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ABSTRACT
For allocation problems with one or more items, the well-
known Vickrey-Clarke-Groves (VCG) mechanism is efficient,
strategy-proof, individually rational, and does not incur a
deficit. However, the VCG mechanism is not (strongly)
budget balanced: generally, the agents’ payments will sum
to more than 0. If there is an auctioneer who is selling
the items, this may be desirable, because the surplus pay-
ment corresponds to revenue for the auctioneer. However, if
the items do not have an owner and the agents are merely
interested in allocating the items efficiently among them-
selves, any surplus payment is undesirable, because it will
have to flow out of the system of agents. In 2006, Cav-
allo [3] proposed a mechanism that redistributes some of
the VCG payment back to the agents, while maintaining
efficiency, strategy-proofness, individual rationality, and the
non-deficit property. In this paper, we extend this result in a
restricted setting. We study allocation settings where there
are multiple indistinguishable units of a single good, and
agents have unit demand. (For this specific setting, Cav-
allo’s mechanism coincides with a mechanism proposed by
Bailey in 1997 [2].) Here we propose a family of mechanisms
that redistribute some of the VCG payment back to the
agents. All mechanisms in the family are efficient, strategy-
proof, individually rational, and never incur a deficit. The
family includes the Bailey-Cavallo mechanism as a special
case. We then provide an optimization model for finding the
optimal mechanism—that is, the mechanism that maximizes
redistribution in the worst case—inside the family, and show
how to cast this model as a linear program. We give both
numerical and analytical solutions of this linear program,
and the (unique) resulting mechanism shows significant im-
provement over the Bailey-Cavallo mechanism (in the worst
case). Finally, we prove that the obtained mechanism is op-
timal among all anonymous deterministic mechanisms that
satisfy the above properties.
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1. INTRODUCTION
Many important problems in computer science and elec-

tronic commerce can be modeled as resource allocation prob-
lems. In such problems, we want to allocate the resources
(or items) to the agents that value them the most. Un-
fortunately, agents’ valuations are private knowledge, and
self-interested agents will lie about their valuations if this
is to their benefit. One solution is to auction off the items,
possibly in a combinatorial auction where agents can bid
on bundles of items. There exist ways of determining the
payments that the agents make in such an auction that in-
centivizes the agents to report their true valuations—that
is, the payments make the auction strategy-proof. One very
general way of doing so is to use the VCG mechanism [23,
4, 12]. (The VCG mechanism is also known as the Clarke
mechanism or, in the specific context of auctions, the Gen-
eralized Vickrey Auction.)

Besides strategy-proofness, the VCG mechanism has sev-
eral other nice properties in the context of resource alloca-
tion problems. It is efficient: the chosen allocation always
maximizes the sum of the agents’ valuations. It is also (ex-
post) individually rational: participating in the mechanism
never makes an agent worse off than not participating. Fi-
nally, it has a no-deficit property: the sum of the agents’
payments is always nonnegative.

In many settings, another property that would be desir-
able is (strong) budget balance, meaning that the payments
sum to exactly 0. Suppose the agents are trying to dis-
tribute some resources among themselves that do not have
a previous owner. For example, the agents may be trying
to allocate the right to use a shared good on a given day.
Or, the agents may be trying to allocate a resource that
they have collectively constructed, discovered, or otherwise
obtained. If the agents use an auction to allocate these re-
sources, and the sum of the agents’ payments in the auction
is positive, then this surplus payment must leave the system



of the agents (for example, the agents must give the money
to an outside party, or burn it). Näıve redistribution of the
surplus payment (e.g. each of the n agents receives 1/n of
the surplus) will generally result in a mechanism that is not
strategy-proof (e.g. in a Vickrey auction, the second-highest
bidder would want to increase her bid to obtain a larger re-
distribution payment). Unfortunately, the VCG mechanism
is not budget balanced: typically, there is surplus payment.
Unfortunately, in general settings, it is in fact impossible to
design mechanisms that satisfy budget balance in addition
to the other desirable properties [16, 11, 21].

In light of this impossibility result, several authors have
obtained budget balance by sacrificing some of the other
desirable properties [2, 6, 22, 5]. Another approach that
is perhaps preferable is to use a mechanism that is “more”
budget balanced than the VCG mechanism, and maintains
all the other desirable properties. One way of trying to de-
sign such a mechanism is to redistribute some of the VCG
payment back to the agents in a way that will not affect the
agents’ incentives (so that strategy-proofness is maintained),
and that will maintain the other properties. In 2006, Cav-
allo [3] pursued exactly this idea, and designed a mechanism
that redistributes a large amount of the total VCG payment
while maintaining all of the other desirable properties of
the VCG mechanism. For example, in a single-item auction
(where the VCG mechanism coincides with the second-price
sealed-bid auction), the amount redistributed to bidder i
by Cavallo’s mechanism is 1/n times the second-highest bid
among bids other than i’s bid. The total redistributed is at
most the second-highest bid overall, and the redistribution
to agent i does not affect i’s incentives because it does not
depend on i’s own bid.

In this paper, we restrict our attention to a limited set-
ting, and in this setting we extend Cavallo’s result. We
study allocation settings where there are multiple indistin-
guishable units of a single good, and all agents have unit
demand, i.e. they want only a single unit. For this specific
setting, Cavallo’s mechanism coincides with a mechanism
proposed by Bailey in 1997 [2]. Here we propose the family
of linear VCG redistribution mechanisms. All mechanisms
in this family are efficient, strategy-proof, individually ra-
tional, and never incur a deficit. The family includes the
Bailey-Cavallo mechanism as a special case (with the caveat
that we only study allocation settings with multiple indis-
tinguishable units of a single good and unit demand, while
Bailey’s and Cavallo’s mechanisms can be applied outside
these settings as well). We then provide an optimization
model for finding the optimal mechanism inside the family,
based on worst-case analysis. Both numerical and analyti-
cal solutions of this model are provided, and the resulting
mechanism shows significant improvement over the Bailey-
Cavallo mechanism (in the worst case). For example, for
the problem of allocating a single unit, when the number
of agents is 10, our mechanism always redistributes more
than 98% of the total VCG payment back to the agents
(whereas the Bailey-Cavallo mechanism redistributes only
80% in the worst case). Finally, we prove that our mecha-
nism is in fact optimal among all anonymous deterministic
mechanisms (even nonlinear ones) that satisfy the desirable
properties.

Around the same time, the same mechanism has been in-

dependently derived by Moulin [19].1 Moulin actually pur-
sues a different objective (also based on worst-case analysis):
whereas our objective is to maximize the percentage of VCG
payments that are redistributed, Moulin tries to minimize
the overall payments from agents as a percentage of effi-
ciency. It turns out that the resulting mechanisms are the
same. Towards the end of this paper, we consider dropping
the individual rationality requirement, and show that this
does not change the optimal mechanism for our objective.
For Moulin’s objective, dropping individual rationality does
change the optimal mechanism (but only if there are multi-
ple units).

2. PROBLEM DESCRIPTION
Let n denote the number of agents, and let m denote the

number of units. We only consider the case where m < n
(otherwise the problem becomes trivial). We also assume
that m and n are always known. (This assumption is not
harmful: in environments where anyone can join the auction,
running a redistribution mechanism is typically not a good
idea anyway, because everyone would want to join to collect
part of the redistribution.)

Let the set of agents be {a1, a2, . . . , an}, where ai is the
agent with ith highest report value v̂i—that is, we have v̂1 ≥
v̂2 ≥ . . . ≥ v̂n ≥ 0. Let vi denote the true value of ai.
Given that the mechanism is strategy-proof, we can assume
vi = v̂i.

Under the VCG mechanism, each agent among a1, . . . , am

wins a unit, and pays v̂m+1 for this unit. Thus, the total
VCG payment equals mv̂m+1. When m = 1, this is the
second-price or Vickrey auction.

We modify the mechanism as follows. After running the
original VCG mechanism, the center returns to each agent
ai some amount zi, agent ai’s redistribution payment. We
do not allow zi to depend on v̂i; because of this, ai’s incen-
tives are unaffected by this redistribution payment, and the
mechanism remains strategy-proof.

3. LINEAR VCG REDISTRIBUTION
MECHANISMS

We are now ready to introduce the family of linear VCG
redistribution mechanisms. Such a mechanism is defined by
a vector of constants c0, c1, . . . , cn−1. The amount that the
mechanism returns to agent ai is zi = c0 + c1v̂1 + c2v̂2 +
. . . + ci−1v̂i−1 + civ̂i+1 + . . . + cn−1v̂n. That is, an agent
receives c0, plus c1 times the highest bid other than the
agent’s own bid, plus c2 times the second-highest other bid,
etc. The mechanism is strategy-proof, because for all i, zi

is independent of v̂i. Also, the mechanism is anonymous.
It is helpful to see the entire list of redistribution pay-

ments:
z1 = c0 + c1v̂2 + c2v̂3 + c3v̂4 + . . . + cn−2v̂n−1 + cn−1v̂n

z2 = c0 + c1v̂1 + c2v̂3 + c3v̂4 + . . . + cn−2v̂n−1 + cn−1v̂n

z3 = c0 + c1v̂1 + c2v̂2 + c3v̂4 + . . . + cn−2v̂n−1 + cn−1v̂n

z4 = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−1 + cn−1v̂n

. . .
zi = c0 + c1v̂1 + c2v̂2 + . . .+ ci−1v̂i−1 + civ̂i+1 + . . .+ cn−1v̂n

. . .
zn−2 = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−1 + cn−1v̂n

zn−1 = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−2 + cn−1v̂n

zn = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−2 + cn−1v̂n−1

1We thank Rakesh Vohra for pointing us to Moulin’s work-
ing paper.



Not all choices of the constants c0, . . . , cn−1 produce a
mechanism that is individually rational, and not all choices
of the constants produce a mechanism that never incurs a
deficit. Hence, to obtain these properties, we need to place
some constraints on the constants.

To satisfy the individual rationality criterion, each agent’s
utility should always be non-negative. An agent that does
not win a unit obtains a utility that is equal to the agent’s
redistribution payment. An agent that wins a unit obtains a
utility that is equal to the agent’s valuation for the unit, mi-
nus the VCG payment v̂m+1, plus the agent’s redistribution
payment.

Consider agent an, the agent with the lowest bid. Since
this agent does not win an item (m < n), her utility is just
her redistribution payment zn. Hence, for the mechanism
to be individually rational, the ci must be such that zn is
always nonnegative. If the ci have this property, then it
actually follows that zi is nonnegative for every i, for the
following reason. Suppose there exists some i < n and some
vector of bids v̂1 ≥ v̂2 ≥ . . . ≥ v̂n ≥ 0 such that zi < 0.
Then, consider the bid vector that results from replacing v̂j

by v̂j+1 for all j ≥ i, and letting v̂n = 0. If we omit v̂n

from this vector, the same vector results that results from
omitting v̂i from the original vector. Therefore, an’s redistri-
bution payment under the new vector should be the same as
ai’s redistribution payment under the old vector—but this
payment is negative.

If all redistribution payments are always nonnegative, then
the mechanism must be individually rational (because the
VCG mechanism is individually rational, and the redistribu-
tion payment only increases an agent’s utility). Therefore,
the mechanism is individually rational if and only if for any
bid vector, zn ≥ 0.

To satisfy the non-deficit criterion, the sum of the redis-
tribution payments should be less than or equal to the total
VCG payment. So for any bid vector v̂1 ≥ v̂2 ≥ . . . ≥ v̂n ≥
0, the constants ci should make z1 + z2 + . . .+ zn ≤ mv̂m+1.

We define the family of linear VCG redistribution mech-
anisms to be the set of all redistribution mechanisms corre-
sponding to constants ci that satisfy the above constraints
(so that the mechanisms will be individually rational and
have the no-deficit property). We now give two examples of
mechanisms in this family.

Example 1 (Bailey-Cavallo mechanism): Consider the
mechanism corresponding to cm+1 = m

n
and ci = 0 for all

other i. Under this mechanism, each agent receives a redis-
tribution payment of m

n
times the (m+1)th highest bid from

another agent. Hence, a1, . . . , am+1 receive a redistribution
payment of m

n
v̂m+2, and the others receive m

n
v̂m+1. Thus,

the total redistribution payment is (m+1) m
n

v̂m+2+(n−m−
1)m

n
v̂m+1. This redistribution mechanism is individually ra-

tional, because all the redistribution payments are nonneg-
ative, and never incurs a deficit, because (m + 1) m

n
v̂m+2 +

(n−m−1)m
n

v̂m+1 ≤ nm
n

v̂m+1 = mv̂m+1. (We note that for
this mechanism to make sense, we need n ≥ m + 2.)
Example 2: Consider the mechanism corresponding to

cm+1 = m
n−m−1

, cm+2 = − m(m+1)
(n−m−1)(n−m−2)

, and ci = 0

for all other i. In this mechanism, each agent receives a
redistribution payment of m

n−m−1
times the (m + 1)th high-

est reported value from other agents, minus m(m+1)
(n−m−1)(n−m−2)

times the (m+2)th highest reported value from other agents.
Thus, the total redistribution payment is mv̂m+1 −

m(m+1)(m+2)
(n−m−1)(n−m−2)

v̂m+3. If n ≥ 2m+3 (which is equivalent to
m

n−m−1
≥ m(m+1)

(n−m−1)(n−m−2)
), then each agent always receives

a nonnegative redistribution payment, thus the mechanism
is individually rational. Also, the mechanism never incurs
a deficit, because the total VCG payment is mv̂m+1, which

is greater than the amount mv̂m+1 − m(m+1)(m+2)
(n−m−1)(n−m−2)

v̂m+3

that is redistributed.
Which of these two mechanisms is better? Is there another

mechanism that is even better? This is what we study in
the next section.

4. OPTIMAL REDISTRIBUTION
MECHANISMS

Among all linear VCG redistribution mechanisms, we would
like to be able to identify the one that redistributes the
greatest percentage of the total VCG payment.2 This is not
a well-defined notion: it may be that one mechanism re-
distributes more on some bid vectors, and another more on
other bid vectors. We emphasize that we do not assume that
a prior distribution over bidders’ valuations is available, so
we cannot compare them based on expected redistribution.
Below, we study three well-defined ways of comparing redis-
tribution mechanisms: best-case performance, dominance,
and worst-case performance.

Best-case performance. One way of evaluating a mech-
anism is by considering the highest redistribution percent-
age that it achieves. Consider the previous two examples.
For the first example, the total redistribution payment is
(m + 1)m

n
v̂m+2 + (n − m − 1)m

n
v̂m+1. When v̂m+2 = v̂m+1,

this is equal to the total VCG payment mv̂m+1. Thus, this
mechanism redistributes 100% of the total VCG payment in
the best case. For the second example, the total redistri-

bution payment is mv̂m+1 − m(m+1)(m+2)
(n−m−1)(n−m−2)

v̂m+3. When

v̂m+3 = 0, this is equal to the total VCG payment mv̂m+1.
Thus, this mechanism also redistributes 100% of the total
VCG payment in the best case.

Moreover, there are actually infinitely many mechanisms
that redistribute 100% of the total VCG payment in the best
case—for example, any convex combination of the above two
will redistribute 100% if both v̂m+2 = v̂m+1 and v̂m+3 = 0.

Dominance. Inside the family of linear VCG redistribu-
tion mechanisms, we say one mechanism dominates another
mechanism if the first one redistributes at least as much as
the other for any bid vector. For the previous two examples,
neither dominates the other, because they each redistribute
100% in different cases. It turns out that there is no mech-
anism in the family that dominates all other mechanisms in
the family. For suppose such a mechanism exists. Then,
it should dominate both examples above. Consider the re-
maining VCG payment (the VCG payment failed to be re-
distributed). The remaining VCG payment of the dominant
mechanism should be 0 whenever v̂m+2 = v̂m+1 or v̂m+3 = 0.
Now, the remaining VCG payment is a linear function of the
v̂i (linear redistribution), and therefore also a polynomial
function. The above implies that this function can be writ-
ten as (v̂m+2 − v̂m+1)(v̂m+3)P (v̂1, v̂2, . . . , v̂n), where P is a

2The percentage redistributed seems the natural criterion to
use, among other things because it is scale-invariant: if we
multiply all bids by the same positive constant (for example,
if we change the units by re-expressing the bids in euros
instead of dollars), we would not want the behavior of our
mechanism to change.



polynomial function. But since the function must be linear
(has degree at most 1), it follows that P = 0. Thus, a dom-
inant mechanism would always redistribute all of the VCG
payment, which is not possible. (If it were possible, then our
worst-case optimal redistribution mechanism would also al-
ways redistribute all of the VCG payment, and we will see
later that it does not.)

Worst-case performance. Finally, we can evaluate a
mechanism by considering the lowest redistribution percent-
age that it guarantees. For the first example, the total re-
distribution payment is (m+1) m

n
v̂m+2 +(n−m−1)m

n
v̂m+1,

which is greater than or equal to (n−m−1) m
n

v̂m+1. So in the
worst case, which is when v̂m+2 = 0, the percentage redis-
tributed is n−m−1

n
. For the second example, the total redis-

tribution payment is mv̂m+1 −
m(m+1)(m+2)

(n−m−1)(n−m−2)
v̂m+3, which

is greater than or equal to mv̂m+1(1−
(m+1)(m+2)

(n−m−1)(n−m−2)
). So

in the worst case, which is when v̂m+3 = v̂m+1, the per-

centage redistributed is 1 − (m+1)(m+2)
(n−m−1)(n−m−2)

. Since we as-

sume that the number of agents n and the number of units
m are known, we can determine which example mechanism
has better worst-case performance by comparing the two
quantities. When n = 6 and m = 1, for the first example
(Bailey-Cavallo mechanism), the percentage redistributed in
the worst case is 2

3
, and for the second example, this per-

centage is 1
2
, which implies that for this pair of n and m,

the first mechanism has better worst-case performance. On
the other hand, when n = 12 and m = 1, for the first exam-
ple, the percentage redistributed in the worst case is 5

6
, and

for the second example, this percentage is 14
15

, which implies
that this time the second mechanism has better worst-case
performance.

Thus, it seems most natural to compare mechanisms by
the percentage of total VCG payment that they redistribute
in the worst case. This percentage is undefined when the
total VCG payment is 0. To deal with this, technically, we
define the worst-case redistribution percentage as the largest
k so that the total amount redistributed is at least k times
the total VCG payment, for all bid vectors. (Hence, as long
as the total amount redistributed is at least 0 when the total
VCG payment is 0, these cases do not affect the worst-case
percentage.) This corresponds to the following optimization
problem:

Maximize k (the percentage redistributed in the
worst case)
Subject to:
For every bid vector v̂1 ≥ v̂2 ≥ . . . ≥ v̂n ≥ 0
zn ≥ 0 (individual rationality)
z1 + z2 + . . . + zn ≤ mv̂m+1 (non-deficit)
z1 + z2 + . . . + zn ≥ kmv̂m+1 (worst-case constraint)
We recall that zi = c0 + c1v̂1 + c2v̂2 + . . . + ci−1v̂i−1 +
civ̂i+1 + . . . + cn−1v̂n.

5. TRANSFORMATION TO LINEAR
PROGRAMMING

The optimization problem given in the previous section
can be rewritten as a linear program, based on the following
observations.

Claim 1. If c0, c1, . . . , cn−1 satisfy both the individual ra-
tionality and the non-deficit constraints, then ci = 0 for
i = 0, . . . , m.

Proof. First, let us prove that c0 = 0. Consider the
bid vector in which v̂i = 0 for all i. To obtain individual
rationality, we must have c0 ≥ 0. To satisfy the non-deficit
constraint, we must have c0 ≤ 0. Thus we know c0 = 0.
Now, if ci = 0 for all i, there is nothing to prove. Otherwise,
let j = min{i|ci 6= 0}. Assume that j ≤ m. We recall that
we can write the individual rationality constraint as follows:
zn = c0 +c1v̂1 +c2v̂2 +c3v̂3 + . . .+cn−2v̂n−2 +cn−1v̂n−1 ≥ 0
for any bid vector. Let us consider the bid vector in which
v̂i = 1 for i ≤ j and v̂i = 0 for the rest. In this case zn = cj ,
so we must have cj ≥ 0. The non-deficit constraint can
be written as follows: z1 + z2 + . . . + zn ≤ mv̂m+1 for any
bid vector. Consider the same bid vector as above. We have
zi = 0 for i ≤ j, because for these bids, the jth highest other
bid has value 0, so all the ci that are nonzero are multiplied
by 0. For i > j, we have zi = cj , because the jth highest
other bid has value 1, and all lower bids have value 0. So
the non-deficit constraint tells us that cj(n − j) ≤ mv̂m+1.
Because j ≤ m, v̂m+1 = 0, so the right hand side is 0. We
also have n− j > 0 because j ≤ m < n. So cj ≤ 0. Because
we have already established that cj ≥ 0, it follows that
cj = 0; but this is contrary to assumption. So j > m.

Incidentally, this claim also shows that if m = n − 1,
then ci = 0 for all i. Thus, we are stuck with the VCG
mechanism. From here on, we only consider the case where
m < n − 1.

Claim 2. The individual rationality constraint can be writ-
ten as follows:

Pj

i=m+1 ci ≥ 0 for j = m + 1, . . . , n − 1.

Before proving this claim, we introduce the following lemma.

Lemma 1. Given a positive integer k and a set of real
constants s1, s2, . . . , sk, (s1t1 + s2t2 + . . . + sktk ≥ 0 for any

t1 ≥ t2 ≥ . . . ≥ tk ≥ 0) if and only if (
Pj

i=1 si ≥ 0 for
j = 1, 2, . . . , k).

Proof. Let di = ti− ti+1 for i = 1, 2, . . . , k−1, and dk =
tk. Then (s1t1 +s2t2 + . . .+sktk ≥ 0 for any t1 ≥ t2 ≥ . . . ≥
tk ≥ 0) is equivalent to ((

P1
i=1 si)d1 + (

P2
i=1 si)d2 + . . . +

(
Pk

i=1 si)dk ≥ 0 for any set of arbitrary non-negative dj).

When
Pj

i=1 si ≥ 0 for j = 1, 2, . . . , k, the above inequality

is obviously true. If for some j,
Pj

i=1 si < 0, if we set dj > 0
and di = 0 for all i 6= j, then the above inequality becomes
false. So

Pj

i=1 si ≥ 0 for j = 1, 2, . . . , k is both necessary
and sufficient.

We are now ready to present the proof of Claim 2.

Proof. The individual rationality constraint can be writ-
ten as zn = c0 + c1v̂1 + c2v̂2 + c3v̂3 + . . . + cn−2v̂n−2 +
cn−1v̂n−1 ≥ 0 for any bid vector v̂1 ≥ v̂2 ≥ . . . ≥ v̂n−1 ≥
v̂n ≥ 0. We have already shown that ci = 0 for i ≤ m.
Thus, the above can be simplified to zn = cm+1v̂m+1 +
cm+2v̂m+2+. . .+cn−2v̂n−2+cn−1v̂n−1 ≥ 0 for any bid vector.
By the above lemma, this is equivalent to

Pj

i=m+1 ci ≥ 0
for j = m + 1, . . . , n − 1.

Claim 3. The non-deficit constraint and the worst-case
constraint can also be written as linear inequalities involving
only the ci and k.

Proof. The non-deficit constraint requires that for any
bid vector, z1+z2+. . .+zn ≤ mv̂m+1, where zi = c0+c1v̂1+



c2v̂2+. . .+ci−1v̂i−1+civ̂i+1+. . .+cn−1v̂n for i = 1, 2, . . . , n.
Because ci = 0 for i ≤ m, we can simplify this inequality to

qm+1v̂m+1 + qm+2v̂m+2 + . . . + qnv̂n ≥ 0
qm+1 = m − (n − m − 1)cm+1

qi = −(i−1)ci−1−(n−i)ci, for i = m+2, . . . , n−1 (when
m + 2 > n − 1, this set of equalities is empty)

qn = −(n − 1)cn−1

By the above lemma, this is equivalent to
Pj

i=m+1 qi ≥ 0
for j = m + 1, . . . , n. So, we can simplify further as follows:

qm+1 ≥ 0 ⇐⇒ (n − m − 1)cm+1 ≤ m

qm+1 + . . . + qm+i ≥ 0 ⇐⇒ n
Pj=m+i−1

j=m+1 cj + (n − m −

i)cm+i ≤ m for i = 2, . . . , n − m − 1

qm+1 + . . . + qn ≥ 0 ⇐⇒ n
Pj=n−1

j=m+1 cj ≤ m

So, the non-deficit constraint can be written as a set of
linear inequalities involving only the ci.

The worst-case constraint can be also written as a set of
linear inequalities, by the following reasoning. The worst-
case constraint requires that for any bid input z1 +z2 + . . .+
zn ≥ kmv̂m+1, where zi = c0 +c1v̂1 +c2v̂2 + . . .+ci−1v̂i−1 +
civ̂i+1 + . . . + cn−1v̂n for i = 1, 2, . . . , n. Because ci = 0 for
i ≤ m, we can simplify this inequality to

Qm+1v̂m+1 + Qm+2v̂m+2 + . . . + Qnv̂n ≥ 0
Qm+1 = (n − m − 1)cm+1 − km
Qi = (i − 1)ci−1 + (n − i)ci, for i = m + 2, . . . , n − 1
Qn = (n − 1)cn−1

By the above lemma, this is equivalent to
Pj

i=m+1 Qi ≥ 0
for j = m + 1, . . . , n. So, we can simplify further as follows:

Qm+1 ≥ 0 ⇐⇒ (n − m − 1)cm+1 ≥ km

Qm+1 + . . . + Qm+i ≥ 0 ⇐⇒ n
Pj=m+i−1

j=m+1 cj + (n−m−

i)cm+i ≥ km for i = 2, . . . , n − m − 1

Qm+1 + . . . + Qn ≥ 0 ⇐⇒ n
Pj=n−1

j=m+1 cj ≥ km

So, the worst-case constraint can also be written as a set
of linear inequalities involving only the ci and k.

Combining all the claims, we see that the original op-
timization problem can be transformed into the following
linear program.

Variables: cm+1, cm+2, . . . , cn−1, k
Maximize k (the percentage redistributed in the
worst case)
Subject to:
Pj

i=m+1 ci ≥ 0 for j = m + 1, . . . , n − 1
km ≤ (n − m − 1)cm+1 ≤ m

km ≤ n
Pj=m+i−1

j=m+1 cj + (n − m − i)cm+i ≤ m for
i = 2, . . . , n − m − 1
km ≤ n

Pj=n−1
j=m+1 cj ≤ m

6. NUMERICAL RESULTS
For selected values of n and m, we solved the linear pro-

gram using Glpk (GNU Linear Programming Kit). In the
table below, we present the results for a single unit (m = 1).
We present 1−k (the percentage of the total VCG payment
that is not redistributed by the worst-case optimal mecha-
nism in the worst case) instead of k in the second column
because writing k would require too many significant digits.
Correspondingly, the third column displays the percentage
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Figure 1: A comparison of the worst-case optimal
mechanism (WO) and the Bailey-Cavallo mechanism
(BC).

of the total VCG payment that is not redistributed by the
Bailey-Cavallo mechanism in the worst case (which is equal
to 2

n
).

n 1 − k Bailey − Cavallo Mechanism
3 66.7% 66.7%
4 42.9% 50.0%
5 26.7% 40.0%
6 16.1% 33.3%
7 9.52% 28.6%
8 5.51% 25.0%
9 3.14% 22.2%
10 1.76% 20.0%
20 3.62e − 5 10.0%
30 5.40e − 8 6.67e − 2
40 7.09e − 11 5.00e − 2

The worst-case optimal mechanism significantly outper-
forms the Bailey-Cavallo mechanism in the worst case. Per-
haps more surprisingly, the worst-case optimal mechanism
sometimes does better in the worst case than the Bailey-
Cavallo mechanism does on average, as the following exam-
ple shows.

Recall that the total redistribution payment of the Bailey-
Cavallo mechanism is (m + 1) m

n
v̂m+2 + (n−m− 1)m

n
v̂m+1.

For the single-unit case, this simplifies to 2
n
v̂3 + n−2

n
v̂2.

Hence the percentage of the total VCG payment that is

not redistributed is
v̂2−

2
n

v̂3−
n−2

n
v̂2

v̂2
= 2

n
− 2

n

v̂3

v̂2
, which has

an expected value of E( 2
n

− 2
n

v̂3

v̂2
) = 2

n
− 2

n
E v̂3

v̂2
. Sup-

pose the bid values are drawn from a uniform distribution
over [0, 1]. The theory of order statistics tells us that the



joint probability density function of v̂2 and v̂3 is f(v̂3, v̂2) =
n(n − 1)(n − 2)v̂n−3

3 (1 − v̂2) for v̂2 ≥ v̂3. Now, E v̂3

v̂2
=

R 1

0

R v̂2

0
v̂3

v̂2
f(v̂3, v̂2)dv̂3dv̂2 = n−2

n−1
. So, the expected value of

the remaining percentage is 2
n
− 2

n
n−2
n−1

= 2
n(n−1)

. For n = 20,

this is 5.26e − 3, whereas the remaining percentage for the
worst-case optimal mechanism is 3.62e−5 in the worst case.

Let us present the optimal solution for the case n = 5 in
detail. By solving the above linear program, we find that the
optimal values for the ci are c2 = 11

45
, c3 = − 1

9
, and c4 = 1

15
.

That is, the redistribution payment received by each agent
is: 11

45
times the second highest bid among the other agents,

minus 1
9

times the third highest bid among the other agents,

plus 1
15

times the fourth highest bid among the other agents.

The total amount redistributed is 11
15

v̂2 + 4
15

v̂3 − 4
15

v̂4 +
4
15

v̂5; in the worst case, 11
15

v̂2 is redistributed. Hence, the
percentage of the total VCG payment that is not redis-
tributed is never more than 4

15
= 26.7%.

Finally, we compare the worst-case optimal mechanism to
the Bailey-Cavallo mechanism for m = 1, 2, 3, 4, n = m +
2, . . . , 30. These results are in Figure 1.

We see that for any m, when n = m + 2, the worst-case
optimal mechanism has the same worst-case performance as
the Bailey-Cavallo mechanism (actually, in this case, the
worst-case optimal mechanism is identical to the Bailey-
Cavallo mechanism). When n > m + 2, the worst-case opti-
mal mechanism outperforms the Bailey-Cavallo mechanism
(in the worst case).

7. ANALYTICAL CHARACTERIZATION
OF THE WORST-CASE OPTIMAL
MECHANISM

We recall that our linear program has the following form:

Variables: cm+1, cm+2, . . . , cn−1, k
Maximize k (the percentage redistributed in the
worst case)
Subject to:
Pj

i=m+1 ci ≥ 0 for j = m + 1, . . . , n − 1
km ≤ (n − m − 1)cm+1 ≤ m

km ≤ n
Pj=m+i−1

j=m+1 cj + (n − m − i)cm+i ≤ m for
i = 2, . . . , n − m − 1
km ≤ n

Pj=n−1
j=m+1 cj ≤ m

A linear program has no solution if and only if either the
objective is unbounded, or the constraints are contradictory
(there is no feasible solution). It is easy to see that k is
bounded above by 1 (redistributing more than 100% vio-
lates the non-deficit constraint). Also, a feasible solution
always exists, for example, k = 0 and ci = 0 for all i. So an
optimal solution always exists. Observe that the linear pro-
gram model depends only on the number of agents n and the
number of units m. Hence the optimal solution is a function
of n and m. It turns out that this optimal solution can be
analytically characterized as follows.

Theorem 1. For any m and n with n ≥ m+2, the worst-
case optimal mechanism (among linear VCG redistribution
mechanisms) is unique. For this mechanism, the percentage
redistributed in the worst case is

k∗ = 1 −

`

n−1
m

´

Pn−1
j=m

`

n−1
j

´

The worst-case optimal mechanism is characterized by the
following values for the ci:

c∗i =
(−1)i+m−1(n − m)

`

n−1
m−1

´

i
Pn−1

j=m

`

n−1
j

´

1
`

n−1
i

´

n−1
X

j=i

 

n − 1

j

!

for i = m + 1, . . . , n − 1.

It should be noted that we have proved ci = 0 for i ≤ m in
Claim 1.

Proof. We first rewrite the linear program as follows.
We introduce new variables xm+1, xm+2, . . . , xn−1, defined
by xj =

Pj

i=m+1 ci for j = m + 1, . . . , n − 1. The linear
program then becomes:

Variables: xm+1, xm+2, . . . , xn−1, k
Maximize k
Subject to:
km ≤ (n − m − 1)xm+1 ≤ m
km ≤ (m + i)xm+i−1 + (n − m − i)xm+i ≤ m for
i = 2, . . . , n − m − 1
km ≤ nxn−1 ≤ m
xi ≥ 0 for i = m + 1, m + 2, . . . , n − 1

We will prove that for any optimal solution to this linear
program, k = k∗. Moreover, we will prove that when k = k∗,
xj =

Pj

i=m+1 c∗i for j = m + 1, . . . , n − 1. This will prove
the theorem.

We first make the following observations:
(n − m − 1)c∗m+1

= (n − m − 1)
(n−m)(n−1

m−1)
(m+1)

Pn−1

j=m (n−1

j )
1

(n−1

m+1)

Pn−1
j=m+1

`

n−1
j

´

= (n−m− 1)
(n−m)(n−1

m−1)
(m+1)

Pn−1

j=m (n−1

j )
1

(n−1

m+1)
(
Pn−1

j=m

`

n−1
j

´

−
`

n−1
m

´

)

= (n − m − 1) m
n−m−1

− (n − m − 1)
m(n−1

m )
(n−m−1)

Pn−1

j=m (n−1

j )
= m − (1 − k∗)m = k∗m

For i = m + 1, . . . , n − 2,
ic∗i + (n − i − 1)c∗i+1

= i
(−1)i+m−1(n−m)(n−1

m−1)
i

Pn−1

j=m (n−1

j )
1

(n−1

i )

Pn−1
j=i

`

n−1
j

´

+

(n − i − 1)
(−1)i+m(n−m)(n−1

m−1)
(i+1)

Pn−1

j=m (n−1

j )
1

(n−1

i+1)

Pn−1
j=i+1

`

n−1
j

´

=
(−1)i+m−1(n−m)(n−1

m−1)
Pn−1

j=m (n−1

j )
1

(n−1

i )

Pn−1
j=i

`

n−1
j

´

−

(n − i − 1)
(−1)i+m−1(n−m)(n−1

m−1)
(i+1)

Pn−1

j=m (n−1

j )
i+1

(n−1

i )(n−i−1)

Pn−1
j=i+1

`

n−1
j

´

=
(−1)i+m−1(n−m)(n−1

m−1)
Pn−1

j=m (n−1

j )

= (−1)i+m−1m(1 − k∗)

Finally,
(n − 1)c∗n−1

= (n − 1)
(−1)n+m(n−m)(n−1

m−1)
(n−1)

Pn−1

j=m (n−1

j )
1

(n−1

n−1)

Pn−1
j=n−1

`

n−1
j

´

= (−1)m+nm(1 − k∗)

Summarizing the above, we have:
(n − m − 1)c∗m+1 = k∗m
(m + 1)c∗m+1 + (n − m − 2)c∗m+2 = m(1 − k∗)
(m + 2)c∗m+2 + (n − m − 3)c∗m+3 = −m(1 − k∗)
(m + 3)c∗m+3 + (n − m − 4)c∗m+4 = m(1 − k∗)
...



(n − 3)c∗n−3 + 2c∗n−2 = (−1)m+n−2m(1 − k∗)
(n − 2)c∗n−2 + c∗n−1 = (−1)m+n−1m(1 − k∗)
(n − 1)c∗n−1 = (−1)m+nm(1 − k∗)

Let x∗

j =
Pj

i=m+1 c∗i for j = m + 1, m + 2, . . . , n − 1, the
first equation in the above tells us that
(n − m − 1)x∗

m+1 = k∗m.

By adding the first two equations, we get
(m + 2)x∗

m+1 + (n − m − 2)x∗

m+2 = m
By adding the first three equations, we get

(m + 3)x∗

m+2 + (n − m − 3)x∗

m+3 = k∗m
By adding the first i equations, where i = 2, . . . , n−m−1,

we get
(m + i)x∗

m+i−1 + (n − m − i)x∗

m+i = m if i is even
(m + i)x∗

m+i−1 + (n − m − i)x∗

m+i = k∗m if i is odd
Finally by adding all the equations, we get

nx∗

n−1 = m if n − m is even;
nx∗

n−1 = k∗m if n − m is odd.

Thus, for all of the constraints other than the nonnega-
tivity constraints, we have shown that they are satisfied by
setting xj = x∗

j =
Pj

i=m+1 c∗i and k = k∗. We next show
that the nonnegativity constraints are satisfied by these set-
tings as well.

For m + 1 ≤ i, i + 1 ≤ n − 1, we have

1
i

Pn−1

j=i (n−1

j )
(n−1

i )
= 1

i

Pn−1
j=i

i!(n−1−i)!
j!(n−1−j)!

≥ 1
i+1

Pn−2
j=i

i!(n−1−i)!
j!(n−1−j)!

≥

1
i+1

Pn−2
j=i

(i+1)!(n−1−i−1)!
(j+1)!(n−1−j−1)!

= 1
i+1

Pn−1

j=i+1 (n−1

j )
(n−1

i+1)
This implies that the absolute value of c∗i is decreasing

as i increases (if the c∗ contains more than one number).
We further observe that the sign of c∗i alternates, with the
first element c∗m+1 positive. So x∗

j =
Pj

i=m+1 c∗i ≥ 0 for
all j. Thus, we have shown that these xi = x∗

i together
with k = k∗ form a feasible solution of the linear program.
We proceed to show that it is in fact the unique optimal
solution.

First we prove the following claim:

Claim 4. If k̂, x̂i, i = m + 1, m + 2, . . . , n − 1 satisfy the
following inequalities:

k̂m ≤ (n − m − 1)x̂m+1 ≤ m

k̂m ≤ (m + i)x̂m+i−1 + (n − m − i)x̂m+i ≤ m for
i = 2, . . . , n − m − 1

k̂m ≤ nx̂n−1 ≤ m

k̂ ≥ k∗

Then we must have that x̂i = x̂∗

i and k̂ = k∗.

Proof of claim. Consider the first inequality. We know
that (n− m− 1)x∗

m+1 = k∗m, so (n− m− 1)x̂m+1 ≥ k̂m ≥
k∗m = (n − m − 1)x∗

m+1. It follows that x̂m+1 ≥ x∗

m+1

(n − m − 1 6= 0).
Now, consider the next inequality for i = 2. We know

that (m + 2)x∗

m+1 + (n − m − 2)x∗

m+2 = m. It follows that
(n−m−2)x̂m+2 ≤ m− (m+2)x̂m+1 ≤ m− (m+2)x∗

m+1 =
(n − m − 2)x∗

m+2, so x̂m+2 ≤ x∗

m+2 (i = 2 ≤ n − m − 1 ⇒
n − m − 2 6= 0).

Now consider the next inequality for i = 3. We know
that (m + 3)x∗

m+2 + (n − m − 3)x∗

m+3 = m. It follows that

(n−m−3)x̂m+3 ≥ k̂m−(m+3)x̂m+2 ≥ k∗m−(m+3)x∗

m+2 =
(n − m − 3)x∗

m+3, so x̂m+3 ≥ x∗

m+3 (i = 3 ≤ n − m − 1 ⇒
n − m − 3 6= 0).

Proceeding like this all the way up to i = n−m−1, we get
that x̂m+i ≥ x∗

m+i if i is odd and x̂m+i ≤ x∗

m+i if i is even.
Moreover, if one inequality is strict, then all subsequent in-
equalities are strict. Now, if we can prove x̂n−1 = x∗

n−1,
it would follow that the x∗

i are equal to the x̂i (which also

implies that k̂ = k∗). We consider two cases:
Case 1: n−m is even. We have: n−m even ⇒ n−m−1

odd ⇒ x̂n−1 ≥ x∗

n−1. We also have: n−m even ⇒ nx∗

n−1 =
m. Combining these two, we get m = nx∗

n−1 ≤ nx̂n−1 ≤
m ⇒ x̂n−1 = x∗

n−1.
Case 2: n−m is odd. In this case, we have x̂n−1 ≤ x∗

n−1,

and nx∗

n−1 = k∗m. Then, we have: k∗m ≤ k̂m ≤ nx̂n−1 ≤
nx∗

n−1 = k∗m ⇒ x̂n−1 = x∗

n−1.
This completes the proof of the claim.

It follows that if k̂, x̂i, i = m + 1, m + 2, . . . , n − 1 is a
feasible solution and k̂ ≥ k∗, then since all the inequalities
in Claim 4 are satisfied, we must have x̂i = x∗

i and k̂ =
k∗. Hence no other feasible solution is as good as the one
described in the theorem.

Knowing the analytical characterization of the worst-case
optimal mechanism provides us with at least two major ben-
efits. First, using these formulas is computationally more
efficient than solving the linear program using a general-
purpose solver. Second, we can derive the following corol-
lary.

Corollary 1. If the number of units m is fixed, then as
the number of agents n increases, the worst-case percentage
redistributed linearly converges to 1, with a rate of conver-

gence 1
2
. (That is, limn→∞

1−k∗

n+1

1−k∗

n
= 1

2
. That is, in the

limit, the percentage that is not redistributed halves for ev-
ery additional agent.)

We note that this is consistent with the experimental data
for the single-unit case, where the worst-case remaining per-
centage roughly halves each time we add another agent.
The worst-case percentage that is redistributed under the
Bailey-Cavallo mechanism also converges to 1 as the num-
ber of agents goes to infinity, but the convergence is much
slower—it does not converge linearly (that is, letting kC

n be
the percentage redistributed by the Bailey-Cavallo mech-

anism in the worst case for n agents, limn→∞

1−kC
n+1

1−kC
n

=

limn→∞

n
n+1

= 1). We now present the proof of the corol-
lary.

Proof. When the number of agents is n, the worst-case

percentage redistributed is k∗

n = 1−
(n−1

m )
Pn−1

j=m (n−1

j )
. When the

number of agents is n + 1, the percentage becomes k∗

n+1 =

1 −
(n

m)
P

n
j=m (n

j)
. For n sufficiently large, we will have 2n −

mnm−1 > 0, and hence
1−k∗

n+1

1−k∗

n
=

(n
m)

Pn−1

j=m (n−1

j )
(n−1

m )
P

n
j=m (n

j)
=

n
n−m

2n−1
−

Pm−1

j=0 (n−1

j )
2n

−

Pm−1

j=0 (n
j)

, and n
n−m

2n−1
−m(n−1)m−1

2n ≤
1−k∗

n+1

1−k∗

n

≤ n
n−m

2n−1

2n
−mnm−1 (because

`

n

j

´

≤ ni if j ≤ i).
Since we have

limn→∞

n
n−m

2n−1
−m(n−1)m−1

2n = 1
2
, and

limn→∞

n
n−m

2n−1

2n
−mnm−1 = 1

2
,

it follows that limn→∞

1−k∗

n+1

1−k∗

n
= 1

2
.



8. WORST-CASE OPTIMALITY OUTSIDE
THE FAMILY

In this section, we prove that the worst-case optimal re-
distribution mechanism among linear VCG redistribution
mechanisms is in fact optimal (in the worst case) among
all redistribution mechanisms that are deterministic, anony-
mous, strategy-proof, efficient and satisfy the non-deficit
constraint. Thus, restricting our attention to linear VCG
redistribution mechanisms did not come at a loss.

To prove this theorem, we need the following lemma. This
lemma is not new: it was informally stated by Cavallo [3].
For completeness, we present it here with a detailed proof.

Lemma 2. A VCG redistribution mechanism is determin-
istic, anonymous and strategy-proof if and only if there exists
a function f : Rn−1 → R, so that the redistribution payment
zi received by ai satisfies

zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n)

for all i and all bid vectors.

Proof. First, let us prove the “only if” direction, that is,
if a VCG redistribution mechanism is deterministic, anony-
mous and strategy-proof then there exists a deterministic
function f : Rn−1 → R, which makes

zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n)

for all i and all bid vectors.
If a VCG redistribution mechanism is deterministic and

anonymous, then for any bid vector v̂1 ≥ v̂2 ≥ . . . ≥ v̂n, the
mechanism outputs a unique redistribution payment list:
z1, z2, . . . , zn. Let G : Rn → Rn be the function that
maps v̂1, v̂2, . . . , v̂n to z1, z2, . . . , zn for all bid vectors. Let
H(i, x1, x2, . . . , xn) be the ith element of G(x1, x2, . . . , xn),
so that zi = H(i, v̂1, v̂2, . . . , v̂n) for all bid vectors and all
1 ≤ i ≤ n. Because the mechanism is anonymous, two
agents should receive the same redistribution payment if
their bids are the same. So, if v̂i = v̂j , H(i, v̂1, v̂2, . . . , v̂n) =
H(j, v̂1, v̂2, . . . , v̂n). Hence, if we let j = min{t|v̂t = v̂i},
then H(i, v̂1, v̂2, . . . , v̂n) = H(j, v̂1, v̂2, . . . , v̂n).

Let us define K : Rn → N × Rn as follows: K(y, x1, x2,
. . . , xn−1) = [j, w1, w2, . . . , wn], where w1, w2, . . . , wn are
y, x1, x2, . . . , xn−1 sorted in descending order, and
j = min{t|wt = y}. ({t|wt = y} 6= ∅ because y ∈ {w1, w2,
. . . , wn}). Also let us define F : Rn → R by
F (v̂i, v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n)
= H ◦ K(v̂i, v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n)
= H(min{t|v̂t = v̂i}, v̂1, v̂2, . . . , v̂n)
= H(i, v̂1, v̂2, . . . , v̂n) = zi.
That is, F is the redistribution payment to an agent that
bids v̂i when the other bids are v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n.

Since our mechanism is required to be strategy-proof, and
the space of valuations is unrestricted, zi should be indepen-
dent of v̂i by Lemma 1 in Cavallo [3]. Hence, we can simply
ignore the first variable input to F ; let f(x1, x2, . . . , xn−1) =
F (0, x1, x2, . . . , xn−1). So, we have for all bid vectors and
i, zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n). This completes the
proof for the “only if” direction.

For the “if” direction, if the redistribution payment re-
ceived by ai satisfies zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for
all bid vectors and i, then this is clearly a deterministic and
anonymous mechanism. To prove strategy-proofness, we ob-
serve that because an agent’s redistribution payment is not

affected by her own bid, her incentives are the same as in
the VCG mechanism, which is strategy-proof.

Now we are ready to introduce the next theorem:

Theorem 2. For any m and n with n ≥ m+2, the worst-
case optimal mechanism among the family of linear VCG
redistribution mechanisms is worst-case optimal among all
mechanisms that are deterministic, anonymous, strategy-proof,
efficient and satisfy the non-deficit constraint.

While we needed individual rationality earlier in the pa-
per, this theorem does not mention it, that is, we can not
find a mechanism with better worst-case performance even if
we sacrifice individual rationality. (The worst-case optimal
linear VCG redistribution mechanism is of course individu-
ally rational.)

Proof. Suppose there is a redistribution mechanism (when
the number of units is m and the number of agents is n) that
satisfies all of the above properties and has a better worst-
case performance than the worst-case optimal linear VCG
redistribution mechanism, that is, its worst-case redistribu-
tion percentage k̂ is strictly greater than k∗.

By Lemma 2, for this mechanism, there is a function f :
Rn−1 → R so that zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for
all i and all bid vectors. We first prove that f has the
following properties.

Claim 5. f(1, 1, . . . , 1, 0, 0, . . . , 0) = 0 if the number of
1s is less than or equal to m.

Proof of claim. We assumed that for this mechanism,
the worst-case redistribution percentage satisfies k̂ > k∗ ≥
0. If the total VCG payment is x, the total redistribution
payment should be in [k̂x, x] (non-deficit criterion). Con-
sider the case where all agents bid 0, so that the total VCG
payment is also 0. Hence, the total redistribution payment
should be in [k̂ · 0, 0]—that is, it should be 0. Hence every
agent’s redistribution payment f(0, 0, . . . , 0) must be 0.

Now, let ti = f(1, 1, . . . , 1, 0, 0, . . . , 0) where the number
of 1s equals i. We proved t0 = 0. If tn−1 = 0, consider the
bid vector where everyone bids 1. The total VCG payment is
m and the total redistribution payment is nf(1, 1, . . . , 1) =
ntn−1 = 0. This corresponds to 0% redistribution, which is
contrary to our assumption that k̂ > k∗ ≥ 0. Now, consider
j = min{i|ti 6= 0} (which is well-defined because tn−1 6= 0).
If j > m, the property is satisfied. If j ≤ m, consider
the bid vector where v̂i = 1 for i ≤ j and v̂i = 0 for all
other i. Under this bid vector, the first j agents each get
redistribution payment tj−1 = 0, and the remaining n − j
agents each get tj . Thus, the total redistribution payment
is (n − j)tj . Because the total VCG payment for this bid
vector is 0, we must have (n − j)tj = 0. So tj = 0 (j ≤
m < n). But this is contrary to the definition of j. Hence
f(1, 1, . . . , 1, 0, 0, . . . , 0) = 0 if the number of 1s is less than
or equal to m.

Claim 6. f satisfies the following inequalities:

k̂m ≤ (n − m − 1)tm+1 ≤ m

k̂m ≤ (m + i)tm+i−1 + (n − m − i)tm+i ≤ m for
i = 2, 3, . . . , n − m − 1

k̂m ≤ ntn−1 ≤ m

Here ti is defined as in the proof of Claim 5.



Proof of claim. For j = m + 1, . . . , n, consider the bid
vectors where v̂i = 1 for i ≤ j and v̂i = 0 for all other i.
These bid vectors together with the non-deficit constraint
and worst-case constraint produce the above set of inequal-
ities: for example, when j = m + 1, we consider the bid
vector v̂i = 1 for i ≤ m + 1 and v̂i = 0 for all other i.
The first m+1 agents each receive a redistribution payment
of tm = 0, and all other agents each receive tm+1. Thus,
the total VCG redistribution is (n − m − 1)tm+1. The non-
deficit constraint gives (n − m − 1)tm+1 ≤ m (because the
total VCG payment is m). The worst-case constraint gives

(n − m − 1)tm+1 ≥ k̂m. Combining these two, we get the
first inequality. The other inequalities can be obtained in
the same way.

We now observe that the inequalities in Claim 6, together
with k̂ ≥ k∗, are the same as those in Claim 4 (where the ti

are replaced by the x̂i). Thus, we can conclude that k̂ = k∗,

which is contrary to our assumption k̂ > k∗. Hence no mech-
anism satisfying all the listed properties has a redistribution
percentage greater than k∗ in the worst case.

So far we have only talked about the case where n ≥ m+2.
For the purpose of completeness, we provide the following
claim for the n = m + 1 case.

Claim 7. For any m and n with n = m + 1, the original
VCG mechanism (that is, redistributing nothing) is (uniquely)
worst-case optimal among all redistribution mechanisms that
are deterministic, anonymous, strategy-proof, efficient and
satisfy the non-deficit constraint.

We recall that when n = m+1, Claim 1 tells us that the only
mechanism inside the family of linear redistribution mecha-
nisms is the original VCG mechanism, so that this mecha-
nism is automatically worst-case optimal inside this family.
However, to prove the above claim, we need to show that it
is worst-case optimal among all redistribution mechanisms
that have the desired properties.

Proof. Suppose a redistribution mechanism exists that
satisfies all of the above properties and has a worst-case
performance as good as the original VCG mechanism, that
is, its worst-case redistribution percentage is greater than
or equal to 0. This implies that the total redistribution
payment of this mechanism is always nonnegative.

By Lemma 2, for this mechanism, there is a function f :
Rn−1 → R so that zi = f(v̂1, v̂2, . . . , v̂i−1, v̂i+1, . . . , v̂n) for
all i and all bid vectors. We will prove that f(x1, x2, . . . , xn−1)
= 0 for all x1 ≥ x2 ≥ . . . ≥ xn−1 ≥ 0.

First, consider the bid vector where v̂i = 0 for all i. Here,
each agent receives a redistribution payment f(0, 0, . . . , 0).
The total redistribution payment is then nf(0, 0, . . . , 0), which
should be both greater than or equal to 0 (by the above
observation) as well less than or equal to 0 (using the non-
deficit criterion and the fact that the total VCG payment is
0). It follows that f(0, 0, . . . , 0) = 0. Now, let us consider
the bid vector where v̂1 = x1 ≥ 0 and v̂i = 0 for all other i.
For this bid vector, the agent with the highest bid receives
a redistribution payment of f(0, 0, . . . , 0) = 0, and the other
n − 1 agents each receive f(x1, 0, . . . , 0). By the same rea-
soning as above, the total redistribution payment should be
both greater than or equal to 0 and less than or equal to 0,
hence f(x1, 0, . . . , 0) = 0 for all x1 ≥ 0.

Proceeding by induction, let us assume f(x1, x2, . . . , xk,
0, . . . , 0) = 0 for all x1 ≥ x2 ≥ . . . ≥ xk ≥ 0, for some

k < n − 1. Consider the bid vector where v̂i = xi for
i ≤ k + 1, and v̂i = 0 for all other i, where the xi are arbi-
trary numbers satisfying x1 ≥ x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0.
For the agents with the highest k + 1 bids, their redistri-
bution payment is specified by f acting on an input with
only k non-zero variables. Hence they all receive 0 by in-
duction assumption. The other n − k − 1 agents each re-
ceive f(x1, x2, . . . , xk, xk+1, 0, . . . , 0). The total redistribu-
tion payment is then (n−k−1)f(x1, x2, . . . , xk, xk+1, 0, . . . , 0),
which should be both greater than or equal to 0, and less
than or equal to the total VCG payment. Now, in this bid
vector, the lowest bid is 0 because k + 1 < n. But since
n = m + 1, the total VCG payment is mv̂n = 0. So
we have f(x1, x2, . . . , xk, xk+1, 0, . . . , 0) = 0 for all x1 ≥
x2 ≥ . . . ≥ xk ≥ xk+1 ≥ 0. By induction, this state-
ment holds for all k < n − 1; when k + 1 = n − 1, we
have f(x1, x2, . . . , xn−2, xn−1) = 0 for all x1 ≥ x2 ≥ . . . ≥
xn−2 ≥ xn−1 ≥ 0. Hence, in this mechanism, the redistri-
bution payment is always 0; that is, the mechanism is just
the original VCG mechanism.

Incidentally, we obtain the following corollary:

Corollary 2. No VCG redistribution mechanism satis-
fies all of the following: determinism, anonymity, strategy-
proofness, efficiency, and (strong) budget balance. This holds
for any n ≥ m + 1.

Proof. For the case n ≥ m + 2: If such a mechanism
exists, its worst-case performance would be better than that
of the worst-case optimal linear VCG redistribution mecha-
nism, which by Theorem 1 obtains a redistribution percent-
age strictly less than 1. But Theorem 2 shows that it is
impossible to outperform this mechanism in the worst case.

For the case n = m + 1: If such a mechanism exists,
it would perform as well as the original VCG mechanism
in the worst case, which implies that it is identical to the
VCG mechanism by Claim 7. But the VCG mechanism is
not (strongly) budget balanced.

9. CONCLUSIONS
For allocation problems with one or more items, the well-

known Vickrey-Clarke-Groves (VCG) mechanism is efficient,
strategy-proof, individually rational, and does not incur a
deficit. However, the VCG mechanism is not (strongly)
budget balanced: generally, the agents’ payments will sum
to more than 0. If there is an auctioneer who is selling
the items, this may be desirable, because the surplus pay-
ment corresponds to revenue for the auctioneer. However, if
the items do not have an owner and the agents are merely
interested in allocating the items efficiently among them-
selves, any surplus payment is undesirable, because it will
have to flow out of the system of agents. In 2006, Cav-
allo [3] proposed a mechanism that redistributes some of
the VCG payment back to the agents, while maintaining ef-
ficiency, strategy-proofness, individual rationality, and the
non-deficit property. In this paper, we extended this re-
sult in a restricted setting. We studied allocation settings
where there are multiple indistinguishable units of a sin-
gle good, and agents have unit demand. (For this specific
setting, Cavallo’s mechanism coincides with a mechanism
proposed by Bailey in 1997 [2].) Here we proposed a family
of mechanisms that redistribute some of the VCG payment



back to the agents. All mechanisms in the family are effi-
cient, strategy-proof, individually rational, and never incur
a deficit. The family includes the Bailey-Cavallo mechanism
as a special case. We then provided an optimization model
for finding the optimal mechanism—that is, the mechanism
that maximizes redistribution in the worst case—inside the
family, and showed how to cast this model as a linear pro-
gram. We gave both numerical and analytical solutions
of this linear program, and the (unique) resulting mecha-
nism shows significant improvement over the Bailey-Cavallo
mechanism (in the worst case). Finally, we proved that the
obtained mechanism is optimal among all anonymous deter-
ministic mechanisms that satisfy the above properties.

One important direction for future research is to try to
extend these results beyond multi-unit auctions with unit
demand. However, it turns out that in sufficiently general
settings, the worst-case optimal redistribution percentage
is 0. In such settings, the worst-case criterion provides no
guidance in determining a good redistribution mechanism
(even redistributing nothing achieves the optimal worst-case
percentage), so it becomes necessary to pursue other criteria.
Alternatively, one can try to identify other special settings
in which positive redistribution in the worst case is possible.

Another direction for future research is to consider whether
this mechanism has applications to collusion. For example,
in a typical collusive scheme, there is a bidding ring con-
sisting of a number of colluders, who submit only a single
bid [10, 17]. If this bid wins, the colluders must allocate the
item amongst themselves, perhaps using payments—but of
course they do not want payments to flow out of the ring.

This work is part of a growing literature on designing
mechanisms that obtain good results in the worst case. Tra-
ditionally, economists have mostly focused either on design-
ing mechanisms that always obtain certain properties (such
as the VCG mechanism), or on designing mechanisms that
are optimal with respect to some prior distribution over the
agents’ preferences (such as the Myerson auction [20] and the
Maskin-Riley auction [18] for maximizing expected revenue).
Some more recent papers have focused on designing mecha-
nisms for profit maximization using worst-case competitive
analysis (e.g. [9, 1, 15, 8]). There has also been growing
interest in the design of online mechanisms [7] where the
agents arrive over time and decisions must be taken before
all the agents have arrived. Such work often also takes a
worst-case competitive analysis approach [14, 13]. It does
not appear that there are direct connections between our
work and these other works that focus on designing mech-
anisms that perform well in the worst case. Nevertheless,
it seems likely that future research will continue to investi-
gate mechanism design for the worst case, and hopefully a
coherent framework will emerge.
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Abstract

For allocation problems, the well-known
Vickrey-Clarke-Groves (VCG) mechanism is
efficient, incentive compatible, individually
rational, and does not incur a deficit. However,
the VCG mechanism is not (strongly) budget
balanced: generally, the agents’ payments will
sum to more than 0. Very recently, several mech-
anisms have been proposed that redistribute a
significant percentage of the VCG payments
back to the agents while maintaining the other
properties. This increases the agents’ utilities.
One redistribution mechanism dominates another
if it always redistributes at least as much to each
agent (and sometimes more). In this paper, we
provide a characterization of undominated redis-
tribution mechanisms. We also propose several
techniques that take a dominated redistribution
mechanism as input, and produce as output an-
other redistribution mechanism that dominates
the original. One technique immediately pro-
duces an undominated redistribution mechanism
that is not necessarily anonymous. Another tech-
nique preserves anonymity, and repeated appli-
cation results in an undominated redistribution
mechanism in the limit. We show experimentally
that these techniques improve the known redistri-
bution mechanisms.

1 Introduction
Many important problems in artificial intelligence can be
seen as resource allocation problems, in which we want to
allocate resources (or items) to the agents that value them
the most. However, agents’ valuations are private knowl-
edge, and self-interested agents will lie about their valua-
tions if this is to their benefit. One solution is to auction
off the items. By carefully deciding how much the winning
agents pay, it is possible to create an auction in which bid-
ders have no incentive to lie about their valuations. The
best-known way of doing so is to use the VCG mecha-
nism [13, 3, 8] for determining the payments. This mecha-
nism has various desirable properties. One disadvantage of

this approach is that the payments that the agents make flow
out of the system, and this reduces the agents’ utilities. To
minimize this disadvantage, very recently, several mech-
anisms have been proposed that redistribute a significant
percentage of the VCG payments back to the agents while
maintaining the other properties [2, 9]. In this paper, we
continue this line of research. We introduce several general
techniques that can be applied to any redistribution mecha-
nism to obtain a new mechanism. The resulting mechanism
redistributes at least as much, and typically more, for any
prior distribution over agents’ valuations.

2 Mechanism Design Background

In this section, we briefly review basic elements of mecha-
nism design, as well as redistribution mechanisms.

2.1 Mechanism Design Basics

A typical setting in mechanism design is given by the fol-
lowing. There is a set of agents I = {1, 2, . . . , n}, and
a set of possible outcomes O. For example, in a combi-
natorial auction, a set of items S is (simultaneously) for
sale, and the set of outcomes is the set of all possible allo-
cations of the items to the agents (also known as bidders).
An allocation is given by a function a : S → {0, 1, . . . , n},
where for any s ∈ S, a(s) is the bidder that obtains s (if
no bidder obtains s, then a(s) = 01). Each agent has pri-
vately held preferences over the outcomes. As is common
in mechanism design, these preferences are represented as
follows. For each agent i, there is a set of possible types Θi.
Some θi is the agent’s actual type; this is information that
is private to i. There is also a (commonly known) valuation
function vi : Θi × O → R. For example, in a single-item
auction, θi ∈ R is agent i’s valuation for the item, and
vi(θi, o) = θi if o allocates the item to i (and it is 0 other-
wise).2 In a combinatorial auction, in general, θi consists
of 2|S|−1 real numbers, where each number represents the
valuation for receiving a certain nonempty bundle (subset)
of the items. Often, the type space is assumed to be more
restricted. For example, if each bidder is only interested

1The assumption that items can remain unallocated is known
as the free disposal assumption.

2This is assuming no externalities: if an agent does not receive
the item, the agent does not care which other agent receives it.



in a single bundle (that is, bidders are single-minded), then
a type θi consists of a pair (S′

i, xi), where S′
i is the bundle

that the bidder is interested in, and vi(θi, o) = xi if the bun-
dle that o allocates to i includes S ′

i (and it is 0 otherwise).
Another special case is a multi-unit auction, in which m
indistinguishable items are for sale (equivalently, there are
multiple units of the same item for sale). Here, a type con-
sists of m real numbers, where the jth number indicates the
value for obtaining j units. A special case is a multi-unit
auction with unit demand, in which each bidder wants to
obtain only one unit—that is, all m numbers are always the
same, so a type effectively consists of a single number.

In a (direct-revelation) mechanism, each agent reports a
type θ̂i ∈ Θi (not necessarily equal to θi), and based on
this, an outcome is chosen, as well as a payment to be made
by each agent. Thus, a mechanism is given by an outcome
selection function f : Θ1 × . . . × Θn → O, as well as n
payment selection functions πi : Θ1 × . . . × Θn → R.
As is common, we assume that preferences are quasi-
linear, that is, agent i’s utility is ui(θi, (θ̂1, . . . , θ̂n)) =

vi(θi, f(θ̂1, . . . , θ̂n)) − πi(θ̂1, . . . , θ̂n). A mechanism is
(dominant-strategies) incentive compatible if it is a dom-
inant strategy for each agent to reveal his true type, that is,
for all (θ1, . . . , θn) ∈ Θ1 × . . . × Θn and all θ̂i ∈ Θi,
ui(θi, (θ1, . . . , θi, . . . , θn)) ≥ ui(θi, (θ1, . . . , θ̂i, . . . , θn)).

Perhaps the most famous mechanism is the Vickrey-Clarke-
Groves (VCG) mechanism [13, 3, 8]. This mechanism
chooses an outcome o∗ that maximizes the sum of agents’
reported valuations, that is, o∗ ∈ arg maxo

n∑
i=1

vi(θ̂i, o).

That is, the mechanism is efficient. Then, to determine
agent j’s payment, it computes an outcome o∗−j that would
have been optimal if agent j had not been present, that
is, o∗−j ∈ arg maxo

∑
i6=j

vi(θ̂i, o). Finally, it determines

agent j’s payment as πj(θ̂1, . . . , θ̂n) =
∑
i6=j

vi(θ̂i, o
∗
−j) −

∑
i6=j

vi(θ̂i, o
∗). This mechanism is well-known to be incen-

tive compatible. It has several other nice properties. Under
certain minimal assumptions (which are satisfied in (com-
binatorial) auctions with free disposal), it also satisfies:
• individual rationality: for all (θ1, . . . , θn) ∈ Θ1 ×

. . . × Θn, for all i, ui(θi, (θ1, . . . , θi, . . . , θn)) ≥ 0.
That is, participating in the mechanism does not make
anyone worse off.

• non-deficit: for all (θ1, . . . , θn) ∈ Θ1 × . . . × Θn,
n∑

i=1

πi(θ1, . . . , θn) ≥ 0. That is, the mechanism does

not need to be subsidized by external funds, because
the total payments to agents never exceed the total
payments from agents.

• anonymity: the mechanism treats all agents the same.
We will assume throughout that we are in a setting where
the VCG mechanism obtains all of the above properties.

For single-item auctions, the VCG mechanism coincides
with the second-price sealed-bid auction, that is, the high-
est bidder wins the item and pays the bid of the second
highest bidder.

2.2 Redistribution Mechanisms

For the VCG mechanism, sometimes,
n∑

i=1

πi(θ1, . . . , θn) 6=

0. That is, the VCG mechanism is not (strongly) budget
balanced. In general, no mechanism that is budget bal-
anced also satisfies all of efficiency, incentive compatibil-
ity, and individual rationality [10, 7, 11]. In light of this
impossibility result, several authors have obtained budget
balance by sacrificing some of the other desirable proper-
ties [1, 6, 12, 5]. Another approach that is perhaps prefer-
able is to use a mechanism that is “more” budget balanced
than the VCG mechanism, and maintains all the other desir-
able properties. One way of trying to design such a mech-
anism is to redistribute some of the VCG payment back to
the agents in a way that will not affect the agents’ incen-
tives (so that incentive compatibility is maintained), and
that will maintain the other properties. This idea has re-
sulted in a few recent papers on (VCG) redistribution mech-
anisms. Such a mechanism works as follows. First, the
agents report their types, and the VCG mechanism is run
(so that the efficient outcome is chosen). Second, some
of the VCG payments collected in the first step are redis-
tributed back to the agents, in a way that maintains incen-
tive compatibility, individual rationality, and non-deficit.
To maintain incentive compatibility, an agent’s redistri-
bution payment should not depend on his own reported
type [2]. Thus, a redistribution mechanism is defined by a
function ri : Θ1 × . . .×Θi−1 ×Θi+1 × . . .×Θn → R for
each agent i. That is, letting θ̂−i be the vector of types sub-
mitted by agents other than i, ri(θ̂−i) indicates the amount
redistributed to i. For an anonymous redistribution mecha-
nism, ri = r for all i.

Let us say that a redistribution mechanism is feasible if it
satisfies individual rationality and non-deficit. (Efficiency
and incentive compatibility follow immediately from the
above definition of a redistribution mechanism.) The trivial
redistribution mechanism that redistributes nothing is al-
ways feasible. In some settings, this is the only feasible
redistribution mechanism—for example, in a single-item
auction with two bidders.

For example, Cavallo’s mechanism [2] is given
by ri(θ−i) = (1/n) min

θi∈Θi

V CG(θi, θ−i), where
V CG(θi, θ−i) is the total VCG payment collected
for those reports.3 In the special case of a single-item
auction, an agent’s redistribution payment is 1/n times
the second-highest bid among other agents’ bids. In this

3We use θi rather than θ̂i when there is no need to emphasize
the difference between reported and true types (since the mecha-
nism is incentive compatible).



case (or, more generally, multi-unit auctions with unit de-
mand), Cavallo’s mechanism coincides with a mechanism
proposed by Bailey [1]. For multi-unit auctions with unit
demand, we characterized a redistribution mechanism that
maximizes the worst-case redistribution percentage [9].
We do not present the (complex) general form of this
worst-case optimal (WCO) redistribution mechanism here.

3 Undominated Redistribution Mechanisms
How should we select a redistribution mechanism? In gen-
eral, we prefer to redistribute as much as possible. How-
ever, two redistribution mechanisms may be incompara-
ble in the sense that one redistributes more for one vec-
tor of reported types, and the other redistributes more for
another vector. In earlier work [9], we focused on max-
imizing the percentage of VCG payments redistributed in
the worst case. However, we only studied multi-unit auc-
tions with unit demand. It turns out that in more general
settings, the worst-case redistribution percentage is often 0
(we will see examples shortly). This does not mean that
nothing can ever be redistributed, but it does mean that we
need to change our criterion.

We will require the following claim for our examples.

Claim 1 A redistribution mechanism r = (r1, . . . , rn) is
feasible if and only if for all i and all θ1, . . . , θn

ri(θ−i) ≥ 0 (1)

ri(θ−i) ≤ min
θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑

j 6=i

rj(θ
′
−j)} (2)

Here, θ′−j are the reported types of the agents other than j
when θi is replaced by θ′i. V CG(θ′i, θ−i) is the total VCG
payments for the type vector θ1, . . . , θi−1, θ

′
i, θi+1, . . . , θn.

Proof: We first prove the “if” direction. Because the VCG
mechanism is individually rational, and by Equation 1 the
redistribution can only increase agents’ utilities, individ-
ual rationality is satisfied. For any θ1, . . . , θn, Equation 2
implies that r1(θ−1) ≤ V CG(θ′1, θ−1) −

∑
j 6=1

rj(θ
′
−j) for

any θ′1 ∈ Θ1. If we let θ′1 = θ1, we obtain r1(θ−1) +∑
j 6=1

rj(θ−j) ≤ V CG(θ1, θ−1). Thus, the non-deficit prop-

erty holds.

We now prove the “only if” direction. For any i and θ−i,
there exists some θi such that i will not derive any utility
from the allocation. Thus, if ri(θ−i) < 0, i would have
negative utility, contradicting individual rationality. Thus
Equation 1 must hold. By the non-deficit property, for any
i, any θ1, . . . , θi−1, θi+1, . . . , θn, and any θ′i, we must have
ri(θ−i) +

∑
j 6=i

rj(θ
′
−j) ≤ V CG(θ′i, θ−i), or equivalently

ri(θ−i) ≤ V CG(θ′i, θ−i) −
∑
j 6=i

rj(θ
′
−j). Since θ′i is arbi-

trary, Equation 2 follows.

Example 1. Consider a combinatorial auction with two
items {a, b} and three bidders {1, 2, 3}. Bidder 1 bids 10
on the bundle {a, b}; bidder 2 bids ε on {a}; bidder 3 bids
10 − 2ε on {b}. For sufficiently small ε, bidder 1 wins
both items and pays 10 − ε. For any feasible redistribution
mechanism r, Equation 1 and Equation 2 together imply
ri(θ−i) ≤ min

θ′

i
∈Θi

{V CG(θ′i, θ−i)}. For θ′1 = ({a, b}, 0)

(i.e. if 1 had bid 0 on {a, b} instead), V CG(θ′1, θ−1) = 0,
hence it must be that r1(({a}, ε), ({b}, 10 − 2ε)) = 0
(i.e. nothing is redistributed to 1). For θ′2 = ({a}, 11),
V CG(θ′2, θ−2) = 2ε, so r2(({a, b}, 10), ({b}, 10 − 2ε)) ≤
2ε. Finally, for θ′3 = ({b}, 0), V CG(θ′3, θ−3) = ε, so
r3(({a, b}, 10), ({a}, ε)) ≤ ε. Hence, the percentage re-
distributed is at most 3ε

10−ε
, which approaches 0 as ε ap-

proaches 0. Thus, every redistribution mechanism has a
worst-case redistribution percentage of 0 in this setting.

If we add any number of additional bidders who bid
({a}, 0), then the bounds on the first three bidders’ redis-
tribution payments remain the same, and each additional
bidder can have a redistribution payment of at most 2ε (if
any one of them bids more than 10, then the resulting total
VCG payment is 2ε). By letting ε → 0, it can be seen that
the worst-case percentage redistributed remains 0 for any
number of bidders. This is in contrast to the case of multi-
unit auctions with unit demand, where additional bidders
improve the worst-case redistribution percentage [9].

Example 2. Consider a multi-unit auction with two units
and three bidders {1, 2, 3}. Bidder 1 bids (0, 10) (0 for
getting one unit and 10 for getting two units). Bidder 2
bids (ε, ε). Bidder 3 bids (10 − 2ε, 10 − 2ε). For suffi-
ciently small ε, bidder 1 wins both units and pays 10 − ε.
As in the previous example, for any feasible redistribu-
tion mechanism r,ri(θ−i) ≤ min

θ′

i
∈Θi

{V CG(θ′i, θ−i)}. For

θ′1 = (0, 0), V CG(θ′1, θ−1) = 0, so r1((ε, ε), (10−2ε, 10−
2ε)) = 0. For θ′2 = (11, 11), V CG(θ′2, θ−2) = 2ε, so
r2((0, 10), (10 − 2ε, 10 − 2ε)) ≤ 2ε. For θ′3 = (0, 0),
V CG(θ′3, θ−3) = ε, so r3((0, 10), (ε, ε)) ≤ ε. Hence, the
percentage redistributed is at most 3ε

10−ε
, which approaches

0 as ε approaches 0. It follows that every redistribution
mechanism has a worst-case redistribution percentage of 0
in this setting. As in the previous example, this remains
true for any number of bidders (which can be shown by
adding bidders that bid (0, 0)).

The previous examples show that the worst-case criterion
is not a helpful guide in designing redistribution mecha-
nisms for more complex auction settings. Instead, we will
pursue a new objective: we will design redistribution mech-
anisms that are undominated. A redistribution mechanism
is undominated if there does not exist another redistribu-
tion mechanism that always redistributes at least as much
to each agent, and, in at least one case, strictly more. The
following definition makes this precise.



Definition 1 A redistribution mechanism r is undominated
if it is feasible, and there does not exist a feasible redistri-
bution mechanism r

′ that dominates it, that is,

• for all i, for all θ1, . . . , θn, r′i(θ−i) ≥ ri(θ−i).

• for some i, for some θ1, . . . , θn, r′i(θ−i) > ri(θ−i).

For example, the trivial redistribution mechanism that re-
distributes nothing is dominated by both WCO and Cav-
allo’s mechanism; neither of WCO and Cavallo’s mecha-
nism dominates the other; and in general, WCO and Cav-
allo’s mechanism are not undominated (as we will see
later). The following theorem provides an alternative char-
acterization.

Theorem 1 A redistribution mechanism r is undominated
if and only if for all i and all θ1, . . . , θn

ri(θ−i) ≥ 0 (3)

ri(θ−i) = min
θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑

j 6=i

rj(θ
′
−j)} (4)

Here, θ′−j are the reported types of the agents other than j
when θi is replaced by θ′i.

It should be noted that the only difference between Equa-
tion 2 and Equation 4 is that “≤” is replaced by “=”.

Proof: We prove the “if” direction first. Any redistri-
bution mechanism r that satisfies Equation 3 and Equa-
tion 4 is feasible by Claim 1. Now suppose that r is dom-
inated, that is, there exists a feasible redistribution mech-
anism r

′ such that for all i and θ−i, we have r′i(θ−i) ≥
ri(θ−i), and for some i and θ−i, we have r′i(θ−i) >
ri(θ−i). For the i and θ−i that make this inequality strict,
we have r′i(θ−i) > ri(θ−i) = min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rj(θ
′
−j)} ≥ min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

r′j(θ
′
−j)}. But

this contradicts the feasibility of r
′. It follows that r is un-

dominated.

Now we prove the “only if” direction. An undomi-
nated mechanism is feasible by definition, so by Claim 1,
Equation 3 must hold. Suppose Equation 4 is not sat-
isfied. Then, there exists some i and θ−i such that
ri(θ−i) < min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rj(θ
′
−j)}. Let a =

min
θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rj(θ
′
−j)} − ri(θ−i) (so that

a > 0), and let r′ be the same as r, except that for the afore-
mentioned i and θ−i, r′i(θ−i) = ri(θ−i) + a. To show that
this does not break the non-deficit constraint, consider any
type vector (θi, θ−i) where i and θ−i are the same as before
(that is, any type vector that is affected). Then, r′i(θ−i) =
a + ri(θ−i) = min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rj(θ
′
−j)} =

min
θ′

i
∈Θi

{V CG(θ′i, θ−i)−
∑
j 6=i

r′j(θ
′
−j)}. Thus, by Claim 1, r′

is feasible. This contradicts that r is undominated. Hence,
Equation 4 must hold.

As an aside, suppose we were only interested in anony-
mous mechanisms, and we would therefore only consider
a mechanism dominated if it were dominated by an anony-
mous mechanism. Then, the characterization in Theorem 1
remains identical.4 Therefore, all of our results apply to
this modified definition as well.

One interesting property of nontrivial undominated redis-
tribution mechanisms is that there is always some case
where they redistribute 100% of the VCG payments. (A
redistribution mechanism is trivial if it never redistributes
anything.) So (non-trivial) undominated VCG redistribu-
tion mechanisms are also optimal in the sense of best-case
redistribution percentage.

Claim 2 If a nontrivial redistribution mechanism r is un-
dominated, then there exists a case where it redistributes
100% of the (nonzero) total VCG payments.

Proof: If r is not trivial, then for some i and θ−i,
we have ri(θ−i) > 0. By Theorem 1, ri(θ−i) =
min

θ′

i
∈Θi

{V CG(θ′i, θ−i)−
∑
j 6=i

rj(θ
′
−j)}, so for some θ′i ∈ Θi,

V CG(θ′i, θ−i) = ri(θ−i) +
∑
j 6=i

rj(θ
′
−j) ≥ 0. Thus the re-

distribution percentage for (θ′i, θ−i) is 100%.

An undominated redistribution mechanism always exists;
in general, it is not unique. We now give two examples of
undominated redistribution mechanisms.

Example 3. Consider a single-item auction with n ≥ 3 bid-
ders. Bidder i bids θi ∈ R. Let p(j, θ) be the jth highest
element of θ. If r is Cavallo’s mechanism, then r(θ−i) =
1
n
p(2, θ−i) (Cavallo’s mechanism is anonymous, so we

omit the subscript of r.) To show r is undominated, it suf-
fices to show Equation 3 and Equation 4 are satisfied. For
Equation 3, this is clear. For Equation 4, we first observe
that for all θ′i, V CG(θ′i, θ−i) = p(2, (θ′i, θ−i)) ≥ p(2, θ−i)
and for all j 6= i, V CG(θ′i, θ−i) = p(2, (θ′i, θ−i)) ≥
p(2, θ′−j). Because ri(θ−i)+

∑
j 6=i

rj(θ
′
−j) = p(2, θ−i)/n+

∑
j 6=i

p(2, θ′−j)/n, it follows that ri(θ−i) ≤ V CG(θ′i, θ−i)−
∑
j 6=i

rj(θ
′
−j) for all θ′i. Moreover, if θ′i = p(2, θ−i), then all

of the above inequalities become equalities. Hence Equa-
tion 4 holds. It follows that Cavallo’s mechanism is un-
dominated in this setting. (We will show that it is not un-
dominated in more general settings.)

Example 4. Consider again a single-item auction with n ≥
5 bidders. Bidder i bids θi. Let r be the following anony-
mous redistribution mechanism: r(θ−i) = 1

n−2p(2, θ−i)−

4This can be proved by modifying the proof of Theorem 1,
adding a/n to each agent’s redistribution function instead of
adding a to one agent’s redistribution function.
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(n−2)(n−3)p(3, θ−i) + 6

n(n−2)(n−3)p(4, θ−i). Equation 3
and Equation 4 can be shown to hold (the equality in Equa-
tion 4 is achieved by setting θ′i = p(4, θ−i)).

Because in general, there are multiple undominated redis-
tribution mechanisms, it is not clear which one is best. If
a prior distribution over agents’ types is available, then we
would prefer the one that redistributes the most in expecta-
tion; however, in this paper, we do not wish to assume that
such a prior is available. Nevertheless, for any (feasible) re-
distribution mechanism that we might consider using, if it
is dominated, then there exists another (feasible) redistribu-
tion mechanism that always redistributes at least as much to
each agent, and more in some cases. Thus, in expectation,
the latter mechanism redistributes at least as much for any
prior distribution, and strictly more if the prior assigns posi-
tive probability to the set of type vectors on which the latter
mechanism redistributes more. Hence, we would certainly
prefer the latter mechanism—and if that mechanism is not
undominated, we would prefer to find one that dominates
it, etc. But how do we find such an improved mechanism?
This is what we study in the rest of the paper.

4 Methods for Constructing Undominated
Redistribution Mechanisms

In this section, we propose several techniques that, given a
redistribution mechanism that is feasible and dominated,
find a feasible redistribution mechanism that dominates
it. (If the initial mechanism is already undominated, then
the techniques will return the same mechanism.) One
technique immediately produces an undominated mecha-
nism that is not anonymous; the other techniques preserve
anonymity, and after repeated application converge to an
undominated mechanism. We emphasize that we can start
with any feasible redistribution mechanism, including Cav-
allo’s mechanism, the WCO mechanism from our previ-
ous work (which, even though is optimal in the worst case,
is generally not undominated), or even the trivial redistri-
bution mechanism that redistributes nothing. These tech-
niques can also be useful in settings where we do have a
prior distribution. For example, after designing a redistri-
bution mechanism based on a prior distribution, we can fur-
ther improve it and make it undominated, which will never
decrease the redistribution payment to any agent.

4.1 A Priority-Based Technique

Given a feasible redistribution mechanism r and a priority
order over agents π, we can improve r into an undominated
redistribution mechanism that is not anonymous. The tech-
nique works as follows.

1) Let π : {1, . . . , n} → {1, . . . , n} be a permutation rep-
resenting the priority order. That is, π(i) is agent i’s pri-
ority value (the lower the value, the higher the priority).
π−1(k) is the agent with the kth-highest priority.

2) Let i = π−1(1), and update i’s redistribution function to
rπ
i (θ−i) = min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑

π(j)>1

rj(θ
′
−j)}. That

is, we redistribute as much as possible to this agent without
breaking feasibility.

3) We will now consider the remaining agents in turn, ac-
cording to the order π. In the kth step, we update the re-
distribution function of agent i = π−1(k) to rπ

i (θ−i) =
min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑

π(j)>k

rj(θ
′
−j) −

∑
π(j)<k

rπ
j (θ′−j)}

That is, we redistribute as much as possible to this agent
without breaking feasibility, taking the previous k − 1 up-
dates into account.

Thus, for every agent i, rπ
i (θ−i) = min

θ′

i
∈Θi

{V CG(θ′i, θ−i)−
∑

π(j)>π(i)

rj(θ
′
−j) −

∑
π(j)<π(i)

rπ
j (θ′−j)}. The new redistri-

bution mechanism r
π satisfies the following properties:

Claim 3 For all i, for all θ−i, rπ
i (θ−i) ≥ ri(θ−i).

Proof: First consider i = π−1(1), the agent with the
highest priority. For any θ−i, we have rπ

i (θ−i) =
min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rj(θ
′
−j)}. Since the original

redistribution mechanism r is feasible, by Equation 2,
we have ri(θ−i) ≤ min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rj(θ
′
−j)}.

Hence rπ
i (θ−i) ≥ ri(θ−i).

For any i 6= π−1(1), rπ
i (θ−i) = ri(θ−i) +

min
θ′

i
∈Θi

{V CG(θ′i, θ−i) − ri(θ−i) −
∑

π(j)>π(i)

rj(θ
′
−j) −

∑
π(j)<π(i)

rπ
j (θ′−j)}. We must show min

θ′

i
∈Θi

{V CG(θ′i, θ−i)−

ri(θ−i) −
∑

π(j)>π(i)

rj(θ
′
−j) −

∑
π(j)<π(i)

rπ
j (θ′−j)} ≥ 0.

Consider p = π−1(π(i) − 1) (the agent immedi-
ately before i in terms of priority). For any θi, θ−i,
we have V CG(θi, θ−i) − ri(θ−i) −

∑
π(j)>π(i)

rj(θ−j) −

∑
π(j)<π(i)

rπ
j (θ−j) = V CG(θi, θ−i) −

∑
π(j)>π(p)

rj(θ−j) −

∑
π(j)<π(p)

rπ
j (θ−j) − rπ

p (θ−p) ≥ min
θ′

p∈Θp

{V CG(θ′p, θ−p) −

∑
π(j)>π(p)

rj(θ
′
−j) −

∑
π(j)<π(p)

rπ
j (θ′−j)} − rπ

p (θ−p) = 0.

(For the above inequality only, θ′−j is the set of types
reported by the agents other than j when θp is re-
placed by θ′p.) Because θi is arbitrary, it follows
that min

θ′

i
∈Θi

{V CG(θ′i, θ−i) − ri(θ−i) −
∑

π(j)>π(i)

rj(θ
′
−j) −

∑
π(j)<π(i)

rπ
j (θ′−j)} ≥ 0. It follows that rπ

i (θ−i) ≥ ri(θ−i)

for all i and θ−i.

Claim 4 r
π is an undominated redistribution mechanism.

Proof: By Claim 3, for all i and θ−i, rπ
i (θ−i) ≥ ri(θ−i) ≥

0. So, rπ is individually rational.



Let i = π−1(n). For all θ1, . . . , θn, the total VCG pay-
ment that is not redistributed by r

π is V CG(θ1, . . . , θn) −∑
j=1,...,n

rπ
j (θ−j) ≥ min

θ′

i
∈Θi

{V CG(θ′i, θ−i)−
∑
j 6=i

rπ
j (θ′−j)}−

rπ
i (θ−i) = 0. Hence r

π never incurs a deficit. So, rπ is fea-
sible.

Using Claim 3, we have rπ
i (θ−i) = min

θ′

i
∈Θi

{V CG(θ′i, θ−i)−
∑

π(j)>π(i)

rj(θ
′
−j) −

∑
π(j)<π(i)

rπ
j (θ′−j)} ≥

min
θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=n

rπ
j (θ′−j)}. Because r

π is

feasible, the opposite inequality must also be satisfied
(Equation 2)—hence we must have equality, that is,
Equation 4 must hold. Because Equation 3 is also satisfied
by Claim 1, it follows that rπ is undominated.

Example 5. Consider a single-item auction with four bid-
ders 1, 2, 3, 4. In this setting, the redistribution under the
WCO mechanism to agent i is r(θ−i) = (2/7)p(2, θ−i) −
(1/7)p(3, θ−i) (where p(k, θ−i) is the kth highest bid
among bids other than i’s). Consider a specific set of bids
(8, 10, 13, 5) and let π(i) = i for all i. (That is, agent 1 bids
8 for the item and has the highest priority, etc.) If we apply
the above technique, the resulting redistribution payment to
agent 1 is rπ

1 (10, 13, 5) = min
θ′

1
∈[0,∞)

{V CG(θ′1, 10, 13, 5) −

r(θ′1, 13, 5) − r(θ′1, 10, 5) − r(θ′1, 10, 13)} (where r is the
WCO mechanism). It turns out that the expression is min-
imized at θ′1 = 0, so that rπ

1 (10, 13, 5) = 30
7 . This

is twice the amount 1 would have received under WCO:
r(10, 13, 5) = (2/7) · 10 − (1/7) · 5 = 15

7 .

For agent 2, rπ
2 (8, 13, 5) = min

θ′

2
∈[0,∞)

{V CG(8, θ′2, 13, 5) −

rπ
1 (θ′2, 13, 5) − r(8, θ′2, 5) − r(8, θ′2, 13)}. This expression

is minimized at θ′2 = 8, so that rπ
2 (8, 13, 5) = 17

7 . (Under
WCO, 2 receives only 11

7 .)

For agent 3, rπ
3 (8, 10, 5) = min

θ′

3
∈[0,∞)

{V CG(8, 10, θ′3, 5) −

rπ
1 (10, θ′3, 5)−rπ

2 (8, θ′3, 5)−r(8, 10, θ′3)}. This expression
is minimized at θ′3 = 8, so that rπ

3 (8, 10, 5) = 11
7 . (Under

WCO, 3 receives 11
7 as well.)

For agent 4 rπ
4 (8, 10, 13) =

min
θ′

4
∈[0,∞)

{V CG(8, 10, 13, θ′4) − rπ(10, 13, θ′4) −

rπ(8, 13, θ′4) − rπ(8, 10, θ′4)}. This expression is
minimized at θ′4 = 5, so that rπ

4 (8, 10, 13) = 12
7 . (Under

WCO, 4 receives 12
7 as well.)

We note that for this priority order, the total amount re-
distributed is 30+17+11+12

7 = 10, that is, all of the VCG
payments are redistributed. This is not true for all prior-
ity orders; averaging over all priority orders, 0.304 remains
undistributed (compared to 3 for the WCO mechanism).

Generally, most of the increase in redistribution payment
goes to high-priority agents. Hence, a reasonable approxi-
mation can be obtained by only updating the redistribution

payment functions of the first few agents. This still results
in a feasible mechanism that dominates the original (or is
the same), but it is no longer guaranteed to be undominated.

4.2 Iterative Techniques that Preserve Anonymity

The technique from the previous subsection will, in gen-
eral, not produce an anonymous redistribution mechanism,
even if the original mechanism r is anonymous. This is
because agents higher in the priority order tend to receive
higher redistribution payments. In this subsection, we will
introduce techniques that preserve anonymity.

One way to obtain an anonymous mechanism is to consider
rπ for all permutations π, and take the average. That is,
let r̄ be defined by r̄i = 1

n!

∑
π∈Sn

(rπ
i ), where Sn is the set

of all permutations of n elements. Given that the setting
and the initial mechanism are anonymous, this results in an
anonymous mechanism. It is also feasible:

Claim 5 Any convex combination of a set {r(1), . . . , r(t)}
of feasible redistribution mechanisms is itself feasible.

Proof: Let
t∑

k=1

αk = 1 with each αk ≥ 0; we

must show that r =
t∑

k=1

αkr
(k) is feasible. For any

i and θ−i, for any k, we have r
(k)
i (θ−i) ≥ 0, hence

ri(θ−i) =
t∑

k=1

αkr
(k)
i (θ−i) ≥ 0. This implies indi-

vidual rationality. Also, for any θ1, . . . , θn, for any k,
n∑

i=1

r
(k)
i (θ−i) ≤ V CG(θ1, . . . , θn), hence

n∑
i=1

ri(θ−i) =

t∑
k=1

αk

n∑
i=1

r
(k)
i (θ−i) ≤ V CG(θ1, . . . , θn). This implies

the non-deficit property.

Because r̄ is anonymous, all r̄i are the same, so we will
simply use r̄. Even though r̄ is an average of a set of un-
dominated redistribution mechanisms, in general, it itself
is not undominated. In principle, we can take the resulting
mechanism and apply the technique again. Unfortunately,
this approach is not practical—in fact, it may not be fea-
sible to perform even one iteration of this technique if n
is large, since we have to take an average over n! mech-
anisms.5 However, as we mentioned, it is also possible to
apply the priority-based technique only to the first h agents.
This still results in a feasible (but not necessarily undomi-
nated) mechanism, and tends to obtain most of the increase
in redistribution payments. Taking the average over all such

5Computational limitations often prevent us from using certain
mechanisms. As an extreme example, it is possible to have a com-
puter search over the space of all possible (incentive compatible)
mechanisms for the setting at hand and find the best one [4], but
this does not scale to very large instances. By contrast, here, we
have an analytical characterization of the mechanism, but com-
puting its outcomes is still hard.



mechanisms is feasible for sufficiently small h (there will
be Pn

h = n!/(n − h)! such mechanisms), and will result in
an anonymous mechanism. We will consider the extreme
case where h = 1 (i.e. we only change one agent’s redis-
tribution function), so that we have to take an average over
only n mechanisms. This we can do iteratively.

Given a feasible and anonymous redistribution mechanism
r, let r0 = r, and let rk be the mechanism that results
after k iterations of the above technique (with h = 1).
Then, for all i and θ1, . . . , θn, rk+1(θ−i) = n−1

n
rk(θ−i) +

1
n

min
θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rk(θ′−j)}.

This technique can be interpreted as a generalization of
the basic idea underlying Cavallo’s mechanism. We can
rewrite rk+1(θ−i) = rk(θ−i) + 1

n
min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rk(θ′−j) − rk(θ−i)}. If the starting mechanism r = r0

is the trivial redistribution mechanism that redistributes
nothing, then we have r1(θ−i) = 1

n
min

θ′

i
∈Θi

{V CG(θ′i, θ−i)},

which is exactly Cavallo’s mechanism.

Claim 6 If rk is feasible, rk+1 is feasible.

Proof: rk+1 is an average of feasible mechanisms, so
Claim 5 applies.

Claim 7 For any i and θ−i, rk(θ−i) is nondecreasing in k.

Proof: rk+1(θ−i) = rk(θ−i) + 1
n

min
θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rk(θ′−j)−rk(θ−i)}. Because rk is feasible by Claim 6,

min
θ′

i
∈Θi

{V CG(θ′i, θ−i)−
∑
j 6=i

rk(θ′−j)−rk(θ−i)} ≥ 0. Hence

rk+1(θ−i) ≥ rk(θ−i).

Claim 8 As k → ∞, rk converges (pointwise) to an un-
dominated redistribution mechanism.

Proof: By Claim 7, the rk(θ−i) are nondecreasing in k,
and since every rk is feasible by Claim 6, they must be
bounded; hence they must converge (pointwise). For any i
and θ−i, let dk = min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rk(θ′−j)} −

rk(θ−i). Using Claim 7, we derive the following inequal-
ity: dk+1 = min

θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rk+1(θ′−j)} −

rk+1(θ−i) ≤ min
θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rk(θ′−j)} −

rk+1(θ−i) = min
θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rk(θ′−j)} −

n−1
n

rk(θ−i) −
1
n

min
θ′

i
∈Θi

{V CG(θ′i, θ−i) −
∑
j 6=i

rk(θ′−j)} =

n−1
n

min
θ′

i
∈Θi

{V CG(θ′i, θ−i)−
∑
j 6=i

rk(θ′−j)}−
n−1

n
rk(θ−i) =

n−1
n

dk. As k → ∞, dk = min
θ′

i
∈Θi

{V CG(θ′i, θ−i) −

∑
j 6=i

rk(θ′−j)} − rk(θ−i) → 0. So in the limit, Equation 4

is satisfied. Thus, rk converges (pointwise) to an undomi-
nated redistribution mechanism.

Corollary 1 If rk+1 = rk, then rk is undominated.

Claim 9 If rk is not undominated, then rk+1 dominates rk.

Proof: rk+1 always redistributes at least as much as rk to
each agent by Claim 7. Moreover, rk+1 6= rk (otherwise
Corollary 1 would imply rk is undominated). Hence there
must be a case where rk+1 redistributes more than rk.

5 Numerical Results
In this section, we present the results of some experi-
ments in which we use the techniques from the previous
sections to improve both the WCO mechanism and Cav-
allo’s mechanism. (We do not present any results starting
from the trivial redistribution mechanism that redistributes
nothing, because, as we mentioned, after one iteration of
the anonymity-preserving technique, we would obtain Cav-
allo’s mechanism.)

Improving the WCO mechanism. The WCO mechanism
applies only to multi-unit auctions with unit demand (i.e. in
which each bidder only wants a single unit); in this set-
ting, this mechanism maximizes the percentage that is re-
distributed in the worst case. This, however, does not mean
that it is undominated, because it could be dominated by
another mechanism that does equally well in the worst case,
and better in other cases. Indeed, we can improve the WCO
mechanism using the techniques from this paper (resulting
in another, better, worst-case optimal mechanism).

For various m (number of units) and n (number of bid-
ders), we generated 100 random instances with each bid-
der’s valuation drawn uniformly from [0, 1]. The table
below shows the ratio between the average amount that
is not redistributed by the new mechanism (which results
from applying one of our techniques to the WCO mech-
anism), and the average amount that is not redistributed
by the (original) WCO mechanism. That is, it is the
percentage of the amount that WCO fails to redistribute
that the new mechanism also fails to redistribute. Lower
numbers are better—100% indicates no improvement over
WCO, 0% indicates that everything is redistributed. For the
nonanonymous (priority-based) technique, to save compu-
tation time, we only update the redistribution payments for
the first three bidders. This technique redistributes more
than the anonymity-preserving technique.

n m Nonanoymous Anonymous Anonymous
(3 updates) (1 iteration) (2 iterations)

4 1 42% 66% 52%
5 1 49% 69% 55%
6 1 32% 55% 39%
5 2 44% 68% 54%
6 3 45% 68% 54%



Improving Cavallo’s mechanism. We recall that Cav-
allo’s mechanism is undominated in the single-item auc-
tion setting (in fact, this remains true for multi-unit auc-
tions with unit demand). However, as the experiment below
shows, it is not undominated in general.

For a combinatorial auction with n single-minded bidders
and 2 items, we generated 100 random instances. For each
bidder, we randomly chose a nonempty bundle of items,
and randomly chose a per-item value from [0, 1] (which is
multiplied by two if the bidder desires the bundle of two
items). The percentages have the same meaning as be-
fore. We distinguish between the known single-minded
case (where the auctioneer knows which bundle the agent
wants) and the unknown case. Again, the nonanonymous
technique redistributes more; also, more is redistributed in
the known case.

Nonanon. Anonymous Nonanon. Anonymous
n (2 updates) (2 iterations) (2 updates) (2 iterations)

(unknown) (unknown) (known) (known)
5 83% 85% 61% 76%
6 76% 82% 57% 70%
7 72% 81% 52% 69%
8 78% 83% 57% 67%

6 Conclusion

For allocation problems, the well-known VCG mechanism
is efficient, incentive compatible, individually rational, and
does not incur a deficit. However, the VCG mechanism
is not (strongly) budget balanced: generally, the agents’
payments will sum to more than 0. Very recently, several
mechanisms have been proposed that redistribute a signif-
icant percentage of the VCG payments back to the agents
while maintaining the other properties. This increases the
agents’ utilities. In this paper, we provided a characteriza-
tion of undominated redistribution mechanisms. We also
proposed several techniques that take a dominated redistri-
bution mechanism as input, and produce as output another
redistribution mechanism that dominates the original. The
dominating redistribution mechanism always redistributes
at least as much, and in some cases more. Hence, for any
prior distribution over agents’ types, the dominating mech-
anism redistributes at least as much as the original in expec-
tation; if the prior assigns positive probability to the set of
type vectors where the dominating mechanism redistributes
more, then the dominating mechanism redistributes strictly
more in expectation.

One of the techniques that we proposed takes as input a pri-
ority order over the agents. It first redistributes as much as
possible to the highest-priority agent, then it redistributes
as much of the remainder as possible to the second-highest
priority agent, etc. At the end of this process, the mecha-
nism is guaranteed to be undominated—but it is generally
not anonymous. Another technique that we proposed does
preserve anonymity, and can be seen as taking the average
over all priority orders of the first step of the priority-based

technique. It can also be seen as a generalization of the
basic idea underlying Cavallo’s mechanism, and Cavallo’s
mechanism results after one iteration of the technique when
starting with the mechanism that redistributes nothing. Re-
peated application of this technique produces an undomi-
nated mechanism in the limit.

Finally, we showed experimentally that these techniques
improve both the WCO mechanism and Cavallo’s mecha-
nism. In our experiment on multi-unit auctions with unit
demand, the improved mechanisms redistributed (on av-
erage) between 31% and 68% of what WCO failed to re-
distribute. In our experiment on combinatorial auctions
with single-minded bidders, the improved mechanisms re-
distributed (on average) between 15% and 48% of what
Cavallo’s mechanism failed to redistribute.
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