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CETC 2006, Université de Montréal, and Cornell University, for stimulating questions.
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1. Introduction

A stream of research examines how a privately informed agent, the “sender,”

can influence a decision maker, the “receiver,” by supplying relevant unverifiable

information. To influence the decision, all the sender can do is talk. Talking is free of

costs, in the sense that messages do not enter the payoff of the players. This problem

of cheap talk signalling is interesting when the sender and the receiver do not have

the same preferences, i.e. when the sender is “biased.”

The model of Crawford and Sobel (1982) is important in this literature. It is one

of the first models to address the issue, and has served as a building block for most of

the work in the area. We now have at hand an entire family of cheap talk signalling

models that either enrich, build on, or apply to more specific settings, the model of

Crawford and Sobel. In this paper, we introduce a new method to analyze models

in this family. The key idea of the method is to look at cheap talk equilibria as the

fixed points of a certain mapping. We thus label it the “fixed point method.”

The method can be used to analyze a large class of cheap talk signalling games.

In particular, it can help to analyze models that have raised technical difficulties,

such as models where actions and types have more than one dimension.1 The method

also leads to a new natural way to address the problem of selecting among the many

equilibria that typically arise in cheap talk signalling games.2

In this paper, we show how the fixed-point method works for a model in one

dimension, which contains Crawford and Sobel’s as a special case. Ours is more

general, in that we allow the direction of the sender’s bias to be either left or right,

depending on the state of the world. In contrast, these authors require the sender’s

bias to be consistently in the same direction, across all states of the world. Thus, our

model can be applied to a larger set of situations.

1See the pioneering work in this area, by Levy and Razin (2004), and Chakraborty and Harbaugh
(2005). Models of cheap talk in multiple dimensions are not well understood. In a companion paper
(2006b), we apply the fixed-point method to a class of multidimensional models, and obtain a
description of the set of equilibria for this class.

2This remains a wide open question to this day, in spite of the recent advances by Kartik (2005)
and Chen (2006). In a companion paper (2006a), we apply the fixed-point method to this problem,
and obtain a criterion that selects a unique equilibrium in the class of games studied by Crawford
and Sobel (1982).
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In this unidimensional context, using our method has three advantages. First, it

works exactly the same way, for games that satisfy Crawford and Sobel’s consistent

bias direction restriction, and for those who do not. Therefore the generalization is,

in a sense, costless. Second, it yields a more detailed description of the rich structure

of the equilibrium set, even for games that do satisfy all the assumptions of Crawford

and Sobel. Third, the method requires few regularity assumptions, and some of our

results hold even when the receiver’s decision rule is not continuous in its information.

All of these improvements are dividends of the fixed-point method.

In general, cheap talk signalling games can be described by a set of receiver’s

possible actions, a set of types that represent the sender’s private information, a

set of preferences for the sender, indexed by his type, and a decision rule under

uncertainty for the receiver. An equilibrium outcome can be described by a partition

of the sender type space in pools, and a list of actions indexed by the pools in the

partition, satisfying two conditions. An interpretation is that sender types in a same

pool send the same information to the receiver, therefore they induce the same action,

but types in different pools send different information,therefore they induce possibly

different actions. The first condition is that the action associated with a certain

pool must be the decision prescribed by the receiver’s rule when all he knows is that

the type is in this pool. In other words, the receiver transforms the information he

receives into actions in a way that is consistent with his decision rule. The second

condition is that all types in any pool must like the action they induce at least as

much as any other action in the list. This condition simply says that the sender types

pool in an incentive-compatible fashion.

The fixed point method. We can map each pool partition into another pool

partition in the following manner. For each pool in the initial partition, consider the

action prescribed by the receiver’s decision rule when all he knows is that the type

is in this pool. This defines a list of actions. Next, sort sender types according to

which action in the list they like the best. This yields a new pool partition of the

type space. The equilibria of the game are exactly the fixed points of the mapping

we just defined. Therefore, studying the equilibrium set amounts to study the set of
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fixed points of this mapping.3

A larger class of one dimensional models. The model we consider is more

general that Crawford and Sobel’s, in that we allow the direction of the sender’s

bias to be either left or right, depending on the state of the world. These authors

require the sender’s bias to be strictly in the same direction, across all states of the

world. For example, all sender types could have a strict upward bias compared to

the receiver. Or they could all have a strict downward bias. While this restriction is

appropriate in many situations, it excludes a large class of problems. For example,

the sender could have an outward bias. In this case, his preferred action is lower than

the receiver’s when his type is low, and higher than the receiver’s when his type is

high. He could also have an inward bias. In this case, his preferred action is higher

than the receiver’s when his type is low, and lower than the receiver’s when his type

is high. Our model contains upward, downward, outward and inward biases as special

cases. More generally, we allow the direction of the bias to depend on the sender’s

type. We now provide examples of situations, where the sender has an outward or

inward bias.

Outward and inward bias: a few examples. In our first example, the receiver is

the government, and the sender is an expert, hired by the government to advise it on

a one dimensional policy reform from a current status quo a∗ to a new policy a. The

expert’s type represents the policy the expert believes the government should take.

The government trusts the expert to indicate the direction of the change, i.e. whether

a should be greater or lesser than a∗. The government takes into account factors that

the expert will tend to ignore, such as the greater risks of facing popular resistance

incurred when carrying out large changes. Thus, the government is more conservative

than the expert, in the sense that it is reluctant to implement large policy changes.

To fix ideas, let the type t be distributed in [−1, 1], and the preferred policy of the

government under complete information be R(t) = a∗ + t
2
. Instead, the expert would

3In unpublished work, Dimitrakas and Sarafidis (2005) use a version of the “fixed point method”
outlined here, to study a variant of Crawford and Sobel’s model. Their results and ours were obtained
independently. For a discussion of their work, see the last section.
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like the government to implement S(t) = a∗ + t. In this example, the sender has an

outward bias, since S(−1) < R(−1) < R(1) < S(1).

In our second example, the receiver is a legislature with two members, and the

sender is an expert, hired to advise it on a one dimensional policy a. The expert

reports to the legislature, which then collectively choose the policy a. Specifically,

the chosen policy is the outcome of a bargaining game among the two members of the

legislature. To fix ideas, let the type t be any real number in [0, 1], and let S(t) = t

be the policy the expert would like the government to implement. Let the preferred

policy of one of member 1 under complete information be R1(t) = −3
4

+ 3t
2
, and let

the preferred policy of member 2 under complete information be R2(t) = 1
4

+ 3t
2
.

Let the outcome of the legislative bargaining under complete information be R(t) =
R1(t)+R2(t)

2
= −1

4
+ 3t

2
. Here, the expert has an upward bias, with respect to member

1, and a downward bias, with respect to member 2. Indeed, we have for all t ∈ [0, 1],

R1(t) < S(t) < R2(t). But when comparing the expert, and the legislature’s rule

R(t), the sender has an inward bias, since R(−1) < S(−1) < S(1) < R(1).

Other examples can be found in the literature. Stein (1989) uses a unidimensional

model, where the sender is a central bank, and the receiver is a financial market. The

equilibrium of this market determines an exchange rate. The central bank has a target

exchange rate for today, but the market expect a reversal of the policy tomorrow. As

a result, it is less reactive than the central bank would like it to be. Thus, the central

bank has an outward bias, compared to the market. Melumad and Shibano (1991)

also study cheap talk signalling, among other mechanisms, without Crawford and

Sobel’s restriction. Their main focus is on comparing equilibria with one and two

pools, from the point of view of the expected utility of the sender and the receiver. In

both cases, the authors restrict attention to the special case where the preferences of

the sender are quadratic, and the decision rule of the receiver is linear. Our analysis

applies to a much larger set of situations, as it does not rely on these assumptions.

Equilibrium sizes. A classic result for unidimensional cheap talk signalling, which

holds also in our model, is that equilibrium pools must be intervals. Crawford and

Sobel prove that, when the sender’s bias is strictly upward (or strictly downward),

the set of integers such that there are equilibria of size k, i.e. with exactly k intervals,
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is of the form {1, ..., K} and there are no equilibria of infinite size. In contrast, we

prove that when the bias is outward, there are equilibria of any finite size and at least

one of infinite size. If we interpret the maximal equilibrium size as a measure of the

sender’s influence on the receiver, our results suggests that a sender with an outward

bias enjoys a greater influence on the receiver than a sender with an strictly upward

bias.

More generally, the following result holds for any game in the class we study.

Either the set of equilibrium sizes is of the form {1, ..., K}, like in the strictly upward

bias case, or it is N ∪ {∞}, like in the outward bias case. In other words, if there

is an equilibrium of size k > 1, then there exists an equilibrium of size k − 1. We

also show that the latter is “nested” into the former, in the sense that the boundary

points of the size k equilibrium define bounds within which a size k − 1 equilibrium

necessarily exists.

Structure of the set of equilibria of a given size k ≥ 2. We obtain new results

on the structure of the equilibrium set. When the sender has an outward bias, the set

of equilibria of a given size k ≥ 2 is nonempty and has a complete lattice structure. In

particular, it has a minimal element and a maximal element. Under the assumption

that the highest sender type has an upward bias (this includes upward the upward and

outward cases), the set of equilibria of a given size k ≥ 2 may or may not be empty.

If it is nonempty, this set is a semi-upper lattice. In particular, it has a maximal

element. We then provide further results on this maximal equilibrium of size k. First,

we provide a simple algorithm that converges monotonically to this equilibrium. We

then provide comparative statics results on this equilibrium. Crawford and Sobel

(1982) proved some results of this type. Ours are stronger, in that we do not assume

the unicity of the equilibrium of size k to obtain them.

As we pointed out, the fixed-point method yields both a more precise description of

the equilibrium set, and for a broader class of models, than Crawford and Sobel’s work.

However, the real contribution here is the introduction of the fixed-point method in

this context. The method can be used to address other questions in the cheap talk

signalling literature. Fixed point methods are pervasive in many areas of economic

theory. We show that they are a powerful tool to analyze cheap talk signalling models
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as well.

The rest of the paper is organized as follows. Section 2 lays out the model.

Section 3 studies the set of possible equilibrium sizes in general. Section 4 introduces

a taxonomy of sender’s biases, and specializes the results of section 3 to certain special

cases. Section 5 provides further results on the structure of the equilibrium set. The

case where the receiver maximizes a von Neuman Morgenstern utility function is

studied in section 6. This section includes a comparative statics analysis. In section

7, we study the important uniform-quadratic case. Section 8 discusses the technical

aspect of this paper and its articulation with other works. In section 9, we discuss

the extent to which the fixed-point method can be used to address other cheap talk

signalling problems.

2. The model

There are two players, the sender and the receiver. Only the sender has payoff-

relevant private information. The interaction takes place in two stages. In the first

stage, the communication stage, the sender learns his type, sends a message that is

read by the receiver. Talking is “cheap”, i.e. messages do not directly affect payoffs.

In the second stage, the receiver takes an action.

Let T ≡ [0, 1] be the sender’s set of types, with typical element t. A pool is a

nonempty subset of T . Let T be the collection of all pools. A sender strategy is

described by a partition Π of T in pools. A typical pool I in the partition Π is a set

of sender types that send identical signals or messages. The encoding of information,

i.e. what messages are sent by each of the pools, is irrelevant.

Let A ⊆ R be a nonempty set of receiver’s possible actions, with typical element

a. The receiver reacts exogenously to the information received from the sender, and

its reaction is a mapping R : T → A.

For any strategy Π, the outcome function f for Π maps sender types to the actions

chosen by the receiver in reaction to the information they report under strategy Π.

For any pool I, let 1I : T → {0, 1} be the characteristic function of I. The outcome
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function f for Π is

f(t) =
∑
I∈Π

R(I)1I(t).

Two partitions Π and Π′ are equivalent if they induce the same outcome. We now in-

troduce a natural assumption on the receiver’s reaction. Minimal-rationality requires

that if some information is not taken into account in the decision of the receiver, then

the suppression of this information does not affect this decision.

The receiver is minimally-rational if, for all family of disjoint pools T ∗ ⊂ T
and all a ∈ A satisfying (for all I ∈ T , R (I) = a), we have R (∪I∈T ∗I) = a.

This assumption has the following appealing consequence.

Lemma 1: Suppose that R is minimally-rational. Let f be the outcome for some

strategy Π, then the partition Π′ in level curves of f also induces f . Thus Π′ is

equivalent to Π.

Proof. Let I ′ ∈ Π′, and let a ∈ A such that I ′ = {t ∈ T : f(t) = a}. Let Π∗ be

the (possibly infinite) sub-collection of Π consisting of sets I that have a nonempty

intersection with I ′. For all I ∈ Π∗, we have R(I) = a, which implies I ⊆ I ′.

Therefore I ′ equals the a union of the members of Π∗. By minimal rationality , this

implies R (I ′) = a, the desired conclusion.�

A preference relation over A is a binary relation that is reflexive, transitive and

complete. The sender has a preference relation �t over A, which depend on his type t.

For all a, b ∈ A, the proposition a �t b means that the sender of type t weakly prefers

action a to action b. The corresponding strict preference and indifference relations

are denoted by �t and 't. Let � denote the family of preferences {�t}t∈[0,1].

An equilibrium strategy is a partition Π such that for all I, I ′ ∈ Π, for all t ∈ I,

we have R (I) �t R (I ′). Clearly, a strategy equivalent to an equilibrium strategy is

also an equilibrium strategy. We say that an outcome f is an equilibrium outcome if

it is induced by some equilibrium strategy. In particular, by minimal-rationality, f

is an equilibrium outcome if its level-curves form an equilibrium partition. Our next

assumption says that the sender’s parameterized preferences shift in favor of higher

actions as his type increases.
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The family � satisfies the single-crossing-property if, for all s, t ∈ T such that

s < t, and for all a, b ∈ A such that a < b, we have b �s a ⇒ b �t a.

An interval partition is a partition Π whose elements are all intervals in T , (some of

them possibly reduced to a point). Under the two above assumptions, any equilibrium

partition is equivalent to some interval partition.

Lemma 2: Let R satisfy minimal-rationality and � satisfy the single-crossing

property. Then any equilibrium partition Π is equivalent to an interval partition.

Proof. Let Π be an equilibrium partition, let f be its outcome, and let Π′ be the

partition of level curves for f . From Lemma 1, Π and Π′ are equivalent. By Theorem

2.8.1 in Topkis (1998) and the single-crossing-property, all elements in the partition

Π′ are intervals.�

Thus we may restrict attention to interval equilibrium partitions. We now intro-

duce additional restrictions on the sender’s preferences and the receiver’s behavior.

We need the following definitions to present the remaining assumptions.

Let m,n be arbitrary positive integers. For all x, y ∈ Rm, let x ≤ y if xi ≤ yi for

all i = 1, ...,m. Furthermore, let x < y if x ≤ y and x 6= y. Let g : X → Z be a

mapping. We say that g is nondecreasing if, for all x ≤ y ∈ X, we have g(x) ≤ g(y).

We say that g is increasing if, for all x < y ∈ X, we have g(x) < g(y).

A preference �t is single-peaked if it is continuous and has a unique preferred

action S (t) ∈ A (the peak) and, among any two distinct actions on the same side of

the peak, the one closest the peak is preferred. More precisely: i) There is an action

S (t) ∈ A such that for all a, b ∈ A satisfying either S (t) ≥ a > b or b > a ≥ S (t) ,

we have a �t b. ii) For all a ∈ A, the set {(a, b) ∈ A : a �t b} is closed.

Single-peakedness and the single-crossing property imply that S (t) is nondecreas-

ing. We say that the collection � is type-continuous if, for all a, b ∈ A, the set

{t ∈ T : a �t b} is closed.

Under minimal-rationality of R and the single-crossing property of �, Lemma 2

says that any equilibrium partition is equivalent to an equilibrium partition where all

pools are intervals. The last two assumptions will restrict the way the receiver reacts

to interval pools. Abusing notations, for all s ≤ t ∈ T , let R(s, t) := R([s, t]).
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We say that R is monotonic if the function (s, t) 7→ R(s, t) is increasing. We say

that R is robust if the receiver reaction to an interval pool that is not a singleton

does not depend on whether the endpoints of the interval are included in the pool,

i.e. for all s < t ∈ [0, 1], we have R([s, t]) = R(]s, t[) = R(]s, t]) = R([s, t[).

An admissible problem is a pair (R,�) such that � is single-peaked, type-

continuous and satisfies the single-crossing property, and R is minimally-rational,

monotonic and robust. In the remainder of the paper, we restrict attention to admis-

sible problems. For examples and applications, see Sections 6 and 7.

3. General results

In the entire section, let (R,�) be admissible. We characterize the set of equi-

librium partitions for any admissible problem. We first introduce some notations

and definitions, then examine the structure of the set of equilibria with finitely many

intervals. Finally, we examine equilibria with infinitely many intervals.

3.1. Preliminaries

In last section, we introduced a partial order on real vectors, and defined two

monotonicity properties for functions. We now need to extend this partial order to

sets of real vectors, and define the corresponding monotonicity properties for corre-

spondences.

Let m, n be arbitrary positive integers. For all two nonempty subsets X, Y ⊆ Rm,

let X ≤ Y if, for all x ∈ X, and all y ∈ Y , we have x ≤ y. Similarly, let X < Y

if, for all x ∈ X, and all y ∈ Y , we have x < y. Let X ⊆ Rm and Z ⊆ Rn. Let

G : X � Z be a correspondence such that G(x) is nonempty for all x ∈ X. We say

that G is nondecreasing if, for all x ≤ y ∈ X, we have G(x) ≤ G(y). We say that G

is increasing4 if for all x < y ∈ X, we have G(x) < G(y).

We now introduce a correspondence which will play an important role in our

results. Let τ : {(a, b) ∈ A2 : a ≤ b} → [0, 1]∪{−2, 2} be such that, for all a < b ∈ A,

4An equivalent definition is that G is nondecreasing (increasing) if all selections from G are
nondecreasing (increasing).
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we have
τ(a, b) := {−2} if b �0 a,

:= {2} if a �1 b,

:= {t ∈ [0, 1] : a 't b} if a �0 b and b �1 a,

and for all a ∈ A, we have

τ(a, a) := {−2} if S (0) > a,

:= {2} if S (1) < a,

:= {t ∈ [0, 1] : S(t) = a} if S (0) ≤ a ≤ S (1) .

By the single-crossing property and type-continuity, the conditions a �0 b and b �1

a imply that the set {t ∈ [0, 1] : a 't b} is a singleton. Similarly, by single-peakedness,

the single-crossing property, and type-continuity, the inequalities S (0) ≤ a ≤ S (1)

imply that the set {t ∈ [0, 1] : S(t) = a} is a nonempty closed interval. Therefore

τ(a, b) is a nonempty closed interval for all a ≤ b, and is a singleton when a < b. In

addition, τ has the following monotonicity properties.

Lemma 3: τ is nondecreasing on its domain and increasing on τ−1 ([0, 1]) .

Proof. Let us prove that τ is increasing on τ−1 ([0, 1]) . Let a, b, c, d ∈ A such

that a ≤ b, c ≤ d, (a, b) ≤ (c, d) and (a, b) 6= (c, d) . Suppose that s ∈ τ (a, b) and

t ∈ τ (c, d) satisfy s, t ∈ [0, 1]. We will prove that s < t. We distinguish three cases.

Case 1: c < d. By single-peakedness of �s, we have c �s d. Since c 't d, and by

the single-crossing property, we have s < t. Case 2: a < b. By single-peakedness

of �t, we have b �t a. Since b 's a, and by the single-crossing property, we have

s < t. Case 3: a = b < c = d. Since S(s) = a and S(t) = c and S is non-decreasing,

therefore s < t. Thus τ is increasing on τ−1 ([0, 1]).

Let us prove that τ is nondecreasing on its domain. For all c ≤ d ∈ A such

that τ (c, d) = {−2}, and for all a ≤ b ∈ A such that (a, b) ≤ (c, d), we have

τ (a, b) = {−2}, by single-peakedness of �0. Similarly, for all a ≤ b ∈ A, such that

τ (a, b) = {2}, and all c ≤ d ∈ A such that (a, b) ≤ (c, d), we have τ (c, d) = {2}, by

single-peakedness of �1 . Thus τ is nondecreasing on its domain.�
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3.2. Equilibria with finitely many intervals

For all partition Π, let the size of Π be the number of distinct pools in the

partition. An important class of interval equilibrium partitions are the ones that

have a finite size.

For all κ ≥ 2, let Wκ ≡ {x ∈ T κ+1 : x0 ≤ ... ≤ xκ}. For all κ ≥ 2, let θκ :

Wκ � (T ∪ {−2, 2})κ+1 be the correspondence such that for all x ∈ Wκ we have

θκ (x) := θ0 (x)× ...× θκ (x) with θ0(x) = {x0}, θκ(x) = {xκ} and

θl(x) := τ(R(xl−1, xl), R(xl, xl+1)),

for all l = 1, ..., κ − 1. Since for all x ∈ Wκ, we have x0 ≤ ... ≤ xκ, and since R is

nondecreasing, this correspondence is well-defined and nonempty valued.

Let Xκ ≡ {x ∈ Wκ : x0 = 0 and xκ = 1}. We say that x ∈ Xκ represents

an interval partition of size exactly κ if there is a collection of nonempty intervals

{Il}l=1,...,κ such that ]xl−1, xl[ is the interior of Il for all l = 1, ..., κ. 5

The following result characterizes the set of vectors x ∈ Xκ that represent an

interval equilibrium partition of size exactly κ. The result shows that this set coincides

with the set of fixed-point of the mapping θκ. In addition, all vectors in this set satisfy

x1 < ... < xκ−1.

Lemma 4: Let κ ≥ 2. For all x ∈ Xκ, the vector x defines an interval equilibrium

partition of size exactly κ iff x ∈ θκ(x). When this is the case and κ > 2, we have

x1 < ... < xκ−1.

Proof. By Lemma 2 and sender-continuity, if x represents an equilibrium of size

exactly κ, then x is a fixed-point of θκ.

Let κ > 2 and let x be a fixed-point of θκ in the set Xκ. To alleviate notations,

for all relevant indices l, let Sl ≡ S (xl), let al ≡ R (xl−1, xl) , and let Il ≡ ]xl−1, xl[.

We will prove that S (x1) < ... < S (xκ−1). Let H ≡ {h ∈ {1, ..., κ− 2} : Sh < Sh+1}.

5A necessary and sufficient condition for this to be the case is that for all l ∈ {1, ..., κ− 1} , we de
not have xl−1 = xl = xl+1. Any interval strategy of size exactly κ is represented by a unique x ∈ Xκ.
For example, the interval strategy {[0, 1/3] , ]1/3, 1/2[ , [1/2, 1]} is represented only by x = (1/3, 1/2).
Some vectors x do not represent any strategy. For example the list x = (1/2, 1/2, 1/2).
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Since x ∈ Xκ, and by the single-crossing property, we have S0 ≤ S1 ≤ ... ≤ Sκ and

S0 < Sκ. Therefore H 6= ∅. Let h ∈ H. Then in particular xh < xh+1. Suppose that

h > 1. Then by receiver-monotonicity, we have ah < ah+1. Since x is a fixed-point, we

have ah−1 'xh−1
ah and ah 'xh

ah+1. By single-peakedness of the preferences �xh−1

and �xh
, we have Sh−1 ≤ ah < Sh < ah+1. In particular, h− 1 ∈ H. By induction, we

obtain that 1, ..., h ∈ H. By an identical reasoning, we obtain that h, ..., κ − 2 ∈ H,

which proves the claim.

In particular, x represents a partition of size exactly κ. It only remains to prove

that this partition is an equilibrium partition. For all l = 1, ..., κ− 1, we have al 'xl

al+1. By the single-crossing property, this further implies that for all t ∈ I1 ∪ ... ∪ Il,

we have al �t al+1 and that for all t ∈ Il+1 ∪ ... ∪ Iκ, we have al+1 �t al. Thus for all

h, l ∈ {0, ..., κ} , all t ∈ Ih, we have ah �t al. Thus the (I1, ..., Iκ) form an equilibrium

partition.�

A set of natural integers is decreasing if it is N or of the form {1, ..., K} . The

following result describes the set of integers κ such that there are equilibria of size κ.

Theorem 1: The set of integers κ such that there are equilibria of size κ is

decreasing.

The proof of Theorem 1 rests on Lemmas 5, 6 and 7. For all positive integer m,

and all vectors x, z ∈ Rm, we let [x, z] := {y ∈ Rm : x ≤ y ≤ z}. Sets of this form are

called closed intervals.

Lemma 5: For all κ ≥ 2, the mapping θκ is increasing. For all x ∈ Xκ, the set

θκ(x) is a closed interval.

Proof. By receiver-monotonicity, R is increasing. By Lemma 3, τ is increasing.

Therefore θκ is increasing. Since R is a function and τ(a, b) is a closed interval for all

a ≤ b, therefore θκ(x) is a closed interval for all x ∈ Xκ. �

To state the next Lemma, we need the following definitions. A complete lattice

in Rm is a subset L ⊆ Rm such that, for any nonempty subset H of L, the set

{x ∈ L : x ≤ H} is nonempty and has a greatest element in L, the infimum of H

in L, denoted by infL H; and the set {x ∈ L : x ≥ H} is nonempty and has a least

element in L, the supremum of H in L, denoted by supL H. In particular, a nonempty
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complete lattice L has a least element infL L in L and a greatest element supL L in

L. A subset L′ of a complete lattice L is a subcomplete sublattice of L if it is a

complete lattice such that for all nonempty subset H of L′, we have infL′ H = infL H

and supL′ H = supL H.

For example, it is easy to verify that Wκ is a nonempty complete lattice. We

have infWκ Wκ = (0, . . . , 0) and supWκ
Wκ = (1, . . . , 1). Also, let 0κ and 1κ be the

vectors (0, . . . , 0, 1) and (0, 1, . . . , 1) in Xκ. It is easy to verify that Xκ is a nonempty

complete lattice. We have infXκ Xκ = 0κ and supXκ
Xκ = 1κ. Furthermore, for any

positive integer m, and all vectors x, z ∈ Rm, the closed interval [x, z] is a complete

lattice. In particular, for all positive integer κ, and all x ∈ Xκ, the set θκ(x) is a

complete lattice. Finally, if L is a complete lattice and x, z ∈ L, then [x, y] ∩ L is

subcomplete sublattice of L.

Lemma 6: Let κ ≥ 2. Suppose that there is a nonempty complete lattice L ⊆ Xκ

such that for all x ∈ L, we have θκ (x) ⊆ L. Then the set of fixed-points of θκ in L is

a nonempty complete lattice.

Proof. By Lemma 5, θκ is increasing. Since θκ (x) ⊆ L, is a closed interval for all

x ∈ Xκ, the inclusion θκ (x) ⊆ L implies that this set is a subcomplete sublattice of

L for all x ∈ Xκ. The result then follows from Zhou’s (1994) extension of Tarski’s

(1955) fixed-point theorem to correspondences. Note that θκ satisfies a stronger

monotonicity condition than the one required for Zhou’s result.�

For all vector x = (x0, . . . , xm) ∈ Rm+1, let x−j ≡ (x0, . . . , xj−1, xj+1, . . . , xm).

Lemma 7: Let κ ≥ 3. Suppose that x ∈ Xκ is a fixed-point of θκ. Then the set

L ≡
[
x−(κ−1), x−1

]
is a subset of Xκ, it is a nonempty complete lattice, and for all

y ∈ L, we have θκ−1 (y) ⊆ L. In addition, θκ−1 admits a fixed-point in L.

Proof. First, it is clear that L ⊆ Xκ. Second, L is a closed interval, therefore a

nonempty complete lattice. Third, we show that θκ−1(x−1) ≤ x−1. Since x ∈ θκ(x),

then x−0 ∈ θκ−1(x−0). We have x−1 ≤ x−0, thus by monotonicity of θκ−1, we have

θκ−1(x−1) ≤ θκ−1(x−0). Therefore θκ−1(x−1) ≤ x−0. But since the first coordinate

of θκ−1(x−1) is {0}, and x−1 only differs from x−0 by its first coordinate, which

precisely equals 0, therefore θκ−1(x−1) ≤ x−1. Fourth, by an identical reasoning, we
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can prove that x−(κ−1) ≤ θκ−1(x−(κ−1)). From these last two inequalities and since

θκ−1 is increasing, we conclude that for all y ∈ L, we have θκ−1 (y) ⊆ L, the desired

conclusion. Lemma 6 ensures then that θκ−1 has a fixed-point in L.�

Proof of Theorem 1. It is immediate, from Lemmas 4 and 7.�

3.3. Equilibria with infinitely many intervals

The following lemma is useful.

Lemma 8: S (·) is continuous in t.

Proof. Let t ∈ [0, 1] and ε > 0. Let a ≡ S (t) . By sender-continuity, the set O ≡
{s ∈ [0, 1] : a �s a− ε and a �s a + ε} is open in [0, 1] . Therefore it is a neighborhood

of t in [0, 1] . For all s ∈ O, by single-peakedness of �s, we have S (s) ∈ (a− ε, a + ε) .

Therefore S (·) is continuous at t.�

We say that the receiver reaction R is continuous if the mapping (s, t) 7→ R(s, t)

is continuous in the usual sense. The following result says that if R is continuous, then

exactly one of the following alternatives is true. Either there are finite size equilibria

of any positive integer size and there is at least one equilibrium of infinite size, or the

set of finite equilibrium sizes is a bounded decreasing set, and there are no equilibria

of infinite size.

Theorem 2: Let R be continuous. The set of integers κ such that there are

equilibria of size κ is N iff there is at least one equilibrium of infinite size.

Proof. The continuity of R is needed only to prove the only if implication. We first

prove the only if implication. (Claims 1 to 6). Let Πκ be a sequence of equilibria

such that for all κ = 1, 2, ..., the equilibrium Πκ is of size exactly κ. For all κ ≥ 0, let

iκ : [0, 1] → [0, 1] and sκ : [0, 1] → [0, 1] such that for all t ∈ [0, 1] , the real numbers

iκ (t) and sκ (t) are respectively the infimum and the supremum of the pool containing

t in the partition Πκ. Clearly, these functions are both nondecreasing and satisfy for

all κ and all t ∈ [0, 1] , the inequalities iκ (t) ≤ t ≤ sκ (t) .
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Claim 1: There is a subsequence {n} and (unique) nondecreasing functions i (·)
and s (·) such that in (·) converges to i (·) and sn (·) converges to s (·) . Moreover, for

all t ∈ [0, 1] , we have i (t) ≤ t ≤ s (t) .

Proof: The functions iκ and sκ are all nondecreasing and uniformly bounded on

[0, 1]. Helly’s selection Theorem guarantees that a sequence of nondecreasing uni-

formly bounded functions on [0, 1] , has a subsequence which converges to a non-

decreasing function. Let {m} denote a sequence and let i : [0, 1] → [0, 1] be a

nondecreasing function such that im (·) converges to i (·) . Next, let {n} be a subse-

quence from {m} and let s : [0, 1] → [0, 1] be a nondecreasing function such that

sn (·) converges to s (·) . The last inequalities are obvious.‖
Let Π∗ be a (possibly infinite) partition of [0, 1] into level curves of i (·) + s (·) .

Since i (·)+ s (·) is nondecreasing, each pool in Π∗ is an interval, possibly a singleton.

Claim 2: The functions i (·) and s (·) are constant on any pool of Π∗.

Proof: Let t, t′ be in the same pool of the partition Π∗. Then i (t) + s (t) =

i (t′) + s (t′) holds. Since both i (·) and s (·) are nondecreasing, the equality implies

that i (t) = i (t′) and s (t) = s (t′) . ‖
For all t ∈ [0, 1], let I(t) be the interval that contains t in the partition Π∗.

Claim 3: For all t ∈ [0, 1], we have inf[I(t)] = i (t) and sup[I (t)] = s (t) .

Proof: By Claim 2, for all t ∈ [0, 1] and all t′ ∈ I(t), we have i(t) = i(t′). Since

i(t′) ≤ t′, we obtain i(t) ≤ t′, for all t′ ∈ I(t). Therefore i(t) ≤ inf[I(t)] for all for

all t ∈ [0, 1]. An identical reasoning proves sup[I(t)] ≤ s(t) for all t ∈ [0, 1]. Thus

for all t ∈ [0, 1], we have i (t) ≤ inf[I (t)] ≤ t ≤ sup[I (t)] ≤ s (t) . For any type t

satisfying i (t) = s (t), all these inequalities hold as equalities and there is nothing

more to prove.

For the other types, we still need to prove that ]i(t), s(t)[⊆ I (t). Let then t be

such that i(t) 6= s(t). Let t′ be such that i(t) < t′ < s(t). Let u and v be types such

that i (t) < u < t′ and t′ < v < s (t). Since limn∞ in(t) = i(t) and limn∞ sn(t) = s(t),

there is a positive integer n∗ such that for all n ≥ n∗, we have in(t) ≤ u and sn(t) ≥ v.

Thus for all n ≥ n∗, we have in (t′) = in (t) and sn (t′) = sn (t). Taking the limit as

n goes to infinity, we obtain i (t′) = i (t) and s (t′) = s (t). Therefore t′ ∈ I(t), for all

t′ ∈]i(t), s(t)[. Therefore ]i (t) , s (t) [⊆ I∗ (t). This and the inequalities we obtained

in the last paragraph yield the desired conclusion.‖
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Claim 4: Π∗ is an equilibrium.

Proof: For all t ∈ [0, 1], we have limn∞ R (in (t) , sn (t)) = R (i (t) , s (t)), by conti-

nuity of R. Since Πn is an equilibrium, for all t, t′ ∈ [0, 1] , we have R (in (t) , sn (t)) �t

R (in (t′) , sn (t′)) . This relation and the continuity of both R and the preference �t

imply that for all t, t′ ∈ [0, 1] , we have R (i (t) , s (t)) �t R (i (t′) , s (t′)) . Therefore Π∗

is an equilibrium.‖
It only remains to show that Π∗ has an infinity of intervals.

Claim 5: There is t∗ ∈ [0, 1] such that i (t∗) = t∗ = s (t∗). The partition Π∗ has an

infinity of intervals.

Proof: For all n ≥ 2, there exists un, vn ∈ [0, 1] such that sn (vn) − in (un) ≤
2/ (n− 1) and sn (un) = in (vn) . Let {q} be a subsequence such that sq (uq) converges

to t∗ ∈ [0, 1] . Then the sequences iq (uq) and sq (vq) both also converge to t∗. Since R

is continuous, we have limq∞ R (iq (uq) , sq (uq)) = R (t∗, t∗). By type-continuity and

Lemma 8, the function S (t) is continuous and thus limq∞ S (sq (uq)) = S (t∗). For all

q, by single-peakedness of the preference �sq(uq), we have

R (iq (uq) , sq (uq)) ≤ S (sq (uq)) ≤ R (iq (vq) , sq (vq)) .

In the limit where q goes to infinity, we obtain R (t∗, t∗) = S (t∗) . Since Πq is an

equilibrium, we have

R (iq (t∗) , sq (t∗)) �t∗ R (iq (uq) , sq (vq)) .

By continuity of R and type-continuity, we can take the limit as q goes to infin-

ity, which yields R (i (t∗) , s (t∗)) �t∗ R (t∗, t∗). Since R (t∗, t∗) = S (t∗) , we obtain

R (i (t∗) , s (t∗)) = R (t∗, t∗). Since R is increasing and i(t∗) ≤ t∗ ≤ s(t∗), then either

we have i (t∗) = t∗ = s (t∗) or we have i (t∗) < t∗ < s (t∗) . Suppose, by contradiction,

that the second case holds, i.e. the inequalities are strict. Let u be a type such that

i (t∗) < u < t∗ and let v be a type such that t∗ < v < s (t∗) . Then there is a positive

integer q◦ such that for all q ≥ q◦, we have uq ∈]u, v[, iq(t
∗) < u and sq(t

∗) > v. Thus

for all q ≥ q◦, we have iq(uq) = iq(t
∗) < u and sq(uq) = sq(t

∗) > v. Thus for all

q ≥ q◦, we have sq(vq) − iq(uq) > v − u > 0, which contradicts that sq(vq) − iq(uq)

converges to 0. Therefore i (t∗) = t∗ = s (t∗).
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For all t < t∗, we have i(t) < t∗ and s(t) ≤ t∗. Since R is increasing, we have

R(i(t), s(t)) < R(t∗, t∗) = S(t∗). Therefore S (t∗) �t∗ R (i (t) , s (t)) and thus s (t) <

t∗. Therefore, if t∗ > 0, the partition Π∗ has infinitely many intervals in a left-

neighborhood of t∗. Similarly, if t∗ < 1, the partition Π∗ has infinitely many intervals

in a right-neighborhood of t∗. ‖
We now prove the if implication.

Claim 6: If there is an equilibrium of infinite size, then for all κ ≥ 1, there are two

vectors y, z ∈ Xκ, such that for all x ∈ [y, z] we have θκ (x) ⊆ [y, z] .

Proof: If R (0, 0) = S (0) , let y := 0. If R (0, 0) 6= S (0) , then there are t1, ..., tκ

such that i (t1) = 0 and for all h = 1, ..., κ − 1, we have s (th) = i (th+1) . For all

h = 1, ..., κ − 1, let yh := s (th) and y := (y1, ..., yκ−1) . Similarly, if R (1, 1) = S (1) ,

let z := 1. If R (1, 1) 6= S (1) , then there are t′1, ..., t
′
κ such that s (t′1) = 1 and for all

h = 1, ..., κ − 1, we have i (t′h) = s
(
t′h+1

)
. For all h = 1, ..., κ − 1, let zh := i

(
t′κ−h

)
and z := (z1, ..., zκ−1) . It is easily verified that y and z satisfy the desired condition. ‖

Claim 6 and Lemma 7 imply that θκ has a fixed point in [y, z] . By Lemma 4,

this vector represents an equilibrium of size exactly κ. This ends the proof of the

Theorem.�

4. A taxonomy of biases

We introduce here a taxonomy of categories of admissible problems, according to

the nature of the bias of the sender versus the receiver. We then refine the results of

Section 3 within some of these categories.

Abusing notations, let R (t) ≡ R(t, t). This is the reaction of the receiver to the

belief that the type of the sender is certainly t.

One important case occurs when one of the functions R (t) or S (t) dominates the

other by at least some positive constant.

The sender has a strictly upward bias if there is ε > 0 such that either for all

t ∈ [0, 1] , we have R (t) + ε < S (t), and it has a strictly downward bias if or for

all t ∈ [0, 1], we have S (t) < R (t)− ε. The sender has a strictly consistent bias if

it has a strict bias, either upward or downward.

Crawford and Sobel’s main result is obtained under assumptions that imply that
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the sender has a strictly consistent bias.6 The following result generalizes Theorem

1 in Crawford and Sobel (1982) to problems where R is not necessarily continuous,

and the sender has a strictly consistent bias.

Theorem 3: Let (R,�) be such that the sender has a strictly consistent bias. The

set of integers κ such that there are equilibria of size κ is decreasing and bounded. No

equilibrium has an infinite size.

Proof. When the sender has a strictly consistent bias, there is ε > 0 such that if u

and v are actions induced in equilibrium, they satisfy |u− v| > ε (see Crawford and

Sobel 1982, Lemma 1, for a detailed proof). Therefore the set of actions induced in

equilibrium is finite. Let κ be a positive integer such that there is an equilibrium

of size κ. Consider one such equilibrium and let a1 and aκ be the most extreme

actions induced in equilibrium. Then ε(κ − 1) ≤ aκ − a1 ≤ R(1) − R(0). Therefore

κ ≤ (R(1)−R(0))/ε + 1. The Theorem is an immediate consequence of this fact and

Theorems 1 and 2.�

Another important case occurs when the locus of the sender’s preferred actions

contains the locus of the receiver’s optimal actions. In other worlds, the sender

is weakly more responsive to the state of the world than the receiver in extreme

situations. This condition is incompatible with a strictly consistent bias.

Outward bias. The sender has an outward bias if [R (0) , R (1)] ⊆ [S (0) , S (1)] .

For all κ ≥ 1, let X∗
κ be the set of lists x ∈ Xκ such that the vector x represents

an interval equilibrium partition with (exactly) κ intervals.

Theorem 4: Let (R,�) satisfy outward bias. Then the set X∗ (κ) is a nonempty

complete lattice. If, in addition, the function R is continuous, then at least one

equilibrium has an infinite size.

Proof. For κ > 1, the set L ≡ Xκ is a nonempty complete lattice, and under

outward bias, it satisfies the conditions of Lemma 6. The first claim in Theorem

6In their main result, Theorem 1, Crawford and Sobel (1982) assume that for all t ∈ [0, 1] , we
have R (t) 6= S (t) . Under sender-continuity and the continuity of R (both of them are implied by
their assumptions), this condition is equivalent to strictly consistent bias, as these authors show in
their Lemma 1.
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4 follows immediately from Lemma 6. The second claim follows immediately from

Lemma 6 and Theorem 2.�

For completeness, we say that the sender has an inward bias when the locus of

sender’s preferred actions is strictly included in the locus of receiver’s optimal actions.

In other worlds, the sender is strictly less responsive to the state of the world than

the receiver in extreme situations, i.e. [S (0) , S (1)]  [R (0) , R (1)] . We do not have

a more precise result than Theorem 1 for this case. We study an example in Section

7.

The three conditions of strictly consistent bias, outward bias and inward bias are

mutually exclusive. But there are admissible problems that do not belong to any of

the three cases. Such problems are such that S (0) − R (0) and S (1) − R (1) have

strictly the same sign but the graphs of R (·) and S (·) are not bounded away from

each other (e.g. they cross).

5. On equilibria with the same number of intervals

We present here additional results on the structure of the set of equilibria with

a given number κ of intervals, for a class of problems that includes both the strictly

upward bias and the outward bias cases. The sender has an upward bias at 1 if

R (1) ≤ S (1). A symmetric situation also of interest occurs when the sender has a

downward bias at 0, i.e. if R (1) ≤ S (1). Symmetric results can be obtained in

this case, so we will restrict attention to situations where the sender has an upward

bias at 1.

To state the next Lemma, we need the following definitions. A complete upper-

semilattice in Rm is a subset L ⊆ Rm such that, for any nonempty subset H of L,

the set {x ∈ L : x ≥ H} is nonempty and has a least element, the supremum of H in

L, denoted by supL H. In particular, a nonempty complete upper-semilattice L has

a greatest element supL L in L.

Lemma 9: Let (R,�) be such that the sender has an upward bias at 1. Then for

all κ such that X∗
κ 6= ∅, the set X∗

κ is a complete upper-semi lattice. In particular, it

has a greatest element.
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Proof. Let the sender have an upward bias at 1, and let κ be such that X∗
κ 6= ∅.

Since the sender has an upward bias at 1, we have θκ(x) ≤ 1κ for all x ∈ Xκ.

Let Y be an arbitrary nonempty set of fixed-points of θκ, i.e. Y ⊆ X∗ (κ). Let

ŷ := supXκ
(Y ). This supremum exists, since Xκ is a complete lattice. Since all

elements in Y are fixed-points of θκ, then for all y ∈ Y , we have y ≤ sup(θκ(y)) ≤
sup(θκ(ŷ)). Therefore ŷ ≤ sup(θκ(ŷ)). Let U := [ŷ, 1κ]. For all u ∈ U , we have

ŷ ≤ sup(θκ(ŷ)) ≤ sup(θκ(u)) ≤ 1κ. Thus for all u ∈ U , we have θκ(x) ∩ U 6= ∅. Let

Z(x) := θκ(x) ∩ U . Consider the correspondence Z : U � U . The set U is a closed

interval, therefore it is a nonempty complete lattice. For all x ∈ U , the set Z(x) is

also a closed interval included in U , therefore it is a nonempty subcomplete sublattice

of U . Since Z is increasing, we can apply Zhou’s (1994) extension of Tarski’s (1955)

fixed-point Theorem to correspondences. Therefore the set of fixed-points of Z in U

is a nonempty complete lattice. Let y be the least fixed-point of Z in U . The vector

y has the following properties. i) It is a fixed-point of θκ on Xκ, i.e. y ∈ X∗
κ. ii)

Since y ∈ U , then y is an upper-bound of Y . iii) Any upper-bound u of Y in X∗
κ is a

fixed-point of Z in U , and therefore y ≤ u. Therefore y is the supremum of Y in X∗
κ,

the desired conclusion.�

Under the conditions of Lemma 9, the set of vectors that represent equilibria

with κ intervals has a greatest element, whenever this set is nonempty. Let the

greatest equilibrium with κ intervals be the equilibrium represented by the

greatest element of X∗
κ. The following result shows that the greatest equilibrium with

κ intervals is nested within the greatest equilibrium with κ + 1 intervals, whenever

the latter exists.

Lemma 10: Let κ ≥ 3. Suppose that the sender has an upward bias at 1. Suppose

that X∗
κ+1 6= ∅ (and therefore also X∗

κ 6= ∅). Let x be the greatest element in X∗
κ, and

let y be the greatest element in X∗
κ+1. Then y−(κ−1) ≤ x ≤ y−1.

Proof. First, Lemma 7 ensures that there exists some x ∈ X∗
κ such that y−(κ−1) ≤

x ≤ y−1. Since x ≤ x, it follows that y−(κ−1) ≤ x. Second, let y∗ ∈ X∗
κ+1, let

y◦ ≡ (0, x0, . . . , xκ) ∈ Xκ+1, and let L := [y∗, 1κ] ∩ [y◦, 1κ] ∩ Xκ+1. This set is such

that for all y ∈ L, we have θκ+1(y) ∈ L, and it is a nonempty complete lattice.
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Therefore it contains a fixed point of θκ+1. Thus there exists y ∈ X∗
κ+1 such that

x ≤ y−1. Since y ≤ y, we then have x ≤ y−1.�

We now present a comparative statics result on the greatest equilibrium with κ

intervals, for two distinct admissible problems where the sender has an upward bias

at 1.

Corollary 1: Let (R1,�1) and (R2,�2) be two admissible problems. Let κ ≥ 2.

Suppose that the sender has an upward bias at 1 in both of these problems. Suppose

that for all x ∈ Xκ, we have inf[θκ
1 (x)] ≤ inf[θκ

2 (x)] and sup[θκ
1 (x)] ≤ sup[θκ

2 (x)].

Suppose further that problem 1 has an equilibrium with exactly κ intervals. Then

problem 2 also has an equilibrium with exactly κ intervals. Let x1 and x2 be the

respective greatest such equilibria for problem 1 and 2. Then x1 ≤ x2. If, in addition,

for all x ∈ Xκ, we have θκ
1 (x) < θκ

2 (x), then x1 < x2.

Proof. This result follows directly from Lemma 9 in this paper, and Theorem 2.5.2

by Topkis (1998), which extends Milgrom and Roberts’ (1994) Theorem 3 to corre-

spondences. �

In practice, the following conditions on the primitives (R1,�1) and (R2,�2) imply

that θκ
1 (·) ≤ θκ

2 (·) (which is stronger than the joint inequalities inf[θκ
1 (x)] ≤ inf[θκ

2 (x)]

and sup[θκ
1 (x)] ≤ sup[θκ

2 (x)]).

• Sender 2 is more leftist than Sender 1; receivers are identical.

For all t ∈ [0, 1], all a < b ∈ A, we have [a �1
t b] ⇒ [a �2

t b] .

• Receiver 2 is more rightist than Receiver 1; senders are identical.

For all s ≤ t ∈ [0, 1], we have R1 (s, t) ≤ R2 (s, t) .

Corollary 1 plays an important role in Section 6.2. There, we will show that

comparative statics results on welfare due to Crawford and Sobel (1982) hold under

broader conditions than what they assume.

We obtained the existence of a greatest equilibrium with κ intervals, as the greatest

element of the set of fixed points of the correspondence θκ. It is easy to show that

this equilibrium is also the greatest fixed point of the function x 7→ sup[θκ(x)] in
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Xκ (as an application of Corollary 1, for example). If R is continuous, the following

algorithm converges to this equilibrium. Let {xn} be the sequence of elements of Xκ

such that x0 = 1κ and for all n ≥ 0, we have xn+1 = sup[θκ (xn)].

Theorem 5: Let R be continuous. Let κ ≥ 2. If the sender has an upward bias

at 1, and X∗ (κ) 6= ∅, then {xn} converges to the greatest element of X∗ (κ).

Proof. By Lemma 9, the set X∗ (κ) has a greatest element sup(X∗
κ). Since the sender

has an upward bias at 1, we have x1 ≤ x0. Since x 7→ sup[θκ(x)] is increasing, this

implies that the sequence {xn} is nonincreasing. Since {xn} is bounded below by

sup(X∗
κ), therefore it converges to a limit x′ ∈ Xκ. Since R is continuous and by

type-continuity, the function x 7→ sup[θκ(x)] is continuous. Therefore x′ ∈ X∗
κ and in

addition sup(X∗
κ) ≤ x′ i.e. x′ = sup(X∗

κ).�

This result can be used in practice as an algorithm to compute equilibria numer-

ically.

6. Welfare comparisons for the receiver

In this section, we compare the receiver’s welfare across the different equilibria

of the same game, and across games, when the preferences of the sender vary. We

suppose that the receiver has a Bernoulli utility function Ua : A × [0, 1] → R and a

non-atomic prior represented by the density f(t). Its reaction function R maximizes

its expected utility with respect to the prior f . Thus for any interval pool [t, t], we

have

R(t, t) ≡ arg max
a

∫ t

t

Ua (a, t) f (t) dt.

We suppose that the preferences represented by the utility function Ua satisfy single-

peakedness, the single-crossing property, and that Ua is continuously differentiable in

(a, t). For all κ ≥ 2, and all y ∈ Xκ, let E(y) be the expected indirect utility of

the receiver, when he believes that the sender plays the strategy represented by the

vector y and responds optimally. We have

E (y) =
κ−1∑
h=0

∫ yh+1

yh

Ua (R (yh, yh+1) , s) f (s) ds.
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We will show that E(y) is nondecreasing in y within a certain region of Xκ, which we

introduce next.

Consider the auxiliary game where both the sender and the receiver have the

same preferences, represented by the utility function Ua. Let θ̃κ be the corresponding

mapping of order κ, for all κ ≥ 2. For all κ ≥ 2, let Zκ be the set of vectors in Wκ

satisfying z ≤ θ̃κ(z). The following result plays an important role in the analysis.

Lemma 11: Let κ ≥ 2. Then Zκ is a subcomplete upper-subhemilattice of Wκ.

Proof. Let Z be an arbitrary nonempty subset of Zκ, and let z be an arbitrary

element of Z. Since θ̃κ is nondecreasing, then θ̃κ(z) ≤ θ̃κ(supWκ
(Z)). Since z ∈ Zκ,

then z ≤ θ̃κ(z). Therefore z ≤ θ̃κ(supWκ
(Z)). Since this holds for all z ∈ Z, therefore

supWκ
(Z) ≤ θ̃κ(supWκ

(Z)). Therefore supWκ
(Z) ∈ Zκ.�

The following condition ensure that the set Zκ is connected in a particular way.

Condition (N) let x, x′ ∈ Wκ satisfying θ̃κ(x) = x and θ̃κ(x′) = x′. Then if x0 = x′0

and x1 < x′1, then xh < x′h, for all h = 2, . . . , κ.

Crawford and Sobel (1982) introduce a similar, but substantially stronger con-

dition (M). Condition (N) only restricts the receiver’s preferences, while condition

(M) is a joint restriction on the preferences of the receiver and the sender. Unlike

condition (M) , condition (N) does not imply that there is at most one equilibrium

of any given size κ.

Lemma 12: Let κ ≥ 2, and let (N) hold. Let x, x′ ∈ Wκ satisfy θ̃κ(x) = x,

θ̃κ(x′) ≥ x′ and (x0, xκ) = (x′0, x
′
κ). Then x′ ≤ x.

Proof. By Lemma 11, the set Z ≡ {z ∈ Zκ : z0 = x0 and zκ = xκ} is a subcomplete

upper-subhemilattice of Wκ. Let x∗ be the greatest element of Z. Let x∗∗ ≡ θ̃κ(x∗).

We have θ̃κ(x0, . . . , x0, xκ) ≥ (x0, . . . , x0, xκ) and θ̃κ(x0, xκ, . . . , xκ) ≤ (x0, xκ, . . . , xκ).

Therefore x∗∗ ∈ Xκ. The monotonicity of θ̃κ and x∗ ≤ x∗∗ further imply that x∗∗ ∈ Zκ,

therefore x∗∗ ∈ Z. Therefore x∗∗ ≤ x∗, i.e. x∗∗ = x∗. By condition (N), we have

x = x∗. Since x′ ∈ Z, this implies x′ ≤ x.�
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Lemma 13: Let κ ≥ 2, and let (N) hold. Let y′ ≤ y′′ ∈ Zκ. For all t ∈ [0, 1],

let g(t) ≡ ty′ + (1 − t)y′′. Let y : [0, 1] → Zκ, such that for all t ∈ [0, 1], we have

y(t) ≡ sup(Zκ ∩ [0κ, g(t)]). Then the path y(t) satisfies y(0) = y′ and y(1) = y′′, and

is increasing and continuous.

Proof. By Lemma 11, the set Zκ is a subcomplete upper subhemilattice of Xκ.

Therefore the set Zκ ∩ [0κ, g(t)] is also a subcomplete upper subhemilattice of Xκ,

which contains y′. It follows that for all t ∈ [0, 1], we have y(t) ∈ Zκ. For all

t ≤ t′ ∈ [0, 1], we have Zκ∩[0κ, g(t)] ⊆ Zκ∩[0κ, g(t′)]. Therefore y(t) is nondecreasing.

It only remains to prove that y(t) is continuous everywhere on [0, 1]. Since y(t)

is nondecreasing, then for all t ∈]0, 1], the limit y(t−) := lims→t− y(s) exists, and we

have y(t−) ≤ y(t). Similarly, for all t ∈ [0, 1[, the limit y(t+) := lims→t+ y(s) exist,

and we have y(t) ≤ y(t+). By continuity of θ̃κ, we have y(t−), y(t+) ∈ Zκ ∩ [0κ, g(t)].

Since y(t) is the greatest element of this set, then in fact y(t) = y(t+), for all t ∈ [0, 1[.

To prove that y(t) is continuous everywhere on [0, 1], it only remains to establish

that y(t−) = y(t) also holds. Suppose, by contradiction, that this is not true, so that

y(t−) < y(t). Then there are indices k, l such that 0 < k ≤ l < κ and satisfying

yk−1(t
−) = yk−1(t), yl+1(t

−) = yl+1(t), and for all h ∈ {k, . . . , l}, we have yh(t
−) <

yh(t). Let h be an arbitrary index such that k ≤ h ≤ l. Since yh(t) ≤ gh(t), therefore

we also have yh(t
−) < gh(t). For all ε > 0 small enough, we have yh(t− ε) < gh(t− ε).

The only other constraint that restricts yh(t− ε) must then bind. Therefore θ̃κ
h(y(t−

ε)) = yh(t− ε). By continuity of θ̃, it follows that θ̃κ
h(y(t−)) = yh(t

−) holds, for all h

such that k ≤ h ≤ l. Let x ≡ (yk−1(t
−), . . . , yl+1(t

−)) and x′ ≡ (yk−1(t), . . . , yl+1(t)).

We have θ̃l−k+2(x) = x and θ̃l−k+2(x′) ≥ x′. By Lemma 12, we conclude that x′ ≤ x,

a contradiction.�

Lemma 14: Let κ ≥ 2, and let (N) hold. Then E(y) is increasing on Zκ ∩Xκ.

Proof. Let y′ ≤ y′′ ∈ Zκ. By Lemma 12, the following object exists. Let y(t) be a

continuous increasing path such that y(0) = y′ and y(1) = y′′ and y(t) ∈ Zκ. For all

t ∈ [0, 1], let W (t) := E(y(t)). We will show that W (0) ≤ W (1). For all t ∈ [0, 1), let

Dy(t) := lim inf
h→0+

y(t + h)− y(t)

h
, and DW (t) := lim inf

h→0+

W (t + h)−W (t)

h
.
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Since E(y) is everywhere continuously differentiable, and y(t) is continuous, we have

DW (t) =
κ−1∑
k=1

dE

dyk

(y(t))Dyk(t).

By the envelope theorem,

dE

dyk

(y(t)) = [Ua (R (yh−1, yh) , yh)− Ua (R (yh, yh+1) , yh)] f (yh) .

Since y(t) ∈ Zκ, then dE
dyk

(y(t)) ≥ 0. Since y(t) is nondecreasing, then Dyk(t) ≥ 0.

Therefore we obtain DW (t) ≥ 0 for all t ∈ [0, 1). Since y(t) is continuous on [0, 1],

then W (0) ≤ W (1), the desired conclusion.�

The next results are consequences of the previous lemma. They apply to situations

where the sender has a particular form of strictly upward bias. Given two preferences

� and �′, we say that the preference �′ has a pairwise strictly upward bias with

respect to �, if for all t ∈ [0, 1], all two actions a < b ∈ A, we have b �t a ⇒ b �′
t a.

Theorem 6: Let κ ≥ 2, and let condition (N) hold. Suppose that the sender

has a pairwise strictly upward bias with respect to the receiver. Let y′ and y′′ be two

equilibria of size κ such that y′ ≤ y′′. Then the receiver’s expected payoff is greater at

y′′ than at y′.

Proof. We have y′, y′′ ∈ Zκ ∩Xκ. The Theorem then follows from Lemma 14.�

Theorem 7: Let κ ≥ 1, and let (N) hold. Suppose further that the sender has a

pairwise strictly upward bias with respect to the receiver. Let x represent the greatest

equilibrium of size κ and let y represent the greatest equilibrium of size κ + 1. The

receiver’s expected payoff is then greater at y than it is at x.

Proof. Let z ∈ Xκ+1 such that z ≡ (0, x). We have y, z ∈ Zκ+1 ∩Xκ+1. By Lemma

10, we have z < y. The Theorem then follows from Lemma 14.�

Our last result compares the receiver’s indirect utility at the greatest equilibrium

of a given size κ, when informed by two different senders. The result shows that if

sender 2 has a strictly pairwise upward bias with respect to sender 1, and sender 1
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has a pairwise strictly upward bias with respect to the receiver, then the receiver’s

indirect utility is higher when informed by sender 1, than when informed by sender

2.

Theorem 8: Consider two sender preferences �1 and �2. Let κ ≥ 2, and let

condition (N) hold. Suppose that �2 has a pairwise strictly upward bias with respect

to �1, and that �1 has a pairwise strictly upward bias with respect to Ua. Then the

receiver’s expected payoff at the greatest equilibrium of size κ is higher against �1

than against �2.

Proof. Let y′ and y′′ represent the greatest equilibrium of size κ against �1, and

against �2. By Corollary 1, we have y′′ < y′. We also have y′, y′′ ∈ Zκ ∩ Xκ. The

Theorem then follows from Lemma 14.�

A final remark on the comparison made in Theorem 8 is on order. The result is

obtain by constructing a continuous path between the equilibrium of the first game

and the equilibrium of the second game. Along the path, the indirect utility of the

receiver decreases. An alternative strategy would be to consider a continuous path

�v from the preference �1 to the preference �2, indexed by v ∈ [1, 2], and such that

for all v < v′, the preference �v′ has a strictly pairwise upward bias with respect to

�v. We can then consider the maximal equilibrium of size κ for each of the games

(R,�v), which defines a path xv ∈ Xκ. By Corollary 1, the path xv is decreasing.

If the path xv is also continuous, then we can show that the indirect utility of the

receiver is decreasing along the path, along the lines of lemma 14, and the conclusion

of Theorem 8 holds. Therefore, to obtain this welfare comparison, it suffices to prove

the continuity of the path xv, which may or may not hold, independently of whether

condition (N) is satisfied. Crawford and Sobel’s condition (M) implies this continuity.

7. The uniform-quadratic example

We now consider the special case where the prior distribution is uniform and

utilities are quadratic. Let F be the uniform distribution over T = [0, 1], so that
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F (t) = t. Let d > 0. Let

U r (a, t) = − (a− t)2 and U s (a, t) = − (a− b− dt)2 .

Straightforward calculations yield R (s, t) = s+t
2

. It is immediate that the conditions

listed at the beginning of this section are satisfied, so that the problem is admissible.

Table 1 shows that nature of the sender’s bias for different values of the parameters

b and d.

b + d ≤ 1 b + d ≥ 1
b ≤ 0 Downward Outward
b ≥ 0 Inward Upward

Table 1: Nature of the sender’s bias for different values of b and d.

Crawford and Sobel (1982) studied in detail the case where b > 0 and d = 1 as

an example of strictly upward bias and gave an explicit solution. We give here an

explicit solution for all values of the parameters, using the same methodology.

In equilibrium, a cutoff type xh must be indifferent between inducing the receiver’s

reaction to information the interval [xh−1, xh] and the receiver’s reaction to the infor-

mation [xh, xh+1]. This implies the arbitrage condition

b + dxh −
xh−1 + xh

2
=

xh + xh+1

2
− (b + dxh),

which can be rewritten as

(Ah) xh+1 + (2− 4d) xh + xh−1 − 4b = 0.

The vector x = (x0, ..., xκ) represents an equilibrium with exactly κ intervals iff it is

nondecreasing x0 ≤ ... ≤ xκ, solves the system A1, ..., Aκ−1 and satisfies the boundary

conditions x0 = 0 and xκ = 1 (problem A). We now solve problem A for all values of

the parameters.

The discriminant of the equation

(∗) ω2 + (2− 4d) ω + 1 = 0.
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is 16d (d− 1). It is null iff d = 1, positive iff d > 1 and negative iff d < 1.

Case 1: d = 1.

Crawford and Sobel (1982) show that in this case, a vector (x0, ..., xκ) is a solution

of A iff it is nondecreasing, and for all h = 0, ..., κ, we have

xh = 2bh2 + (
1− 2bκ2

κ
)h.

The vector defined by the formula above is nondecreasing iff

κ ≤

⌊
1 +

√
1 + 2/ |b|
2

⌋
.

Therefore there is exactly one equilibrium with κ intervals, for each positive integer

κ satisfying this last inequality (i.e. for a bounded and decreasing set of integers),

and it is described by the vector x defined above.

Case 2: d > 1.

Let λ < θ be the solutions of (∗). We have 0 < λ < 1 < θ. Let x∗ ≡ b
d−1

. A vector

(x0, ..., xκ) is a solution of A iff it is nondecreasing, and for all h = 0, ..., κ, we have

(1) xh = x∗ + aκλ
h + bκθ

h.

The boundary conditions x0 = 1 and xκ = 1 determine the constants

(2) aκ = −1 + x∗ (θκ − 1)

θκ − λκ
and bκ =

1− x∗ (1− λκ)

θκ − λκ
.

We now examine under what conditions the vector x is nondecreasing, i.e. defines an

equilibrium with κ intervals. We distinguish three cases.

Outward bias: 0 ≤ x∗ ≤ 1. In this case, the vector x defined by the formula above

is nondecreasing, for all κ ∈ N, since aκ < 0 and bκ > 0. Therefore there is a unique

equilibrium with κ intervals, for all κ ∈ N, and it is described by the formula above.

There is also a unique equilibrium with an infinity of intervals. It is described by the
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sequence {x∞h }h∈Z such that x∞0 := x∗ and for all h > 1, we have x∞h = x∗(1− λh−1)

and x∞−h = x∗ + (1− x∗) θ−h+1.

Strong downward bias: x∗ < 0. For all κ > 0, we have bκ > 0. A necessary and

sufficient condition for x to be nondecreasing is that

aκ

bκ

≤ θ − 1

1− λ

i.e.

bκ ≥ −(1− λ)x∗

θ − λ
.

This inequality is compatible with (2) only within a bounded decreasing set of positive

integers. For all κ in this set, there is a unique equilibrium with κ intervals. It is

defined by (1).

Strong upward bias: x∗ > 1. For all κ > 0, we have aκ < 0. A necessary and

sufficient condition for x to be nondecreasing is that

bκ

aκ

≤ 1− λ

θ − 1

i.e.

aκ ≤ −(θ − 1)x∗

θ − λ
.

This inequality is compatible with (2) only within a bounded decreasing set of positive

integers. For all κ in this set, there is a unique equilibrium with κ intervals. It is

defined by (1).

Case 3: d < 1.

Let x∗ := b
1−d

. If 0 ≤ x∗ ≤ 1, the sender has an inward bias. Otherwise he has

either a strictly upward bias, or a strictly downward bias. Let z = e±iρ be the complex

solutions of (∗). A solution x for problem A satisfies

xh = x∗ + Aκ sin (ρh + ϕκ) .
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The constants ϕκ and Aκ are jointly determined by the boundary conditions

x∗ + Aκ sin (ϕκ) = 0

x∗ + Aκ sin (ρκ + ϕκ) = 1.

The vector x is a nondecreasing solution iff ϕκ satisfies

sin (ρκ + ϕκ)

sin (ϕκ)
= −1− x∗

x∗
and ϕκ ∈

[
−π + ρ

2
,
π + 1− 2ρκ

2

]
It is easy to verify that the set{

sin (ρκ + ϕ)

sin (ϕ)
: ϕ ∈

[
−π + ρ

2
,
π + ρ− 2ρκ

2

]}
is strictly decreasing in κ and empty for κ > π/ρ+1. Therefore A has a nondecreasing

solution only within a bounded and decreasing set of positive integers. There is one

equilibrium with κ intervals for all κ in this set, and there are no equilibria of infinite

size.

8. Related literature

8.1. Fixed points versus difference equations

In last section, we use a difference equation technique to obtain explicit expressions

of the equilibria, in the uniform-quadratic example. More generally, the method is

well suited to compute equilibria in examples. In contrast, in the general model,

difference equations do not capture essential features of the structure of the problem,

and are an inappropriate tool to describe the structure of the set of equilibria, except

for the special case, where the sender’s bias is strictly upward (or strictly downward).

Crawford and Sobel (1982) are able to prove Theorem 3 in this paper (Theorem 1

in theirs) using a difference equations approach. We now explain why this approach

does not work to prove Theorem 1 in this paper, when the sender’s bias is neither

upward nor downward.

To explain this, let us recall the reasoning in Crawford and Sobel (1982). Any
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interval partition of the space may be described by a sequence of boundary types:

t0, . . . , tκ. For such a sequence to represent an equilibrium partition, it must satisfy

two additional conditions. First an equilibrium sequence must satisfy a recursive

equation obtained from the equilibrium “arbitrage conditions.” This equation links

together any three consecutive terms tk−1, tk and tk+1 for all k = 1, . . . , κ−1. Second,

an equilibrium sequence must satisfy the boundary conditions t0 = 0 and t1 = 1.

Now, suppose that the sender’s bias is upward. Then one can show that any sequence

that satisfies the two aforementioned condition is necessarily monotone nondecreasing,

i.e. such that t0 ≤ . . . ≤ tk . . . ≤ tk. This in turn implies that any such sequence

describes a type space partition, and even an equilibrium partition. The conclusion

of Theorem 1 in this paper follows easily from there. Suppose that t0, . . . , tκ is an

equilibrium sequence of size κ, and thus satisfies the two conditions. Consider now the

subsequence made up of the first κ terms of this equilibrium sequence, i.e. t0, . . . , tκ−1.

We can now continuously deform this subsequence into a sequence t′0, . . . , t
′
κ−1 that

satisfies the two conditions, and therefore is an equilibrium sequence of size κ−1, the

desired conclusion. This is done by sliding t1 upwards, and by sliding the remaining

terms t2, . . . , tκ−1, in such a way that the recursive equation is satisfied at each point

of the transformation. The transformation ends when tκ−1 hits 1, which must occur

by continuity.

When the sender has a downward bias, one can similarly transform the subse-

quence made up of the last κ terms of this equilibrium sequence into a size κ equilib-

rium, and the same result obtains.

Unfortunately, when the bias is neither upward nor downward, the whole edifice

collapses. But, where? In the general case consider in Theorem 1, a sequence satis-

fying the two above conditions may not be monotone nondecreasing. As a result, at

the end of transformation previously introduced, we may end with a sequence that

is not monotone nondecreasing, and therefore does not describe a partition, let alone

an equilibrium partition.

As a consequence, we are confident that difference equations are useful only to

study the upward or downward bias cases, or to solve examples. All results in this

paper, except for Theorem 3, and the results in sections 6 and 7, are dividends of the

fixed-point methods. This is the case, in particular, for the results on the outward bias
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case, the lattice and semi-lattice structures, the algorithm, and monotone comparative

statics. Our results on welfare comparisons for the receiver in section 6, are also

stronger than their counterparts in Crawford and Sobel (1982). The generalization is

again a byproduct of the fixed point method.

The method we use is particularly effective in the unidimensional model thanks to

two combined factors. The first one is the lattice structure that appears in the model.

The second is the monotonicity of the equilibrium mapping. Together, these features

allow us using prowerful results such as Tarski’s fixed point theorem, and monotone

comparative statics. Tarski’s theorem not only yields existence of equilibria, but

also results on the structure of the set of equilibria. For instance, when the sender’s

highest type has an upward bias, we prove that the set of equilibria of a given size

k has a maximal element, if it is not empty. This enable us to further study this

particular equilibrium, without assuming that it is the only one of this size. In the

strictly upward case, we provide robust comparative statics without assumptions on

equilibrium unicity. Crawford and Sobel (1982) obtained comparative statics results

on equilibria and welfare which relied on a strong condition (condition (M)). This

assumption implied in particular the unicity of an equilibrium of a given size. We

obtain these same results under a much weaker condition (condition (N)), using our

results on the structure of the set of equilibria.

8.2. Fixed points in Bayesian games

From the technical point of view, this paper is connected to an old tradition in

economics and game theory of studying equilibria as fixed points of a certain map-

ping. In particular, our work is related to the theory of supermodular games, in that

equilibria are the fixed-points of an increasing mapping, and we borrow many tech-

nical tools from this literature. Our work is also related to a literature on monotone

pure strategies equilibria in Bayesian games.7 It is also related to Athey’s (2001)

work on Bayesian games, with finite action sets and a unidimensional continuum of

types, for each player. Her objective is to prove that, under certain monotonicity and

regularity conditions, any such game has an equilibrium in pure monotone-in-type

7See Athey (2001), McAdams (2003) and Van Zandt and Vives (2006).
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strategies. This is a key difference with our work, since in our setting, the existence

of such equilibria is trivial. Athey represents strategies by the means of a vector of

jump points, as we do. She defines a mapping from this set to itself and applies a fixed

point theorem, as we do. The mapping we define is non-decreasing, allowing us to

use Tarski’s fixed-point theorem. Athey’s mapping is not monotone, which leads her

to invoke instead Kakutani’s fixed point theorem. Finally, Athey uses the fixed-point

theorem once and obtains the existence of at least one monotone equilibrium. In con-

trast, we use the fixed-point argument either as an induction step to prove existence

of equilibria of inferior sizes (Theorem 1) or directly for all possible equilibrium sizes,

i.e. an infinite number of times, to obtain an (at least countable) infinity of equilibria

(Theorem 4).

9. Other applications of the method

There are many other possible applications of the fixed point method to cheap

talk signalling models, well beyond the scope of this paper.

One important open question in the literature on cheap talk is the absence of

a well-established theory of how to select equilibria. This is especially true in the

unidimensional framework we study here.8 In a companion paper, we propose to

select the equilibria that are asymptotically stable fixed-points of the equilibrium

mapping. Within the class studied by Crawford and Sobel (1982), we prove that

a unique equilibrium satisfies this criterion. It is the maximal element of the set

of equilibria of maximal size, the one we sometimes label the “most informative

equilibrium.”

We now turn our attention beyond the unidimensional framework. How useful is

the fixed point method in more sophisticated models? In most, if not all, cheap talk

models, it is possible to describe the equilibria of the game as the fixed points of an

equilibrium mapping such as the one we introduced here. But for this strategy to

yield any result, one needs at least one of the two following conditions to hold. Either

the mapping should be nondecreasing, or the mapping’s domain should contain the

8For recent advances on selection in this model that do not rely on the fixed-point method, see
Kartik (2005) and Chen (2006).
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mapping’s image. In this paper, the second condition only holds when the sender’s

bias is outward. All of our results that do not take this as an assumption crucially

rely on the monotonicity of the equilibrium mapping.

Unfortunately, in more sophisticated models, the equilibrium mapping is not likely

to be monotone. However, even in this case, it may still be possible to use the

fixed-point method provided that the domain of the equilibrium mapping contains its

image. As a consequence, neither Tarski’s fixed-point theorem nor any of its variants

has any bite. Nevertheless, under certain conditions, Kakutani’s, or even Brouwer’s,

fixed-point theorems can be used.

Levy and Razin (2004) and Chakraborty and Harbaugh (2005, 2006) introduced

a multidimensional version of Crawford and Sobel’s (1982) game. Unfortunately,

this model raises serious technical difficulties. These authors provide partial results

on the equilibrium set, but not a detailed description of the equilibrium set. In a

companion paper (2006b), we apply the fixed-point method to this multidimensional

model. We define the equilibrium mapping in this context, which maps pavements of

the multi-dimensional type space to pavements of the same space. As one expects,

this mapping is not monotone. However, in the special case where the sender has

an outward bias, the domain of the equilibrium mapping contains its image. In

this context, the assumption says that the support of the sender’s preferred action

contains the support of the receiver’s preferred action. In this case, we prove, via

Kakutani’s fixed-point theorem, a result similar to this paper’s Theorem 4. This

yields a detailed description of the equilibrium set. We prove that this game has

infinitely many equilibria, at least one of each finite size, and at least one of infinite

size. Whether the method can be somehow adapted to the case where the sender’s

bias is not outward, to perhaps obtain a result analogous to this paper’s Theorem 1,

is an open question.

A simpler model where the equilibrium mapping is not monotone is the model of

unidimensional cheap talk with an “uncertain bias,” studied by Morgan and Stocken

(2003), Li (2005) and Dimitrakas and Sarafidis (2005). In this model, the sender’s

privately known type has two dimensions and actions have one dimension. One

of the type dimensions is relevant to both the receiver’s and the sender’s preferred

decision, and the other type dimension is only relevant to the sender’s preferred
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decision, and is therefore interpreted as an uncertain sender’s bias. These authors all

restrict attention to the case where both the sender and the receiver have quadratic

preferences. Despite the equilibrium mapping not being monotone, Dimitrakas and

Sarafidis (2005) successfully apply the fixed-point method. To this end, they restrict

attention to the case where the support of the marginal distribution of the sender’s

bias is of the form [0, b], with b > 0. This assumption precisely ensures that the

equilibrium mapping’s domain contains its image. As a result, a result similar to

this paper’s Theorem 4 holds, via Brouwer’s fixed point theorem. This yields a

detailed description of the equilibrium set. They prove that there are infinitely many

equilibria, at least one of each finite size, and at least one of infinite size. Also here,

whether the method can be adapted to other marginal distributions of the bias,9, to

perhaps obtain results analogous to this paper’s Theorem 1 or Theorem 4, is an open

question.

As an unfortunate consequence of the non monotonicity of the equilibrium map-

ping, both in Gordon (2006b) and Dimitrakas and Sarafidis (2005), the results in

sections 5 and 6 in this paper do not extend to these frameworks. The rich structure

we identify in this paper’s model does not seem exist in these other models.

In the model we studied in this paper, as in all the models previously discussed

in this section, and as in most cheap talk models, messages are interchangeable, in

the sense that the equilibrium allocation of messages to pools is irrelevant. In our

exposition of the method in this paper, we strongly rely on this property of the model.

However, there are cheap talk models where messages are not irrelevant. One recent

example is a model of noisy cheap talk signalling by Board and Blume (2006). In

their framework, the presence of noise gives some messages an endogenous meaning

in equilibrium. Therefore, as these authors point out,10 the fixed point method, as

presented here, cannot be applied to their model. Whether the method could be

adapted to settings such as theirs, or even to costly signalling games, is an open

question.

9For example, Morgan and Stocken (2003) consider marginal distributions of the bias with a
support of the form {0, b}, where b > 0. Li (2005) consider marginal distributions of the bias with
a support of the form {−b, +b}, where b > 0.

10Board and Blume (2006), p. 12.
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The fixed point method improves our understanding of cheap talk signalling in

general. The task of applying the method to these other questions is beyond the reach

of this paper. We leave it for future research.
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