal consistent set.

a. For each ϕ ∈ L, either ϕ ∈ Γ or ∼ ϕ ∈ Γ, but not both.

b. ϕ ∧ χ ∈ Γ if and only if ϕ ∈ Γ and χ ∈ Γ.

c. ` ϕ implies ϕ ∈ Γ.

d. ϕ⇒ χ ∈ Γ implies that if ϕ ∈ Γ, χ ∈ Γ.

e. If for all maximal consistent Γ, ϕ ∈ Γ implies χ ∈ Γ, then ` ϕ⇒ χ.

Proof of theorem 3.1:

Proof. (⇐) Suppose that {ϕ1, ..., ϕk} is a proof for ϕ. We show by induction that for any

M ∈ M and any w ∈ W, (M,w) |= ϕj, j = 1, .., k.

a. j = 1. Then ϕ1 is an instance of the axiom schemes.
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a.1 (PC1-3) ϕ1 is an instance of PC tautology. Then M |= ϕ1 by lemma 3.4.

a.2 (Tran) ϕ1 = (ζ > ξ) ∧ (ξ > η) ⇒ (ζ > η). Suppose that (M,w) |= (ζ > ξ)

and (M,w) |= (ξ > η). Then f([ζ], w) ⊆ [ξ] and f([ξ], w) ⊆ [η]. By (s-Tran), we have

f([ζ], w) ⊆ [η] and so (M,w) |= (ζ > η).

a.3 (K) ϕ1 = (Bi(ϕ) ∧ Bi(ϕ ⇒ χ)) ⇒ Bi(χ). Suppose that (M,w) |= Bi(ϕ) and

(M,w) |= Bi(ϕ⇒ χ), i.e., Ri(w) ⊆ [ϕ]∩ [ϕ⇒ χ]. Now, (M,w′) |= ϕ and (M,w′) |= ϕ⇒

χ imply that (M,w′) |= χ. Thus, [ϕ] ∩ [ϕ⇒ χ] ⊆ [χ] and hence (M,w) |= Bi(χ).

a.4 (D) ϕ1 =∼ Bi(ϕ∧ ∼ ϕ). There exists some w′ ∈ Ri(w) by (s-D). Then w′ /∈

[ϕ] ∩ [∼ ϕ] = ∅.

a.5 (4) ϕ1 = Bi(ϕ) ⇒ Bi(Bi(ϕ)). Suppose that (M,w) |= Bi(ϕ). Then Ri(w) ⊆ [ϕ].

Let w′ ∈ Ri(w), then w′′ ∈ Ri(w
′) implies that w′′ ∈ Ri(w). Therefore, w′′ ∈ [ϕ]. Thus,

Ri(w
′) ⊆ [ϕ], and so Ri(w) ⊆ [Bi(ϕ)].

a.6 (Det) ϕ1 = (ζ >∼ ϕ) ⇒∼ (ζ > ϕ). Suppose that (M,w) |= (ζ >∼ ϕ). Then, there

exists some w′ ∈ f([ζ], w) ⊆ W − [ϕ] since f([ζ], w) 6= ∅ by (s-Det). Thus, f([ζ], w) * [ϕ]

and so (M,w) 2 (ζ > ϕ).

b. Suppose that (M,w) |= ϕj for all j = 1, .., k − 1. Then:

b.1 ϕk is an instance of the axiom schemes. This case is covered by a.

b.2 (MP) ϕk is a result of MP from ϕl, ϕl′ = ϕl ⇒ ϕk, l, l
′ < k. By induction hypothesis,

|= ϕl and |= ϕl ⇒ ϕk. Thus, we have |= ϕk.

b.3 (NEC) ϕk is a result of NEC from ϕl and ϕk = Bi(ϕl). By the induction hypothesis,

|= ϕl and so [ϕl] = W for any model M . Thus, Ri(w) ⊆ [ϕl].

b.4 (RCEA) ϕk is a result of RCEA from ϕl = ζ ⇔ ξ and ϕk = (ζ > ϕ) ⇔ (ξ > ϕ).

By the induction hypothesis, |= ϕl and so [ζ] = [ξ]. Thus, f([ζ], w) = f([ξ], w), and so

[(ζ > ϕ)] = [(ξ > ϕ)].

b.5 (RCK) ϕk is a result of RCEA from ϕl = ϕ1∧...∧ϕm ⇒ χ and ϕk = ((ζ > ϕ1)∧...∧

(ζ > ϕm)) ⇒ (ζ > χ). By the induction hypothesis, |=K ϕl and so [ϕ1] ∩ ... ∩ [ϕm] ⊆ [χ].
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Now, if w ∈ [(ζ > ϕ1) ∧ ... ∧ (ζ > ϕk)], then f([ζ], w) ⊆ [ϕ1] ∩ ... ∩ [ϕm] ⊆ [χ] and so

w ∈ [(ζ > χ)].

b.6 (CN) ϕk is a result of CN from ϕl and ϕk = (ζ > ϕl). By the induction hypothesis,

|= ϕl and so [ϕl] = W for any model M . Thus, f([ζ], w) ⊆ [ϕl].

Thus, by mathematical induction, any provable formula ϕ is L is also valid.

(⇒) It suffices to show that, for every consistent formula ϕ, there is a model M and

a state w such that (M,w) |= ϕ. This proves that 0∼ ϕ implies 2∼ ϕ. For any χ ∈ L,

we have |= χ if and only if |=∼∼ χ, and ` χ if and only if `∼∼ χ. Thus, if we have |= χ,

it follows that |=∼ (∼ χ), and so we have `∼ (∼ χ), which implies ` χ.

We shall construct a canonical model M such that if ϕ is consistent, there is a state

w such that (M,w) |= ϕ. First we shall enumerate formulas in L, and then we shall show

that, given a consistent formula, the set of maximal consistent formulas containing it

exists. Since every atomic formula is consistent, it follows that the collection of maximal

consistent sets is not empty.

Since the set L is denumerable, let ϕ1, ..., ϕk, ... be a enumeration. We claim that

if p ∈ Φ, then there is a maximal consistent set F that contains p. This fact is easily

verifiable using the usual techniques. Notice that this works for any consistent formula

ϕ ∈ L instead of p, and hence there is always a maximal consistent set that contains a

particular consistent formula ϕ.

Now, if we define W = {w ⊆ L : w is a maximal consistent subset of L} and define Σ

be the smallest algebra generated by {|p| ⊆ W : |p| = {w ∈ W : p ∈ w}, p ∈ Φ}, then we

have that for any A ∈ Σ, there is a formula ζ ∈ L0 such that A = |ζ| = {w ∈ W : ζ ∈ w}.

To see this, any A ∈ Σ can be expressed as ∪m
k=1 ∩

mk
l=1 Akl, where Akl is of the form |pkl|

or | ∼ pkl| for some pkl ∈ Φ. Let ηkl be pkl if Akl = |pkl| and let ηkl be ∼ pkl otherwise. It

is easy to check that A = | ∨m
k=1 (∧mk

l=1ηkl)|. Clearly, for any ζ ∈ L0, |ζ| ∈ Σ.

Define M =< W, f,R1, ..., Rn, V > as follows:

a. W = {w ⊆ L : w is a maximal consistent subset of L.}.
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b. Σ is the smallest algebra generated by {|p| ⊆W : |p| = {w ∈ W : p ∈ w}, p ∈ Φ}.

c. for each w ∈ W, define w/ζ = {ϕ ∈ L : (ζ > ϕ) ∈ w} and then define f(|ζ|, w) =

{w′ ∈ W : w/ζ ⊆ w′};

(Since every set in Σ can be represented as |η| for some η ∈ L0, we identify a set in Σ

with its representation. Notice that by (RCEA), ` ζ ⇔ ξ implies that ` (ζ > ϕ) ⇔ (ξ >

ϕ) and so if ` ζ ⇔ ξ, w/ζ = w/ξ. Since ` ζ ⇔ ξ implies that |ζ| = |ξ|, f is well-defined.)

d. for each w ∈ W, define w/Bi = {ϕ ∈ L : Bi(ϕ) ∈ w}, and then define Ri(w) =

{w′ ∈ W : w/Bi ⊆ w′}, i = 1, .., n;

e. for each p ∈ Φ and w ∈ W , V (p, w) = > if and only if p ∈ w.

We define an operator [ ] : L→ 2W as before such that for all ϕ ∈ L, V (ϕ,w) = > if

and only if w ∈ [ϕ]. Define |ϕ| = {w ∈ W : ϕ ∈ w}, for all ϕ ∈ L.

First we show that for all ϕ ∈ L, |ϕ| = [ϕ]. We will show by induction on the structure

of ϕ.

a. Let p ∈ Φ. Then, |p| = [p] by definition.

b. We then show that |ζ| = [ζ], for all ζ ∈ L0 by induction.

b.1 By lemma 3.4, w ∈ [ϕ ∧ χ] = [ϕ] ∩ [χ] = |ϕ| ∩ |χ| if and only if both ϕ and χ

belong to w if and only if ϕ ∧ χ ∈ w if and only if w ∈ |ϕ ∧ χ|, for all ϕ, χ ∈ L0.

b.2 By lemma 3.4, w ∈ [∼ ϕ] = W − [ϕ] = W − |ϕ| if and only if ϕ /∈ w if and only if

∼ ϕ ∈ w, for all ϕ ∈ L0.

c. Suppose that |ϕ| = [ϕ], |χ| = [χ], and |ζ| = [ζ], for all ϕ, χ ∈ Lk−1, and ζ ∈ L0.

c.1 Let ϕ ∈ Lk−1. We show that |Bi(ϕ)| = [Bi(ϕ)] and |(ζ > ϕ)| = [(ζ > ϕ)], ζ ∈ L0.

c.1.1 Suppose that w ∈ [Bi(ϕ)]. If w/Bi is consistent, then Ri(w) ⊆ [ϕ] = |ϕ| and so

w/Bi∪{∼ ϕ} is inconsistent. (for otherwise, there exists w′ ∈ W and w/Bi∪{∼ ϕ} ⊆ w′,

which contradicts to the fact that Ri(w) ⊆ |ϕ|.) Therefore, either w/Bi being consistent

or not, there is a subset {χ1, ..., χk} ⊆ w/Bi such that `∼ (χ1∧ ...∧χk)∨ϕ. (Notice that

k may be 0, and {∼ ϕ} is inconsistent, i.e., `∼∼ ϕ) Then by (NEC) and (K), we have
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` (Bi(χ1) ∧ ... ∧Bi(χk)) ⇒ Bi(ϕ). Thus, Bi(ϕ) ∈ w.

c.1.2 Suppose that w ∈ |Bi(ϕ)|. Then ϕ ∈ w/Bi and so Ri(w) ⊆ [ϕ].

c.1.3 Suppose w ∈ [(ζ > ϕ)]. If w/ζ is consistent, then, w/ζ∪{∼ ϕ} is inconsistent, for

otherwise w/ζ ∪ {∼ ϕ} ⊆ w′ for some w′ ∈ W. Thus, either w/ζ being consistent or not,

for some {χ1, ..., χk} ⊆ w/ζ we have `∼ (χ1∧ ...∧χk)∨ϕ, that is, `K (χ1∧ ...∧χk) ⇒ ϕ.

(Notice that k may be 0, and {∼ ϕ} is inconsistent, i.e., `∼∼ ϕ.) By (RCK) or (CN)

(in case when k = 0), we have `K ((ζ > χ1) ∧ ... ∧ (ζ > χk)) ⇒ (ζ > ϕ). Now,

{χ1, ..., χk} ⊆ w/ζ implies that (ζ > χ1), ..., (ζ > χk) ∈ w, and so (ζ > ϕ) ∈ w. Thus, if

w ∈ [(ζ > ϕ)], then w ∈ |(ζ > ϕ)|.

c.1.4 Suppose w ∈ |(ζ > ϕ)|, then ϕ ∈ w/ζ, and so w/ζ ⊆ w′ implies that ϕ ∈ w′.

Thus, f([ζ], w) = f(|ζ|, w) ⊆ ϕ, and hence w ∈ [(ζ > ϕ)].

c.2 Suppose that ϕ, χ ∈ Lk, and suppose that [ϕ] = |ϕ| and [χ] = |χ|.

c.2.1 By lemma 3.4, w ∈ [ϕ ∧ χ] = [ϕ] ∩ [χ] = |ϕ| ∩ |χ if and only if both ϕ and χ

belong to w if and only if ϕ ∧ χ ∈ w if and only if w ∈ |ϕ ∧ χ|.

c.2.2 By lemma 3.4, w ∈ [∼ ϕ] = W − [ϕ] = W − |ϕ if and only if ϕ /∈ w if and only

if ∼ ϕ ∈ w.

Thus, we have shown that (M,w) |= ϕ if and only if ϕ ∈ w. Since any consistent

formula belongs to an element in W , it follows that for any consistent formula ϕ, there is

a state w such that (M,w) |= ϕ. It remains to show that M ∈ M and we shall show that

M satisfies (s-Tran), (s-Det),(s-D), and (s-4).

a. (s-Tran) Suppose that f(A,w) ⊆ B and f(B,w) ⊆ C, A,B,C ∈ Σ. Let A = [ζ],

B = [ξ] and C = [η]. Then we have ζ > ξ ∈ w and ξ > η ∈ w. By (Tran), we have

ζ > η ∈ w. Thus, for all w′ ∈ f(A,w) η ∈ w′, i.e., f(A,w) ⊆ C.

b. (s-Det) Let A = [ζ]. Then if w/ζ is inconsistent, there are formulas χ1, ..., χk ∈

w/ζ such that `K∼ (χ1 ∧ ... ∧ χk). By (CN), we have then ζ >∼ (χ1 ∧ ... ∧ χk) ∈ w.

Now `K ((ζ > χ1) ∧ ... ∧ (ζ > χk)) ⇒ (ζ > (χ1 ∧ ... ∧ χk)) holds by (RCK) and so

(ζ > (χ1 ∧ ... ∧ χk)) ∈ w. But by (Det), ζ >∼ (χ1 ∧ ... ∧ χk) is not consistent with
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(ζ > (χ1 ∧ ... ∧ χk)). Thus, w/ζ is consistent and so f(A,w) cannot be empty.

c. (s-D) Let w ∈ W. Suppose that w/Bi is inconsistent. Then we have `∼ (χ1∧...∧χk)

for some χ1, ..., χk ∈ w/Bi. Thus, we have ` Bi(∼ (χ1 ∧ ... ∧ χk)) by (NEC) and so

Bi(∼ (χ1 ∧ ... ∧ χk)) ∈ w. Now, since Bi(χ1), ..., Bi(χk) ∈ w, Bi(χ1 ∧ ... ∧ χk) ∈ w.

Therefore, Bi(∼ (χ1∧ ...∧χk))∧Bi(χ1∧ ...∧χk) ∈ w, which contradicts to the consistency

of w.

d. (s-4) Let w′ ∈ Ri(w) and w′′ ∈ Ri(w
′). Then w/Bi ⊆ w′ and w′/Bi ⊆ w′′. Let

ϕ ∈ w/Bi, then Bi(ϕ) ∈ w/Bi ⊆ w′ and so ϕ ∈ w′/Bi ⊆ w′′. Therefore, w/Bi ⊆ w′′.

Proof of theorem 5.1:

Proof. Let Z = {z1, ..., zS} and suppose that, without lost of generality, z1 is the path

derived from the subgame perfect equilibrium s.

Define a model M = (W, f,R1, ..., Rn, V ) as follows:

a. W = Z ∪ {(v, a) : v ∈ N , a 6= s(v), but a ∈ A(v), t−1
v (a) /∈ Z} ∪ {z∗}.

b. We define V as follows:

b.1. For any z ∈ Z, let v(z) ∈ N satisfy (1) there exist v(z) = v1, ..., vk = z such that

tvl−1
(vl) = s(vl−1), l = 2, ..., k; (2) tv′(v(z)) 6= s(v′), where v′ ≺ v(z).

b.1.1. If v(z) exists, define V (dτ(v)(v, a), z) = > if and only if v ∈ Path(v(z), z) and

a = s(v), v ∈ N , z ∈ Z, a ∈ A and define V (o(v), z) = > if and only if v ∈ Path(v(z), z),

v ∈ N ∪ Z.

b.1.2. If v(z) does not exist, then define V (o(v), z) = ⊥ = V (dτ(v)(v, a), z) for all

v ∈ N and a ∈ A, and define V (o(z′), z) = > if and only if z′ = z for all z ∈ Z.

b.1.3. For all z ∈ Z, V (o(z′), z) = > if and only if z′ = z.

b.1.4. Define V (o(v), z∗) = ⊥ for all v ∈ N, and define V (dτ(v)(v, a), z
∗) = > if and

only if a /∈ A(v) for all v ∈ N .

b.2. For any (v, a) ∈ W , define V (dτ(v)(v
′, a′), (v, a)) = > if and only if (v′, a′) = (v, a)
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and define V (o(v′), (v, a)) = ⊥ for all v′ ∈ N .

b.3. For each w ∈ W , V (Pi(z, z
′), w) = > if and only if (z, z′) ∈�i, i = 1, .., n, for any

z, z′ ∈ Z; V (Pi(z, z
∗), w) = > and V (Pi(z

∗, z), w) = ⊥ for all z ∈ Z; V (Pi(z
′, z), w) = ⊥

for all z, z′ ∈ Z0 − Z.

b.5. V (S(v, v′), z1) = > if and only if v ≺ v′ for all v, v′ ∈ N and V (S(v, v′), z1) = ⊥

for all v ∈ N , and v′ ∈ N0 −N .

b.6. For nay w ∈ W , V (dτ(v)(v, a), w) = ⊥ = V (o(v), w) for any v ∈ (N0 ∪Z0)− (N ∪

Z ∪ {z∗}) and any a ∈ A.

c. Let Σ = 2W . Define f({z}, z1) = {z} for all z ∈ Z ∪ {z∗}, f({(v, a)}, z1) =

[o(t−1
v (a))] for all (v, a) ∈ W, and define f(X, z1) = X for all other X ∈ Σ, X 6= ∅.

f(∅, z1) = {z1}.

d. For each i = 1, ..., n, we define Ri(z1) = {z1}.

(s-Det) is true. Notice that V (o(v), z) = > if and only if v ∈ Path(v(z), z) by

(b.1.1.) and since s gives a unique path from each v′ ∈ N , [o(v)] is a singleton and is

a subset of Z. To check (s-Tran), it suffices to notice that f(X, z1) ⊂ Y implies that

f(X, z1) ⊂ f(Y, z1) = Y by (c.) for all X, Y ∈ Σ.

Then we claim that (M, z1) |= DC ∧ G. Since, by (b.5.), (M, z1) |= S(v, v′) if and

only if v ≺ v, and (M, z1) |=∼ S(v, v′) for all v ∈ N , v′ ∈ N0 − N , it follows that

(M, z1) |= ∧GS. It is easy to check that (M, z1) |= ∧GP by (b.3). We shall show that

(M, z1) |= ∧GC also. Suppose that a = tv(v
′).

Case (1): a = s(v). Then, by (b.1.) and (c.), [dτ(v)(v, a)] = Z(v; s) =def {z}, and

so o(v′) ∈ Path(v(z), z). Thus, f([dτ(v)(v, a)], z1) = {z} = [o(v′)]. Therefore, (M, z1) |=

dτ(v)(v, a) > o(v′).

Case (2): a 6= s(v) and a ∈ A(v).

(2.1) v′ ∈ N. Then, by (b.1.), [dτ(v)(v, a)] = {(v, a)} and f([dτ(v)(v, a)], z1) = [o(t−1
v (a))].

Thus, we have (M, z1) |= dτ(v)(v, a) > o(v′).
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(2.2) v′ ∈ Z. Then, by (b.1.), [dτ(v)(v, a)] = {v′} and so, by (c.), f([dτ(v)(v, a)], z1) =

{v′} = [o(v′)] Thus, we have (M, z1) |= dτ(v)(v, a) > o(v′).

Case (3): a /∈ A(v). Then, by (b.1.), [dτ(v)(v, a)] = {z∗} and so by (c.), f([dτ(v)(v, a)], z1) =

f({z∗}, z1) = {z∗} = [o(z∗)]. Thus, (M, z1) |= dτ(v)(v, a) > o(z∗).

Moreover, for any z 6= z′ ∈ Z ∪ {z∗}, f([o(z)], z1) = {z} ⊆ W − {z′} = [∼ o(z′)] and

so we have (M, z1) |= o(z) >∼ o(z′). Thus, we have (M, z1) |= G.

Notice that Ri(z1) = {z1} for all i, and so

(M, z1) |= ϕ⇔ Bi(ϕ), (31)

for any ϕ ∈ L.

For any v ∈ N , f([o(v)], z1) = Z(v; s) = [dτ(v)(v, s(v))]. Moreover, Z(v; s) ⊆ W −

({(v, a′)} ∪ {z∗}) ⊆ W − [dτ(v)(v, a
′)]. Thus,

(M, z1) |= ∧{(o(v) > dτ(v)(v, s(v)))∧ ∼ (o(v) > dτ(v)(v, a)) : v ∈ N, a 6= s(v), a ∈ A}. (32)

Moreover, since Ri(z1) = {z1} and so (M, z1) |= ∧{PDi(N, s) : i ∈ I}.

Therefore, by (7)-(12),

(M, z1) |= ∧{(RCv ∧ PCv) ⇔

Bestτ(v),Sub(v),s|v(v, s(v)) ∧ (∧{∼ SBestτ(v),Sub(v),s|v(v, a) : a 6= s(v)}) : v ∈ N}. (33)

Combining (32), (33), (31), (5), and (6), it follows that for all v ∈ N ,

(M, z1) |=

(∧{Domτ(v),v(s(v), a) : a 6= s(v)})

∧(∧{∼ SDomτ(v),v(a, s(v)) : a 6= s(v)}) ⇒ ∧(RCv ∧ PCv).

By lemma 4.4 and (32), we have (M, z1) |= dτ(v)(v, s(v)) > o(z(v)) (z(v) is such that

Z(v; s) = {z(v)}) and (M, z1) |= dτ(v)(v, a) > o(z(t−1
v (a))) for any v ∈ N . Moreover, by

(Det) and theorem 3.1, it follows that (M, z1) |=∼ (dτ(v)(v, s(v)) > o(z′)) for any z′ 6= z.
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Since s is a subgame perfect, it follows that for any v ∈ N , z(v) �τ(v) z(t
−1
v (a)) for any

a ∈ A(v). Thus, for any a′ 6= s(v),

(M, z1) |= (dτ(v)(v, s(v)) > o(z(v))) ∧ (dτ(v)(v, a) > o(z(t−1
v (a)))) ∧ (Pτ(v)(z(v), z(t

−1
v (a))),

and so

(M, z1) |=∼ SDomτ(v),v(a, s(v)).

For any a 6= s(v), (M, z1) |= (dτ(v)(v, s(v)) > o(z)) ∧ (dτ(v)(v, a) > o(z′)) if and only if

z = z(v), and z′ = z(t−1
v (a)). Since (M, z1) |= Pτ(v)(z(v), z(t

−1
v (a))) for any a ∈ A(v) and

since (M, z1) |= Pτ(v)(z(v), z
∗), it follows that

(M, z1) |= ∧{Domτ(v),v(s(v), a) : a 6= s(v)}.

Therefore, we have (M, z1) |= ∧{RCv ∧ PCv : v ∈ N}.

Combining the results, we have (M, z1) |= DC ∧ G. By (32), we also have (M, z1) |=

Dg(s). These give us that (M, z1) |= DC ∧G ∧Dg(s). From (31), it follows that

(M, z1) |= ∧{Bk(DC ∧G ∧D(s)) : k = 0, ..., K}.

We give a general proof for the theorem 5.3.

Theorem 7.1. Suppose that dep(v0) = K ≥ 2. Then

(∧{Bk(DC ∧G) : k = 0, ..., K − 2}) ∧ (∧{∼ Dτ(v0)(v0, a) : a ∈ A})

is a consistent formula.

Proof. Suppose that τ(v0) = 1. Let z1 be the terminal node such that there are v0 = v0,

v1,...,vK+1 = z1 and vk ≺ vk+1, k = 0, ..., K. Consider a model M as follows:

M = (W, f,R1, ..., Rn, V ), where

a. W = Z ∪ {(v, a) : v ∈ N, a 6= s(v), a ∈ A(v), t−1
v (a) /∈ Z} ∪ {w1, ..., wK−1} ∪

{w∗} ∪ {z∗}, w1, ..., wK−1, and w∗ are assumed to be different from any z ∈ Z0 and any
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(v, a) ∈ N0 ×A and from each other. We also enumerate Z as {z1, ..., zK , ..., zK∗}, where

K∗ = |Z| ≥ K. W.l.o.g., we assume that z2 is lead by s.

b. V is defined as follows:

b.1. (w ∈ Z ∪ {z∗}, ΦGR, ΦNZ) For any z ∈ Z, let v(z) ∈ N satisfy, if any, (1) there

exist v(z) = v1, ..., vk = z such that tvl−1
(vl) = s(vl−1), l = 2, ..., k; (2) tv′(v) 6= s(v′),

where v′ ≺ v.

b.1.1. Case 1: v(z) exists. Assign V (dτ(v)(v, a), z) = > = V (o(v), z) if and only if

v ∈ Path(v(z), z) and a = s(v) for all v ∈ N ∪Z and a ∈ A. For all other p ∈ ΦGR∪ΦNZ ,

assign V (p, z) = ⊥.

b.1.2. Case 2: v(z) does not exist. Assign V (dτ(v)(v, a), z) = > = V (o(z′), z) if and

only if v ≺ z, tv(z) = a, and z′ = z, for all v ∈ N and z′ ∈ Z. For all other p ∈ ΦGR∪ΦNZ ,

assign V (p, z) = ⊥.

b.1.3. Case 3: z = z∗. Assign V (dτ(v)(v, a), z
∗) = > = V (o(z∗), z∗) if and only if

a ∈ A, a /∈ A(v), for all v ∈ N . For all other p ∈ ΦGR ∪ ΦNZ , assign V (p, z∗) = ⊥.

b.2. (w = (v, a) ∈ W , ΦGR, ΦNZ) Assign V (dτ(v′)(v
′, a′), (v, a)) = > if and only if

(v′, a′) = (v, a) for all (v, a) ∈ N×A. For all other p ∈ ΦGR∪ΦNZ , assign V (p, (v, a)) = ⊥.

b.3. (w = wk, k = 1, ..., K − 1, and w∗, ΦGR, ΦNZ) Define Nk = {v ∈ N : dep(v) =

k} ∩ Path(z1), k = 1, ..., K. Since dep(v0) = K, Nk 6= ∅ for all k = 1, ..., K, and clearly

|Nk| = 1. Let Nk = {vk}. Assign V (o(vk′), wk) = > if and only if k′ > k for k′ = 1, ..., K.

For all other p ∈ ΦGR ∪ ΦNZ , assign V (p, wk) = ⊥. For all p ∈ ΦGR ∪ ΦNZ , assign

V (p, w∗) = ⊥.

b.4. (ΦP and ΦS) For each w ∈ W , z, z′, z′′ ∈ Z, and for each i ∈ I, assign

V (Pi(z
′, z′′), w) = > if and only if z′ �i z

′′, and assign V (Pi(z
′, z∗), w) = >, V (Pi(z

∗, z′), w) =

⊥. Assign V (S(v, v′), w) = > if and only if v, v′ ∈ N and v ≺ v′. For all other p ∈ ΦS∪ΦP ,

assign V (p, w) = ⊥.

c. Let Σ = 2W . We consider the construction of f for z2, ..., zK and w∗ only. For

any v 6= vk, k = 1, ..., K, [o(v)] = Z(v; s) =def {z(v; s)}. [o(vk)] = {z(vk; s), w1, .., wk−1}.
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Moreover, [dτ(v)(v, s(v))] = {z(t−1
v (a); s)}, [dτ(v)(v, a)] = {(v, a)} if a 6= s(v), a ∈ A(v) and

Sub(v) 6= ∅, [dτ(v)(v, a)] = {z∗} if a /∈ A(v), and [dτ(v)(v, a)] = {t−1
v (a)} if Sub(v) = ∅ and

a ∈ A(v).

c.1. We define f(X,w∗) = {w∗} for all X ∈ Σ.

c.2. For z′ = z2, ..., zK , define f({z}, z′) = {z} for all z ∈ Z, and f({(v, a)}, z′) =

[o(t−1
v (a))] for all (v, a) ∈ W .

c.3. Consider zk ∈ W , k = 2, ..., K. We define f({z(vk′ ; s), w1, ..., wk′−1}, zk) =

{z(vk′ ; s)} if k′ < k and f({z(vk′ ; s), w1, ..., wk′−1}, zk) = {z(vk′ ; s), w
∗} if k′ ≥ k. For any

subset Y ⊆ {w1, ..., wK−1}, let f(Y, zk) = {z1}. For all other nonempty X ∈ Σ, we define

f(X, zk) = X. Let f(∅, zk) = {z1}.

d. Let ik = τ(vk), k = 2, ..., K. We define R1, ..., Rn to be the partitions of

{z2, ..., zK , w
∗} as follows: (d.1) Ri2(w

∗) = {z2, w
∗}, and Ri(w

∗) = {w∗} for all other

i 6= i2. (d.2) Ri3(z2) = {z3, z2}, Ri(z2) = {z2} for all i other than i2 and i3. (d.3) Suppose

that Ri(zk−1) has been defined for all i, k > 2. Then define Rik+1
(zk) = {zk, zk+1} and

define Ri(zk) = {zk} for all i other than ik+1 and ik.

First we check that M is a model that satisfy (s-Tran) and (s-Det). (s-Det) is clearly

true. Now, (s-Tran) holds at w∗ since f(X,w∗) = f(Y,w∗) for any X, Y ∈ Σ. Fix

some k ∈ {2, ..., K}, and consider zk. Suppose that f(X, zk) ⊆ Y and f(Y, zk) ⊆ Z. If

Y ⊆ f(Y, zk), then f(X, zk) ⊆ Z. Suppose that Y * f(Y, zk). Then, by (c.), Y has the

form {z(vk′ ; s), w1, ..., wk′−1} or is a subset of {w1, ..., wK−1} or is {z} for some z ∈ Z.

Case (1): Y has the form {z(vk′ ; s), w1, ..., wk′−1} for some k′. Since f(X, zk) ⊆ Y ,

by (c.), X = {z(vk′′ ; s), w1, ..., wk′′−1} for some k′′ < k and z(vk′′ ; s) = z(vk′ ; s). Then

f(X, zk) = {z(vk′ ; s)} ⊆ f(Y, zk) ⊆ Z.

Case (2): Y ⊆ {w1, ..., wK−1}. Then there is no X such that f(X, zk) ⊆ Y .

Case (3): Y = {z}. Then f(X, zk) = Y ⊆ Z.

Thus, we have thatM satisfy (s-Tran) and (s-Det). We shall show that (M, z) |= G, for

each z = z2, ..., zK . Fix such a zk. By (b.4.), it is easy to check that (M, zk) |= ∧(GP∪GS).
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By (b.), we have [o(z)] = {z} for any z ∈ Z∪{z∗}, and [o(z)] = ∅ for all z ∈ Z0−(Z∪{z∗}).

Thus, it is to see from (c.) that (M, zk) |= ∧{o(z) >∼ o(z′) : z, z′ ∈ Z0}. We shall show

that (M, zk) |= ∧GC also. Suppose that a = tv(v
′).

Case (1): a = s(v). Then, [dτ(v)(v, a)] = Z(v; s) =def {z}, and so o(v′) ∈ Path(v(z), z).

Thus, f([dτ(v)(v, a)], zk) = {z} = [o(v′)]. Therefore, (M, zk) |= dτ(v)(v, a) > o(v′).

Case (2): a 6= s(v) and a ∈ A(v).

(2.1) v′ ∈ N. Then, by (b.2.), [dτ(v)(v, a)] = {(v, a)} and f([dτ(v)(v, a)], zk) = [o(t−1
v (a))].

Thus, we have (M, zk) |= dτ(v)(v, a) > o(v′).

(2.2) v′ ∈ Z. Then, by (b.1.2.), [dτ(v)(v, a)] = {v′} and so, by (c.), f([dτ(v)(v, a)], z) =

{v′} = [o(v′)] Thus, we have (M, zk) |= dτ(v)(v, a) > o(v′).

Case (3): a /∈ A(v). Then, by (b.1.3.), [dτ(v)(v, a)] = {z∗} and so by (c.), f([dτ(v)(v, a)], zk) =

f({z∗}, z1) = {z∗} = [o(z∗)]. Thus, (M, zk) |= dτ(v)(v, a) > o(z∗).

Moreover, we claim that V (Dτ(v)(v, a), zk) = ⊥ for all v = vk, ..., vK , a ∈ A, and

V (Dτ(v)(v, a), zk) = > if and only if a = s(v) for all other v ∈ N , a ∈ A.

(1) Consider any k′ = k, ..., K. Then, [o(vk′)] = {z(vk′ ; s), w1, ..., wk′−1} and f([o(vk′)], zk) =

{z(vk′ ; s), w
∗}. Since (M,w∗) |=∼ dτ(v)(vk′ , a) for any a ∈ A, (M, zk) |=∼ (o(vk′) >

dτ(v)(vk′ , a)) for any a ∈ A.

(2) Consider any k′ = 2, ..., k − 1. Then, [o(vk′)] = {z(vk′ ; s), w1, ..., wk′−1} and

f([o(vk′)], zk) = {z(vk′ ; s)}. Since (M, z(vk′ ; s)) |= dτ(v)(vk′ , s(vk′))∧ ∼ dτ(v)(vk′ , a) for

any a 6= s(vk′), a ∈ A, it follows that (M, zk) |= o(vk′) > dτ(v)(vk′ , a) if and only if

a = s(vk′), a ∈ A.

(3) Consider any v 6= v2, ..., vK , v ∈ N . Then [o(v)] = {z(v; s)} and f([o(v)], zk) =

{z(v; s)} and (M, {z(v; s)}) |= dτ(v)(v, s(v))∧ ∼ dτ(v)(v, a) for any a 6= s(v), a ∈ A.

Therefore, (M, zk) |= o(v) > dτ(v)(v, a) if and only if a = s(v), a ∈ A.
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Therefore, we have the following, for k = 2, ..., K,

(M, zk) |= G ∧ (∧{(o(v) > dτ(v)(v, s(v)))∧ ∼ (o(v) > dτ(v)(v, a)) :

v ∈ N, a ∈ A, a 6= s(v), v 6= vk, ..., vK}). (34)

and

(M, zk) |= (∧{∼ (o(v) > dτ(v)(v, a)) : a ∈ A, v = vk, ...vK}). (35)

But we have

(M,w∗) |=∼ G. (36)

Now we shall show that for each k = 2, ..., K, (M, zk) |= DC. For all k = 2, ..., K, we

have (M, zk) |=∼ Sub(v0, v) for any v ∈ N0 −N , it follows that for each k = 2, ..., K,

(M, zk) |= (∧{DCv : v ∈ N}) ⇒ DC.) (37)

Since we have

(M, z) |= Sub(v, Sub(v)) ∧ (∧{∼ Sub(v,N ′) : N ′ ⊆ N, N ′ 6= Sub(v)}),

it follows that

(M, z) |= PCv ∧RCv ⇔ PCv,Sub(v) ∧RCv,Sub(v). (38)

Since s is a subgame perfect equilibrium, and by (34), it is easy to check that for each

k = 2, ..., K and for all v ∈ N , v 6= vk, ..., vK ,

(M, zk) |= Bestτ(v),Sub(v),s|v(v, s(v))

∧(∧{∼ SBestτ(v),Sub(v),s|v(v, a) : a 6= s(v), a ∈ A}), (39)

and for v = vk, ..., vK , since by (35),

(M, zk) |=∼ (∧{o(v′) > dτ(v′)(v
′, s(v′)) : v′ ∈ Sub(v)}),

it follows that

(M, zk) |= ∧{Bestτ(v),Sub(v),s|v(v, a)

∧SBestτ(v),Sub(v),s|v(v, a) : a ∈ A}). (40)
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Similarly, since, for any v ∈ N ,

(M,w∗) |=∼ (∧{o(v′) > dτ(v′)(v
′, s(v′)) : v ∈ Sub(v)})

∧(∧{∼ (dτ(v)(v, a) > o(z)) : z ∈ Z0, a ∈ A}),

it follows that

(M,w∗) |= ∧{Bestτ(v),Sub(v),s|v(v, a)

∧SBestτ(v),Sub(v),s|v(v, a) : a ∈ A}). (41)

Thus, for each k = 2, ..., K and for each v ∈ N , v 6= vk, ..., vK ,

(M, zk) |= (∧{∼ Bi(SBestτ(v),Sub(v),s|v(v, a)) : i ∈ I, a 6= s(v), a ∈ A}). (42)

Combining (39), (40), and (41) with (d.), for z = z1, ..., zK−1, for all v ∈ N ,

(M, z) |= (∧{Bi(Bestτ(v),Sub(v),s|v(v, s(v))) : i ∈ I}). (43)

For v ∈ N such that Sub(v) = ∅, by (38),

(M, zk) |= PCv ∧RCv ⇔

{(Dτ(v)(v, a) ⇒ Bestτ(v),∅(v, a)) ∧ (SBestτ(v),∅(v, a) ⇒ Dτ(v)(v, a)) : a ∈ A}.

Since V (Dτ(v)(v, a), z) = > if and only if a = s(v) for z = z2, ..., zK and for all v ∈ N such

that Sub(v) = ∅, by (34), it follows from (39) that, for k = 2, ..., K,

(M, zk) |= ∧{PCv ∧RCv : v ∈ V, Sub(v) = ∅}. (44)

Fix a k ∈ {2, ..., K}, and consider any v ∈ N such that Sub(v) 6= ∅.

Case (1): v 6= v2, ..., vK . Since, by (34) and (35), (M, zk) |= Dτ(v′)(v
′, a) only if a = s(v′)

for all v ∈ N , it follows that (M, zk) |= PDτ(v′)(Sub(v
′), t) only if t = s|Sub(v′). Thus, by

(43) and (38), (M, zk) |= RCv; by (34), and (39), (M, zk) |= PCv ⇔ Dτ(v)(v, s(v))∨ ∼

PDτ(v)(Sub(v), s|v). Therefore, for such v, we have

(M, zk) |= PCv ∧RCv ⇔ (Dτ(v)(v, s(v))∨ ∼ PDτ(v)(Sub(v), s|v)). (45)
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By (38) and (34),

(M, zk) |= (∧{PCv ∧RCv : v 6= v2, ..., vK}). (46)

Case (2): v = v2, ..., vK (notice that Sub(v1) = ∅). For each k′ = 3, ..., K, by (d.),

Ri(zk′) ⊆ {zk′−1, ..., zK} for all i ∈ I, and Ri(zk′) ⊆ {zk′ , ..., zK} for all i ∈ I other than

ik′ . Moreover, Ri2(z2) = {z2, w
∗}. By (34) and (35), (M, zk) |= Dτ(v)(v, s(v)) ∧ (∧{∼

Dτ(v)(v, a) : a 6= s(v), a ∈ A}) for v = v1, ..., vk−1, and (M, zk) |= ∧{∼ Dτ(v)(v, a) : a ∈ A}

for v = vk, ..., vK . Thus, we have

(M, zk) |= (∧{∼ Bik(Dτ(vk−1)(vk−1, a)) : a ∈ A}), (47)

(M, zk) |= (∧{∼ Bi(Dτ(v)(v, a)) : v = vk, ..., vK , i ∈ I, a ∈ A}), (48)

(M, zk) |= PDik(N − {vk−1, ..., vK}, s), (49)

(M, zk) |= ∧{PDi(N − {vk, ..., vK}, s) : i 6= ik}. (50)

By the same reason as in Case (1), we have (M, zk) |= RCv. It remains to show that

(M, zk) |= PCv. Notice that by (39), for v = v2, .., vk−1, (M, zk) |= Dτ(v)(v, s(v)) ⇒ PCv

and for v = vk, ..., vK , (M, zk) |=∼ PDτ(v)(Sub(v), s) ⇒ PCv.

For any v = v1, ..., vk−1, (M, zk) |= Dτ(v)(v, s(v)) and so (M, zk) |= PCv ∧ RCv. For

v = vk, ..., vK , by (47) and (48), it is easy to check that

(M, zk) |=∼ PDτ(v)(Sub(v), s|Sub(v))

and so, (M, zk) |= PCv ∧RCv. Finally, consider v = vk. By (47),

(M, zk) |=∼ PDik(Sub(vk), s|Sub(vk))

since (M, zk) |= (∧{∼ Bik(vk−1, a) : a ∈ A}). Thus, (M, zk) |= PCvk
∧RCvk

.

We have shown that, for k = 1, ..., K − 1,

(M, zk) |= ∧{PCv ∧RCv : v ∈ N0}. (51)
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Combining (34), (37), and (51), we have for k = 1, ..., K − 1,

(M, zk) |= G ∧DC. (52)

We show by induction that, for k = 2, ..., K, and for k′ ≥ k,

(M, z′k) |= ∧{Bi(B
k−2(DC ∧G)) ∧Bk−2(DC ∧G) : i 6= ik}.

Consider k = 2. For all k′ ≥ 3, and for each i ∈ I, Ri(zk′) is included in {z2, ...., zK}.

Moreover, for all i other than i2, and for all k′ ≥ 2, Ri(zk′) is included in {z2, ...., zK}.

Thus, for k′ ≥ 2,

(M, zk′) |= (∧{Bi(DC ∧G) : i ∈ I, i 6= i2}) ∧ (DC ∧G).

Suppose that the claim holds for all l ≤ k, k > 1. Then we have for all k′ ≥ k,

(M, zk′) |= (∧{Bi(B
k−2(DC ∧G)) : i 6= ik}) ∧Bk−2(DC ∧G).

Now, k′′ ≥ k + 2 implies that Ri(zk′′) ⊆ {zk+1, ..., zK}, and so for such k′′,

(M, zk′′) |= (∧{Bi(B
k−2(DC ∧G)) : i ∈ I}).

This implies that

(M, zk′′) |= Bk−1(DC ∧G).

Moreover, by (d.) and the assumption ik 6= ik+1, Rik(zk+1) ⊆ {zk+1, ..., zK}, and so we

have

(M, zk+1) |= Bik(B
k−2(DC ∧G)).

Combining this with the induction hypothesis, we get

(M, zk+1) |= Bk−1(DC ∧G).

Finally, k′′ ≥ k + 1 implies that Ri(zk′′) ⊆ {zk+1, ..., zK} for all i ∈ I other than ik+1, it

follows that

(M, zk′′) |= (∧{Bi(B
k−1(DC ∧G)) : i 6= ik+1}).
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This finishes the induction.

Thus, at zK , we have

(M, zK) |= (∧{Bi(B
K−2(DC ∧G)) : i 6= 1}) ∧BK−2(DC ∧G).

By (35),

(M, zK) |= (∧{∼ D1(v
0, a) : a ∈ A}.

Combining these results we get

(M, zK) |= BK−2(DC ∧G) ∧ (∧{∼ D1(v
0, a) : a ∈ A}).

Since we have (M, zK) |= Bi(ϕ) ⇒ ϕ, it follows that

(M, zK) |= (∧{Bk(DC ∧G) : k = 0, ..., K − 2}) ∧ (∧{∼ D1(v
0, a) : a ∈ A}).

By theorem 3.1,

(∧{Bk(DC ∧G) : k = 0, ..., K − 2}) ∧ (∧{∼ D1(v
0, a) : a ∈ A})

is a consistent formula.
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